xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 68d8904b)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40 
41 #include <linux/mlx5/eq.h>
42 
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45 	u32			bytes_committed;
46 	u32			token;
47 	u8			event_subtype;
48 	u8			type;
49 	union {
50 		/* Initiator or send message responder pagefault details. */
51 		struct {
52 			/* Received packet size, only valid for responders. */
53 			u32	packet_size;
54 			/*
55 			 * Number of resource holding WQE, depends on type.
56 			 */
57 			u32	wq_num;
58 			/*
59 			 * WQE index. Refers to either the send queue or
60 			 * receive queue, according to event_subtype.
61 			 */
62 			u16	wqe_index;
63 		} wqe;
64 		/* RDMA responder pagefault details */
65 		struct {
66 			u32	r_key;
67 			/*
68 			 * Received packet size, minimal size page fault
69 			 * resolution required for forward progress.
70 			 */
71 			u32	packet_size;
72 			u32	rdma_op_len;
73 			u64	rdma_va;
74 		} rdma;
75 	};
76 
77 	struct mlx5_ib_pf_eq	*eq;
78 	struct work_struct	work;
79 };
80 
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82 
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86 
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92 
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94 
95 static u64 mlx5_imr_ksm_entries;
96 
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98 			struct mlx5_ib_mr *imr, int flags)
99 {
100 	struct mlx5_klm *end = pklm + nentries;
101 
102 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
103 		for (; pklm != end; pklm++, idx++) {
104 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
106 			pklm->va = 0;
107 		}
108 		return;
109 	}
110 
111 	/*
112 	 * The locking here is pretty subtle. Ideally the implicit_children
113 	 * xarray would be protected by the umem_mutex, however that is not
114 	 * possible. Instead this uses a weaker update-then-lock pattern:
115 	 *
116 	 *  srcu_read_lock()
117 	 *    xa_store()
118 	 *    mutex_lock(umem_mutex)
119 	 *     mlx5_ib_update_xlt()
120 	 *    mutex_unlock(umem_mutex)
121 	 *    destroy lkey
122 	 *
123 	 * ie any change the xarray must be followed by the locked update_xlt
124 	 * before destroying.
125 	 *
126 	 * The umem_mutex provides the acquire/release semantic needed to make
127 	 * the xa_store() visible to a racing thread. While SRCU is not
128 	 * technically required, using it gives consistent use of the SRCU
129 	 * locking around the xarray.
130 	 */
131 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132 	lockdep_assert_held(&imr->dev->odp_srcu);
133 
134 	for (; pklm != end; pklm++, idx++) {
135 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136 
137 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 		if (mtt) {
139 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141 		} else {
142 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
143 			pklm->va = 0;
144 		}
145 	}
146 }
147 
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151 
152 	if (umem_dma & ODP_READ_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_READ;
154 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155 		mtt_entry |= MLX5_IB_MTT_WRITE;
156 
157 	return mtt_entry;
158 }
159 
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161 			 struct mlx5_ib_mr *mr, int flags)
162 {
163 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164 	dma_addr_t pa;
165 	size_t i;
166 
167 	if (flags & MLX5_IB_UPD_XLT_ZAP)
168 		return;
169 
170 	for (i = 0; i < nentries; i++) {
171 		pa = odp->dma_list[idx + i];
172 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173 	}
174 }
175 
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177 			   struct mlx5_ib_mr *mr, int flags)
178 {
179 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180 		populate_klm(xlt, idx, nentries, mr, flags);
181 	} else {
182 		populate_mtt(xlt, idx, nentries, mr, flags);
183 	}
184 }
185 
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189 
190 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191 	mutex_lock(&odp->umem_mutex);
192 	if (odp->npages) {
193 		mlx5_mr_cache_invalidate(mr);
194 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195 					    ib_umem_end(odp));
196 		WARN_ON(odp->npages);
197 	}
198 	odp->private = NULL;
199 	mutex_unlock(&odp->umem_mutex);
200 
201 	if (!mr->cache_ent) {
202 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203 		WARN_ON(mr->descs);
204 	}
205 }
206 
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215 	struct mlx5_ib_mr *imr = mr->parent;
216 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219 	int srcu_key;
220 
221 	/* implicit_child_mr's are not allowed to have deferred work */
222 	WARN_ON(atomic_read(&mr->num_deferred_work));
223 
224 	if (need_imr_xlt) {
225 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226 		mutex_lock(&odp_imr->umem_mutex);
227 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228 				   MLX5_IB_UPD_XLT_INDIRECT |
229 				   MLX5_IB_UPD_XLT_ATOMIC);
230 		mutex_unlock(&odp_imr->umem_mutex);
231 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232 	}
233 
234 	dma_fence_odp_mr(mr);
235 
236 	mr->parent = NULL;
237 	mlx5_mr_cache_free(mr->dev, mr);
238 	ib_umem_odp_release(odp);
239 	if (atomic_dec_and_test(&imr->num_deferred_work))
240 		wake_up(&imr->q_deferred_work);
241 }
242 
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245 	struct mlx5_ib_mr *mr =
246 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247 
248 	free_implicit_child_mr(mr, true);
249 }
250 
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253 	struct mlx5_ib_mr *mr =
254 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255 
256 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
257 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260 
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265 	struct mlx5_ib_mr *imr = mr->parent;
266 
267 	xa_lock(&imr->implicit_children);
268 	/*
269 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
270 	 * reach the xa lock wins the race and destroys the MR.
271 	 */
272 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273 	    mr)
274 		goto out_unlock;
275 
276 	atomic_inc(&imr->num_deferred_work);
277 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278 		  free_implicit_child_mr_rcu);
279 
280 out_unlock:
281 	xa_unlock(&imr->implicit_children);
282 }
283 
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285 				     const struct mmu_notifier_range *range,
286 				     unsigned long cur_seq)
287 {
288 	struct ib_umem_odp *umem_odp =
289 		container_of(mni, struct ib_umem_odp, notifier);
290 	struct mlx5_ib_mr *mr;
291 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292 				    sizeof(struct mlx5_mtt)) - 1;
293 	u64 idx = 0, blk_start_idx = 0;
294 	u64 invalidations = 0;
295 	unsigned long start;
296 	unsigned long end;
297 	int in_block = 0;
298 	u64 addr;
299 
300 	if (!mmu_notifier_range_blockable(range))
301 		return false;
302 
303 	mutex_lock(&umem_odp->umem_mutex);
304 	mmu_interval_set_seq(mni, cur_seq);
305 	/*
306 	 * If npages is zero then umem_odp->private may not be setup yet. This
307 	 * does not complete until after the first page is mapped for DMA.
308 	 */
309 	if (!umem_odp->npages)
310 		goto out;
311 	mr = umem_odp->private;
312 
313 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
314 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
315 
316 	/*
317 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318 	 * while we are doing the invalidation, no page fault will attempt to
319 	 * overwrite the same MTTs.  Concurent invalidations might race us,
320 	 * but they will write 0s as well, so no difference in the end result.
321 	 */
322 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324 		/*
325 		 * Strive to write the MTTs in chunks, but avoid overwriting
326 		 * non-existing MTTs. The huristic here can be improved to
327 		 * estimate the cost of another UMR vs. the cost of bigger
328 		 * UMR.
329 		 */
330 		if (umem_odp->dma_list[idx] &
331 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332 			if (!in_block) {
333 				blk_start_idx = idx;
334 				in_block = 1;
335 			}
336 
337 			/* Count page invalidations */
338 			invalidations += idx - blk_start_idx + 1;
339 		} else {
340 			u64 umr_offset = idx & umr_block_mask;
341 
342 			if (in_block && umr_offset == 0) {
343 				mlx5_ib_update_xlt(mr, blk_start_idx,
344 						   idx - blk_start_idx, 0,
345 						   MLX5_IB_UPD_XLT_ZAP |
346 						   MLX5_IB_UPD_XLT_ATOMIC);
347 				in_block = 0;
348 			}
349 		}
350 	}
351 	if (in_block)
352 		mlx5_ib_update_xlt(mr, blk_start_idx,
353 				   idx - blk_start_idx + 1, 0,
354 				   MLX5_IB_UPD_XLT_ZAP |
355 				   MLX5_IB_UPD_XLT_ATOMIC);
356 
357 	mlx5_update_odp_stats(mr, invalidations, invalidations);
358 
359 	/*
360 	 * We are now sure that the device will not access the
361 	 * memory. We can safely unmap it, and mark it as dirty if
362 	 * needed.
363 	 */
364 
365 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366 
367 	if (unlikely(!umem_odp->npages && mr->parent))
368 		destroy_unused_implicit_child_mr(mr);
369 out:
370 	mutex_unlock(&umem_odp->umem_mutex);
371 	return true;
372 }
373 
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375 	.invalidate = mlx5_ib_invalidate_range,
376 };
377 
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380 	struct ib_odp_caps *caps = &dev->odp_caps;
381 
382 	memset(caps, 0, sizeof(*caps));
383 
384 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385 	    !mlx5_ib_can_use_umr(dev, true, 0))
386 		return;
387 
388 	caps->general_caps = IB_ODP_SUPPORT;
389 
390 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391 		dev->odp_max_size = U64_MAX;
392 	else
393 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394 
395 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397 
398 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 
401 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 
404 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 
407 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 
410 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412 
413 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 
416 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 
419 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421 
422 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424 
425 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427 
428 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430 
431 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433 
434 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436 
437 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443 
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445 				      struct mlx5_pagefault *pfault,
446 				      int error)
447 {
448 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449 		     pfault->wqe.wq_num : pfault->token;
450 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451 	int err;
452 
453 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457 	MLX5_SET(page_fault_resume_in, in, error, !!error);
458 
459 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460 	if (err)
461 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462 			    wq_num, err);
463 }
464 
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466 						unsigned long idx)
467 {
468 	struct ib_umem_odp *odp;
469 	struct mlx5_ib_mr *mr;
470 	struct mlx5_ib_mr *ret;
471 	int err;
472 
473 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474 				      idx * MLX5_IMR_MTT_SIZE,
475 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476 	if (IS_ERR(odp))
477 		return ERR_CAST(odp);
478 
479 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480 	if (IS_ERR(mr))
481 		goto out_umem;
482 
483 	mr->ibmr.pd = imr->ibmr.pd;
484 	mr->access_flags = imr->access_flags;
485 	mr->umem = &odp->umem;
486 	mr->ibmr.lkey = mr->mmkey.key;
487 	mr->ibmr.rkey = mr->mmkey.key;
488 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489 	mr->parent = imr;
490 	odp->private = mr;
491 
492 	err = mlx5_ib_update_xlt(mr, 0,
493 				 MLX5_IMR_MTT_ENTRIES,
494 				 PAGE_SHIFT,
495 				 MLX5_IB_UPD_XLT_ZAP |
496 				 MLX5_IB_UPD_XLT_ENABLE);
497 	if (err) {
498 		ret = ERR_PTR(err);
499 		goto out_mr;
500 	}
501 
502 	/*
503 	 * Once the store to either xarray completes any error unwind has to
504 	 * use synchronize_srcu(). Avoid this with xa_reserve()
505 	 */
506 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507 			 GFP_KERNEL);
508 	if (unlikely(ret)) {
509 		if (xa_is_err(ret)) {
510 			ret = ERR_PTR(xa_err(ret));
511 			goto out_mr;
512 		}
513 		/*
514 		 * Another thread beat us to creating the child mr, use
515 		 * theirs.
516 		 */
517 		goto out_mr;
518 	}
519 
520 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521 	return mr;
522 
523 out_mr:
524 	mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526 	ib_umem_odp_release(odp);
527 	return ret;
528 }
529 
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531 					     struct ib_udata *udata,
532 					     int access_flags)
533 {
534 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535 	struct ib_umem_odp *umem_odp;
536 	struct mlx5_ib_mr *imr;
537 	int err;
538 
539 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540 	if (IS_ERR(umem_odp))
541 		return ERR_CAST(umem_odp);
542 
543 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544 	if (IS_ERR(imr)) {
545 		err = PTR_ERR(imr);
546 		goto out_umem;
547 	}
548 
549 	imr->ibmr.pd = &pd->ibpd;
550 	imr->access_flags = access_flags;
551 	imr->mmkey.iova = 0;
552 	imr->umem = &umem_odp->umem;
553 	imr->ibmr.lkey = imr->mmkey.key;
554 	imr->ibmr.rkey = imr->mmkey.key;
555 	imr->umem = &umem_odp->umem;
556 	imr->is_odp_implicit = true;
557 	atomic_set(&imr->num_deferred_work, 0);
558 	init_waitqueue_head(&imr->q_deferred_work);
559 	xa_init(&imr->implicit_children);
560 
561 	err = mlx5_ib_update_xlt(imr, 0,
562 				 mlx5_imr_ksm_entries,
563 				 MLX5_KSM_PAGE_SHIFT,
564 				 MLX5_IB_UPD_XLT_INDIRECT |
565 				 MLX5_IB_UPD_XLT_ZAP |
566 				 MLX5_IB_UPD_XLT_ENABLE);
567 	if (err)
568 		goto out_mr;
569 
570 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571 			      &imr->mmkey, GFP_KERNEL));
572 	if (err)
573 		goto out_mr;
574 
575 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576 	return imr;
577 out_mr:
578 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579 	mlx5_mr_cache_free(dev, imr);
580 out_umem:
581 	ib_umem_odp_release(umem_odp);
582 	return ERR_PTR(err);
583 }
584 
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
586 {
587 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588 	struct mlx5_ib_dev *dev = imr->dev;
589 	struct list_head destroy_list;
590 	struct mlx5_ib_mr *mtt;
591 	struct mlx5_ib_mr *tmp;
592 	unsigned long idx;
593 
594 	INIT_LIST_HEAD(&destroy_list);
595 
596 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
597 	/*
598 	 * This stops the SRCU protected page fault path from touching either
599 	 * the imr or any children. The page fault path can only reach the
600 	 * children xarray via the imr.
601 	 */
602 	synchronize_srcu(&dev->odp_srcu);
603 
604 	/*
605 	 * All work on the prefetch list must be completed, xa_erase() prevented
606 	 * new work from being created.
607 	 */
608 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
609 
610 	/*
611 	 * At this point it is forbidden for any other thread to enter
612 	 * pagefault_mr() on this imr. It is already forbidden to call
613 	 * pagefault_mr() on an implicit child. Due to this additions to
614 	 * implicit_children are prevented.
615 	 */
616 
617 	/*
618 	 * Block destroy_unused_implicit_child_mr() from incrementing
619 	 * num_deferred_work.
620 	 */
621 	xa_lock(&imr->implicit_children);
622 	xa_for_each (&imr->implicit_children, idx, mtt) {
623 		__xa_erase(&imr->implicit_children, idx);
624 		list_add(&mtt->odp_destroy.elm, &destroy_list);
625 	}
626 	xa_unlock(&imr->implicit_children);
627 
628 	/*
629 	 * Wait for any concurrent destroy_unused_implicit_child_mr() to
630 	 * complete.
631 	 */
632 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
633 
634 	/*
635 	 * Fence the imr before we destroy the children. This allows us to
636 	 * skip updating the XLT of the imr during destroy of the child mkey
637 	 * the imr points to.
638 	 */
639 	mlx5_mr_cache_invalidate(imr);
640 
641 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
642 		free_implicit_child_mr(mtt, false);
643 
644 	mlx5_mr_cache_free(dev, imr);
645 	ib_umem_odp_release(odp_imr);
646 }
647 
648 /**
649  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
650  * @mr: to fence
651  *
652  * On return no parallel threads will be touching this MR and no DMA will be
653  * active.
654  */
655 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
656 {
657 	/* Prevent new page faults and prefetch requests from succeeding */
658 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
659 
660 	/* Wait for all running page-fault handlers to finish. */
661 	synchronize_srcu(&mr->dev->odp_srcu);
662 
663 	wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
664 
665 	dma_fence_odp_mr(mr);
666 }
667 
668 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
669 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
670 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
671 			     u32 flags)
672 {
673 	int page_shift, ret, np;
674 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
675 	unsigned long current_seq;
676 	u64 access_mask;
677 	u64 start_idx;
678 
679 	page_shift = odp->page_shift;
680 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681 	access_mask = ODP_READ_ALLOWED_BIT;
682 
683 	if (odp->umem.writable && !downgrade)
684 		access_mask |= ODP_WRITE_ALLOWED_BIT;
685 
686 	current_seq = mmu_interval_read_begin(&odp->notifier);
687 
688 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
689 				       current_seq);
690 	if (np < 0)
691 		return np;
692 
693 	mutex_lock(&odp->umem_mutex);
694 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
695 		/*
696 		 * No need to check whether the MTTs really belong to
697 		 * this MR, since ib_umem_odp_map_dma_pages already
698 		 * checks this.
699 		 */
700 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
701 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
702 	} else {
703 		ret = -EAGAIN;
704 	}
705 	mutex_unlock(&odp->umem_mutex);
706 
707 	if (ret < 0) {
708 		if (ret != -EAGAIN)
709 			mlx5_ib_err(mr->dev,
710 				    "Failed to update mkey page tables\n");
711 		goto out;
712 	}
713 
714 	if (bytes_mapped) {
715 		u32 new_mappings = (np << page_shift) -
716 			(user_va - round_down(user_va, 1 << page_shift));
717 
718 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
719 	}
720 
721 	return np << (page_shift - PAGE_SHIFT);
722 
723 out:
724 	return ret;
725 }
726 
727 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
728 				 struct ib_umem_odp *odp_imr, u64 user_va,
729 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
730 {
731 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
732 	unsigned long upd_start_idx = end_idx + 1;
733 	unsigned long upd_len = 0;
734 	unsigned long npages = 0;
735 	int err;
736 	int ret;
737 
738 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
739 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
740 		return -EFAULT;
741 
742 	/* Fault each child mr that intersects with our interval. */
743 	while (bcnt) {
744 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
745 		struct ib_umem_odp *umem_odp;
746 		struct mlx5_ib_mr *mtt;
747 		u64 len;
748 
749 		mtt = xa_load(&imr->implicit_children, idx);
750 		if (unlikely(!mtt)) {
751 			mtt = implicit_get_child_mr(imr, idx);
752 			if (IS_ERR(mtt)) {
753 				ret = PTR_ERR(mtt);
754 				goto out;
755 			}
756 			upd_start_idx = min(upd_start_idx, idx);
757 			upd_len = idx - upd_start_idx + 1;
758 		}
759 
760 		umem_odp = to_ib_umem_odp(mtt->umem);
761 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
762 		      user_va;
763 
764 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
765 					bytes_mapped, flags);
766 		if (ret < 0)
767 			goto out;
768 		user_va += len;
769 		bcnt -= len;
770 		npages += ret;
771 	}
772 
773 	ret = npages;
774 
775 	/*
776 	 * Any time the implicit_children are changed we must perform an
777 	 * update of the xlt before exiting to ensure the HW and the
778 	 * implicit_children remains synchronized.
779 	 */
780 out:
781 	if (likely(!upd_len))
782 		return ret;
783 
784 	/*
785 	 * Notice this is not strictly ordered right, the KSM is updated after
786 	 * the implicit_children is updated, so a parallel page fault could
787 	 * see a MR that is not yet visible in the KSM.  This is similar to a
788 	 * parallel page fault seeing a MR that is being concurrently removed
789 	 * from the KSM. Both of these improbable situations are resolved
790 	 * safely by resuming the HW and then taking another page fault. The
791 	 * next pagefault handler will see the new information.
792 	 */
793 	mutex_lock(&odp_imr->umem_mutex);
794 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
795 				 MLX5_IB_UPD_XLT_INDIRECT |
796 					 MLX5_IB_UPD_XLT_ATOMIC);
797 	mutex_unlock(&odp_imr->umem_mutex);
798 	if (err) {
799 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
800 		return err;
801 	}
802 	return ret;
803 }
804 
805 /*
806  * Returns:
807  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
808  *           not accessible, or the MR is no longer valid.
809  *  -EAGAIN/-ENOMEM: The operation should be retried
810  *
811  *  -EINVAL/others: General internal malfunction
812  *  >0: Number of pages mapped
813  */
814 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
815 			u32 *bytes_mapped, u32 flags)
816 {
817 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
818 
819 	lockdep_assert_held(&mr->dev->odp_srcu);
820 	if (unlikely(io_virt < mr->mmkey.iova))
821 		return -EFAULT;
822 
823 	if (!odp->is_implicit_odp) {
824 		u64 user_va;
825 
826 		if (check_add_overflow(io_virt - mr->mmkey.iova,
827 				       (u64)odp->umem.address, &user_va))
828 			return -EFAULT;
829 		if (unlikely(user_va >= ib_umem_end(odp) ||
830 			     ib_umem_end(odp) - user_va < bcnt))
831 			return -EFAULT;
832 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
833 					 flags);
834 	}
835 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
836 				     flags);
837 }
838 
839 struct pf_frame {
840 	struct pf_frame *next;
841 	u32 key;
842 	u64 io_virt;
843 	size_t bcnt;
844 	int depth;
845 };
846 
847 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
848 {
849 	if (!mmkey)
850 		return false;
851 	if (mmkey->type == MLX5_MKEY_MW)
852 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
853 	return mmkey->key == key;
854 }
855 
856 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
857 {
858 	struct mlx5_ib_mw *mw;
859 	struct mlx5_ib_devx_mr *devx_mr;
860 
861 	if (mmkey->type == MLX5_MKEY_MW) {
862 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
863 		return mw->ndescs;
864 	}
865 
866 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
867 			       mmkey);
868 	return devx_mr->ndescs;
869 }
870 
871 /*
872  * Handle a single data segment in a page-fault WQE or RDMA region.
873  *
874  * Returns number of OS pages retrieved on success. The caller may continue to
875  * the next data segment.
876  * Can return the following error codes:
877  * -EAGAIN to designate a temporary error. The caller will abort handling the
878  *  page fault and resolve it.
879  * -EFAULT when there's an error mapping the requested pages. The caller will
880  *  abort the page fault handling.
881  */
882 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
883 					 struct ib_pd *pd, u32 key,
884 					 u64 io_virt, size_t bcnt,
885 					 u32 *bytes_committed,
886 					 u32 *bytes_mapped)
887 {
888 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
889 	struct pf_frame *head = NULL, *frame;
890 	struct mlx5_core_mkey *mmkey;
891 	struct mlx5_ib_mr *mr;
892 	struct mlx5_klm *pklm;
893 	u32 *out = NULL;
894 	size_t offset;
895 	int ndescs;
896 
897 	srcu_key = srcu_read_lock(&dev->odp_srcu);
898 
899 	io_virt += *bytes_committed;
900 	bcnt -= *bytes_committed;
901 
902 next_mr:
903 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
904 	if (!mmkey) {
905 		mlx5_ib_dbg(
906 			dev,
907 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
908 			key);
909 		if (bytes_mapped)
910 			*bytes_mapped += bcnt;
911 		/*
912 		 * The user could specify a SGL with multiple lkeys and only
913 		 * some of them are ODP. Treat the non-ODP ones as fully
914 		 * faulted.
915 		 */
916 		ret = 0;
917 		goto srcu_unlock;
918 	}
919 	if (!mkey_is_eq(mmkey, key)) {
920 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
921 		ret = -EFAULT;
922 		goto srcu_unlock;
923 	}
924 
925 	switch (mmkey->type) {
926 	case MLX5_MKEY_MR:
927 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
928 
929 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
930 		if (ret < 0)
931 			goto srcu_unlock;
932 
933 		mlx5_update_odp_stats(mr, faults, ret);
934 
935 		npages += ret;
936 		ret = 0;
937 		break;
938 
939 	case MLX5_MKEY_MW:
940 	case MLX5_MKEY_INDIRECT_DEVX:
941 		ndescs = get_indirect_num_descs(mmkey);
942 
943 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
944 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
945 			ret = -EFAULT;
946 			goto srcu_unlock;
947 		}
948 
949 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
950 			sizeof(*pklm) * (ndescs - 2);
951 
952 		if (outlen > cur_outlen) {
953 			kfree(out);
954 			out = kzalloc(outlen, GFP_KERNEL);
955 			if (!out) {
956 				ret = -ENOMEM;
957 				goto srcu_unlock;
958 			}
959 			cur_outlen = outlen;
960 		}
961 
962 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
963 						       bsf0_klm0_pas_mtt0_1);
964 
965 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
966 		if (ret)
967 			goto srcu_unlock;
968 
969 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
970 					      memory_key_mkey_entry.start_addr);
971 
972 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
973 			if (offset >= be32_to_cpu(pklm->bcount)) {
974 				offset -= be32_to_cpu(pklm->bcount);
975 				continue;
976 			}
977 
978 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
979 			if (!frame) {
980 				ret = -ENOMEM;
981 				goto srcu_unlock;
982 			}
983 
984 			frame->key = be32_to_cpu(pklm->key);
985 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
986 			frame->bcnt = min_t(size_t, bcnt,
987 					    be32_to_cpu(pklm->bcount) - offset);
988 			frame->depth = depth + 1;
989 			frame->next = head;
990 			head = frame;
991 
992 			bcnt -= frame->bcnt;
993 			offset = 0;
994 		}
995 		break;
996 
997 	default:
998 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
999 		ret = -EFAULT;
1000 		goto srcu_unlock;
1001 	}
1002 
1003 	if (head) {
1004 		frame = head;
1005 		head = frame->next;
1006 
1007 		key = frame->key;
1008 		io_virt = frame->io_virt;
1009 		bcnt = frame->bcnt;
1010 		depth = frame->depth;
1011 		kfree(frame);
1012 
1013 		goto next_mr;
1014 	}
1015 
1016 srcu_unlock:
1017 	while (head) {
1018 		frame = head;
1019 		head = frame->next;
1020 		kfree(frame);
1021 	}
1022 	kfree(out);
1023 
1024 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1025 	*bytes_committed = 0;
1026 	return ret ? ret : npages;
1027 }
1028 
1029 /**
1030  * Parse a series of data segments for page fault handling.
1031  *
1032  * @pfault contains page fault information.
1033  * @wqe points at the first data segment in the WQE.
1034  * @wqe_end points after the end of the WQE.
1035  * @bytes_mapped receives the number of bytes that the function was able to
1036  *               map. This allows the caller to decide intelligently whether
1037  *               enough memory was mapped to resolve the page fault
1038  *               successfully (e.g. enough for the next MTU, or the entire
1039  *               WQE).
1040  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1041  *                  the committed bytes).
1042  *
1043  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1044  * negative error code.
1045  */
1046 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1047 				   struct mlx5_pagefault *pfault,
1048 				   void *wqe,
1049 				   void *wqe_end, u32 *bytes_mapped,
1050 				   u32 *total_wqe_bytes, bool receive_queue)
1051 {
1052 	int ret = 0, npages = 0;
1053 	u64 io_virt;
1054 	u32 key;
1055 	u32 byte_count;
1056 	size_t bcnt;
1057 	int inline_segment;
1058 
1059 	if (bytes_mapped)
1060 		*bytes_mapped = 0;
1061 	if (total_wqe_bytes)
1062 		*total_wqe_bytes = 0;
1063 
1064 	while (wqe < wqe_end) {
1065 		struct mlx5_wqe_data_seg *dseg = wqe;
1066 
1067 		io_virt = be64_to_cpu(dseg->addr);
1068 		key = be32_to_cpu(dseg->lkey);
1069 		byte_count = be32_to_cpu(dseg->byte_count);
1070 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1071 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1072 
1073 		if (inline_segment) {
1074 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1075 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1076 				     16);
1077 		} else {
1078 			wqe += sizeof(*dseg);
1079 		}
1080 
1081 		/* receive WQE end of sg list. */
1082 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1083 		    io_virt == 0)
1084 			break;
1085 
1086 		if (!inline_segment && total_wqe_bytes) {
1087 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1088 					pfault->bytes_committed);
1089 		}
1090 
1091 		/* A zero length data segment designates a length of 2GB. */
1092 		if (bcnt == 0)
1093 			bcnt = 1U << 31;
1094 
1095 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1096 			pfault->bytes_committed -=
1097 				min_t(size_t, bcnt,
1098 				      pfault->bytes_committed);
1099 			continue;
1100 		}
1101 
1102 		ret = pagefault_single_data_segment(dev, NULL, key,
1103 						    io_virt, bcnt,
1104 						    &pfault->bytes_committed,
1105 						    bytes_mapped);
1106 		if (ret < 0)
1107 			break;
1108 		npages += ret;
1109 	}
1110 
1111 	return ret < 0 ? ret : npages;
1112 }
1113 
1114 /*
1115  * Parse initiator WQE. Advances the wqe pointer to point at the
1116  * scatter-gather list, and set wqe_end to the end of the WQE.
1117  */
1118 static int mlx5_ib_mr_initiator_pfault_handler(
1119 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1120 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1121 {
1122 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1123 	u16 wqe_index = pfault->wqe.wqe_index;
1124 	struct mlx5_base_av *av;
1125 	unsigned ds, opcode;
1126 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1127 
1128 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1129 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1130 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1131 			    ds, wqe_length);
1132 		return -EFAULT;
1133 	}
1134 
1135 	if (ds == 0) {
1136 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1137 			    wqe_index, qpn);
1138 		return -EFAULT;
1139 	}
1140 
1141 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1142 	*wqe += sizeof(*ctrl);
1143 
1144 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1145 		 MLX5_WQE_CTRL_OPCODE_MASK;
1146 
1147 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1148 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1149 
1150 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1151 		av = *wqe;
1152 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1153 			*wqe += sizeof(struct mlx5_av);
1154 		else
1155 			*wqe += sizeof(struct mlx5_base_av);
1156 	}
1157 
1158 	switch (opcode) {
1159 	case MLX5_OPCODE_RDMA_WRITE:
1160 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1161 	case MLX5_OPCODE_RDMA_READ:
1162 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1163 		break;
1164 	case MLX5_OPCODE_ATOMIC_CS:
1165 	case MLX5_OPCODE_ATOMIC_FA:
1166 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1167 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1168 		break;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Parse responder WQE and set wqe_end to the end of the WQE.
1176  */
1177 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1178 						   struct mlx5_ib_srq *srq,
1179 						   void **wqe, void **wqe_end,
1180 						   int wqe_length)
1181 {
1182 	int wqe_size = 1 << srq->msrq.wqe_shift;
1183 
1184 	if (wqe_size > wqe_length) {
1185 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1186 		return -EFAULT;
1187 	}
1188 
1189 	*wqe_end = *wqe + wqe_size;
1190 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1191 
1192 	return 0;
1193 }
1194 
1195 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1196 						  struct mlx5_ib_qp *qp,
1197 						  void *wqe, void **wqe_end,
1198 						  int wqe_length)
1199 {
1200 	struct mlx5_ib_wq *wq = &qp->rq;
1201 	int wqe_size = 1 << wq->wqe_shift;
1202 
1203 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1204 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1205 		return -EFAULT;
1206 	}
1207 
1208 	if (wqe_size > wqe_length) {
1209 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1210 		return -EFAULT;
1211 	}
1212 
1213 	*wqe_end = wqe + wqe_size;
1214 
1215 	return 0;
1216 }
1217 
1218 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1219 						       u32 wq_num, int pf_type)
1220 {
1221 	struct mlx5_core_rsc_common *common = NULL;
1222 	struct mlx5_core_srq *srq;
1223 
1224 	switch (pf_type) {
1225 	case MLX5_WQE_PF_TYPE_RMP:
1226 		srq = mlx5_cmd_get_srq(dev, wq_num);
1227 		if (srq)
1228 			common = &srq->common;
1229 		break;
1230 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1231 	case MLX5_WQE_PF_TYPE_RESP:
1232 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1233 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1234 		break;
1235 	default:
1236 		break;
1237 	}
1238 
1239 	return common;
1240 }
1241 
1242 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1243 {
1244 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1245 
1246 	return to_mibqp(mqp);
1247 }
1248 
1249 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1250 {
1251 	struct mlx5_core_srq *msrq =
1252 		container_of(res, struct mlx5_core_srq, common);
1253 
1254 	return to_mibsrq(msrq);
1255 }
1256 
1257 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1258 					  struct mlx5_pagefault *pfault)
1259 {
1260 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1261 	u16 wqe_index = pfault->wqe.wqe_index;
1262 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1263 	u32 bytes_mapped, total_wqe_bytes;
1264 	struct mlx5_core_rsc_common *res;
1265 	int resume_with_error = 1;
1266 	struct mlx5_ib_qp *qp;
1267 	size_t bytes_copied;
1268 	int ret = 0;
1269 
1270 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1271 	if (!res) {
1272 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1273 		return;
1274 	}
1275 
1276 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1277 	    res->res != MLX5_RES_XSRQ) {
1278 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1279 			    pfault->type);
1280 		goto resolve_page_fault;
1281 	}
1282 
1283 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1284 	if (!wqe_start) {
1285 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1286 		goto resolve_page_fault;
1287 	}
1288 
1289 	wqe = wqe_start;
1290 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1291 	if (qp && sq) {
1292 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1293 					  &bytes_copied);
1294 		if (ret)
1295 			goto read_user;
1296 		ret = mlx5_ib_mr_initiator_pfault_handler(
1297 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1298 	} else if (qp && !sq) {
1299 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1300 					  &bytes_copied);
1301 		if (ret)
1302 			goto read_user;
1303 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1304 			dev, qp, wqe, &wqe_end, bytes_copied);
1305 	} else if (!qp) {
1306 		struct mlx5_ib_srq *srq = res_to_srq(res);
1307 
1308 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1309 					   &bytes_copied);
1310 		if (ret)
1311 			goto read_user;
1312 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1313 			dev, srq, &wqe, &wqe_end, bytes_copied);
1314 	}
1315 
1316 	if (ret < 0 || wqe >= wqe_end)
1317 		goto resolve_page_fault;
1318 
1319 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1320 				      &total_wqe_bytes, !sq);
1321 	if (ret == -EAGAIN)
1322 		goto out;
1323 
1324 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1325 		goto resolve_page_fault;
1326 
1327 out:
1328 	ret = 0;
1329 	resume_with_error = 0;
1330 
1331 read_user:
1332 	if (ret)
1333 		mlx5_ib_err(
1334 			dev,
1335 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1336 			ret, wqe_index, pfault->token);
1337 
1338 resolve_page_fault:
1339 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1340 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1341 		    pfault->wqe.wq_num, resume_with_error,
1342 		    pfault->type);
1343 	mlx5_core_res_put(res);
1344 	free_page((unsigned long)wqe_start);
1345 }
1346 
1347 static int pages_in_range(u64 address, u32 length)
1348 {
1349 	return (ALIGN(address + length, PAGE_SIZE) -
1350 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1351 }
1352 
1353 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1354 					   struct mlx5_pagefault *pfault)
1355 {
1356 	u64 address;
1357 	u32 length;
1358 	u32 prefetch_len = pfault->bytes_committed;
1359 	int prefetch_activated = 0;
1360 	u32 rkey = pfault->rdma.r_key;
1361 	int ret;
1362 
1363 	/* The RDMA responder handler handles the page fault in two parts.
1364 	 * First it brings the necessary pages for the current packet
1365 	 * (and uses the pfault context), and then (after resuming the QP)
1366 	 * prefetches more pages. The second operation cannot use the pfault
1367 	 * context and therefore uses the dummy_pfault context allocated on
1368 	 * the stack */
1369 	pfault->rdma.rdma_va += pfault->bytes_committed;
1370 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1371 					 pfault->rdma.rdma_op_len);
1372 	pfault->bytes_committed = 0;
1373 
1374 	address = pfault->rdma.rdma_va;
1375 	length  = pfault->rdma.rdma_op_len;
1376 
1377 	/* For some operations, the hardware cannot tell the exact message
1378 	 * length, and in those cases it reports zero. Use prefetch
1379 	 * logic. */
1380 	if (length == 0) {
1381 		prefetch_activated = 1;
1382 		length = pfault->rdma.packet_size;
1383 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1384 	}
1385 
1386 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1387 					    &pfault->bytes_committed, NULL);
1388 	if (ret == -EAGAIN) {
1389 		/* We're racing with an invalidation, don't prefetch */
1390 		prefetch_activated = 0;
1391 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1392 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1393 		if (ret != -ENOENT)
1394 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1395 				    ret, pfault->token, pfault->type);
1396 		return;
1397 	}
1398 
1399 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1400 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1401 		    pfault->token, pfault->type,
1402 		    prefetch_activated);
1403 
1404 	/* At this point, there might be a new pagefault already arriving in
1405 	 * the eq, switch to the dummy pagefault for the rest of the
1406 	 * processing. We're still OK with the objects being alive as the
1407 	 * work-queue is being fenced. */
1408 
1409 	if (prefetch_activated) {
1410 		u32 bytes_committed = 0;
1411 
1412 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1413 						    prefetch_len,
1414 						    &bytes_committed, NULL);
1415 		if (ret < 0 && ret != -EAGAIN) {
1416 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1417 				    ret, pfault->token, address, prefetch_len);
1418 		}
1419 	}
1420 }
1421 
1422 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1423 {
1424 	u8 event_subtype = pfault->event_subtype;
1425 
1426 	switch (event_subtype) {
1427 	case MLX5_PFAULT_SUBTYPE_WQE:
1428 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1429 		break;
1430 	case MLX5_PFAULT_SUBTYPE_RDMA:
1431 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1432 		break;
1433 	default:
1434 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1435 			    event_subtype);
1436 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1437 	}
1438 }
1439 
1440 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1441 {
1442 	struct mlx5_pagefault *pfault = container_of(work,
1443 						     struct mlx5_pagefault,
1444 						     work);
1445 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1446 
1447 	mlx5_ib_pfault(eq->dev, pfault);
1448 	mempool_free(pfault, eq->pool);
1449 }
1450 
1451 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1452 {
1453 	struct mlx5_eqe_page_fault *pf_eqe;
1454 	struct mlx5_pagefault *pfault;
1455 	struct mlx5_eqe *eqe;
1456 	int cc = 0;
1457 
1458 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1459 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1460 		if (!pfault) {
1461 			schedule_work(&eq->work);
1462 			break;
1463 		}
1464 
1465 		pf_eqe = &eqe->data.page_fault;
1466 		pfault->event_subtype = eqe->sub_type;
1467 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1468 
1469 		mlx5_ib_dbg(eq->dev,
1470 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1471 			    eqe->sub_type, pfault->bytes_committed);
1472 
1473 		switch (eqe->sub_type) {
1474 		case MLX5_PFAULT_SUBTYPE_RDMA:
1475 			/* RDMA based event */
1476 			pfault->type =
1477 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1478 			pfault->token =
1479 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1480 				MLX5_24BIT_MASK;
1481 			pfault->rdma.r_key =
1482 				be32_to_cpu(pf_eqe->rdma.r_key);
1483 			pfault->rdma.packet_size =
1484 				be16_to_cpu(pf_eqe->rdma.packet_length);
1485 			pfault->rdma.rdma_op_len =
1486 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1487 			pfault->rdma.rdma_va =
1488 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1489 			mlx5_ib_dbg(eq->dev,
1490 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1491 				    pfault->type, pfault->token,
1492 				    pfault->rdma.r_key);
1493 			mlx5_ib_dbg(eq->dev,
1494 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1495 				    pfault->rdma.rdma_op_len,
1496 				    pfault->rdma.rdma_va);
1497 			break;
1498 
1499 		case MLX5_PFAULT_SUBTYPE_WQE:
1500 			/* WQE based event */
1501 			pfault->type =
1502 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1503 			pfault->token =
1504 				be32_to_cpu(pf_eqe->wqe.token);
1505 			pfault->wqe.wq_num =
1506 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1507 				MLX5_24BIT_MASK;
1508 			pfault->wqe.wqe_index =
1509 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1510 			pfault->wqe.packet_size =
1511 				be16_to_cpu(pf_eqe->wqe.packet_length);
1512 			mlx5_ib_dbg(eq->dev,
1513 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1514 				    pfault->type, pfault->token,
1515 				    pfault->wqe.wq_num,
1516 				    pfault->wqe.wqe_index);
1517 			break;
1518 
1519 		default:
1520 			mlx5_ib_warn(eq->dev,
1521 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1522 				     eqe->sub_type);
1523 			/* Unsupported page faults should still be
1524 			 * resolved by the page fault handler
1525 			 */
1526 		}
1527 
1528 		pfault->eq = eq;
1529 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1530 		queue_work(eq->wq, &pfault->work);
1531 
1532 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1533 	}
1534 
1535 	mlx5_eq_update_ci(eq->core, cc, 1);
1536 }
1537 
1538 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1539 			     void *data)
1540 {
1541 	struct mlx5_ib_pf_eq *eq =
1542 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1543 	unsigned long flags;
1544 
1545 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1546 		mlx5_ib_eq_pf_process(eq);
1547 		spin_unlock_irqrestore(&eq->lock, flags);
1548 	} else {
1549 		schedule_work(&eq->work);
1550 	}
1551 
1552 	return IRQ_HANDLED;
1553 }
1554 
1555 /* mempool_refill() was proposed but unfortunately wasn't accepted
1556  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1557  * Cheap workaround.
1558  */
1559 static void mempool_refill(mempool_t *pool)
1560 {
1561 	while (pool->curr_nr < pool->min_nr)
1562 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1563 }
1564 
1565 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1566 {
1567 	struct mlx5_ib_pf_eq *eq =
1568 		container_of(work, struct mlx5_ib_pf_eq, work);
1569 
1570 	mempool_refill(eq->pool);
1571 
1572 	spin_lock_irq(&eq->lock);
1573 	mlx5_ib_eq_pf_process(eq);
1574 	spin_unlock_irq(&eq->lock);
1575 }
1576 
1577 enum {
1578 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1579 	MLX5_IB_NUM_PF_DRAIN	= 64,
1580 };
1581 
1582 static int
1583 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1584 {
1585 	struct mlx5_eq_param param = {};
1586 	int err;
1587 
1588 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1589 	spin_lock_init(&eq->lock);
1590 	eq->dev = dev;
1591 
1592 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1593 					       sizeof(struct mlx5_pagefault));
1594 	if (!eq->pool)
1595 		return -ENOMEM;
1596 
1597 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1598 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1599 				 MLX5_NUM_CMD_EQE);
1600 	if (!eq->wq) {
1601 		err = -ENOMEM;
1602 		goto err_mempool;
1603 	}
1604 
1605 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1606 	param = (struct mlx5_eq_param) {
1607 		.irq_index = 0,
1608 		.nent = MLX5_IB_NUM_PF_EQE,
1609 	};
1610 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1611 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1612 	if (IS_ERR(eq->core)) {
1613 		err = PTR_ERR(eq->core);
1614 		goto err_wq;
1615 	}
1616 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1617 	if (err) {
1618 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1619 		goto err_eq;
1620 	}
1621 
1622 	return 0;
1623 err_eq:
1624 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1625 err_wq:
1626 	destroy_workqueue(eq->wq);
1627 err_mempool:
1628 	mempool_destroy(eq->pool);
1629 	return err;
1630 }
1631 
1632 static int
1633 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1634 {
1635 	int err;
1636 
1637 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1638 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1639 	cancel_work_sync(&eq->work);
1640 	destroy_workqueue(eq->wq);
1641 	mempool_destroy(eq->pool);
1642 
1643 	return err;
1644 }
1645 
1646 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1647 {
1648 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1649 		return;
1650 
1651 	switch (ent->order - 2) {
1652 	case MLX5_IMR_MTT_CACHE_ENTRY:
1653 		ent->page = PAGE_SHIFT;
1654 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1655 			   sizeof(struct mlx5_mtt) /
1656 			   MLX5_IB_UMR_OCTOWORD;
1657 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1658 		ent->limit = 0;
1659 		break;
1660 
1661 	case MLX5_IMR_KSM_CACHE_ENTRY:
1662 		ent->page = MLX5_KSM_PAGE_SHIFT;
1663 		ent->xlt = mlx5_imr_ksm_entries *
1664 			   sizeof(struct mlx5_klm) /
1665 			   MLX5_IB_UMR_OCTOWORD;
1666 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1667 		ent->limit = 0;
1668 		break;
1669 	}
1670 }
1671 
1672 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1673 	.advise_mr = mlx5_ib_advise_mr,
1674 };
1675 
1676 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1677 {
1678 	int ret = 0;
1679 
1680 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1681 		return ret;
1682 
1683 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1684 
1685 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1686 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1687 		if (ret) {
1688 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1689 			return ret;
1690 		}
1691 	}
1692 
1693 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1694 
1695 	return ret;
1696 }
1697 
1698 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1699 {
1700 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1701 		return;
1702 
1703 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1704 }
1705 
1706 int mlx5_ib_odp_init(void)
1707 {
1708 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1709 				       MLX5_IMR_MTT_BITS);
1710 
1711 	return 0;
1712 }
1713 
1714 struct prefetch_mr_work {
1715 	struct work_struct work;
1716 	u32 pf_flags;
1717 	u32 num_sge;
1718 	struct {
1719 		u64 io_virt;
1720 		struct mlx5_ib_mr *mr;
1721 		size_t length;
1722 	} frags[];
1723 };
1724 
1725 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1726 {
1727 	u32 i;
1728 
1729 	for (i = 0; i < work->num_sge; ++i)
1730 		if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1731 			wake_up(&work->frags[i].mr->q_deferred_work);
1732 	kvfree(work);
1733 }
1734 
1735 static struct mlx5_ib_mr *
1736 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1737 		    u32 lkey)
1738 {
1739 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1740 	struct mlx5_core_mkey *mmkey;
1741 	struct ib_umem_odp *odp;
1742 	struct mlx5_ib_mr *mr;
1743 
1744 	lockdep_assert_held(&dev->odp_srcu);
1745 
1746 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1747 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1748 		return NULL;
1749 
1750 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1751 
1752 	if (mr->ibmr.pd != pd)
1753 		return NULL;
1754 
1755 	odp = to_ib_umem_odp(mr->umem);
1756 
1757 	/* prefetch with write-access must be supported by the MR */
1758 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1759 	    !odp->umem.writable)
1760 		return NULL;
1761 
1762 	return mr;
1763 }
1764 
1765 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1766 {
1767 	struct prefetch_mr_work *work =
1768 		container_of(w, struct prefetch_mr_work, work);
1769 	struct mlx5_ib_dev *dev;
1770 	u32 bytes_mapped = 0;
1771 	int srcu_key;
1772 	int ret;
1773 	u32 i;
1774 
1775 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1776 	WARN_ON(!work->num_sge);
1777 	dev = work->frags[0].mr->dev;
1778 	/* SRCU should be held when calling to mlx5_odp_populate_xlt() */
1779 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1780 	for (i = 0; i < work->num_sge; ++i) {
1781 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1782 				   work->frags[i].length, &bytes_mapped,
1783 				   work->pf_flags);
1784 		if (ret <= 0)
1785 			continue;
1786 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1787 	}
1788 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1789 
1790 	destroy_prefetch_work(work);
1791 }
1792 
1793 static bool init_prefetch_work(struct ib_pd *pd,
1794 			       enum ib_uverbs_advise_mr_advice advice,
1795 			       u32 pf_flags, struct prefetch_mr_work *work,
1796 			       struct ib_sge *sg_list, u32 num_sge)
1797 {
1798 	u32 i;
1799 
1800 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1801 	work->pf_flags = pf_flags;
1802 
1803 	for (i = 0; i < num_sge; ++i) {
1804 		work->frags[i].io_virt = sg_list[i].addr;
1805 		work->frags[i].length = sg_list[i].length;
1806 		work->frags[i].mr =
1807 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1808 		if (!work->frags[i].mr) {
1809 			work->num_sge = i;
1810 			return false;
1811 		}
1812 
1813 		/* Keep the MR pointer will valid outside the SRCU */
1814 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1815 	}
1816 	work->num_sge = num_sge;
1817 	return true;
1818 }
1819 
1820 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1821 				    enum ib_uverbs_advise_mr_advice advice,
1822 				    u32 pf_flags, struct ib_sge *sg_list,
1823 				    u32 num_sge)
1824 {
1825 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1826 	u32 bytes_mapped = 0;
1827 	int srcu_key;
1828 	int ret = 0;
1829 	u32 i;
1830 
1831 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1832 	for (i = 0; i < num_sge; ++i) {
1833 		struct mlx5_ib_mr *mr;
1834 
1835 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1836 		if (!mr) {
1837 			ret = -ENOENT;
1838 			goto out;
1839 		}
1840 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1841 				   &bytes_mapped, pf_flags);
1842 		if (ret < 0)
1843 			goto out;
1844 		mlx5_update_odp_stats(mr, prefetch, ret);
1845 	}
1846 	ret = 0;
1847 
1848 out:
1849 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1850 	return ret;
1851 }
1852 
1853 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1854 			       enum ib_uverbs_advise_mr_advice advice,
1855 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1856 {
1857 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1858 	u32 pf_flags = 0;
1859 	struct prefetch_mr_work *work;
1860 	int srcu_key;
1861 
1862 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1863 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1864 
1865 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1866 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1867 						num_sge);
1868 
1869 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1870 	if (!work)
1871 		return -ENOMEM;
1872 
1873 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1874 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1875 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1876 		destroy_prefetch_work(work);
1877 		return -EINVAL;
1878 	}
1879 	queue_work(system_unbound_wq, &work->work);
1880 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1881 	return 0;
1882 }
1883