xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 547840bd)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40 
41 #include <linux/mlx5/eq.h>
42 
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45 	u32			bytes_committed;
46 	u32			token;
47 	u8			event_subtype;
48 	u8			type;
49 	union {
50 		/* Initiator or send message responder pagefault details. */
51 		struct {
52 			/* Received packet size, only valid for responders. */
53 			u32	packet_size;
54 			/*
55 			 * Number of resource holding WQE, depends on type.
56 			 */
57 			u32	wq_num;
58 			/*
59 			 * WQE index. Refers to either the send queue or
60 			 * receive queue, according to event_subtype.
61 			 */
62 			u16	wqe_index;
63 		} wqe;
64 		/* RDMA responder pagefault details */
65 		struct {
66 			u32	r_key;
67 			/*
68 			 * Received packet size, minimal size page fault
69 			 * resolution required for forward progress.
70 			 */
71 			u32	packet_size;
72 			u32	rdma_op_len;
73 			u64	rdma_va;
74 		} rdma;
75 	};
76 
77 	struct mlx5_ib_pf_eq	*eq;
78 	struct work_struct	work;
79 };
80 
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82 
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86 
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92 
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94 
95 static u64 mlx5_imr_ksm_entries;
96 
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98 			struct mlx5_ib_mr *imr, int flags)
99 {
100 	struct mlx5_klm *end = pklm + nentries;
101 
102 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
103 		for (; pklm != end; pklm++, idx++) {
104 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
106 			pklm->va = 0;
107 		}
108 		return;
109 	}
110 
111 	/*
112 	 * The locking here is pretty subtle. Ideally the implicit_children
113 	 * xarray would be protected by the umem_mutex, however that is not
114 	 * possible. Instead this uses a weaker update-then-lock pattern:
115 	 *
116 	 *  srcu_read_lock()
117 	 *    xa_store()
118 	 *    mutex_lock(umem_mutex)
119 	 *     mlx5_ib_update_xlt()
120 	 *    mutex_unlock(umem_mutex)
121 	 *    destroy lkey
122 	 *
123 	 * ie any change the xarray must be followed by the locked update_xlt
124 	 * before destroying.
125 	 *
126 	 * The umem_mutex provides the acquire/release semantic needed to make
127 	 * the xa_store() visible to a racing thread. While SRCU is not
128 	 * technically required, using it gives consistent use of the SRCU
129 	 * locking around the xarray.
130 	 */
131 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132 	lockdep_assert_held(&imr->dev->odp_srcu);
133 
134 	for (; pklm != end; pklm++, idx++) {
135 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136 
137 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 		if (mtt) {
139 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141 		} else {
142 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
143 			pklm->va = 0;
144 		}
145 	}
146 }
147 
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151 
152 	if (umem_dma & ODP_READ_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_READ;
154 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155 		mtt_entry |= MLX5_IB_MTT_WRITE;
156 
157 	return mtt_entry;
158 }
159 
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161 			 struct mlx5_ib_mr *mr, int flags)
162 {
163 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164 	dma_addr_t pa;
165 	size_t i;
166 
167 	if (flags & MLX5_IB_UPD_XLT_ZAP)
168 		return;
169 
170 	for (i = 0; i < nentries; i++) {
171 		pa = odp->dma_list[idx + i];
172 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173 	}
174 }
175 
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177 			   struct mlx5_ib_mr *mr, int flags)
178 {
179 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180 		populate_klm(xlt, idx, nentries, mr, flags);
181 	} else {
182 		populate_mtt(xlt, idx, nentries, mr, flags);
183 	}
184 }
185 
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189 
190 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191 	mutex_lock(&odp->umem_mutex);
192 	if (odp->npages) {
193 		mlx5_mr_cache_invalidate(mr);
194 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195 					    ib_umem_end(odp));
196 		WARN_ON(odp->npages);
197 	}
198 	odp->private = NULL;
199 	mutex_unlock(&odp->umem_mutex);
200 
201 	if (!mr->cache_ent) {
202 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203 		WARN_ON(mr->descs);
204 	}
205 }
206 
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215 	struct mlx5_ib_mr *imr = mr->parent;
216 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219 	int srcu_key;
220 
221 	/* implicit_child_mr's are not allowed to have deferred work */
222 	WARN_ON(atomic_read(&mr->num_deferred_work));
223 
224 	if (need_imr_xlt) {
225 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226 		mutex_lock(&odp_imr->umem_mutex);
227 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228 				   MLX5_IB_UPD_XLT_INDIRECT |
229 				   MLX5_IB_UPD_XLT_ATOMIC);
230 		mutex_unlock(&odp_imr->umem_mutex);
231 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232 	}
233 
234 	dma_fence_odp_mr(mr);
235 
236 	mr->parent = NULL;
237 	mlx5_mr_cache_free(mr->dev, mr);
238 	ib_umem_odp_release(odp);
239 	if (atomic_dec_and_test(&imr->num_deferred_work))
240 		wake_up(&imr->q_deferred_work);
241 }
242 
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245 	struct mlx5_ib_mr *mr =
246 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247 
248 	free_implicit_child_mr(mr, true);
249 }
250 
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253 	struct mlx5_ib_mr *mr =
254 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255 
256 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
257 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260 
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265 	struct mlx5_ib_mr *imr = mr->parent;
266 
267 	xa_lock(&imr->implicit_children);
268 	/*
269 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
270 	 * reach the xa lock wins the race and destroys the MR.
271 	 */
272 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273 	    mr)
274 		goto out_unlock;
275 
276 	atomic_inc(&imr->num_deferred_work);
277 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278 		  free_implicit_child_mr_rcu);
279 
280 out_unlock:
281 	xa_unlock(&imr->implicit_children);
282 }
283 
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285 				     const struct mmu_notifier_range *range,
286 				     unsigned long cur_seq)
287 {
288 	struct ib_umem_odp *umem_odp =
289 		container_of(mni, struct ib_umem_odp, notifier);
290 	struct mlx5_ib_mr *mr;
291 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292 				    sizeof(struct mlx5_mtt)) - 1;
293 	u64 idx = 0, blk_start_idx = 0;
294 	u64 invalidations = 0;
295 	unsigned long start;
296 	unsigned long end;
297 	int in_block = 0;
298 	u64 addr;
299 
300 	if (!mmu_notifier_range_blockable(range))
301 		return false;
302 
303 	mutex_lock(&umem_odp->umem_mutex);
304 	mmu_interval_set_seq(mni, cur_seq);
305 	/*
306 	 * If npages is zero then umem_odp->private may not be setup yet. This
307 	 * does not complete until after the first page is mapped for DMA.
308 	 */
309 	if (!umem_odp->npages)
310 		goto out;
311 	mr = umem_odp->private;
312 
313 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
314 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
315 
316 	/*
317 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318 	 * while we are doing the invalidation, no page fault will attempt to
319 	 * overwrite the same MTTs.  Concurent invalidations might race us,
320 	 * but they will write 0s as well, so no difference in the end result.
321 	 */
322 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324 		/*
325 		 * Strive to write the MTTs in chunks, but avoid overwriting
326 		 * non-existing MTTs. The huristic here can be improved to
327 		 * estimate the cost of another UMR vs. the cost of bigger
328 		 * UMR.
329 		 */
330 		if (umem_odp->dma_list[idx] &
331 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332 			if (!in_block) {
333 				blk_start_idx = idx;
334 				in_block = 1;
335 			}
336 
337 			/* Count page invalidations */
338 			invalidations += idx - blk_start_idx + 1;
339 		} else {
340 			u64 umr_offset = idx & umr_block_mask;
341 
342 			if (in_block && umr_offset == 0) {
343 				mlx5_ib_update_xlt(mr, blk_start_idx,
344 						   idx - blk_start_idx, 0,
345 						   MLX5_IB_UPD_XLT_ZAP |
346 						   MLX5_IB_UPD_XLT_ATOMIC);
347 				in_block = 0;
348 			}
349 		}
350 	}
351 	if (in_block)
352 		mlx5_ib_update_xlt(mr, blk_start_idx,
353 				   idx - blk_start_idx + 1, 0,
354 				   MLX5_IB_UPD_XLT_ZAP |
355 				   MLX5_IB_UPD_XLT_ATOMIC);
356 
357 	mlx5_update_odp_stats(mr, invalidations, invalidations);
358 
359 	/*
360 	 * We are now sure that the device will not access the
361 	 * memory. We can safely unmap it, and mark it as dirty if
362 	 * needed.
363 	 */
364 
365 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366 
367 	if (unlikely(!umem_odp->npages && mr->parent))
368 		destroy_unused_implicit_child_mr(mr);
369 out:
370 	mutex_unlock(&umem_odp->umem_mutex);
371 	return true;
372 }
373 
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375 	.invalidate = mlx5_ib_invalidate_range,
376 };
377 
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380 	struct ib_odp_caps *caps = &dev->odp_caps;
381 
382 	memset(caps, 0, sizeof(*caps));
383 
384 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385 	    !mlx5_ib_can_use_umr(dev, true, 0))
386 		return;
387 
388 	caps->general_caps = IB_ODP_SUPPORT;
389 
390 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391 		dev->odp_max_size = U64_MAX;
392 	else
393 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394 
395 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397 
398 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 
401 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 
404 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 
407 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 
410 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412 
413 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 
416 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 
419 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421 
422 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424 
425 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427 
428 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430 
431 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433 
434 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436 
437 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443 
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445 				      struct mlx5_pagefault *pfault,
446 				      int error)
447 {
448 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449 		     pfault->wqe.wq_num : pfault->token;
450 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
451 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
452 	int err;
453 
454 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
455 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
456 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
457 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
458 	MLX5_SET(page_fault_resume_in, in, error, !!error);
459 
460 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
461 	if (err)
462 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
463 			    wq_num, err);
464 }
465 
466 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
467 						unsigned long idx)
468 {
469 	struct ib_umem_odp *odp;
470 	struct mlx5_ib_mr *mr;
471 	struct mlx5_ib_mr *ret;
472 	int err;
473 
474 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
475 				      idx * MLX5_IMR_MTT_SIZE,
476 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
477 	if (IS_ERR(odp))
478 		return ERR_CAST(odp);
479 
480 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
481 	if (IS_ERR(mr))
482 		goto out_umem;
483 
484 	mr->ibmr.pd = imr->ibmr.pd;
485 	mr->access_flags = imr->access_flags;
486 	mr->umem = &odp->umem;
487 	mr->ibmr.lkey = mr->mmkey.key;
488 	mr->ibmr.rkey = mr->mmkey.key;
489 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
490 	mr->parent = imr;
491 	odp->private = mr;
492 
493 	err = mlx5_ib_update_xlt(mr, 0,
494 				 MLX5_IMR_MTT_ENTRIES,
495 				 PAGE_SHIFT,
496 				 MLX5_IB_UPD_XLT_ZAP |
497 				 MLX5_IB_UPD_XLT_ENABLE);
498 	if (err) {
499 		ret = ERR_PTR(err);
500 		goto out_mr;
501 	}
502 
503 	/*
504 	 * Once the store to either xarray completes any error unwind has to
505 	 * use synchronize_srcu(). Avoid this with xa_reserve()
506 	 */
507 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
508 			 GFP_KERNEL);
509 	if (unlikely(ret)) {
510 		if (xa_is_err(ret)) {
511 			ret = ERR_PTR(xa_err(ret));
512 			goto out_mr;
513 		}
514 		/*
515 		 * Another thread beat us to creating the child mr, use
516 		 * theirs.
517 		 */
518 		goto out_mr;
519 	}
520 
521 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
522 	return mr;
523 
524 out_mr:
525 	mlx5_mr_cache_free(imr->dev, mr);
526 out_umem:
527 	ib_umem_odp_release(odp);
528 	return ret;
529 }
530 
531 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
532 					     struct ib_udata *udata,
533 					     int access_flags)
534 {
535 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
536 	struct ib_umem_odp *umem_odp;
537 	struct mlx5_ib_mr *imr;
538 	int err;
539 
540 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
541 	if (IS_ERR(umem_odp))
542 		return ERR_CAST(umem_odp);
543 
544 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
545 	if (IS_ERR(imr)) {
546 		err = PTR_ERR(imr);
547 		goto out_umem;
548 	}
549 
550 	imr->ibmr.pd = &pd->ibpd;
551 	imr->access_flags = access_flags;
552 	imr->mmkey.iova = 0;
553 	imr->umem = &umem_odp->umem;
554 	imr->ibmr.lkey = imr->mmkey.key;
555 	imr->ibmr.rkey = imr->mmkey.key;
556 	imr->umem = &umem_odp->umem;
557 	imr->is_odp_implicit = true;
558 	atomic_set(&imr->num_deferred_work, 0);
559 	init_waitqueue_head(&imr->q_deferred_work);
560 	xa_init(&imr->implicit_children);
561 
562 	err = mlx5_ib_update_xlt(imr, 0,
563 				 mlx5_imr_ksm_entries,
564 				 MLX5_KSM_PAGE_SHIFT,
565 				 MLX5_IB_UPD_XLT_INDIRECT |
566 				 MLX5_IB_UPD_XLT_ZAP |
567 				 MLX5_IB_UPD_XLT_ENABLE);
568 	if (err)
569 		goto out_mr;
570 
571 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
572 			      &imr->mmkey, GFP_KERNEL));
573 	if (err)
574 		goto out_mr;
575 
576 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
577 	return imr;
578 out_mr:
579 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
580 	mlx5_mr_cache_free(dev, imr);
581 out_umem:
582 	ib_umem_odp_release(umem_odp);
583 	return ERR_PTR(err);
584 }
585 
586 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
587 {
588 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
589 	struct mlx5_ib_dev *dev = imr->dev;
590 	struct list_head destroy_list;
591 	struct mlx5_ib_mr *mtt;
592 	struct mlx5_ib_mr *tmp;
593 	unsigned long idx;
594 
595 	INIT_LIST_HEAD(&destroy_list);
596 
597 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
598 	/*
599 	 * This stops the SRCU protected page fault path from touching either
600 	 * the imr or any children. The page fault path can only reach the
601 	 * children xarray via the imr.
602 	 */
603 	synchronize_srcu(&dev->odp_srcu);
604 
605 	xa_lock(&imr->implicit_children);
606 	xa_for_each (&imr->implicit_children, idx, mtt) {
607 		__xa_erase(&imr->implicit_children, idx);
608 		list_add(&mtt->odp_destroy.elm, &destroy_list);
609 	}
610 	xa_unlock(&imr->implicit_children);
611 
612 	/*
613 	 * num_deferred_work can only be incremented inside the odp_srcu, or
614 	 * under xa_lock while the child is in the xarray. Thus at this point
615 	 * it is only decreasing, and all work holding it is now on the wq.
616 	 */
617 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
618 
619 	/*
620 	 * Fence the imr before we destroy the children. This allows us to
621 	 * skip updating the XLT of the imr during destroy of the child mkey
622 	 * the imr points to.
623 	 */
624 	mlx5_mr_cache_invalidate(imr);
625 
626 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
627 		free_implicit_child_mr(mtt, false);
628 
629 	mlx5_mr_cache_free(dev, imr);
630 	ib_umem_odp_release(odp_imr);
631 }
632 
633 /**
634  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
635  * @mr: to fence
636  *
637  * On return no parallel threads will be touching this MR and no DMA will be
638  * active.
639  */
640 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
641 {
642 	/* Prevent new page faults and prefetch requests from succeeding */
643 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
644 
645 	/* Wait for all running page-fault handlers to finish. */
646 	synchronize_srcu(&mr->dev->odp_srcu);
647 
648 	wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
649 
650 	dma_fence_odp_mr(mr);
651 }
652 
653 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
654 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
655 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
656 			     u32 flags)
657 {
658 	int page_shift, ret, np;
659 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
660 	unsigned long current_seq;
661 	u64 access_mask;
662 	u64 start_idx;
663 
664 	page_shift = odp->page_shift;
665 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
666 	access_mask = ODP_READ_ALLOWED_BIT;
667 
668 	if (odp->umem.writable && !downgrade)
669 		access_mask |= ODP_WRITE_ALLOWED_BIT;
670 
671 	current_seq = mmu_interval_read_begin(&odp->notifier);
672 
673 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
674 				       current_seq);
675 	if (np < 0)
676 		return np;
677 
678 	mutex_lock(&odp->umem_mutex);
679 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
680 		/*
681 		 * No need to check whether the MTTs really belong to
682 		 * this MR, since ib_umem_odp_map_dma_pages already
683 		 * checks this.
684 		 */
685 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
686 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
687 	} else {
688 		ret = -EAGAIN;
689 	}
690 	mutex_unlock(&odp->umem_mutex);
691 
692 	if (ret < 0) {
693 		if (ret != -EAGAIN)
694 			mlx5_ib_err(mr->dev,
695 				    "Failed to update mkey page tables\n");
696 		goto out;
697 	}
698 
699 	if (bytes_mapped) {
700 		u32 new_mappings = (np << page_shift) -
701 			(user_va - round_down(user_va, 1 << page_shift));
702 
703 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
704 	}
705 
706 	return np << (page_shift - PAGE_SHIFT);
707 
708 out:
709 	return ret;
710 }
711 
712 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
713 				 struct ib_umem_odp *odp_imr, u64 user_va,
714 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
715 {
716 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
717 	unsigned long upd_start_idx = end_idx + 1;
718 	unsigned long upd_len = 0;
719 	unsigned long npages = 0;
720 	int err;
721 	int ret;
722 
723 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
724 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
725 		return -EFAULT;
726 
727 	/* Fault each child mr that intersects with our interval. */
728 	while (bcnt) {
729 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
730 		struct ib_umem_odp *umem_odp;
731 		struct mlx5_ib_mr *mtt;
732 		u64 len;
733 
734 		mtt = xa_load(&imr->implicit_children, idx);
735 		if (unlikely(!mtt)) {
736 			mtt = implicit_get_child_mr(imr, idx);
737 			if (IS_ERR(mtt)) {
738 				ret = PTR_ERR(mtt);
739 				goto out;
740 			}
741 			upd_start_idx = min(upd_start_idx, idx);
742 			upd_len = idx - upd_start_idx + 1;
743 		}
744 
745 		umem_odp = to_ib_umem_odp(mtt->umem);
746 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
747 		      user_va;
748 
749 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
750 					bytes_mapped, flags);
751 		if (ret < 0)
752 			goto out;
753 		user_va += len;
754 		bcnt -= len;
755 		npages += ret;
756 	}
757 
758 	ret = npages;
759 
760 	/*
761 	 * Any time the implicit_children are changed we must perform an
762 	 * update of the xlt before exiting to ensure the HW and the
763 	 * implicit_children remains synchronized.
764 	 */
765 out:
766 	if (likely(!upd_len))
767 		return ret;
768 
769 	/*
770 	 * Notice this is not strictly ordered right, the KSM is updated after
771 	 * the implicit_children is updated, so a parallel page fault could
772 	 * see a MR that is not yet visible in the KSM.  This is similar to a
773 	 * parallel page fault seeing a MR that is being concurrently removed
774 	 * from the KSM. Both of these improbable situations are resolved
775 	 * safely by resuming the HW and then taking another page fault. The
776 	 * next pagefault handler will see the new information.
777 	 */
778 	mutex_lock(&odp_imr->umem_mutex);
779 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
780 				 MLX5_IB_UPD_XLT_INDIRECT |
781 					 MLX5_IB_UPD_XLT_ATOMIC);
782 	mutex_unlock(&odp_imr->umem_mutex);
783 	if (err) {
784 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
785 		return err;
786 	}
787 	return ret;
788 }
789 
790 /*
791  * Returns:
792  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
793  *           not accessible, or the MR is no longer valid.
794  *  -EAGAIN/-ENOMEM: The operation should be retried
795  *
796  *  -EINVAL/others: General internal malfunction
797  *  >0: Number of pages mapped
798  */
799 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
800 			u32 *bytes_mapped, u32 flags)
801 {
802 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
803 
804 	if (unlikely(io_virt < mr->mmkey.iova))
805 		return -EFAULT;
806 
807 	if (!odp->is_implicit_odp) {
808 		u64 user_va;
809 
810 		if (check_add_overflow(io_virt - mr->mmkey.iova,
811 				       (u64)odp->umem.address, &user_va))
812 			return -EFAULT;
813 		if (unlikely(user_va >= ib_umem_end(odp) ||
814 			     ib_umem_end(odp) - user_va < bcnt))
815 			return -EFAULT;
816 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
817 					 flags);
818 	}
819 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
820 				     flags);
821 }
822 
823 struct pf_frame {
824 	struct pf_frame *next;
825 	u32 key;
826 	u64 io_virt;
827 	size_t bcnt;
828 	int depth;
829 };
830 
831 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
832 {
833 	if (!mmkey)
834 		return false;
835 	if (mmkey->type == MLX5_MKEY_MW)
836 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
837 	return mmkey->key == key;
838 }
839 
840 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
841 {
842 	struct mlx5_ib_mw *mw;
843 	struct mlx5_ib_devx_mr *devx_mr;
844 
845 	if (mmkey->type == MLX5_MKEY_MW) {
846 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
847 		return mw->ndescs;
848 	}
849 
850 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
851 			       mmkey);
852 	return devx_mr->ndescs;
853 }
854 
855 /*
856  * Handle a single data segment in a page-fault WQE or RDMA region.
857  *
858  * Returns number of OS pages retrieved on success. The caller may continue to
859  * the next data segment.
860  * Can return the following error codes:
861  * -EAGAIN to designate a temporary error. The caller will abort handling the
862  *  page fault and resolve it.
863  * -EFAULT when there's an error mapping the requested pages. The caller will
864  *  abort the page fault handling.
865  */
866 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
867 					 struct ib_pd *pd, u32 key,
868 					 u64 io_virt, size_t bcnt,
869 					 u32 *bytes_committed,
870 					 u32 *bytes_mapped)
871 {
872 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
873 	struct pf_frame *head = NULL, *frame;
874 	struct mlx5_core_mkey *mmkey;
875 	struct mlx5_ib_mr *mr;
876 	struct mlx5_klm *pklm;
877 	u32 *out = NULL;
878 	size_t offset;
879 	int ndescs;
880 
881 	srcu_key = srcu_read_lock(&dev->odp_srcu);
882 
883 	io_virt += *bytes_committed;
884 	bcnt -= *bytes_committed;
885 
886 next_mr:
887 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
888 	if (!mmkey) {
889 		mlx5_ib_dbg(
890 			dev,
891 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
892 			key);
893 		if (bytes_mapped)
894 			*bytes_mapped += bcnt;
895 		/*
896 		 * The user could specify a SGL with multiple lkeys and only
897 		 * some of them are ODP. Treat the non-ODP ones as fully
898 		 * faulted.
899 		 */
900 		ret = 0;
901 		goto srcu_unlock;
902 	}
903 	if (!mkey_is_eq(mmkey, key)) {
904 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
905 		ret = -EFAULT;
906 		goto srcu_unlock;
907 	}
908 
909 	switch (mmkey->type) {
910 	case MLX5_MKEY_MR:
911 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
912 
913 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
914 		if (ret < 0)
915 			goto srcu_unlock;
916 
917 		/*
918 		 * When prefetching a page, page fault is generated
919 		 * in order to bring the page to the main memory.
920 		 * In the current flow, page faults are being counted.
921 		 */
922 		mlx5_update_odp_stats(mr, faults, ret);
923 
924 		npages += ret;
925 		ret = 0;
926 		break;
927 
928 	case MLX5_MKEY_MW:
929 	case MLX5_MKEY_INDIRECT_DEVX:
930 		ndescs = get_indirect_num_descs(mmkey);
931 
932 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
933 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
934 			ret = -EFAULT;
935 			goto srcu_unlock;
936 		}
937 
938 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
939 			sizeof(*pklm) * (ndescs - 2);
940 
941 		if (outlen > cur_outlen) {
942 			kfree(out);
943 			out = kzalloc(outlen, GFP_KERNEL);
944 			if (!out) {
945 				ret = -ENOMEM;
946 				goto srcu_unlock;
947 			}
948 			cur_outlen = outlen;
949 		}
950 
951 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
952 						       bsf0_klm0_pas_mtt0_1);
953 
954 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
955 		if (ret)
956 			goto srcu_unlock;
957 
958 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
959 					      memory_key_mkey_entry.start_addr);
960 
961 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
962 			if (offset >= be32_to_cpu(pklm->bcount)) {
963 				offset -= be32_to_cpu(pklm->bcount);
964 				continue;
965 			}
966 
967 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
968 			if (!frame) {
969 				ret = -ENOMEM;
970 				goto srcu_unlock;
971 			}
972 
973 			frame->key = be32_to_cpu(pklm->key);
974 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
975 			frame->bcnt = min_t(size_t, bcnt,
976 					    be32_to_cpu(pklm->bcount) - offset);
977 			frame->depth = depth + 1;
978 			frame->next = head;
979 			head = frame;
980 
981 			bcnt -= frame->bcnt;
982 			offset = 0;
983 		}
984 		break;
985 
986 	default:
987 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
988 		ret = -EFAULT;
989 		goto srcu_unlock;
990 	}
991 
992 	if (head) {
993 		frame = head;
994 		head = frame->next;
995 
996 		key = frame->key;
997 		io_virt = frame->io_virt;
998 		bcnt = frame->bcnt;
999 		depth = frame->depth;
1000 		kfree(frame);
1001 
1002 		goto next_mr;
1003 	}
1004 
1005 srcu_unlock:
1006 	while (head) {
1007 		frame = head;
1008 		head = frame->next;
1009 		kfree(frame);
1010 	}
1011 	kfree(out);
1012 
1013 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1014 	*bytes_committed = 0;
1015 	return ret ? ret : npages;
1016 }
1017 
1018 /**
1019  * Parse a series of data segments for page fault handling.
1020  *
1021  * @pfault contains page fault information.
1022  * @wqe points at the first data segment in the WQE.
1023  * @wqe_end points after the end of the WQE.
1024  * @bytes_mapped receives the number of bytes that the function was able to
1025  *               map. This allows the caller to decide intelligently whether
1026  *               enough memory was mapped to resolve the page fault
1027  *               successfully (e.g. enough for the next MTU, or the entire
1028  *               WQE).
1029  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1030  *                  the committed bytes).
1031  *
1032  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1033  * negative error code.
1034  */
1035 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1036 				   struct mlx5_pagefault *pfault,
1037 				   void *wqe,
1038 				   void *wqe_end, u32 *bytes_mapped,
1039 				   u32 *total_wqe_bytes, bool receive_queue)
1040 {
1041 	int ret = 0, npages = 0;
1042 	u64 io_virt;
1043 	u32 key;
1044 	u32 byte_count;
1045 	size_t bcnt;
1046 	int inline_segment;
1047 
1048 	if (bytes_mapped)
1049 		*bytes_mapped = 0;
1050 	if (total_wqe_bytes)
1051 		*total_wqe_bytes = 0;
1052 
1053 	while (wqe < wqe_end) {
1054 		struct mlx5_wqe_data_seg *dseg = wqe;
1055 
1056 		io_virt = be64_to_cpu(dseg->addr);
1057 		key = be32_to_cpu(dseg->lkey);
1058 		byte_count = be32_to_cpu(dseg->byte_count);
1059 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1060 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1061 
1062 		if (inline_segment) {
1063 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1064 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1065 				     16);
1066 		} else {
1067 			wqe += sizeof(*dseg);
1068 		}
1069 
1070 		/* receive WQE end of sg list. */
1071 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1072 		    io_virt == 0)
1073 			break;
1074 
1075 		if (!inline_segment && total_wqe_bytes) {
1076 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1077 					pfault->bytes_committed);
1078 		}
1079 
1080 		/* A zero length data segment designates a length of 2GB. */
1081 		if (bcnt == 0)
1082 			bcnt = 1U << 31;
1083 
1084 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1085 			pfault->bytes_committed -=
1086 				min_t(size_t, bcnt,
1087 				      pfault->bytes_committed);
1088 			continue;
1089 		}
1090 
1091 		ret = pagefault_single_data_segment(dev, NULL, key,
1092 						    io_virt, bcnt,
1093 						    &pfault->bytes_committed,
1094 						    bytes_mapped);
1095 		if (ret < 0)
1096 			break;
1097 		npages += ret;
1098 	}
1099 
1100 	return ret < 0 ? ret : npages;
1101 }
1102 
1103 /*
1104  * Parse initiator WQE. Advances the wqe pointer to point at the
1105  * scatter-gather list, and set wqe_end to the end of the WQE.
1106  */
1107 static int mlx5_ib_mr_initiator_pfault_handler(
1108 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1109 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1110 {
1111 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1112 	u16 wqe_index = pfault->wqe.wqe_index;
1113 	struct mlx5_base_av *av;
1114 	unsigned ds, opcode;
1115 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1116 
1117 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1118 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1119 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1120 			    ds, wqe_length);
1121 		return -EFAULT;
1122 	}
1123 
1124 	if (ds == 0) {
1125 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1126 			    wqe_index, qpn);
1127 		return -EFAULT;
1128 	}
1129 
1130 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1131 	*wqe += sizeof(*ctrl);
1132 
1133 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1134 		 MLX5_WQE_CTRL_OPCODE_MASK;
1135 
1136 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1137 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1138 
1139 	if (qp->ibqp.qp_type == IB_QPT_UD ||
1140 	    qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1141 		av = *wqe;
1142 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1143 			*wqe += sizeof(struct mlx5_av);
1144 		else
1145 			*wqe += sizeof(struct mlx5_base_av);
1146 	}
1147 
1148 	switch (opcode) {
1149 	case MLX5_OPCODE_RDMA_WRITE:
1150 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1151 	case MLX5_OPCODE_RDMA_READ:
1152 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1153 		break;
1154 	case MLX5_OPCODE_ATOMIC_CS:
1155 	case MLX5_OPCODE_ATOMIC_FA:
1156 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1157 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1158 		break;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 /*
1165  * Parse responder WQE and set wqe_end to the end of the WQE.
1166  */
1167 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1168 						   struct mlx5_ib_srq *srq,
1169 						   void **wqe, void **wqe_end,
1170 						   int wqe_length)
1171 {
1172 	int wqe_size = 1 << srq->msrq.wqe_shift;
1173 
1174 	if (wqe_size > wqe_length) {
1175 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1176 		return -EFAULT;
1177 	}
1178 
1179 	*wqe_end = *wqe + wqe_size;
1180 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1181 
1182 	return 0;
1183 }
1184 
1185 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1186 						  struct mlx5_ib_qp *qp,
1187 						  void *wqe, void **wqe_end,
1188 						  int wqe_length)
1189 {
1190 	struct mlx5_ib_wq *wq = &qp->rq;
1191 	int wqe_size = 1 << wq->wqe_shift;
1192 
1193 	if (qp->wq_sig) {
1194 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1195 		return -EFAULT;
1196 	}
1197 
1198 	if (wqe_size > wqe_length) {
1199 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1200 		return -EFAULT;
1201 	}
1202 
1203 	*wqe_end = wqe + wqe_size;
1204 
1205 	return 0;
1206 }
1207 
1208 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1209 						       u32 wq_num, int pf_type)
1210 {
1211 	struct mlx5_core_rsc_common *common = NULL;
1212 	struct mlx5_core_srq *srq;
1213 
1214 	switch (pf_type) {
1215 	case MLX5_WQE_PF_TYPE_RMP:
1216 		srq = mlx5_cmd_get_srq(dev, wq_num);
1217 		if (srq)
1218 			common = &srq->common;
1219 		break;
1220 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1221 	case MLX5_WQE_PF_TYPE_RESP:
1222 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1223 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1224 		break;
1225 	default:
1226 		break;
1227 	}
1228 
1229 	return common;
1230 }
1231 
1232 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1233 {
1234 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1235 
1236 	return to_mibqp(mqp);
1237 }
1238 
1239 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1240 {
1241 	struct mlx5_core_srq *msrq =
1242 		container_of(res, struct mlx5_core_srq, common);
1243 
1244 	return to_mibsrq(msrq);
1245 }
1246 
1247 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1248 					  struct mlx5_pagefault *pfault)
1249 {
1250 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1251 	u16 wqe_index = pfault->wqe.wqe_index;
1252 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1253 	u32 bytes_mapped, total_wqe_bytes;
1254 	struct mlx5_core_rsc_common *res;
1255 	int resume_with_error = 1;
1256 	struct mlx5_ib_qp *qp;
1257 	size_t bytes_copied;
1258 	int ret = 0;
1259 
1260 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1261 	if (!res) {
1262 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1263 		return;
1264 	}
1265 
1266 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1267 	    res->res != MLX5_RES_XSRQ) {
1268 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1269 			    pfault->type);
1270 		goto resolve_page_fault;
1271 	}
1272 
1273 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1274 	if (!wqe_start) {
1275 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1276 		goto resolve_page_fault;
1277 	}
1278 
1279 	wqe = wqe_start;
1280 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1281 	if (qp && sq) {
1282 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1283 					  &bytes_copied);
1284 		if (ret)
1285 			goto read_user;
1286 		ret = mlx5_ib_mr_initiator_pfault_handler(
1287 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1288 	} else if (qp && !sq) {
1289 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1290 					  &bytes_copied);
1291 		if (ret)
1292 			goto read_user;
1293 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1294 			dev, qp, wqe, &wqe_end, bytes_copied);
1295 	} else if (!qp) {
1296 		struct mlx5_ib_srq *srq = res_to_srq(res);
1297 
1298 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1299 					   &bytes_copied);
1300 		if (ret)
1301 			goto read_user;
1302 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1303 			dev, srq, &wqe, &wqe_end, bytes_copied);
1304 	}
1305 
1306 	if (ret < 0 || wqe >= wqe_end)
1307 		goto resolve_page_fault;
1308 
1309 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1310 				      &total_wqe_bytes, !sq);
1311 	if (ret == -EAGAIN)
1312 		goto out;
1313 
1314 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1315 		goto resolve_page_fault;
1316 
1317 out:
1318 	ret = 0;
1319 	resume_with_error = 0;
1320 
1321 read_user:
1322 	if (ret)
1323 		mlx5_ib_err(
1324 			dev,
1325 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1326 			ret, wqe_index, pfault->token);
1327 
1328 resolve_page_fault:
1329 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1330 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1331 		    pfault->wqe.wq_num, resume_with_error,
1332 		    pfault->type);
1333 	mlx5_core_res_put(res);
1334 	free_page((unsigned long)wqe_start);
1335 }
1336 
1337 static int pages_in_range(u64 address, u32 length)
1338 {
1339 	return (ALIGN(address + length, PAGE_SIZE) -
1340 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1341 }
1342 
1343 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1344 					   struct mlx5_pagefault *pfault)
1345 {
1346 	u64 address;
1347 	u32 length;
1348 	u32 prefetch_len = pfault->bytes_committed;
1349 	int prefetch_activated = 0;
1350 	u32 rkey = pfault->rdma.r_key;
1351 	int ret;
1352 
1353 	/* The RDMA responder handler handles the page fault in two parts.
1354 	 * First it brings the necessary pages for the current packet
1355 	 * (and uses the pfault context), and then (after resuming the QP)
1356 	 * prefetches more pages. The second operation cannot use the pfault
1357 	 * context and therefore uses the dummy_pfault context allocated on
1358 	 * the stack */
1359 	pfault->rdma.rdma_va += pfault->bytes_committed;
1360 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1361 					 pfault->rdma.rdma_op_len);
1362 	pfault->bytes_committed = 0;
1363 
1364 	address = pfault->rdma.rdma_va;
1365 	length  = pfault->rdma.rdma_op_len;
1366 
1367 	/* For some operations, the hardware cannot tell the exact message
1368 	 * length, and in those cases it reports zero. Use prefetch
1369 	 * logic. */
1370 	if (length == 0) {
1371 		prefetch_activated = 1;
1372 		length = pfault->rdma.packet_size;
1373 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1374 	}
1375 
1376 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1377 					    &pfault->bytes_committed, NULL);
1378 	if (ret == -EAGAIN) {
1379 		/* We're racing with an invalidation, don't prefetch */
1380 		prefetch_activated = 0;
1381 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1382 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1383 		if (ret != -ENOENT)
1384 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1385 				    ret, pfault->token, pfault->type);
1386 		return;
1387 	}
1388 
1389 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1390 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1391 		    pfault->token, pfault->type,
1392 		    prefetch_activated);
1393 
1394 	/* At this point, there might be a new pagefault already arriving in
1395 	 * the eq, switch to the dummy pagefault for the rest of the
1396 	 * processing. We're still OK with the objects being alive as the
1397 	 * work-queue is being fenced. */
1398 
1399 	if (prefetch_activated) {
1400 		u32 bytes_committed = 0;
1401 
1402 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1403 						    prefetch_len,
1404 						    &bytes_committed, NULL);
1405 		if (ret < 0 && ret != -EAGAIN) {
1406 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1407 				    ret, pfault->token, address, prefetch_len);
1408 		}
1409 	}
1410 }
1411 
1412 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1413 {
1414 	u8 event_subtype = pfault->event_subtype;
1415 
1416 	switch (event_subtype) {
1417 	case MLX5_PFAULT_SUBTYPE_WQE:
1418 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1419 		break;
1420 	case MLX5_PFAULT_SUBTYPE_RDMA:
1421 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1422 		break;
1423 	default:
1424 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1425 			    event_subtype);
1426 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1427 	}
1428 }
1429 
1430 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1431 {
1432 	struct mlx5_pagefault *pfault = container_of(work,
1433 						     struct mlx5_pagefault,
1434 						     work);
1435 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1436 
1437 	mlx5_ib_pfault(eq->dev, pfault);
1438 	mempool_free(pfault, eq->pool);
1439 }
1440 
1441 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1442 {
1443 	struct mlx5_eqe_page_fault *pf_eqe;
1444 	struct mlx5_pagefault *pfault;
1445 	struct mlx5_eqe *eqe;
1446 	int cc = 0;
1447 
1448 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1449 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1450 		if (!pfault) {
1451 			schedule_work(&eq->work);
1452 			break;
1453 		}
1454 
1455 		pf_eqe = &eqe->data.page_fault;
1456 		pfault->event_subtype = eqe->sub_type;
1457 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1458 
1459 		mlx5_ib_dbg(eq->dev,
1460 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1461 			    eqe->sub_type, pfault->bytes_committed);
1462 
1463 		switch (eqe->sub_type) {
1464 		case MLX5_PFAULT_SUBTYPE_RDMA:
1465 			/* RDMA based event */
1466 			pfault->type =
1467 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1468 			pfault->token =
1469 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1470 				MLX5_24BIT_MASK;
1471 			pfault->rdma.r_key =
1472 				be32_to_cpu(pf_eqe->rdma.r_key);
1473 			pfault->rdma.packet_size =
1474 				be16_to_cpu(pf_eqe->rdma.packet_length);
1475 			pfault->rdma.rdma_op_len =
1476 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1477 			pfault->rdma.rdma_va =
1478 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1479 			mlx5_ib_dbg(eq->dev,
1480 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1481 				    pfault->type, pfault->token,
1482 				    pfault->rdma.r_key);
1483 			mlx5_ib_dbg(eq->dev,
1484 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1485 				    pfault->rdma.rdma_op_len,
1486 				    pfault->rdma.rdma_va);
1487 			break;
1488 
1489 		case MLX5_PFAULT_SUBTYPE_WQE:
1490 			/* WQE based event */
1491 			pfault->type =
1492 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1493 			pfault->token =
1494 				be32_to_cpu(pf_eqe->wqe.token);
1495 			pfault->wqe.wq_num =
1496 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1497 				MLX5_24BIT_MASK;
1498 			pfault->wqe.wqe_index =
1499 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1500 			pfault->wqe.packet_size =
1501 				be16_to_cpu(pf_eqe->wqe.packet_length);
1502 			mlx5_ib_dbg(eq->dev,
1503 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1504 				    pfault->type, pfault->token,
1505 				    pfault->wqe.wq_num,
1506 				    pfault->wqe.wqe_index);
1507 			break;
1508 
1509 		default:
1510 			mlx5_ib_warn(eq->dev,
1511 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1512 				     eqe->sub_type);
1513 			/* Unsupported page faults should still be
1514 			 * resolved by the page fault handler
1515 			 */
1516 		}
1517 
1518 		pfault->eq = eq;
1519 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1520 		queue_work(eq->wq, &pfault->work);
1521 
1522 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1523 	}
1524 
1525 	mlx5_eq_update_ci(eq->core, cc, 1);
1526 }
1527 
1528 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1529 			     void *data)
1530 {
1531 	struct mlx5_ib_pf_eq *eq =
1532 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1533 	unsigned long flags;
1534 
1535 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1536 		mlx5_ib_eq_pf_process(eq);
1537 		spin_unlock_irqrestore(&eq->lock, flags);
1538 	} else {
1539 		schedule_work(&eq->work);
1540 	}
1541 
1542 	return IRQ_HANDLED;
1543 }
1544 
1545 /* mempool_refill() was proposed but unfortunately wasn't accepted
1546  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1547  * Cheap workaround.
1548  */
1549 static void mempool_refill(mempool_t *pool)
1550 {
1551 	while (pool->curr_nr < pool->min_nr)
1552 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1553 }
1554 
1555 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1556 {
1557 	struct mlx5_ib_pf_eq *eq =
1558 		container_of(work, struct mlx5_ib_pf_eq, work);
1559 
1560 	mempool_refill(eq->pool);
1561 
1562 	spin_lock_irq(&eq->lock);
1563 	mlx5_ib_eq_pf_process(eq);
1564 	spin_unlock_irq(&eq->lock);
1565 }
1566 
1567 enum {
1568 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1569 	MLX5_IB_NUM_PF_DRAIN	= 64,
1570 };
1571 
1572 static int
1573 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1574 {
1575 	struct mlx5_eq_param param = {};
1576 	int err;
1577 
1578 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1579 	spin_lock_init(&eq->lock);
1580 	eq->dev = dev;
1581 
1582 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1583 					       sizeof(struct mlx5_pagefault));
1584 	if (!eq->pool)
1585 		return -ENOMEM;
1586 
1587 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1588 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1589 				 MLX5_NUM_CMD_EQE);
1590 	if (!eq->wq) {
1591 		err = -ENOMEM;
1592 		goto err_mempool;
1593 	}
1594 
1595 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1596 	param = (struct mlx5_eq_param) {
1597 		.irq_index = 0,
1598 		.nent = MLX5_IB_NUM_PF_EQE,
1599 	};
1600 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1601 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1602 	if (IS_ERR(eq->core)) {
1603 		err = PTR_ERR(eq->core);
1604 		goto err_wq;
1605 	}
1606 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1607 	if (err) {
1608 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1609 		goto err_eq;
1610 	}
1611 
1612 	return 0;
1613 err_eq:
1614 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1615 err_wq:
1616 	destroy_workqueue(eq->wq);
1617 err_mempool:
1618 	mempool_destroy(eq->pool);
1619 	return err;
1620 }
1621 
1622 static int
1623 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1624 {
1625 	int err;
1626 
1627 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1628 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1629 	cancel_work_sync(&eq->work);
1630 	destroy_workqueue(eq->wq);
1631 	mempool_destroy(eq->pool);
1632 
1633 	return err;
1634 }
1635 
1636 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1637 {
1638 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1639 		return;
1640 
1641 	switch (ent->order - 2) {
1642 	case MLX5_IMR_MTT_CACHE_ENTRY:
1643 		ent->page = PAGE_SHIFT;
1644 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1645 			   sizeof(struct mlx5_mtt) /
1646 			   MLX5_IB_UMR_OCTOWORD;
1647 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1648 		ent->limit = 0;
1649 		break;
1650 
1651 	case MLX5_IMR_KSM_CACHE_ENTRY:
1652 		ent->page = MLX5_KSM_PAGE_SHIFT;
1653 		ent->xlt = mlx5_imr_ksm_entries *
1654 			   sizeof(struct mlx5_klm) /
1655 			   MLX5_IB_UMR_OCTOWORD;
1656 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1657 		ent->limit = 0;
1658 		break;
1659 	}
1660 }
1661 
1662 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1663 	.advise_mr = mlx5_ib_advise_mr,
1664 };
1665 
1666 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1667 {
1668 	int ret = 0;
1669 
1670 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1671 		return ret;
1672 
1673 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1674 
1675 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1676 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1677 		if (ret) {
1678 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1679 			return ret;
1680 		}
1681 	}
1682 
1683 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1684 
1685 	return ret;
1686 }
1687 
1688 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1689 {
1690 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1691 		return;
1692 
1693 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1694 }
1695 
1696 int mlx5_ib_odp_init(void)
1697 {
1698 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1699 				       MLX5_IMR_MTT_BITS);
1700 
1701 	return 0;
1702 }
1703 
1704 struct prefetch_mr_work {
1705 	struct work_struct work;
1706 	u32 pf_flags;
1707 	u32 num_sge;
1708 	struct {
1709 		u64 io_virt;
1710 		struct mlx5_ib_mr *mr;
1711 		size_t length;
1712 	} frags[];
1713 };
1714 
1715 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1716 {
1717 	u32 i;
1718 
1719 	for (i = 0; i < work->num_sge; ++i)
1720 		if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1721 			wake_up(&work->frags[i].mr->q_deferred_work);
1722 	kvfree(work);
1723 }
1724 
1725 static struct mlx5_ib_mr *
1726 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1727 		    u32 lkey)
1728 {
1729 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1730 	struct mlx5_core_mkey *mmkey;
1731 	struct ib_umem_odp *odp;
1732 	struct mlx5_ib_mr *mr;
1733 
1734 	lockdep_assert_held(&dev->odp_srcu);
1735 
1736 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1737 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1738 		return NULL;
1739 
1740 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1741 
1742 	if (mr->ibmr.pd != pd)
1743 		return NULL;
1744 
1745 	odp = to_ib_umem_odp(mr->umem);
1746 
1747 	/* prefetch with write-access must be supported by the MR */
1748 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1749 	    !odp->umem.writable)
1750 		return NULL;
1751 
1752 	return mr;
1753 }
1754 
1755 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1756 {
1757 	struct prefetch_mr_work *work =
1758 		container_of(w, struct prefetch_mr_work, work);
1759 	u32 bytes_mapped = 0;
1760 	u32 i;
1761 
1762 	for (i = 0; i < work->num_sge; ++i)
1763 		pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1764 			     work->frags[i].length, &bytes_mapped,
1765 			     work->pf_flags);
1766 
1767 	destroy_prefetch_work(work);
1768 }
1769 
1770 static bool init_prefetch_work(struct ib_pd *pd,
1771 			       enum ib_uverbs_advise_mr_advice advice,
1772 			       u32 pf_flags, struct prefetch_mr_work *work,
1773 			       struct ib_sge *sg_list, u32 num_sge)
1774 {
1775 	u32 i;
1776 
1777 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1778 	work->pf_flags = pf_flags;
1779 
1780 	for (i = 0; i < num_sge; ++i) {
1781 		work->frags[i].io_virt = sg_list[i].addr;
1782 		work->frags[i].length = sg_list[i].length;
1783 		work->frags[i].mr =
1784 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1785 		if (!work->frags[i].mr) {
1786 			work->num_sge = i - 1;
1787 			if (i)
1788 				destroy_prefetch_work(work);
1789 			return false;
1790 		}
1791 
1792 		/* Keep the MR pointer will valid outside the SRCU */
1793 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1794 	}
1795 	work->num_sge = num_sge;
1796 	return true;
1797 }
1798 
1799 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1800 				    enum ib_uverbs_advise_mr_advice advice,
1801 				    u32 pf_flags, struct ib_sge *sg_list,
1802 				    u32 num_sge)
1803 {
1804 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1805 	u32 bytes_mapped = 0;
1806 	int srcu_key;
1807 	int ret = 0;
1808 	u32 i;
1809 
1810 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1811 	for (i = 0; i < num_sge; ++i) {
1812 		struct mlx5_ib_mr *mr;
1813 
1814 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1815 		if (!mr) {
1816 			ret = -ENOENT;
1817 			goto out;
1818 		}
1819 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1820 				   &bytes_mapped, pf_flags);
1821 		if (ret < 0)
1822 			goto out;
1823 	}
1824 	ret = 0;
1825 
1826 out:
1827 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1828 	return ret;
1829 }
1830 
1831 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1832 			       enum ib_uverbs_advise_mr_advice advice,
1833 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1834 {
1835 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1836 	u32 pf_flags = 0;
1837 	struct prefetch_mr_work *work;
1838 	int srcu_key;
1839 
1840 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1841 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1842 
1843 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1844 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1845 						num_sge);
1846 
1847 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1848 	if (!work)
1849 		return -ENOMEM;
1850 
1851 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1852 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1853 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1854 		return -EINVAL;
1855 	}
1856 	queue_work(system_unbound_wq, &work->work);
1857 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1858 	return 0;
1859 }
1860