1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 #include <linux/dma-buf.h> 37 #include <linux/dma-resv.h> 38 39 #include "mlx5_ib.h" 40 #include "cmd.h" 41 #include "qp.h" 42 43 #include <linux/mlx5/eq.h> 44 45 /* Contains the details of a pagefault. */ 46 struct mlx5_pagefault { 47 u32 bytes_committed; 48 u32 token; 49 u8 event_subtype; 50 u8 type; 51 union { 52 /* Initiator or send message responder pagefault details. */ 53 struct { 54 /* Received packet size, only valid for responders. */ 55 u32 packet_size; 56 /* 57 * Number of resource holding WQE, depends on type. 58 */ 59 u32 wq_num; 60 /* 61 * WQE index. Refers to either the send queue or 62 * receive queue, according to event_subtype. 63 */ 64 u16 wqe_index; 65 } wqe; 66 /* RDMA responder pagefault details */ 67 struct { 68 u32 r_key; 69 /* 70 * Received packet size, minimal size page fault 71 * resolution required for forward progress. 72 */ 73 u32 packet_size; 74 u32 rdma_op_len; 75 u64 rdma_va; 76 } rdma; 77 }; 78 79 struct mlx5_ib_pf_eq *eq; 80 struct work_struct work; 81 }; 82 83 #define MAX_PREFETCH_LEN (4*1024*1024U) 84 85 /* Timeout in ms to wait for an active mmu notifier to complete when handling 86 * a pagefault. */ 87 #define MMU_NOTIFIER_TIMEOUT 1000 88 89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 94 95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 96 97 static u64 mlx5_imr_ksm_entries; 98 99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 100 struct mlx5_ib_mr *imr, int flags) 101 { 102 struct mlx5_klm *end = pklm + nentries; 103 104 if (flags & MLX5_IB_UPD_XLT_ZAP) { 105 for (; pklm != end; pklm++, idx++) { 106 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 107 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey); 108 pklm->va = 0; 109 } 110 return; 111 } 112 113 /* 114 * The locking here is pretty subtle. Ideally the implicit_children 115 * xarray would be protected by the umem_mutex, however that is not 116 * possible. Instead this uses a weaker update-then-lock pattern: 117 * 118 * xa_store() 119 * mutex_lock(umem_mutex) 120 * mlx5_ib_update_xlt() 121 * mutex_unlock(umem_mutex) 122 * destroy lkey 123 * 124 * ie any change the xarray must be followed by the locked update_xlt 125 * before destroying. 126 * 127 * The umem_mutex provides the acquire/release semantic needed to make 128 * the xa_store() visible to a racing thread. 129 */ 130 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 131 132 for (; pklm != end; pklm++, idx++) { 133 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 134 135 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 136 if (mtt) { 137 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 138 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 139 } else { 140 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey); 141 pklm->va = 0; 142 } 143 } 144 } 145 146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 147 { 148 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 149 150 if (umem_dma & ODP_READ_ALLOWED_BIT) 151 mtt_entry |= MLX5_IB_MTT_READ; 152 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 153 mtt_entry |= MLX5_IB_MTT_WRITE; 154 155 return mtt_entry; 156 } 157 158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 159 struct mlx5_ib_mr *mr, int flags) 160 { 161 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 162 dma_addr_t pa; 163 size_t i; 164 165 if (flags & MLX5_IB_UPD_XLT_ZAP) 166 return; 167 168 for (i = 0; i < nentries; i++) { 169 pa = odp->dma_list[idx + i]; 170 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 171 } 172 } 173 174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 175 struct mlx5_ib_mr *mr, int flags) 176 { 177 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 178 populate_klm(xlt, idx, nentries, mr, flags); 179 } else { 180 populate_mtt(xlt, idx, nentries, mr, flags); 181 } 182 } 183 184 /* 185 * This must be called after the mr has been removed from implicit_children. 186 * NOTE: The MR does not necessarily have to be 187 * empty here, parallel page faults could have raced with the free process and 188 * added pages to it. 189 */ 190 static void free_implicit_child_mr_work(struct work_struct *work) 191 { 192 struct mlx5_ib_mr *mr = 193 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 194 struct mlx5_ib_mr *imr = mr->parent; 195 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 196 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 197 198 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 199 200 mutex_lock(&odp_imr->umem_mutex); 201 mlx5_ib_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 202 1, 0, 203 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); 204 mutex_unlock(&odp_imr->umem_mutex); 205 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 206 207 mlx5r_deref_odp_mkey(&imr->mmkey); 208 } 209 210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 211 { 212 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 213 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 214 struct mlx5_ib_mr *imr = mr->parent; 215 216 if (!refcount_inc_not_zero(&imr->mmkey.usecount)) 217 return; 218 219 xa_erase(&imr->implicit_children, idx); 220 221 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 222 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 223 queue_work(system_unbound_wq, &mr->odp_destroy.work); 224 } 225 226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 227 const struct mmu_notifier_range *range, 228 unsigned long cur_seq) 229 { 230 struct ib_umem_odp *umem_odp = 231 container_of(mni, struct ib_umem_odp, notifier); 232 struct mlx5_ib_mr *mr; 233 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 234 sizeof(struct mlx5_mtt)) - 1; 235 u64 idx = 0, blk_start_idx = 0; 236 u64 invalidations = 0; 237 unsigned long start; 238 unsigned long end; 239 int in_block = 0; 240 u64 addr; 241 242 if (!mmu_notifier_range_blockable(range)) 243 return false; 244 245 mutex_lock(&umem_odp->umem_mutex); 246 mmu_interval_set_seq(mni, cur_seq); 247 /* 248 * If npages is zero then umem_odp->private may not be setup yet. This 249 * does not complete until after the first page is mapped for DMA. 250 */ 251 if (!umem_odp->npages) 252 goto out; 253 mr = umem_odp->private; 254 255 start = max_t(u64, ib_umem_start(umem_odp), range->start); 256 end = min_t(u64, ib_umem_end(umem_odp), range->end); 257 258 /* 259 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 260 * while we are doing the invalidation, no page fault will attempt to 261 * overwrite the same MTTs. Concurent invalidations might race us, 262 * but they will write 0s as well, so no difference in the end result. 263 */ 264 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 265 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 266 /* 267 * Strive to write the MTTs in chunks, but avoid overwriting 268 * non-existing MTTs. The huristic here can be improved to 269 * estimate the cost of another UMR vs. the cost of bigger 270 * UMR. 271 */ 272 if (umem_odp->dma_list[idx] & 273 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 274 if (!in_block) { 275 blk_start_idx = idx; 276 in_block = 1; 277 } 278 279 /* Count page invalidations */ 280 invalidations += idx - blk_start_idx + 1; 281 } else { 282 u64 umr_offset = idx & umr_block_mask; 283 284 if (in_block && umr_offset == 0) { 285 mlx5_ib_update_xlt(mr, blk_start_idx, 286 idx - blk_start_idx, 0, 287 MLX5_IB_UPD_XLT_ZAP | 288 MLX5_IB_UPD_XLT_ATOMIC); 289 in_block = 0; 290 } 291 } 292 } 293 if (in_block) 294 mlx5_ib_update_xlt(mr, blk_start_idx, 295 idx - blk_start_idx + 1, 0, 296 MLX5_IB_UPD_XLT_ZAP | 297 MLX5_IB_UPD_XLT_ATOMIC); 298 299 mlx5_update_odp_stats(mr, invalidations, invalidations); 300 301 /* 302 * We are now sure that the device will not access the 303 * memory. We can safely unmap it, and mark it as dirty if 304 * needed. 305 */ 306 307 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 308 309 if (unlikely(!umem_odp->npages && mr->parent)) 310 destroy_unused_implicit_child_mr(mr); 311 out: 312 mutex_unlock(&umem_odp->umem_mutex); 313 return true; 314 } 315 316 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 317 .invalidate = mlx5_ib_invalidate_range, 318 }; 319 320 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev) 321 { 322 struct ib_odp_caps *caps = &dev->odp_caps; 323 324 memset(caps, 0, sizeof(*caps)); 325 326 if (!MLX5_CAP_GEN(dev->mdev, pg) || 327 !mlx5_ib_can_load_pas_with_umr(dev, 0)) 328 return; 329 330 caps->general_caps = IB_ODP_SUPPORT; 331 332 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 333 dev->odp_max_size = U64_MAX; 334 else 335 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 336 337 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 338 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 339 340 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 341 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 342 343 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 344 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 345 346 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 347 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 348 349 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 350 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 351 352 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 353 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 354 355 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 356 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 357 358 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 359 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 360 361 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 362 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 363 364 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 365 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 366 367 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 368 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 369 370 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 371 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 372 373 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 374 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 375 376 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 377 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 378 379 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 380 MLX5_CAP_GEN(dev->mdev, null_mkey) && 381 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 382 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 383 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 384 } 385 386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 387 struct mlx5_pagefault *pfault, 388 int error) 389 { 390 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 391 pfault->wqe.wq_num : pfault->token; 392 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 393 int err; 394 395 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 396 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 397 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 398 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 399 MLX5_SET(page_fault_resume_in, in, error, !!error); 400 401 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 402 if (err) 403 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 404 wq_num, err); 405 } 406 407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 408 unsigned long idx) 409 { 410 struct ib_umem_odp *odp; 411 struct mlx5_ib_mr *mr; 412 struct mlx5_ib_mr *ret; 413 int err; 414 415 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 416 idx * MLX5_IMR_MTT_SIZE, 417 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 418 if (IS_ERR(odp)) 419 return ERR_CAST(odp); 420 421 mr = mlx5_mr_cache_alloc( 422 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags); 423 if (IS_ERR(mr)) { 424 ib_umem_odp_release(odp); 425 return mr; 426 } 427 428 mr->ibmr.pd = imr->ibmr.pd; 429 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; 430 mr->umem = &odp->umem; 431 mr->ibmr.lkey = mr->mmkey.key; 432 mr->ibmr.rkey = mr->mmkey.key; 433 mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE; 434 mr->parent = imr; 435 odp->private = mr; 436 437 /* 438 * First refcount is owned by the xarray and second refconut 439 * is returned to the caller. 440 */ 441 refcount_set(&mr->mmkey.usecount, 2); 442 443 err = mlx5_ib_update_xlt(mr, 0, 444 MLX5_IMR_MTT_ENTRIES, 445 PAGE_SHIFT, 446 MLX5_IB_UPD_XLT_ZAP | 447 MLX5_IB_UPD_XLT_ENABLE); 448 if (err) { 449 ret = ERR_PTR(err); 450 goto out_mr; 451 } 452 453 xa_lock(&imr->implicit_children); 454 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 455 GFP_KERNEL); 456 if (unlikely(ret)) { 457 if (xa_is_err(ret)) { 458 ret = ERR_PTR(xa_err(ret)); 459 goto out_lock; 460 } 461 /* 462 * Another thread beat us to creating the child mr, use 463 * theirs. 464 */ 465 refcount_inc(&ret->mmkey.usecount); 466 goto out_lock; 467 } 468 xa_unlock(&imr->implicit_children); 469 470 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); 471 return mr; 472 473 out_lock: 474 xa_unlock(&imr->implicit_children); 475 out_mr: 476 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 477 return ret; 478 } 479 480 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 481 int access_flags) 482 { 483 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 484 struct ib_umem_odp *umem_odp; 485 struct mlx5_ib_mr *imr; 486 int err; 487 488 if (!mlx5_ib_can_load_pas_with_umr(dev, 489 MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) 490 return ERR_PTR(-EOPNOTSUPP); 491 492 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 493 if (IS_ERR(umem_odp)) 494 return ERR_CAST(umem_odp); 495 496 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags); 497 if (IS_ERR(imr)) { 498 ib_umem_odp_release(umem_odp); 499 return imr; 500 } 501 502 imr->ibmr.pd = &pd->ibpd; 503 imr->ibmr.iova = 0; 504 imr->umem = &umem_odp->umem; 505 imr->ibmr.lkey = imr->mmkey.key; 506 imr->ibmr.rkey = imr->mmkey.key; 507 imr->ibmr.device = &dev->ib_dev; 508 imr->umem = &umem_odp->umem; 509 imr->is_odp_implicit = true; 510 xa_init(&imr->implicit_children); 511 512 err = mlx5_ib_update_xlt(imr, 0, 513 mlx5_imr_ksm_entries, 514 MLX5_KSM_PAGE_SHIFT, 515 MLX5_IB_UPD_XLT_INDIRECT | 516 MLX5_IB_UPD_XLT_ZAP | 517 MLX5_IB_UPD_XLT_ENABLE); 518 if (err) 519 goto out_mr; 520 521 err = mlx5r_store_odp_mkey(dev, &imr->mmkey); 522 if (err) 523 goto out_mr; 524 525 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 526 return imr; 527 out_mr: 528 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 529 mlx5_ib_dereg_mr(&imr->ibmr, NULL); 530 return ERR_PTR(err); 531 } 532 533 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr) 534 { 535 struct mlx5_ib_mr *mtt; 536 unsigned long idx; 537 538 /* 539 * If this is an implicit MR it is already invalidated so we can just 540 * delete the children mkeys. 541 */ 542 xa_for_each(&mr->implicit_children, idx, mtt) { 543 xa_erase(&mr->implicit_children, idx); 544 mlx5_ib_dereg_mr(&mtt->ibmr, NULL); 545 } 546 } 547 548 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 549 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) 550 #define MLX5_PF_FLAGS_ENABLE BIT(3) 551 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 552 u64 user_va, size_t bcnt, u32 *bytes_mapped, 553 u32 flags) 554 { 555 int page_shift, ret, np; 556 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 557 u64 access_mask; 558 u64 start_idx; 559 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); 560 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; 561 562 if (flags & MLX5_PF_FLAGS_ENABLE) 563 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 564 565 page_shift = odp->page_shift; 566 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 567 access_mask = ODP_READ_ALLOWED_BIT; 568 569 if (odp->umem.writable && !downgrade) 570 access_mask |= ODP_WRITE_ALLOWED_BIT; 571 572 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); 573 if (np < 0) 574 return np; 575 576 /* 577 * No need to check whether the MTTs really belong to this MR, since 578 * ib_umem_odp_map_dma_and_lock already checks this. 579 */ 580 ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags); 581 mutex_unlock(&odp->umem_mutex); 582 583 if (ret < 0) { 584 if (ret != -EAGAIN) 585 mlx5_ib_err(mr_to_mdev(mr), 586 "Failed to update mkey page tables\n"); 587 goto out; 588 } 589 590 if (bytes_mapped) { 591 u32 new_mappings = (np << page_shift) - 592 (user_va - round_down(user_va, 1 << page_shift)); 593 594 *bytes_mapped += min_t(u32, new_mappings, bcnt); 595 } 596 597 return np << (page_shift - PAGE_SHIFT); 598 599 out: 600 return ret; 601 } 602 603 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 604 struct ib_umem_odp *odp_imr, u64 user_va, 605 size_t bcnt, u32 *bytes_mapped, u32 flags) 606 { 607 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 608 unsigned long upd_start_idx = end_idx + 1; 609 unsigned long upd_len = 0; 610 unsigned long npages = 0; 611 int err; 612 int ret; 613 614 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 615 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 616 return -EFAULT; 617 618 /* Fault each child mr that intersects with our interval. */ 619 while (bcnt) { 620 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 621 struct ib_umem_odp *umem_odp; 622 struct mlx5_ib_mr *mtt; 623 u64 len; 624 625 xa_lock(&imr->implicit_children); 626 mtt = xa_load(&imr->implicit_children, idx); 627 if (unlikely(!mtt)) { 628 xa_unlock(&imr->implicit_children); 629 mtt = implicit_get_child_mr(imr, idx); 630 if (IS_ERR(mtt)) { 631 ret = PTR_ERR(mtt); 632 goto out; 633 } 634 upd_start_idx = min(upd_start_idx, idx); 635 upd_len = idx - upd_start_idx + 1; 636 } else { 637 refcount_inc(&mtt->mmkey.usecount); 638 xa_unlock(&imr->implicit_children); 639 } 640 641 umem_odp = to_ib_umem_odp(mtt->umem); 642 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 643 user_va; 644 645 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 646 bytes_mapped, flags); 647 648 mlx5r_deref_odp_mkey(&mtt->mmkey); 649 650 if (ret < 0) 651 goto out; 652 user_va += len; 653 bcnt -= len; 654 npages += ret; 655 } 656 657 ret = npages; 658 659 /* 660 * Any time the implicit_children are changed we must perform an 661 * update of the xlt before exiting to ensure the HW and the 662 * implicit_children remains synchronized. 663 */ 664 out: 665 if (likely(!upd_len)) 666 return ret; 667 668 /* 669 * Notice this is not strictly ordered right, the KSM is updated after 670 * the implicit_children is updated, so a parallel page fault could 671 * see a MR that is not yet visible in the KSM. This is similar to a 672 * parallel page fault seeing a MR that is being concurrently removed 673 * from the KSM. Both of these improbable situations are resolved 674 * safely by resuming the HW and then taking another page fault. The 675 * next pagefault handler will see the new information. 676 */ 677 mutex_lock(&odp_imr->umem_mutex); 678 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, 679 MLX5_IB_UPD_XLT_INDIRECT | 680 MLX5_IB_UPD_XLT_ATOMIC); 681 mutex_unlock(&odp_imr->umem_mutex); 682 if (err) { 683 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); 684 return err; 685 } 686 return ret; 687 } 688 689 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, 690 u32 *bytes_mapped, u32 flags) 691 { 692 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 693 u32 xlt_flags = 0; 694 int err; 695 unsigned int page_size; 696 697 if (flags & MLX5_PF_FLAGS_ENABLE) 698 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 699 700 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 701 err = ib_umem_dmabuf_map_pages(umem_dmabuf); 702 if (err) { 703 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 704 return err; 705 } 706 707 page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc, 708 log_page_size, 0, 709 umem_dmabuf->umem.iova); 710 if (unlikely(page_size < PAGE_SIZE)) { 711 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 712 err = -EINVAL; 713 } else { 714 err = mlx5_ib_update_mr_pas(mr, xlt_flags); 715 } 716 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 717 718 if (err) 719 return err; 720 721 if (bytes_mapped) 722 *bytes_mapped += bcnt; 723 724 return ib_umem_num_pages(mr->umem); 725 } 726 727 /* 728 * Returns: 729 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 730 * not accessible, or the MR is no longer valid. 731 * -EAGAIN/-ENOMEM: The operation should be retried 732 * 733 * -EINVAL/others: General internal malfunction 734 * >0: Number of pages mapped 735 */ 736 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 737 u32 *bytes_mapped, u32 flags) 738 { 739 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 740 741 if (unlikely(io_virt < mr->ibmr.iova)) 742 return -EFAULT; 743 744 if (mr->umem->is_dmabuf) 745 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); 746 747 if (!odp->is_implicit_odp) { 748 u64 user_va; 749 750 if (check_add_overflow(io_virt - mr->ibmr.iova, 751 (u64)odp->umem.address, &user_va)) 752 return -EFAULT; 753 if (unlikely(user_va >= ib_umem_end(odp) || 754 ib_umem_end(odp) - user_va < bcnt)) 755 return -EFAULT; 756 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 757 flags); 758 } 759 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 760 flags); 761 } 762 763 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) 764 { 765 int ret; 766 767 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, 768 mr->umem->length, NULL, 769 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); 770 return ret >= 0 ? 0 : ret; 771 } 772 773 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) 774 { 775 int ret; 776 777 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, 778 MLX5_PF_FLAGS_ENABLE); 779 780 return ret >= 0 ? 0 : ret; 781 } 782 783 struct pf_frame { 784 struct pf_frame *next; 785 u32 key; 786 u64 io_virt; 787 size_t bcnt; 788 int depth; 789 }; 790 791 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key) 792 { 793 if (!mmkey) 794 return false; 795 if (mmkey->type == MLX5_MKEY_MW) 796 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 797 return mmkey->key == key; 798 } 799 800 /* 801 * Handle a single data segment in a page-fault WQE or RDMA region. 802 * 803 * Returns number of OS pages retrieved on success. The caller may continue to 804 * the next data segment. 805 * Can return the following error codes: 806 * -EAGAIN to designate a temporary error. The caller will abort handling the 807 * page fault and resolve it. 808 * -EFAULT when there's an error mapping the requested pages. The caller will 809 * abort the page fault handling. 810 */ 811 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 812 struct ib_pd *pd, u32 key, 813 u64 io_virt, size_t bcnt, 814 u32 *bytes_committed, 815 u32 *bytes_mapped) 816 { 817 int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0; 818 struct pf_frame *head = NULL, *frame; 819 struct mlx5_ib_mkey *mmkey; 820 struct mlx5_ib_mr *mr; 821 struct mlx5_klm *pklm; 822 u32 *out = NULL; 823 size_t offset; 824 825 io_virt += *bytes_committed; 826 bcnt -= *bytes_committed; 827 828 next_mr: 829 xa_lock(&dev->odp_mkeys); 830 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 831 if (!mmkey) { 832 xa_unlock(&dev->odp_mkeys); 833 mlx5_ib_dbg( 834 dev, 835 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 836 key); 837 if (bytes_mapped) 838 *bytes_mapped += bcnt; 839 /* 840 * The user could specify a SGL with multiple lkeys and only 841 * some of them are ODP. Treat the non-ODP ones as fully 842 * faulted. 843 */ 844 ret = 0; 845 goto end; 846 } 847 refcount_inc(&mmkey->usecount); 848 xa_unlock(&dev->odp_mkeys); 849 850 if (!mkey_is_eq(mmkey, key)) { 851 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 852 ret = -EFAULT; 853 goto end; 854 } 855 856 switch (mmkey->type) { 857 case MLX5_MKEY_MR: 858 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 859 860 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); 861 if (ret < 0) 862 goto end; 863 864 mlx5_update_odp_stats(mr, faults, ret); 865 866 npages += ret; 867 ret = 0; 868 break; 869 870 case MLX5_MKEY_MW: 871 case MLX5_MKEY_INDIRECT_DEVX: 872 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 873 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 874 ret = -EFAULT; 875 goto end; 876 } 877 878 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 879 sizeof(*pklm) * (mmkey->ndescs - 2); 880 881 if (outlen > cur_outlen) { 882 kfree(out); 883 out = kzalloc(outlen, GFP_KERNEL); 884 if (!out) { 885 ret = -ENOMEM; 886 goto end; 887 } 888 cur_outlen = outlen; 889 } 890 891 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 892 bsf0_klm0_pas_mtt0_1); 893 894 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen); 895 if (ret) 896 goto end; 897 898 offset = io_virt - MLX5_GET64(query_mkey_out, out, 899 memory_key_mkey_entry.start_addr); 900 901 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) { 902 if (offset >= be32_to_cpu(pklm->bcount)) { 903 offset -= be32_to_cpu(pklm->bcount); 904 continue; 905 } 906 907 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 908 if (!frame) { 909 ret = -ENOMEM; 910 goto end; 911 } 912 913 frame->key = be32_to_cpu(pklm->key); 914 frame->io_virt = be64_to_cpu(pklm->va) + offset; 915 frame->bcnt = min_t(size_t, bcnt, 916 be32_to_cpu(pklm->bcount) - offset); 917 frame->depth = depth + 1; 918 frame->next = head; 919 head = frame; 920 921 bcnt -= frame->bcnt; 922 offset = 0; 923 } 924 break; 925 926 default: 927 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 928 ret = -EFAULT; 929 goto end; 930 } 931 932 if (head) { 933 frame = head; 934 head = frame->next; 935 936 key = frame->key; 937 io_virt = frame->io_virt; 938 bcnt = frame->bcnt; 939 depth = frame->depth; 940 kfree(frame); 941 942 mlx5r_deref_odp_mkey(mmkey); 943 goto next_mr; 944 } 945 946 end: 947 if (mmkey) 948 mlx5r_deref_odp_mkey(mmkey); 949 while (head) { 950 frame = head; 951 head = frame->next; 952 kfree(frame); 953 } 954 kfree(out); 955 956 *bytes_committed = 0; 957 return ret ? ret : npages; 958 } 959 960 /* 961 * Parse a series of data segments for page fault handling. 962 * 963 * @dev: Pointer to mlx5 IB device 964 * @pfault: contains page fault information. 965 * @wqe: points at the first data segment in the WQE. 966 * @wqe_end: points after the end of the WQE. 967 * @bytes_mapped: receives the number of bytes that the function was able to 968 * map. This allows the caller to decide intelligently whether 969 * enough memory was mapped to resolve the page fault 970 * successfully (e.g. enough for the next MTU, or the entire 971 * WQE). 972 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus 973 * the committed bytes). 974 * @receive_queue: receive WQE end of sg list 975 * 976 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 977 * negative error code. 978 */ 979 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 980 struct mlx5_pagefault *pfault, 981 void *wqe, 982 void *wqe_end, u32 *bytes_mapped, 983 u32 *total_wqe_bytes, bool receive_queue) 984 { 985 int ret = 0, npages = 0; 986 u64 io_virt; 987 u32 key; 988 u32 byte_count; 989 size_t bcnt; 990 int inline_segment; 991 992 if (bytes_mapped) 993 *bytes_mapped = 0; 994 if (total_wqe_bytes) 995 *total_wqe_bytes = 0; 996 997 while (wqe < wqe_end) { 998 struct mlx5_wqe_data_seg *dseg = wqe; 999 1000 io_virt = be64_to_cpu(dseg->addr); 1001 key = be32_to_cpu(dseg->lkey); 1002 byte_count = be32_to_cpu(dseg->byte_count); 1003 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1004 bcnt = byte_count & ~MLX5_INLINE_SEG; 1005 1006 if (inline_segment) { 1007 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1008 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1009 16); 1010 } else { 1011 wqe += sizeof(*dseg); 1012 } 1013 1014 /* receive WQE end of sg list. */ 1015 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 1016 io_virt == 0) 1017 break; 1018 1019 if (!inline_segment && total_wqe_bytes) { 1020 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1021 pfault->bytes_committed); 1022 } 1023 1024 /* A zero length data segment designates a length of 2GB. */ 1025 if (bcnt == 0) 1026 bcnt = 1U << 31; 1027 1028 if (inline_segment || bcnt <= pfault->bytes_committed) { 1029 pfault->bytes_committed -= 1030 min_t(size_t, bcnt, 1031 pfault->bytes_committed); 1032 continue; 1033 } 1034 1035 ret = pagefault_single_data_segment(dev, NULL, key, 1036 io_virt, bcnt, 1037 &pfault->bytes_committed, 1038 bytes_mapped); 1039 if (ret < 0) 1040 break; 1041 npages += ret; 1042 } 1043 1044 return ret < 0 ? ret : npages; 1045 } 1046 1047 /* 1048 * Parse initiator WQE. Advances the wqe pointer to point at the 1049 * scatter-gather list, and set wqe_end to the end of the WQE. 1050 */ 1051 static int mlx5_ib_mr_initiator_pfault_handler( 1052 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1053 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1054 { 1055 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1056 u16 wqe_index = pfault->wqe.wqe_index; 1057 struct mlx5_base_av *av; 1058 unsigned ds, opcode; 1059 u32 qpn = qp->trans_qp.base.mqp.qpn; 1060 1061 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1062 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1063 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1064 ds, wqe_length); 1065 return -EFAULT; 1066 } 1067 1068 if (ds == 0) { 1069 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1070 wqe_index, qpn); 1071 return -EFAULT; 1072 } 1073 1074 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1075 *wqe += sizeof(*ctrl); 1076 1077 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1078 MLX5_WQE_CTRL_OPCODE_MASK; 1079 1080 if (qp->type == IB_QPT_XRC_INI) 1081 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1082 1083 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1084 av = *wqe; 1085 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1086 *wqe += sizeof(struct mlx5_av); 1087 else 1088 *wqe += sizeof(struct mlx5_base_av); 1089 } 1090 1091 switch (opcode) { 1092 case MLX5_OPCODE_RDMA_WRITE: 1093 case MLX5_OPCODE_RDMA_WRITE_IMM: 1094 case MLX5_OPCODE_RDMA_READ: 1095 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1096 break; 1097 case MLX5_OPCODE_ATOMIC_CS: 1098 case MLX5_OPCODE_ATOMIC_FA: 1099 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1100 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1101 break; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /* 1108 * Parse responder WQE and set wqe_end to the end of the WQE. 1109 */ 1110 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1111 struct mlx5_ib_srq *srq, 1112 void **wqe, void **wqe_end, 1113 int wqe_length) 1114 { 1115 int wqe_size = 1 << srq->msrq.wqe_shift; 1116 1117 if (wqe_size > wqe_length) { 1118 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1119 return -EFAULT; 1120 } 1121 1122 *wqe_end = *wqe + wqe_size; 1123 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1124 1125 return 0; 1126 } 1127 1128 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1129 struct mlx5_ib_qp *qp, 1130 void *wqe, void **wqe_end, 1131 int wqe_length) 1132 { 1133 struct mlx5_ib_wq *wq = &qp->rq; 1134 int wqe_size = 1 << wq->wqe_shift; 1135 1136 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1137 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1138 return -EFAULT; 1139 } 1140 1141 if (wqe_size > wqe_length) { 1142 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1143 return -EFAULT; 1144 } 1145 1146 *wqe_end = wqe + wqe_size; 1147 1148 return 0; 1149 } 1150 1151 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1152 u32 wq_num, int pf_type) 1153 { 1154 struct mlx5_core_rsc_common *common = NULL; 1155 struct mlx5_core_srq *srq; 1156 1157 switch (pf_type) { 1158 case MLX5_WQE_PF_TYPE_RMP: 1159 srq = mlx5_cmd_get_srq(dev, wq_num); 1160 if (srq) 1161 common = &srq->common; 1162 break; 1163 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1164 case MLX5_WQE_PF_TYPE_RESP: 1165 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1166 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1167 break; 1168 default: 1169 break; 1170 } 1171 1172 return common; 1173 } 1174 1175 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1176 { 1177 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1178 1179 return to_mibqp(mqp); 1180 } 1181 1182 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1183 { 1184 struct mlx5_core_srq *msrq = 1185 container_of(res, struct mlx5_core_srq, common); 1186 1187 return to_mibsrq(msrq); 1188 } 1189 1190 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1191 struct mlx5_pagefault *pfault) 1192 { 1193 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1194 u16 wqe_index = pfault->wqe.wqe_index; 1195 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1196 u32 bytes_mapped, total_wqe_bytes; 1197 struct mlx5_core_rsc_common *res; 1198 int resume_with_error = 1; 1199 struct mlx5_ib_qp *qp; 1200 size_t bytes_copied; 1201 int ret = 0; 1202 1203 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1204 if (!res) { 1205 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1206 return; 1207 } 1208 1209 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1210 res->res != MLX5_RES_XSRQ) { 1211 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1212 pfault->type); 1213 goto resolve_page_fault; 1214 } 1215 1216 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1217 if (!wqe_start) { 1218 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1219 goto resolve_page_fault; 1220 } 1221 1222 wqe = wqe_start; 1223 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1224 if (qp && sq) { 1225 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1226 &bytes_copied); 1227 if (ret) 1228 goto read_user; 1229 ret = mlx5_ib_mr_initiator_pfault_handler( 1230 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1231 } else if (qp && !sq) { 1232 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1233 &bytes_copied); 1234 if (ret) 1235 goto read_user; 1236 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1237 dev, qp, wqe, &wqe_end, bytes_copied); 1238 } else if (!qp) { 1239 struct mlx5_ib_srq *srq = res_to_srq(res); 1240 1241 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1242 &bytes_copied); 1243 if (ret) 1244 goto read_user; 1245 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1246 dev, srq, &wqe, &wqe_end, bytes_copied); 1247 } 1248 1249 if (ret < 0 || wqe >= wqe_end) 1250 goto resolve_page_fault; 1251 1252 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1253 &total_wqe_bytes, !sq); 1254 if (ret == -EAGAIN) 1255 goto out; 1256 1257 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1258 goto resolve_page_fault; 1259 1260 out: 1261 ret = 0; 1262 resume_with_error = 0; 1263 1264 read_user: 1265 if (ret) 1266 mlx5_ib_err( 1267 dev, 1268 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1269 ret, wqe_index, pfault->token); 1270 1271 resolve_page_fault: 1272 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1273 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1274 pfault->wqe.wq_num, resume_with_error, 1275 pfault->type); 1276 mlx5_core_res_put(res); 1277 free_page((unsigned long)wqe_start); 1278 } 1279 1280 static int pages_in_range(u64 address, u32 length) 1281 { 1282 return (ALIGN(address + length, PAGE_SIZE) - 1283 (address & PAGE_MASK)) >> PAGE_SHIFT; 1284 } 1285 1286 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1287 struct mlx5_pagefault *pfault) 1288 { 1289 u64 address; 1290 u32 length; 1291 u32 prefetch_len = pfault->bytes_committed; 1292 int prefetch_activated = 0; 1293 u32 rkey = pfault->rdma.r_key; 1294 int ret; 1295 1296 /* The RDMA responder handler handles the page fault in two parts. 1297 * First it brings the necessary pages for the current packet 1298 * (and uses the pfault context), and then (after resuming the QP) 1299 * prefetches more pages. The second operation cannot use the pfault 1300 * context and therefore uses the dummy_pfault context allocated on 1301 * the stack */ 1302 pfault->rdma.rdma_va += pfault->bytes_committed; 1303 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1304 pfault->rdma.rdma_op_len); 1305 pfault->bytes_committed = 0; 1306 1307 address = pfault->rdma.rdma_va; 1308 length = pfault->rdma.rdma_op_len; 1309 1310 /* For some operations, the hardware cannot tell the exact message 1311 * length, and in those cases it reports zero. Use prefetch 1312 * logic. */ 1313 if (length == 0) { 1314 prefetch_activated = 1; 1315 length = pfault->rdma.packet_size; 1316 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1317 } 1318 1319 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1320 &pfault->bytes_committed, NULL); 1321 if (ret == -EAGAIN) { 1322 /* We're racing with an invalidation, don't prefetch */ 1323 prefetch_activated = 0; 1324 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1325 mlx5_ib_page_fault_resume(dev, pfault, 1); 1326 if (ret != -ENOENT) 1327 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1328 ret, pfault->token, pfault->type); 1329 return; 1330 } 1331 1332 mlx5_ib_page_fault_resume(dev, pfault, 0); 1333 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1334 pfault->token, pfault->type, 1335 prefetch_activated); 1336 1337 /* At this point, there might be a new pagefault already arriving in 1338 * the eq, switch to the dummy pagefault for the rest of the 1339 * processing. We're still OK with the objects being alive as the 1340 * work-queue is being fenced. */ 1341 1342 if (prefetch_activated) { 1343 u32 bytes_committed = 0; 1344 1345 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1346 prefetch_len, 1347 &bytes_committed, NULL); 1348 if (ret < 0 && ret != -EAGAIN) { 1349 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1350 ret, pfault->token, address, prefetch_len); 1351 } 1352 } 1353 } 1354 1355 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1356 { 1357 u8 event_subtype = pfault->event_subtype; 1358 1359 switch (event_subtype) { 1360 case MLX5_PFAULT_SUBTYPE_WQE: 1361 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1362 break; 1363 case MLX5_PFAULT_SUBTYPE_RDMA: 1364 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1365 break; 1366 default: 1367 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1368 event_subtype); 1369 mlx5_ib_page_fault_resume(dev, pfault, 1); 1370 } 1371 } 1372 1373 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1374 { 1375 struct mlx5_pagefault *pfault = container_of(work, 1376 struct mlx5_pagefault, 1377 work); 1378 struct mlx5_ib_pf_eq *eq = pfault->eq; 1379 1380 mlx5_ib_pfault(eq->dev, pfault); 1381 mempool_free(pfault, eq->pool); 1382 } 1383 1384 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1385 { 1386 struct mlx5_eqe_page_fault *pf_eqe; 1387 struct mlx5_pagefault *pfault; 1388 struct mlx5_eqe *eqe; 1389 int cc = 0; 1390 1391 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1392 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1393 if (!pfault) { 1394 schedule_work(&eq->work); 1395 break; 1396 } 1397 1398 pf_eqe = &eqe->data.page_fault; 1399 pfault->event_subtype = eqe->sub_type; 1400 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1401 1402 mlx5_ib_dbg(eq->dev, 1403 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1404 eqe->sub_type, pfault->bytes_committed); 1405 1406 switch (eqe->sub_type) { 1407 case MLX5_PFAULT_SUBTYPE_RDMA: 1408 /* RDMA based event */ 1409 pfault->type = 1410 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1411 pfault->token = 1412 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1413 MLX5_24BIT_MASK; 1414 pfault->rdma.r_key = 1415 be32_to_cpu(pf_eqe->rdma.r_key); 1416 pfault->rdma.packet_size = 1417 be16_to_cpu(pf_eqe->rdma.packet_length); 1418 pfault->rdma.rdma_op_len = 1419 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1420 pfault->rdma.rdma_va = 1421 be64_to_cpu(pf_eqe->rdma.rdma_va); 1422 mlx5_ib_dbg(eq->dev, 1423 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1424 pfault->type, pfault->token, 1425 pfault->rdma.r_key); 1426 mlx5_ib_dbg(eq->dev, 1427 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1428 pfault->rdma.rdma_op_len, 1429 pfault->rdma.rdma_va); 1430 break; 1431 1432 case MLX5_PFAULT_SUBTYPE_WQE: 1433 /* WQE based event */ 1434 pfault->type = 1435 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1436 pfault->token = 1437 be32_to_cpu(pf_eqe->wqe.token); 1438 pfault->wqe.wq_num = 1439 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1440 MLX5_24BIT_MASK; 1441 pfault->wqe.wqe_index = 1442 be16_to_cpu(pf_eqe->wqe.wqe_index); 1443 pfault->wqe.packet_size = 1444 be16_to_cpu(pf_eqe->wqe.packet_length); 1445 mlx5_ib_dbg(eq->dev, 1446 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1447 pfault->type, pfault->token, 1448 pfault->wqe.wq_num, 1449 pfault->wqe.wqe_index); 1450 break; 1451 1452 default: 1453 mlx5_ib_warn(eq->dev, 1454 "Unsupported page fault event sub-type: 0x%02hhx\n", 1455 eqe->sub_type); 1456 /* Unsupported page faults should still be 1457 * resolved by the page fault handler 1458 */ 1459 } 1460 1461 pfault->eq = eq; 1462 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1463 queue_work(eq->wq, &pfault->work); 1464 1465 cc = mlx5_eq_update_cc(eq->core, ++cc); 1466 } 1467 1468 mlx5_eq_update_ci(eq->core, cc, 1); 1469 } 1470 1471 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1472 void *data) 1473 { 1474 struct mlx5_ib_pf_eq *eq = 1475 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1476 unsigned long flags; 1477 1478 if (spin_trylock_irqsave(&eq->lock, flags)) { 1479 mlx5_ib_eq_pf_process(eq); 1480 spin_unlock_irqrestore(&eq->lock, flags); 1481 } else { 1482 schedule_work(&eq->work); 1483 } 1484 1485 return IRQ_HANDLED; 1486 } 1487 1488 /* mempool_refill() was proposed but unfortunately wasn't accepted 1489 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1490 * Cheap workaround. 1491 */ 1492 static void mempool_refill(mempool_t *pool) 1493 { 1494 while (pool->curr_nr < pool->min_nr) 1495 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1496 } 1497 1498 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1499 { 1500 struct mlx5_ib_pf_eq *eq = 1501 container_of(work, struct mlx5_ib_pf_eq, work); 1502 1503 mempool_refill(eq->pool); 1504 1505 spin_lock_irq(&eq->lock); 1506 mlx5_ib_eq_pf_process(eq); 1507 spin_unlock_irq(&eq->lock); 1508 } 1509 1510 enum { 1511 MLX5_IB_NUM_PF_EQE = 0x1000, 1512 MLX5_IB_NUM_PF_DRAIN = 64, 1513 }; 1514 1515 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1516 { 1517 struct mlx5_eq_param param = {}; 1518 int err = 0; 1519 1520 mutex_lock(&dev->odp_eq_mutex); 1521 if (eq->core) 1522 goto unlock; 1523 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1524 spin_lock_init(&eq->lock); 1525 eq->dev = dev; 1526 1527 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1528 sizeof(struct mlx5_pagefault)); 1529 if (!eq->pool) { 1530 err = -ENOMEM; 1531 goto unlock; 1532 } 1533 1534 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1535 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1536 MLX5_NUM_CMD_EQE); 1537 if (!eq->wq) { 1538 err = -ENOMEM; 1539 goto err_mempool; 1540 } 1541 1542 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1543 param = (struct mlx5_eq_param) { 1544 .irq_index = MLX5_IRQ_EQ_CTRL, 1545 .nent = MLX5_IB_NUM_PF_EQE, 1546 }; 1547 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1548 if (!zalloc_cpumask_var(¶m.affinity, GFP_KERNEL)) { 1549 err = -ENOMEM; 1550 goto err_wq; 1551 } 1552 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1553 free_cpumask_var(param.affinity); 1554 if (IS_ERR(eq->core)) { 1555 err = PTR_ERR(eq->core); 1556 goto err_wq; 1557 } 1558 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1559 if (err) { 1560 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1561 goto err_eq; 1562 } 1563 1564 mutex_unlock(&dev->odp_eq_mutex); 1565 return 0; 1566 err_eq: 1567 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1568 err_wq: 1569 eq->core = NULL; 1570 destroy_workqueue(eq->wq); 1571 err_mempool: 1572 mempool_destroy(eq->pool); 1573 unlock: 1574 mutex_unlock(&dev->odp_eq_mutex); 1575 return err; 1576 } 1577 1578 static int 1579 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1580 { 1581 int err; 1582 1583 if (!eq->core) 1584 return 0; 1585 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1586 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1587 cancel_work_sync(&eq->work); 1588 destroy_workqueue(eq->wq); 1589 mempool_destroy(eq->pool); 1590 1591 return err; 1592 } 1593 1594 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1595 { 1596 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1597 return; 1598 1599 switch (ent->order - 2) { 1600 case MLX5_IMR_MTT_CACHE_ENTRY: 1601 ent->page = PAGE_SHIFT; 1602 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1603 sizeof(struct mlx5_mtt) / 1604 MLX5_IB_UMR_OCTOWORD; 1605 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1606 ent->limit = 0; 1607 break; 1608 1609 case MLX5_IMR_KSM_CACHE_ENTRY: 1610 ent->page = MLX5_KSM_PAGE_SHIFT; 1611 ent->xlt = mlx5_imr_ksm_entries * 1612 sizeof(struct mlx5_klm) / 1613 MLX5_IB_UMR_OCTOWORD; 1614 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1615 ent->limit = 0; 1616 break; 1617 } 1618 } 1619 1620 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1621 .advise_mr = mlx5_ib_advise_mr, 1622 }; 1623 1624 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1625 { 1626 int ret = 0; 1627 1628 internal_fill_odp_caps(dev); 1629 1630 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1631 return ret; 1632 1633 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1634 1635 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1636 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1637 if (ret) { 1638 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1639 return ret; 1640 } 1641 } 1642 1643 mutex_init(&dev->odp_eq_mutex); 1644 return ret; 1645 } 1646 1647 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1648 { 1649 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1650 return; 1651 1652 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq); 1653 } 1654 1655 int mlx5_ib_odp_init(void) 1656 { 1657 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1658 MLX5_IMR_MTT_BITS); 1659 1660 return 0; 1661 } 1662 1663 struct prefetch_mr_work { 1664 struct work_struct work; 1665 u32 pf_flags; 1666 u32 num_sge; 1667 struct { 1668 u64 io_virt; 1669 struct mlx5_ib_mr *mr; 1670 size_t length; 1671 } frags[]; 1672 }; 1673 1674 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1675 { 1676 u32 i; 1677 1678 for (i = 0; i < work->num_sge; ++i) 1679 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); 1680 1681 kvfree(work); 1682 } 1683 1684 static struct mlx5_ib_mr * 1685 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1686 u32 lkey) 1687 { 1688 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1689 struct mlx5_ib_mr *mr = NULL; 1690 struct mlx5_ib_mkey *mmkey; 1691 1692 xa_lock(&dev->odp_mkeys); 1693 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1694 if (!mmkey || mmkey->key != lkey) { 1695 mr = ERR_PTR(-ENOENT); 1696 goto end; 1697 } 1698 if (mmkey->type != MLX5_MKEY_MR) { 1699 mr = ERR_PTR(-EINVAL); 1700 goto end; 1701 } 1702 1703 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1704 1705 if (mr->ibmr.pd != pd) { 1706 mr = ERR_PTR(-EPERM); 1707 goto end; 1708 } 1709 1710 /* prefetch with write-access must be supported by the MR */ 1711 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1712 !mr->umem->writable) { 1713 mr = ERR_PTR(-EPERM); 1714 goto end; 1715 } 1716 1717 refcount_inc(&mmkey->usecount); 1718 end: 1719 xa_unlock(&dev->odp_mkeys); 1720 return mr; 1721 } 1722 1723 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1724 { 1725 struct prefetch_mr_work *work = 1726 container_of(w, struct prefetch_mr_work, work); 1727 u32 bytes_mapped = 0; 1728 int ret; 1729 u32 i; 1730 1731 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ 1732 WARN_ON(!work->num_sge); 1733 for (i = 0; i < work->num_sge; ++i) { 1734 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1735 work->frags[i].length, &bytes_mapped, 1736 work->pf_flags); 1737 if (ret <= 0) 1738 continue; 1739 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); 1740 } 1741 1742 destroy_prefetch_work(work); 1743 } 1744 1745 static int init_prefetch_work(struct ib_pd *pd, 1746 enum ib_uverbs_advise_mr_advice advice, 1747 u32 pf_flags, struct prefetch_mr_work *work, 1748 struct ib_sge *sg_list, u32 num_sge) 1749 { 1750 u32 i; 1751 1752 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1753 work->pf_flags = pf_flags; 1754 1755 for (i = 0; i < num_sge; ++i) { 1756 struct mlx5_ib_mr *mr; 1757 1758 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1759 if (IS_ERR(mr)) { 1760 work->num_sge = i; 1761 return PTR_ERR(mr); 1762 } 1763 work->frags[i].io_virt = sg_list[i].addr; 1764 work->frags[i].length = sg_list[i].length; 1765 work->frags[i].mr = mr; 1766 } 1767 work->num_sge = num_sge; 1768 return 0; 1769 } 1770 1771 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 1772 enum ib_uverbs_advise_mr_advice advice, 1773 u32 pf_flags, struct ib_sge *sg_list, 1774 u32 num_sge) 1775 { 1776 u32 bytes_mapped = 0; 1777 int ret = 0; 1778 u32 i; 1779 1780 for (i = 0; i < num_sge; ++i) { 1781 struct mlx5_ib_mr *mr; 1782 1783 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1784 if (IS_ERR(mr)) 1785 return PTR_ERR(mr); 1786 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 1787 &bytes_mapped, pf_flags); 1788 if (ret < 0) { 1789 mlx5r_deref_odp_mkey(&mr->mmkey); 1790 return ret; 1791 } 1792 mlx5_update_odp_stats(mr, prefetch, ret); 1793 mlx5r_deref_odp_mkey(&mr->mmkey); 1794 } 1795 1796 return 0; 1797 } 1798 1799 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1800 enum ib_uverbs_advise_mr_advice advice, 1801 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1802 { 1803 u32 pf_flags = 0; 1804 struct prefetch_mr_work *work; 1805 int rc; 1806 1807 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1808 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1809 1810 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1811 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; 1812 1813 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1814 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 1815 num_sge); 1816 1817 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 1818 if (!work) 1819 return -ENOMEM; 1820 1821 rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge); 1822 if (rc) { 1823 destroy_prefetch_work(work); 1824 return rc; 1825 } 1826 queue_work(system_unbound_wq, &work->work); 1827 return 0; 1828 } 1829