1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 40 #include <linux/mlx5/eq.h> 41 42 /* Contains the details of a pagefault. */ 43 struct mlx5_pagefault { 44 u32 bytes_committed; 45 u32 token; 46 u8 event_subtype; 47 u8 type; 48 union { 49 /* Initiator or send message responder pagefault details. */ 50 struct { 51 /* Received packet size, only valid for responders. */ 52 u32 packet_size; 53 /* 54 * Number of resource holding WQE, depends on type. 55 */ 56 u32 wq_num; 57 /* 58 * WQE index. Refers to either the send queue or 59 * receive queue, according to event_subtype. 60 */ 61 u16 wqe_index; 62 } wqe; 63 /* RDMA responder pagefault details */ 64 struct { 65 u32 r_key; 66 /* 67 * Received packet size, minimal size page fault 68 * resolution required for forward progress. 69 */ 70 u32 packet_size; 71 u32 rdma_op_len; 72 u64 rdma_va; 73 } rdma; 74 }; 75 76 struct mlx5_ib_pf_eq *eq; 77 struct work_struct work; 78 }; 79 80 #define MAX_PREFETCH_LEN (4*1024*1024U) 81 82 /* Timeout in ms to wait for an active mmu notifier to complete when handling 83 * a pagefault. */ 84 #define MMU_NOTIFIER_TIMEOUT 1000 85 86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 91 92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 93 94 static u64 mlx5_imr_ksm_entries; 95 96 static int check_parent(struct ib_umem_odp *odp, 97 struct mlx5_ib_mr *parent) 98 { 99 struct mlx5_ib_mr *mr = odp->private; 100 101 return mr && mr->parent == parent && !odp->dying; 102 } 103 104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr) 105 { 106 if (WARN_ON(!mr || !is_odp_mr(mr))) 107 return NULL; 108 109 return to_ib_umem_odp(mr->umem)->per_mm; 110 } 111 112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp) 113 { 114 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent; 115 struct ib_ucontext_per_mm *per_mm = odp->per_mm; 116 struct rb_node *rb; 117 118 down_read(&per_mm->umem_rwsem); 119 while (1) { 120 rb = rb_next(&odp->interval_tree.rb); 121 if (!rb) 122 goto not_found; 123 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 124 if (check_parent(odp, parent)) 125 goto end; 126 } 127 not_found: 128 odp = NULL; 129 end: 130 up_read(&per_mm->umem_rwsem); 131 return odp; 132 } 133 134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length, 135 struct mlx5_ib_mr *parent) 136 { 137 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent); 138 struct ib_umem_odp *odp; 139 struct rb_node *rb; 140 141 down_read(&per_mm->umem_rwsem); 142 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length); 143 if (!odp) 144 goto end; 145 146 while (1) { 147 if (check_parent(odp, parent)) 148 goto end; 149 rb = rb_next(&odp->interval_tree.rb); 150 if (!rb) 151 goto not_found; 152 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 153 if (ib_umem_start(&odp->umem) > start + length) 154 goto not_found; 155 } 156 not_found: 157 odp = NULL; 158 end: 159 up_read(&per_mm->umem_rwsem); 160 return odp; 161 } 162 163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset, 164 size_t nentries, struct mlx5_ib_mr *mr, int flags) 165 { 166 struct ib_pd *pd = mr->ibmr.pd; 167 struct mlx5_ib_dev *dev = to_mdev(pd->device); 168 struct ib_umem_odp *odp; 169 unsigned long va; 170 int i; 171 172 if (flags & MLX5_IB_UPD_XLT_ZAP) { 173 for (i = 0; i < nentries; i++, pklm++) { 174 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 175 pklm->key = cpu_to_be32(dev->null_mkey); 176 pklm->va = 0; 177 } 178 return; 179 } 180 181 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE, 182 nentries * MLX5_IMR_MTT_SIZE, mr); 183 184 for (i = 0; i < nentries; i++, pklm++) { 185 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 186 va = (offset + i) * MLX5_IMR_MTT_SIZE; 187 if (odp && odp->umem.address == va) { 188 struct mlx5_ib_mr *mtt = odp->private; 189 190 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 191 odp = odp_next(odp); 192 } else { 193 pklm->key = cpu_to_be32(dev->null_mkey); 194 } 195 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n", 196 i, va, be32_to_cpu(pklm->key)); 197 } 198 } 199 200 static void mr_leaf_free_action(struct work_struct *work) 201 { 202 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work); 203 int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT; 204 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent; 205 206 mr->parent = NULL; 207 synchronize_srcu(&mr->dev->mr_srcu); 208 209 ib_umem_release(&odp->umem); 210 if (imr->live) 211 mlx5_ib_update_xlt(imr, idx, 1, 0, 212 MLX5_IB_UPD_XLT_INDIRECT | 213 MLX5_IB_UPD_XLT_ATOMIC); 214 mlx5_mr_cache_free(mr->dev, mr); 215 216 if (atomic_dec_and_test(&imr->num_leaf_free)) 217 wake_up(&imr->q_leaf_free); 218 } 219 220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start, 221 unsigned long end) 222 { 223 struct mlx5_ib_mr *mr; 224 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 225 sizeof(struct mlx5_mtt)) - 1; 226 u64 idx = 0, blk_start_idx = 0; 227 struct ib_umem *umem; 228 int in_block = 0; 229 u64 addr; 230 231 if (!umem_odp) { 232 pr_err("invalidation called on NULL umem or non-ODP umem\n"); 233 return; 234 } 235 umem = &umem_odp->umem; 236 237 mr = umem_odp->private; 238 239 if (!mr || !mr->ibmr.pd) 240 return; 241 242 start = max_t(u64, ib_umem_start(umem), start); 243 end = min_t(u64, ib_umem_end(umem), end); 244 245 /* 246 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 247 * while we are doing the invalidation, no page fault will attempt to 248 * overwrite the same MTTs. Concurent invalidations might race us, 249 * but they will write 0s as well, so no difference in the end result. 250 */ 251 252 for (addr = start; addr < end; addr += BIT(umem->page_shift)) { 253 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 254 /* 255 * Strive to write the MTTs in chunks, but avoid overwriting 256 * non-existing MTTs. The huristic here can be improved to 257 * estimate the cost of another UMR vs. the cost of bigger 258 * UMR. 259 */ 260 if (umem_odp->dma_list[idx] & 261 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 262 if (!in_block) { 263 blk_start_idx = idx; 264 in_block = 1; 265 } 266 } else { 267 u64 umr_offset = idx & umr_block_mask; 268 269 if (in_block && umr_offset == 0) { 270 mlx5_ib_update_xlt(mr, blk_start_idx, 271 idx - blk_start_idx, 0, 272 MLX5_IB_UPD_XLT_ZAP | 273 MLX5_IB_UPD_XLT_ATOMIC); 274 in_block = 0; 275 } 276 } 277 } 278 if (in_block) 279 mlx5_ib_update_xlt(mr, blk_start_idx, 280 idx - blk_start_idx + 1, 0, 281 MLX5_IB_UPD_XLT_ZAP | 282 MLX5_IB_UPD_XLT_ATOMIC); 283 /* 284 * We are now sure that the device will not access the 285 * memory. We can safely unmap it, and mark it as dirty if 286 * needed. 287 */ 288 289 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 290 291 if (unlikely(!umem_odp->npages && mr->parent && 292 !umem_odp->dying)) { 293 WRITE_ONCE(umem_odp->dying, 1); 294 atomic_inc(&mr->parent->num_leaf_free); 295 schedule_work(&umem_odp->work); 296 } 297 } 298 299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 300 { 301 struct ib_odp_caps *caps = &dev->odp_caps; 302 303 memset(caps, 0, sizeof(*caps)); 304 305 if (!MLX5_CAP_GEN(dev->mdev, pg)) 306 return; 307 308 caps->general_caps = IB_ODP_SUPPORT; 309 310 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 311 dev->odp_max_size = U64_MAX; 312 else 313 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 314 315 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 316 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 317 318 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 319 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 320 321 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 322 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 323 324 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 325 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 326 327 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 328 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 329 330 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 331 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 332 333 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 334 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 335 336 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 337 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 338 339 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 340 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 341 342 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 343 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 344 345 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 346 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 347 348 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 349 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 350 351 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 352 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 353 354 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 355 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 356 357 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 358 MLX5_CAP_GEN(dev->mdev, null_mkey) && 359 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 360 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 361 362 return; 363 } 364 365 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 366 struct mlx5_pagefault *pfault, 367 int error) 368 { 369 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 370 pfault->wqe.wq_num : pfault->token; 371 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { }; 372 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { }; 373 int err; 374 375 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 376 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 377 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 378 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 379 MLX5_SET(page_fault_resume_in, in, error, !!error); 380 381 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); 382 if (err) 383 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 384 wq_num, err); 385 } 386 387 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd, 388 struct ib_umem *umem, 389 bool ksm, int access_flags) 390 { 391 struct mlx5_ib_dev *dev = to_mdev(pd->device); 392 struct mlx5_ib_mr *mr; 393 int err; 394 395 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY : 396 MLX5_IMR_MTT_CACHE_ENTRY); 397 398 if (IS_ERR(mr)) 399 return mr; 400 401 mr->ibmr.pd = pd; 402 403 mr->dev = dev; 404 mr->access_flags = access_flags; 405 mr->mmkey.iova = 0; 406 mr->umem = umem; 407 408 if (ksm) { 409 err = mlx5_ib_update_xlt(mr, 0, 410 mlx5_imr_ksm_entries, 411 MLX5_KSM_PAGE_SHIFT, 412 MLX5_IB_UPD_XLT_INDIRECT | 413 MLX5_IB_UPD_XLT_ZAP | 414 MLX5_IB_UPD_XLT_ENABLE); 415 416 } else { 417 err = mlx5_ib_update_xlt(mr, 0, 418 MLX5_IMR_MTT_ENTRIES, 419 PAGE_SHIFT, 420 MLX5_IB_UPD_XLT_ZAP | 421 MLX5_IB_UPD_XLT_ENABLE | 422 MLX5_IB_UPD_XLT_ATOMIC); 423 } 424 425 if (err) 426 goto fail; 427 428 mr->ibmr.lkey = mr->mmkey.key; 429 mr->ibmr.rkey = mr->mmkey.key; 430 431 mr->live = 1; 432 433 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n", 434 mr->mmkey.key, dev->mdev, mr); 435 436 return mr; 437 438 fail: 439 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 440 mlx5_mr_cache_free(dev, mr); 441 442 return ERR_PTR(err); 443 } 444 445 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr, 446 u64 io_virt, size_t bcnt) 447 { 448 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device); 449 struct ib_umem_odp *odp, *result = NULL; 450 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 451 u64 addr = io_virt & MLX5_IMR_MTT_MASK; 452 int nentries = 0, start_idx = 0, ret; 453 struct mlx5_ib_mr *mtt; 454 455 mutex_lock(&odp_mr->umem_mutex); 456 odp = odp_lookup(addr, 1, mr); 457 458 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n", 459 io_virt, bcnt, addr, odp); 460 461 next_mr: 462 if (likely(odp)) { 463 if (nentries) 464 nentries++; 465 } else { 466 odp = ib_alloc_odp_umem(odp_mr, addr, 467 MLX5_IMR_MTT_SIZE); 468 if (IS_ERR(odp)) { 469 mutex_unlock(&odp_mr->umem_mutex); 470 return ERR_CAST(odp); 471 } 472 473 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0, 474 mr->access_flags); 475 if (IS_ERR(mtt)) { 476 mutex_unlock(&odp_mr->umem_mutex); 477 ib_umem_release(&odp->umem); 478 return ERR_CAST(mtt); 479 } 480 481 odp->private = mtt; 482 mtt->umem = &odp->umem; 483 mtt->mmkey.iova = addr; 484 mtt->parent = mr; 485 INIT_WORK(&odp->work, mr_leaf_free_action); 486 487 if (!nentries) 488 start_idx = addr >> MLX5_IMR_MTT_SHIFT; 489 nentries++; 490 } 491 492 /* Return first odp if region not covered by single one */ 493 if (likely(!result)) 494 result = odp; 495 496 addr += MLX5_IMR_MTT_SIZE; 497 if (unlikely(addr < io_virt + bcnt)) { 498 odp = odp_next(odp); 499 if (odp && odp->umem.address != addr) 500 odp = NULL; 501 goto next_mr; 502 } 503 504 if (unlikely(nentries)) { 505 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0, 506 MLX5_IB_UPD_XLT_INDIRECT | 507 MLX5_IB_UPD_XLT_ATOMIC); 508 if (ret) { 509 mlx5_ib_err(dev, "Failed to update PAS\n"); 510 result = ERR_PTR(ret); 511 } 512 } 513 514 mutex_unlock(&odp_mr->umem_mutex); 515 return result; 516 } 517 518 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 519 struct ib_udata *udata, 520 int access_flags) 521 { 522 struct mlx5_ib_mr *imr; 523 struct ib_umem *umem; 524 525 umem = ib_umem_get(udata, 0, 0, access_flags, 0); 526 if (IS_ERR(umem)) 527 return ERR_CAST(umem); 528 529 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags); 530 if (IS_ERR(imr)) { 531 ib_umem_release(umem); 532 return ERR_CAST(imr); 533 } 534 535 imr->umem = umem; 536 init_waitqueue_head(&imr->q_leaf_free); 537 atomic_set(&imr->num_leaf_free, 0); 538 atomic_set(&imr->num_pending_prefetch, 0); 539 540 return imr; 541 } 542 543 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end, 544 void *cookie) 545 { 546 struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie; 547 struct ib_umem *umem = &umem_odp->umem; 548 549 if (mr->parent != imr) 550 return 0; 551 552 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem), 553 ib_umem_end(umem)); 554 555 if (umem_odp->dying) 556 return 0; 557 558 WRITE_ONCE(umem_odp->dying, 1); 559 atomic_inc(&imr->num_leaf_free); 560 schedule_work(&umem_odp->work); 561 562 return 0; 563 } 564 565 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 566 { 567 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr); 568 569 down_read(&per_mm->umem_rwsem); 570 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX, 571 mr_leaf_free, true, imr); 572 up_read(&per_mm->umem_rwsem); 573 574 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free)); 575 } 576 577 #define MLX5_PF_FLAGS_PREFETCH BIT(0) 578 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 579 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 580 u64 io_virt, size_t bcnt, u32 *bytes_mapped, 581 u32 flags) 582 { 583 int npages = 0, current_seq, page_shift, ret, np; 584 bool implicit = false; 585 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 586 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 587 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 588 u64 access_mask; 589 u64 start_idx, page_mask; 590 struct ib_umem_odp *odp; 591 size_t size; 592 593 if (!odp_mr->page_list) { 594 odp = implicit_mr_get_data(mr, io_virt, bcnt); 595 596 if (IS_ERR(odp)) 597 return PTR_ERR(odp); 598 mr = odp->private; 599 implicit = true; 600 } else { 601 odp = odp_mr; 602 } 603 604 next_mr: 605 size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt); 606 607 page_shift = mr->umem->page_shift; 608 page_mask = ~(BIT(page_shift) - 1); 609 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift; 610 access_mask = ODP_READ_ALLOWED_BIT; 611 612 if (prefetch && !downgrade && !mr->umem->writable) { 613 /* prefetch with write-access must 614 * be supported by the MR 615 */ 616 ret = -EINVAL; 617 goto out; 618 } 619 620 if (mr->umem->writable && !downgrade) 621 access_mask |= ODP_WRITE_ALLOWED_BIT; 622 623 current_seq = READ_ONCE(odp->notifiers_seq); 624 /* 625 * Ensure the sequence number is valid for some time before we call 626 * gup. 627 */ 628 smp_rmb(); 629 630 ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size, 631 access_mask, current_seq); 632 633 if (ret < 0) 634 goto out; 635 636 np = ret; 637 638 mutex_lock(&odp->umem_mutex); 639 if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem), 640 current_seq)) { 641 /* 642 * No need to check whether the MTTs really belong to 643 * this MR, since ib_umem_odp_map_dma_pages already 644 * checks this. 645 */ 646 ret = mlx5_ib_update_xlt(mr, start_idx, np, 647 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 648 } else { 649 ret = -EAGAIN; 650 } 651 mutex_unlock(&odp->umem_mutex); 652 653 if (ret < 0) { 654 if (ret != -EAGAIN) 655 mlx5_ib_err(dev, "Failed to update mkey page tables\n"); 656 goto out; 657 } 658 659 if (bytes_mapped) { 660 u32 new_mappings = (np << page_shift) - 661 (io_virt - round_down(io_virt, 1 << page_shift)); 662 *bytes_mapped += min_t(u32, new_mappings, size); 663 } 664 665 npages += np << (page_shift - PAGE_SHIFT); 666 bcnt -= size; 667 668 if (unlikely(bcnt)) { 669 struct ib_umem_odp *next; 670 671 io_virt += size; 672 next = odp_next(odp); 673 if (unlikely(!next || next->umem.address != io_virt)) { 674 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n", 675 io_virt, next); 676 return -EAGAIN; 677 } 678 odp = next; 679 mr = odp->private; 680 goto next_mr; 681 } 682 683 return npages; 684 685 out: 686 if (ret == -EAGAIN) { 687 if (implicit || !odp->dying) { 688 unsigned long timeout = 689 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); 690 691 if (!wait_for_completion_timeout( 692 &odp->notifier_completion, 693 timeout)) { 694 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n", 695 current_seq, odp->notifiers_seq, odp->notifiers_count); 696 } 697 } else { 698 /* The MR is being killed, kill the QP as well. */ 699 ret = -EFAULT; 700 } 701 } 702 703 return ret; 704 } 705 706 struct pf_frame { 707 struct pf_frame *next; 708 u32 key; 709 u64 io_virt; 710 size_t bcnt; 711 int depth; 712 }; 713 714 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 715 { 716 if (!mmkey) 717 return false; 718 if (mmkey->type == MLX5_MKEY_MW) 719 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 720 return mmkey->key == key; 721 } 722 723 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 724 { 725 struct mlx5_ib_mw *mw; 726 struct mlx5_ib_devx_mr *devx_mr; 727 728 if (mmkey->type == MLX5_MKEY_MW) { 729 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 730 return mw->ndescs; 731 } 732 733 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 734 mmkey); 735 return devx_mr->ndescs; 736 } 737 738 /* 739 * Handle a single data segment in a page-fault WQE or RDMA region. 740 * 741 * Returns number of OS pages retrieved on success. The caller may continue to 742 * the next data segment. 743 * Can return the following error codes: 744 * -EAGAIN to designate a temporary error. The caller will abort handling the 745 * page fault and resolve it. 746 * -EFAULT when there's an error mapping the requested pages. The caller will 747 * abort the page fault handling. 748 */ 749 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 750 struct ib_pd *pd, u32 key, 751 u64 io_virt, size_t bcnt, 752 u32 *bytes_committed, 753 u32 *bytes_mapped, u32 flags) 754 { 755 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 756 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 757 struct pf_frame *head = NULL, *frame; 758 struct mlx5_core_mkey *mmkey; 759 struct mlx5_ib_mr *mr; 760 struct mlx5_klm *pklm; 761 u32 *out = NULL; 762 size_t offset; 763 int ndescs; 764 765 srcu_key = srcu_read_lock(&dev->mr_srcu); 766 767 io_virt += *bytes_committed; 768 bcnt -= *bytes_committed; 769 770 next_mr: 771 mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key)); 772 if (!mkey_is_eq(mmkey, key)) { 773 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 774 ret = -EFAULT; 775 goto srcu_unlock; 776 } 777 778 if (prefetch && mmkey->type != MLX5_MKEY_MR) { 779 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n"); 780 ret = -EINVAL; 781 goto srcu_unlock; 782 } 783 784 switch (mmkey->type) { 785 case MLX5_MKEY_MR: 786 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 787 if (!mr->live || !mr->ibmr.pd) { 788 mlx5_ib_dbg(dev, "got dead MR\n"); 789 ret = -EFAULT; 790 goto srcu_unlock; 791 } 792 793 if (prefetch) { 794 if (!is_odp_mr(mr) || 795 mr->ibmr.pd != pd) { 796 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n", 797 is_odp_mr(mr) ? "MR is not ODP" : 798 "PD is not of the MR"); 799 ret = -EINVAL; 800 goto srcu_unlock; 801 } 802 } 803 804 if (!is_odp_mr(mr)) { 805 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 806 key); 807 if (bytes_mapped) 808 *bytes_mapped += bcnt; 809 ret = 0; 810 goto srcu_unlock; 811 } 812 813 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags); 814 if (ret < 0) 815 goto srcu_unlock; 816 817 npages += ret; 818 ret = 0; 819 break; 820 821 case MLX5_MKEY_MW: 822 case MLX5_MKEY_INDIRECT_DEVX: 823 ndescs = get_indirect_num_descs(mmkey); 824 825 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 826 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 827 ret = -EFAULT; 828 goto srcu_unlock; 829 } 830 831 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 832 sizeof(*pklm) * (ndescs - 2); 833 834 if (outlen > cur_outlen) { 835 kfree(out); 836 out = kzalloc(outlen, GFP_KERNEL); 837 if (!out) { 838 ret = -ENOMEM; 839 goto srcu_unlock; 840 } 841 cur_outlen = outlen; 842 } 843 844 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 845 bsf0_klm0_pas_mtt0_1); 846 847 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 848 if (ret) 849 goto srcu_unlock; 850 851 offset = io_virt - MLX5_GET64(query_mkey_out, out, 852 memory_key_mkey_entry.start_addr); 853 854 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 855 if (offset >= be32_to_cpu(pklm->bcount)) { 856 offset -= be32_to_cpu(pklm->bcount); 857 continue; 858 } 859 860 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 861 if (!frame) { 862 ret = -ENOMEM; 863 goto srcu_unlock; 864 } 865 866 frame->key = be32_to_cpu(pklm->key); 867 frame->io_virt = be64_to_cpu(pklm->va) + offset; 868 frame->bcnt = min_t(size_t, bcnt, 869 be32_to_cpu(pklm->bcount) - offset); 870 frame->depth = depth + 1; 871 frame->next = head; 872 head = frame; 873 874 bcnt -= frame->bcnt; 875 offset = 0; 876 } 877 break; 878 879 default: 880 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 881 ret = -EFAULT; 882 goto srcu_unlock; 883 } 884 885 if (head) { 886 frame = head; 887 head = frame->next; 888 889 key = frame->key; 890 io_virt = frame->io_virt; 891 bcnt = frame->bcnt; 892 depth = frame->depth; 893 kfree(frame); 894 895 goto next_mr; 896 } 897 898 srcu_unlock: 899 while (head) { 900 frame = head; 901 head = frame->next; 902 kfree(frame); 903 } 904 kfree(out); 905 906 srcu_read_unlock(&dev->mr_srcu, srcu_key); 907 *bytes_committed = 0; 908 return ret ? ret : npages; 909 } 910 911 /** 912 * Parse a series of data segments for page fault handling. 913 * 914 * @pfault contains page fault information. 915 * @wqe points at the first data segment in the WQE. 916 * @wqe_end points after the end of the WQE. 917 * @bytes_mapped receives the number of bytes that the function was able to 918 * map. This allows the caller to decide intelligently whether 919 * enough memory was mapped to resolve the page fault 920 * successfully (e.g. enough for the next MTU, or the entire 921 * WQE). 922 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 923 * the committed bytes). 924 * 925 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 926 * negative error code. 927 */ 928 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 929 struct mlx5_pagefault *pfault, 930 void *wqe, 931 void *wqe_end, u32 *bytes_mapped, 932 u32 *total_wqe_bytes, bool receive_queue) 933 { 934 int ret = 0, npages = 0; 935 u64 io_virt; 936 u32 key; 937 u32 byte_count; 938 size_t bcnt; 939 int inline_segment; 940 941 if (bytes_mapped) 942 *bytes_mapped = 0; 943 if (total_wqe_bytes) 944 *total_wqe_bytes = 0; 945 946 while (wqe < wqe_end) { 947 struct mlx5_wqe_data_seg *dseg = wqe; 948 949 io_virt = be64_to_cpu(dseg->addr); 950 key = be32_to_cpu(dseg->lkey); 951 byte_count = be32_to_cpu(dseg->byte_count); 952 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 953 bcnt = byte_count & ~MLX5_INLINE_SEG; 954 955 if (inline_segment) { 956 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 957 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 958 16); 959 } else { 960 wqe += sizeof(*dseg); 961 } 962 963 /* receive WQE end of sg list. */ 964 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 965 io_virt == 0) 966 break; 967 968 if (!inline_segment && total_wqe_bytes) { 969 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 970 pfault->bytes_committed); 971 } 972 973 /* A zero length data segment designates a length of 2GB. */ 974 if (bcnt == 0) 975 bcnt = 1U << 31; 976 977 if (inline_segment || bcnt <= pfault->bytes_committed) { 978 pfault->bytes_committed -= 979 min_t(size_t, bcnt, 980 pfault->bytes_committed); 981 continue; 982 } 983 984 ret = pagefault_single_data_segment(dev, NULL, key, 985 io_virt, bcnt, 986 &pfault->bytes_committed, 987 bytes_mapped, 0); 988 if (ret < 0) 989 break; 990 npages += ret; 991 } 992 993 return ret < 0 ? ret : npages; 994 } 995 996 static const u32 mlx5_ib_odp_opcode_cap[] = { 997 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND, 998 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND, 999 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND, 1000 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE, 1001 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE, 1002 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ, 1003 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC, 1004 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC, 1005 }; 1006 1007 /* 1008 * Parse initiator WQE. Advances the wqe pointer to point at the 1009 * scatter-gather list, and set wqe_end to the end of the WQE. 1010 */ 1011 static int mlx5_ib_mr_initiator_pfault_handler( 1012 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1013 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1014 { 1015 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1016 u16 wqe_index = pfault->wqe.wqe_index; 1017 u32 transport_caps; 1018 struct mlx5_base_av *av; 1019 unsigned ds, opcode; 1020 #if defined(DEBUG) 1021 u32 ctrl_wqe_index, ctrl_qpn; 1022 #endif 1023 u32 qpn = qp->trans_qp.base.mqp.qpn; 1024 1025 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1026 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1027 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1028 ds, wqe_length); 1029 return -EFAULT; 1030 } 1031 1032 if (ds == 0) { 1033 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1034 wqe_index, qpn); 1035 return -EFAULT; 1036 } 1037 1038 #if defined(DEBUG) 1039 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & 1040 MLX5_WQE_CTRL_WQE_INDEX_MASK) >> 1041 MLX5_WQE_CTRL_WQE_INDEX_SHIFT; 1042 if (wqe_index != ctrl_wqe_index) { 1043 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", 1044 wqe_index, qpn, 1045 ctrl_wqe_index); 1046 return -EFAULT; 1047 } 1048 1049 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> 1050 MLX5_WQE_CTRL_QPN_SHIFT; 1051 if (qpn != ctrl_qpn) { 1052 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", 1053 wqe_index, qpn, 1054 ctrl_qpn); 1055 return -EFAULT; 1056 } 1057 #endif /* DEBUG */ 1058 1059 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1060 *wqe += sizeof(*ctrl); 1061 1062 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1063 MLX5_WQE_CTRL_OPCODE_MASK; 1064 1065 switch (qp->ibqp.qp_type) { 1066 case IB_QPT_XRC_INI: 1067 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1068 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps; 1069 break; 1070 case IB_QPT_RC: 1071 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps; 1072 break; 1073 case IB_QPT_UD: 1074 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps; 1075 break; 1076 default: 1077 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n", 1078 qp->ibqp.qp_type); 1079 return -EFAULT; 1080 } 1081 1082 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) || 1083 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) { 1084 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n", 1085 opcode); 1086 return -EFAULT; 1087 } 1088 1089 if (qp->ibqp.qp_type == IB_QPT_UD) { 1090 av = *wqe; 1091 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1092 *wqe += sizeof(struct mlx5_av); 1093 else 1094 *wqe += sizeof(struct mlx5_base_av); 1095 } 1096 1097 switch (opcode) { 1098 case MLX5_OPCODE_RDMA_WRITE: 1099 case MLX5_OPCODE_RDMA_WRITE_IMM: 1100 case MLX5_OPCODE_RDMA_READ: 1101 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1102 break; 1103 case MLX5_OPCODE_ATOMIC_CS: 1104 case MLX5_OPCODE_ATOMIC_FA: 1105 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1106 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1107 break; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /* 1114 * Parse responder WQE and set wqe_end to the end of the WQE. 1115 */ 1116 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1117 struct mlx5_ib_srq *srq, 1118 void **wqe, void **wqe_end, 1119 int wqe_length) 1120 { 1121 int wqe_size = 1 << srq->msrq.wqe_shift; 1122 1123 if (wqe_size > wqe_length) { 1124 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1125 return -EFAULT; 1126 } 1127 1128 *wqe_end = *wqe + wqe_size; 1129 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1130 1131 return 0; 1132 } 1133 1134 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1135 struct mlx5_ib_qp *qp, 1136 void *wqe, void **wqe_end, 1137 int wqe_length) 1138 { 1139 struct mlx5_ib_wq *wq = &qp->rq; 1140 int wqe_size = 1 << wq->wqe_shift; 1141 1142 if (qp->wq_sig) { 1143 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1144 return -EFAULT; 1145 } 1146 1147 if (wqe_size > wqe_length) { 1148 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1149 return -EFAULT; 1150 } 1151 1152 switch (qp->ibqp.qp_type) { 1153 case IB_QPT_RC: 1154 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & 1155 IB_ODP_SUPPORT_RECV)) 1156 goto invalid_transport_or_opcode; 1157 break; 1158 default: 1159 invalid_transport_or_opcode: 1160 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", 1161 qp->ibqp.qp_type); 1162 return -EFAULT; 1163 } 1164 1165 *wqe_end = wqe + wqe_size; 1166 1167 return 0; 1168 } 1169 1170 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1171 u32 wq_num, int pf_type) 1172 { 1173 struct mlx5_core_rsc_common *common = NULL; 1174 struct mlx5_core_srq *srq; 1175 1176 switch (pf_type) { 1177 case MLX5_WQE_PF_TYPE_RMP: 1178 srq = mlx5_cmd_get_srq(dev, wq_num); 1179 if (srq) 1180 common = &srq->common; 1181 break; 1182 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1183 case MLX5_WQE_PF_TYPE_RESP: 1184 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1185 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP); 1186 break; 1187 default: 1188 break; 1189 } 1190 1191 return common; 1192 } 1193 1194 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1195 { 1196 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1197 1198 return to_mibqp(mqp); 1199 } 1200 1201 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1202 { 1203 struct mlx5_core_srq *msrq = 1204 container_of(res, struct mlx5_core_srq, common); 1205 1206 return to_mibsrq(msrq); 1207 } 1208 1209 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1210 struct mlx5_pagefault *pfault) 1211 { 1212 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1213 u16 wqe_index = pfault->wqe.wqe_index; 1214 void *wqe = NULL, *wqe_end = NULL; 1215 u32 bytes_mapped, total_wqe_bytes; 1216 struct mlx5_core_rsc_common *res; 1217 int resume_with_error = 1; 1218 struct mlx5_ib_qp *qp; 1219 size_t bytes_copied; 1220 int ret = 0; 1221 1222 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1223 if (!res) { 1224 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1225 return; 1226 } 1227 1228 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1229 res->res != MLX5_RES_XSRQ) { 1230 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1231 pfault->type); 1232 goto resolve_page_fault; 1233 } 1234 1235 wqe = (void *)__get_free_page(GFP_KERNEL); 1236 if (!wqe) { 1237 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1238 goto resolve_page_fault; 1239 } 1240 1241 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1242 if (qp && sq) { 1243 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1244 &bytes_copied); 1245 if (ret) 1246 goto read_user; 1247 ret = mlx5_ib_mr_initiator_pfault_handler( 1248 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1249 } else if (qp && !sq) { 1250 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1251 &bytes_copied); 1252 if (ret) 1253 goto read_user; 1254 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1255 dev, qp, wqe, &wqe_end, bytes_copied); 1256 } else if (!qp) { 1257 struct mlx5_ib_srq *srq = res_to_srq(res); 1258 1259 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1260 &bytes_copied); 1261 if (ret) 1262 goto read_user; 1263 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1264 dev, srq, &wqe, &wqe_end, bytes_copied); 1265 } 1266 1267 if (ret < 0 || wqe >= wqe_end) 1268 goto resolve_page_fault; 1269 1270 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1271 &total_wqe_bytes, !sq); 1272 if (ret == -EAGAIN) 1273 goto out; 1274 1275 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1276 goto resolve_page_fault; 1277 1278 out: 1279 ret = 0; 1280 resume_with_error = 0; 1281 1282 read_user: 1283 if (ret) 1284 mlx5_ib_err( 1285 dev, 1286 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1287 ret, wqe_index, pfault->token); 1288 1289 resolve_page_fault: 1290 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1291 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1292 pfault->wqe.wq_num, resume_with_error, 1293 pfault->type); 1294 mlx5_core_res_put(res); 1295 free_page((unsigned long)wqe); 1296 } 1297 1298 static int pages_in_range(u64 address, u32 length) 1299 { 1300 return (ALIGN(address + length, PAGE_SIZE) - 1301 (address & PAGE_MASK)) >> PAGE_SHIFT; 1302 } 1303 1304 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1305 struct mlx5_pagefault *pfault) 1306 { 1307 u64 address; 1308 u32 length; 1309 u32 prefetch_len = pfault->bytes_committed; 1310 int prefetch_activated = 0; 1311 u32 rkey = pfault->rdma.r_key; 1312 int ret; 1313 1314 /* The RDMA responder handler handles the page fault in two parts. 1315 * First it brings the necessary pages for the current packet 1316 * (and uses the pfault context), and then (after resuming the QP) 1317 * prefetches more pages. The second operation cannot use the pfault 1318 * context and therefore uses the dummy_pfault context allocated on 1319 * the stack */ 1320 pfault->rdma.rdma_va += pfault->bytes_committed; 1321 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1322 pfault->rdma.rdma_op_len); 1323 pfault->bytes_committed = 0; 1324 1325 address = pfault->rdma.rdma_va; 1326 length = pfault->rdma.rdma_op_len; 1327 1328 /* For some operations, the hardware cannot tell the exact message 1329 * length, and in those cases it reports zero. Use prefetch 1330 * logic. */ 1331 if (length == 0) { 1332 prefetch_activated = 1; 1333 length = pfault->rdma.packet_size; 1334 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1335 } 1336 1337 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1338 &pfault->bytes_committed, NULL, 1339 0); 1340 if (ret == -EAGAIN) { 1341 /* We're racing with an invalidation, don't prefetch */ 1342 prefetch_activated = 0; 1343 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1344 mlx5_ib_page_fault_resume(dev, pfault, 1); 1345 if (ret != -ENOENT) 1346 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1347 ret, pfault->token, pfault->type); 1348 return; 1349 } 1350 1351 mlx5_ib_page_fault_resume(dev, pfault, 0); 1352 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1353 pfault->token, pfault->type, 1354 prefetch_activated); 1355 1356 /* At this point, there might be a new pagefault already arriving in 1357 * the eq, switch to the dummy pagefault for the rest of the 1358 * processing. We're still OK with the objects being alive as the 1359 * work-queue is being fenced. */ 1360 1361 if (prefetch_activated) { 1362 u32 bytes_committed = 0; 1363 1364 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1365 prefetch_len, 1366 &bytes_committed, NULL, 1367 0); 1368 if (ret < 0 && ret != -EAGAIN) { 1369 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1370 ret, pfault->token, address, prefetch_len); 1371 } 1372 } 1373 } 1374 1375 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1376 { 1377 u8 event_subtype = pfault->event_subtype; 1378 1379 switch (event_subtype) { 1380 case MLX5_PFAULT_SUBTYPE_WQE: 1381 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1382 break; 1383 case MLX5_PFAULT_SUBTYPE_RDMA: 1384 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1385 break; 1386 default: 1387 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1388 event_subtype); 1389 mlx5_ib_page_fault_resume(dev, pfault, 1); 1390 } 1391 } 1392 1393 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1394 { 1395 struct mlx5_pagefault *pfault = container_of(work, 1396 struct mlx5_pagefault, 1397 work); 1398 struct mlx5_ib_pf_eq *eq = pfault->eq; 1399 1400 mlx5_ib_pfault(eq->dev, pfault); 1401 mempool_free(pfault, eq->pool); 1402 } 1403 1404 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1405 { 1406 struct mlx5_eqe_page_fault *pf_eqe; 1407 struct mlx5_pagefault *pfault; 1408 struct mlx5_eqe *eqe; 1409 int cc = 0; 1410 1411 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1412 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1413 if (!pfault) { 1414 schedule_work(&eq->work); 1415 break; 1416 } 1417 1418 pf_eqe = &eqe->data.page_fault; 1419 pfault->event_subtype = eqe->sub_type; 1420 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1421 1422 mlx5_ib_dbg(eq->dev, 1423 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1424 eqe->sub_type, pfault->bytes_committed); 1425 1426 switch (eqe->sub_type) { 1427 case MLX5_PFAULT_SUBTYPE_RDMA: 1428 /* RDMA based event */ 1429 pfault->type = 1430 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1431 pfault->token = 1432 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1433 MLX5_24BIT_MASK; 1434 pfault->rdma.r_key = 1435 be32_to_cpu(pf_eqe->rdma.r_key); 1436 pfault->rdma.packet_size = 1437 be16_to_cpu(pf_eqe->rdma.packet_length); 1438 pfault->rdma.rdma_op_len = 1439 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1440 pfault->rdma.rdma_va = 1441 be64_to_cpu(pf_eqe->rdma.rdma_va); 1442 mlx5_ib_dbg(eq->dev, 1443 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1444 pfault->type, pfault->token, 1445 pfault->rdma.r_key); 1446 mlx5_ib_dbg(eq->dev, 1447 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1448 pfault->rdma.rdma_op_len, 1449 pfault->rdma.rdma_va); 1450 break; 1451 1452 case MLX5_PFAULT_SUBTYPE_WQE: 1453 /* WQE based event */ 1454 pfault->type = 1455 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1456 pfault->token = 1457 be32_to_cpu(pf_eqe->wqe.token); 1458 pfault->wqe.wq_num = 1459 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1460 MLX5_24BIT_MASK; 1461 pfault->wqe.wqe_index = 1462 be16_to_cpu(pf_eqe->wqe.wqe_index); 1463 pfault->wqe.packet_size = 1464 be16_to_cpu(pf_eqe->wqe.packet_length); 1465 mlx5_ib_dbg(eq->dev, 1466 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1467 pfault->type, pfault->token, 1468 pfault->wqe.wq_num, 1469 pfault->wqe.wqe_index); 1470 break; 1471 1472 default: 1473 mlx5_ib_warn(eq->dev, 1474 "Unsupported page fault event sub-type: 0x%02hhx\n", 1475 eqe->sub_type); 1476 /* Unsupported page faults should still be 1477 * resolved by the page fault handler 1478 */ 1479 } 1480 1481 pfault->eq = eq; 1482 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1483 queue_work(eq->wq, &pfault->work); 1484 1485 cc = mlx5_eq_update_cc(eq->core, ++cc); 1486 } 1487 1488 mlx5_eq_update_ci(eq->core, cc, 1); 1489 } 1490 1491 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr) 1492 { 1493 struct mlx5_ib_pf_eq *eq = eq_ptr; 1494 unsigned long flags; 1495 1496 if (spin_trylock_irqsave(&eq->lock, flags)) { 1497 mlx5_ib_eq_pf_process(eq); 1498 spin_unlock_irqrestore(&eq->lock, flags); 1499 } else { 1500 schedule_work(&eq->work); 1501 } 1502 1503 return IRQ_HANDLED; 1504 } 1505 1506 /* mempool_refill() was proposed but unfortunately wasn't accepted 1507 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1508 * Cheap workaround. 1509 */ 1510 static void mempool_refill(mempool_t *pool) 1511 { 1512 while (pool->curr_nr < pool->min_nr) 1513 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1514 } 1515 1516 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1517 { 1518 struct mlx5_ib_pf_eq *eq = 1519 container_of(work, struct mlx5_ib_pf_eq, work); 1520 1521 mempool_refill(eq->pool); 1522 1523 spin_lock_irq(&eq->lock); 1524 mlx5_ib_eq_pf_process(eq); 1525 spin_unlock_irq(&eq->lock); 1526 } 1527 1528 enum { 1529 MLX5_IB_NUM_PF_EQE = 0x1000, 1530 MLX5_IB_NUM_PF_DRAIN = 64, 1531 }; 1532 1533 static int 1534 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1535 { 1536 struct mlx5_eq_param param = {}; 1537 int err; 1538 1539 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1540 spin_lock_init(&eq->lock); 1541 eq->dev = dev; 1542 1543 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1544 sizeof(struct mlx5_pagefault)); 1545 if (!eq->pool) 1546 return -ENOMEM; 1547 1548 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1549 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1550 MLX5_NUM_CMD_EQE); 1551 if (!eq->wq) { 1552 err = -ENOMEM; 1553 goto err_mempool; 1554 } 1555 1556 param = (struct mlx5_eq_param) { 1557 .index = MLX5_EQ_PFAULT_IDX, 1558 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT, 1559 .nent = MLX5_IB_NUM_PF_EQE, 1560 .context = eq, 1561 .handler = mlx5_ib_eq_pf_int 1562 }; 1563 eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", ¶m); 1564 if (IS_ERR(eq->core)) { 1565 err = PTR_ERR(eq->core); 1566 goto err_wq; 1567 } 1568 1569 return 0; 1570 err_wq: 1571 destroy_workqueue(eq->wq); 1572 err_mempool: 1573 mempool_destroy(eq->pool); 1574 return err; 1575 } 1576 1577 static int 1578 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1579 { 1580 int err; 1581 1582 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1583 cancel_work_sync(&eq->work); 1584 destroy_workqueue(eq->wq); 1585 mempool_destroy(eq->pool); 1586 1587 return err; 1588 } 1589 1590 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1591 { 1592 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1593 return; 1594 1595 switch (ent->order - 2) { 1596 case MLX5_IMR_MTT_CACHE_ENTRY: 1597 ent->page = PAGE_SHIFT; 1598 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1599 sizeof(struct mlx5_mtt) / 1600 MLX5_IB_UMR_OCTOWORD; 1601 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1602 ent->limit = 0; 1603 break; 1604 1605 case MLX5_IMR_KSM_CACHE_ENTRY: 1606 ent->page = MLX5_KSM_PAGE_SHIFT; 1607 ent->xlt = mlx5_imr_ksm_entries * 1608 sizeof(struct mlx5_klm) / 1609 MLX5_IB_UMR_OCTOWORD; 1610 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1611 ent->limit = 0; 1612 break; 1613 } 1614 } 1615 1616 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1617 .advise_mr = mlx5_ib_advise_mr, 1618 }; 1619 1620 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1621 { 1622 int ret = 0; 1623 1624 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT) 1625 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1626 1627 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1628 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1629 if (ret) { 1630 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1631 return ret; 1632 } 1633 } 1634 1635 if (!MLX5_CAP_GEN(dev->mdev, pg)) 1636 return ret; 1637 1638 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1639 1640 return ret; 1641 } 1642 1643 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1644 { 1645 if (!MLX5_CAP_GEN(dev->mdev, pg)) 1646 return; 1647 1648 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1649 } 1650 1651 int mlx5_ib_odp_init(void) 1652 { 1653 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1654 MLX5_IMR_MTT_BITS); 1655 1656 return 0; 1657 } 1658 1659 struct prefetch_mr_work { 1660 struct work_struct work; 1661 struct ib_pd *pd; 1662 u32 pf_flags; 1663 u32 num_sge; 1664 struct ib_sge sg_list[0]; 1665 }; 1666 1667 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev, 1668 struct ib_sge *sg_list, u32 num_sge, 1669 u32 from) 1670 { 1671 u32 i; 1672 int srcu_key; 1673 1674 srcu_key = srcu_read_lock(&dev->mr_srcu); 1675 1676 for (i = from; i < num_sge; ++i) { 1677 struct mlx5_core_mkey *mmkey; 1678 struct mlx5_ib_mr *mr; 1679 1680 mmkey = __mlx5_mr_lookup(dev->mdev, 1681 mlx5_base_mkey(sg_list[i].lkey)); 1682 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1683 atomic_dec(&mr->num_pending_prefetch); 1684 } 1685 1686 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1687 } 1688 1689 static bool num_pending_prefetch_inc(struct ib_pd *pd, 1690 struct ib_sge *sg_list, u32 num_sge) 1691 { 1692 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1693 bool ret = true; 1694 u32 i; 1695 1696 for (i = 0; i < num_sge; ++i) { 1697 struct mlx5_core_mkey *mmkey; 1698 struct mlx5_ib_mr *mr; 1699 1700 mmkey = __mlx5_mr_lookup(dev->mdev, 1701 mlx5_base_mkey(sg_list[i].lkey)); 1702 if (!mmkey || mmkey->key != sg_list[i].lkey) { 1703 ret = false; 1704 break; 1705 } 1706 1707 if (mmkey->type != MLX5_MKEY_MR) { 1708 ret = false; 1709 break; 1710 } 1711 1712 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1713 1714 if (mr->ibmr.pd != pd) { 1715 ret = false; 1716 break; 1717 } 1718 1719 if (!mr->live) { 1720 ret = false; 1721 break; 1722 } 1723 1724 atomic_inc(&mr->num_pending_prefetch); 1725 } 1726 1727 if (!ret) 1728 num_pending_prefetch_dec(dev, sg_list, i, 0); 1729 1730 return ret; 1731 } 1732 1733 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags, 1734 struct ib_sge *sg_list, u32 num_sge) 1735 { 1736 u32 i; 1737 int ret = 0; 1738 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1739 1740 for (i = 0; i < num_sge; ++i) { 1741 struct ib_sge *sg = &sg_list[i]; 1742 int bytes_committed = 0; 1743 1744 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr, 1745 sg->length, 1746 &bytes_committed, NULL, 1747 pf_flags); 1748 if (ret < 0) 1749 break; 1750 } 1751 1752 return ret < 0 ? ret : 0; 1753 } 1754 1755 static void mlx5_ib_prefetch_mr_work(struct work_struct *work) 1756 { 1757 struct prefetch_mr_work *w = 1758 container_of(work, struct prefetch_mr_work, work); 1759 1760 if (ib_device_try_get(w->pd->device)) { 1761 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list, 1762 w->num_sge); 1763 ib_device_put(w->pd->device); 1764 } 1765 1766 num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list, 1767 w->num_sge, 0); 1768 kfree(w); 1769 } 1770 1771 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1772 enum ib_uverbs_advise_mr_advice advice, 1773 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1774 { 1775 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1776 u32 pf_flags = MLX5_PF_FLAGS_PREFETCH; 1777 struct prefetch_mr_work *work; 1778 bool valid_req; 1779 int srcu_key; 1780 1781 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1782 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1783 1784 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1785 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list, 1786 num_sge); 1787 1788 work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL); 1789 if (!work) 1790 return -ENOMEM; 1791 1792 memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge)); 1793 1794 /* It is guaranteed that the pd when work is executed is the pd when 1795 * work was queued since pd can't be destroyed while it holds MRs and 1796 * destroying a MR leads to flushing the workquque 1797 */ 1798 work->pd = pd; 1799 work->pf_flags = pf_flags; 1800 work->num_sge = num_sge; 1801 1802 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1803 1804 srcu_key = srcu_read_lock(&dev->mr_srcu); 1805 1806 valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge); 1807 if (valid_req) 1808 queue_work(system_unbound_wq, &work->work); 1809 else 1810 kfree(work); 1811 1812 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1813 1814 return valid_req ? 0 : -EINVAL; 1815 } 1816