xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38 
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u32			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 	};
78 
79 	struct mlx5_ib_pf_eq	*eq;
80 	struct work_struct	work;
81 };
82 
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84 
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88 
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94 
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96 
97 static u64 mlx5_imr_ksm_entries;
98 
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100 			struct mlx5_ib_mr *imr, int flags)
101 {
102 	struct mlx5_klm *end = pklm + nentries;
103 
104 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
105 		for (; pklm != end; pklm++, idx++) {
106 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108 			pklm->va = 0;
109 		}
110 		return;
111 	}
112 
113 	/*
114 	 * The locking here is pretty subtle. Ideally the implicit_children
115 	 * xarray would be protected by the umem_mutex, however that is not
116 	 * possible. Instead this uses a weaker update-then-lock pattern:
117 	 *
118 	 *    xa_store()
119 	 *    mutex_lock(umem_mutex)
120 	 *     mlx5_ib_update_xlt()
121 	 *    mutex_unlock(umem_mutex)
122 	 *    destroy lkey
123 	 *
124 	 * ie any change the xarray must be followed by the locked update_xlt
125 	 * before destroying.
126 	 *
127 	 * The umem_mutex provides the acquire/release semantic needed to make
128 	 * the xa_store() visible to a racing thread.
129 	 */
130 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 
132 	for (; pklm != end; pklm++, idx++) {
133 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134 
135 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136 		if (mtt) {
137 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139 		} else {
140 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141 			pklm->va = 0;
142 		}
143 	}
144 }
145 
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149 
150 	if (umem_dma & ODP_READ_ALLOWED_BIT)
151 		mtt_entry |= MLX5_IB_MTT_READ;
152 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_WRITE;
154 
155 	return mtt_entry;
156 }
157 
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159 			 struct mlx5_ib_mr *mr, int flags)
160 {
161 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162 	dma_addr_t pa;
163 	size_t i;
164 
165 	if (flags & MLX5_IB_UPD_XLT_ZAP)
166 		return;
167 
168 	for (i = 0; i < nentries; i++) {
169 		pa = odp->dma_list[idx + i];
170 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171 	}
172 }
173 
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175 			   struct mlx5_ib_mr *mr, int flags)
176 {
177 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178 		populate_klm(xlt, idx, nentries, mr, flags);
179 	} else {
180 		populate_mtt(xlt, idx, nentries, mr, flags);
181 	}
182 }
183 
184 /*
185  * This must be called after the mr has been removed from implicit_children.
186  * NOTE: The MR does not necessarily have to be
187  * empty here, parallel page faults could have raced with the free process and
188  * added pages to it.
189  */
190 static void free_implicit_child_mr_work(struct work_struct *work)
191 {
192 	struct mlx5_ib_mr *mr =
193 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194 	struct mlx5_ib_mr *imr = mr->parent;
195 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197 
198 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199 
200 	mutex_lock(&odp_imr->umem_mutex);
201 	mlx5_ib_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT,
202 			   1, 0,
203 			   MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204 	mutex_unlock(&odp_imr->umem_mutex);
205 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206 
207 	mlx5r_deref_odp_mkey(&imr->mmkey);
208 }
209 
210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211 {
212 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214 	struct mlx5_ib_mr *imr = mr->parent;
215 
216 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217 		return;
218 
219 	xa_erase(&imr->implicit_children, idx);
220 
221 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
222 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
224 }
225 
226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227 				     const struct mmu_notifier_range *range,
228 				     unsigned long cur_seq)
229 {
230 	struct ib_umem_odp *umem_odp =
231 		container_of(mni, struct ib_umem_odp, notifier);
232 	struct mlx5_ib_mr *mr;
233 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
234 				    sizeof(struct mlx5_mtt)) - 1;
235 	u64 idx = 0, blk_start_idx = 0;
236 	u64 invalidations = 0;
237 	unsigned long start;
238 	unsigned long end;
239 	int in_block = 0;
240 	u64 addr;
241 
242 	if (!mmu_notifier_range_blockable(range))
243 		return false;
244 
245 	mutex_lock(&umem_odp->umem_mutex);
246 	mmu_interval_set_seq(mni, cur_seq);
247 	/*
248 	 * If npages is zero then umem_odp->private may not be setup yet. This
249 	 * does not complete until after the first page is mapped for DMA.
250 	 */
251 	if (!umem_odp->npages)
252 		goto out;
253 	mr = umem_odp->private;
254 
255 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
256 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
257 
258 	/*
259 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
260 	 * while we are doing the invalidation, no page fault will attempt to
261 	 * overwrite the same MTTs.  Concurent invalidations might race us,
262 	 * but they will write 0s as well, so no difference in the end result.
263 	 */
264 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
265 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
266 		/*
267 		 * Strive to write the MTTs in chunks, but avoid overwriting
268 		 * non-existing MTTs. The huristic here can be improved to
269 		 * estimate the cost of another UMR vs. the cost of bigger
270 		 * UMR.
271 		 */
272 		if (umem_odp->dma_list[idx] &
273 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
274 			if (!in_block) {
275 				blk_start_idx = idx;
276 				in_block = 1;
277 			}
278 
279 			/* Count page invalidations */
280 			invalidations += idx - blk_start_idx + 1;
281 		} else {
282 			u64 umr_offset = idx & umr_block_mask;
283 
284 			if (in_block && umr_offset == 0) {
285 				mlx5_ib_update_xlt(mr, blk_start_idx,
286 						   idx - blk_start_idx, 0,
287 						   MLX5_IB_UPD_XLT_ZAP |
288 						   MLX5_IB_UPD_XLT_ATOMIC);
289 				in_block = 0;
290 			}
291 		}
292 	}
293 	if (in_block)
294 		mlx5_ib_update_xlt(mr, blk_start_idx,
295 				   idx - blk_start_idx + 1, 0,
296 				   MLX5_IB_UPD_XLT_ZAP |
297 				   MLX5_IB_UPD_XLT_ATOMIC);
298 
299 	mlx5_update_odp_stats(mr, invalidations, invalidations);
300 
301 	/*
302 	 * We are now sure that the device will not access the
303 	 * memory. We can safely unmap it, and mark it as dirty if
304 	 * needed.
305 	 */
306 
307 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
308 
309 	if (unlikely(!umem_odp->npages && mr->parent))
310 		destroy_unused_implicit_child_mr(mr);
311 out:
312 	mutex_unlock(&umem_odp->umem_mutex);
313 	return true;
314 }
315 
316 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
317 	.invalidate = mlx5_ib_invalidate_range,
318 };
319 
320 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
321 {
322 	struct ib_odp_caps *caps = &dev->odp_caps;
323 
324 	memset(caps, 0, sizeof(*caps));
325 
326 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
327 	    !mlx5_ib_can_load_pas_with_umr(dev, 0))
328 		return;
329 
330 	caps->general_caps = IB_ODP_SUPPORT;
331 
332 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
333 		dev->odp_max_size = U64_MAX;
334 	else
335 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
336 
337 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
338 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
339 
340 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
341 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
342 
343 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
344 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
345 
346 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
347 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
348 
349 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
350 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
351 
352 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
353 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
354 
355 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
356 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
357 
358 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
359 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
360 
361 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
362 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
363 
364 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
365 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
366 
367 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
368 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
369 
370 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
371 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
372 
373 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
374 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
375 
376 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
377 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
378 
379 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
380 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
381 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
382 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
383 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
384 }
385 
386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
387 				      struct mlx5_pagefault *pfault,
388 				      int error)
389 {
390 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
391 		     pfault->wqe.wq_num : pfault->token;
392 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
393 	int err;
394 
395 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
396 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
397 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
398 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
399 	MLX5_SET(page_fault_resume_in, in, error, !!error);
400 
401 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
402 	if (err)
403 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
404 			    wq_num, err);
405 }
406 
407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
408 						unsigned long idx)
409 {
410 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
411 	struct ib_umem_odp *odp;
412 	struct mlx5_ib_mr *mr;
413 	struct mlx5_ib_mr *ret;
414 	int err;
415 
416 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
417 				      idx * MLX5_IMR_MTT_SIZE,
418 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
419 	if (IS_ERR(odp))
420 		return ERR_CAST(odp);
421 
422 	mr = mlx5_mr_cache_alloc(dev, &dev->cache.ent[MLX5_IMR_MTT_CACHE_ENTRY],
423 				 imr->access_flags);
424 	if (IS_ERR(mr)) {
425 		ib_umem_odp_release(odp);
426 		return mr;
427 	}
428 
429 	mr->access_flags = imr->access_flags;
430 	mr->ibmr.pd = imr->ibmr.pd;
431 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
432 	mr->umem = &odp->umem;
433 	mr->ibmr.lkey = mr->mmkey.key;
434 	mr->ibmr.rkey = mr->mmkey.key;
435 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
436 	mr->parent = imr;
437 	odp->private = mr;
438 
439 	/*
440 	 * First refcount is owned by the xarray and second refconut
441 	 * is returned to the caller.
442 	 */
443 	refcount_set(&mr->mmkey.usecount, 2);
444 
445 	err = mlx5_ib_update_xlt(mr, 0,
446 				 MLX5_IMR_MTT_ENTRIES,
447 				 PAGE_SHIFT,
448 				 MLX5_IB_UPD_XLT_ZAP |
449 				 MLX5_IB_UPD_XLT_ENABLE);
450 	if (err) {
451 		ret = ERR_PTR(err);
452 		goto out_mr;
453 	}
454 
455 	xa_lock(&imr->implicit_children);
456 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
457 			   GFP_KERNEL);
458 	if (unlikely(ret)) {
459 		if (xa_is_err(ret)) {
460 			ret = ERR_PTR(xa_err(ret));
461 			goto out_lock;
462 		}
463 		/*
464 		 * Another thread beat us to creating the child mr, use
465 		 * theirs.
466 		 */
467 		refcount_inc(&ret->mmkey.usecount);
468 		goto out_lock;
469 	}
470 	xa_unlock(&imr->implicit_children);
471 
472 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
473 	return mr;
474 
475 out_lock:
476 	xa_unlock(&imr->implicit_children);
477 out_mr:
478 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
479 	return ret;
480 }
481 
482 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
483 					     int access_flags)
484 {
485 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
486 	struct ib_umem_odp *umem_odp;
487 	struct mlx5_ib_mr *imr;
488 	int err;
489 
490 	if (!mlx5_ib_can_load_pas_with_umr(dev,
491 					   MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
492 		return ERR_PTR(-EOPNOTSUPP);
493 
494 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
495 	if (IS_ERR(umem_odp))
496 		return ERR_CAST(umem_odp);
497 
498 	imr = mlx5_mr_cache_alloc(dev,
499 				  &dev->cache.ent[MLX5_IMR_KSM_CACHE_ENTRY],
500 				  access_flags);
501 	if (IS_ERR(imr)) {
502 		ib_umem_odp_release(umem_odp);
503 		return imr;
504 	}
505 
506 	imr->access_flags = access_flags;
507 	imr->ibmr.pd = &pd->ibpd;
508 	imr->ibmr.iova = 0;
509 	imr->umem = &umem_odp->umem;
510 	imr->ibmr.lkey = imr->mmkey.key;
511 	imr->ibmr.rkey = imr->mmkey.key;
512 	imr->ibmr.device = &dev->ib_dev;
513 	imr->umem = &umem_odp->umem;
514 	imr->is_odp_implicit = true;
515 	xa_init(&imr->implicit_children);
516 
517 	err = mlx5_ib_update_xlt(imr, 0,
518 				 mlx5_imr_ksm_entries,
519 				 MLX5_KSM_PAGE_SHIFT,
520 				 MLX5_IB_UPD_XLT_INDIRECT |
521 				 MLX5_IB_UPD_XLT_ZAP |
522 				 MLX5_IB_UPD_XLT_ENABLE);
523 	if (err)
524 		goto out_mr;
525 
526 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
527 	if (err)
528 		goto out_mr;
529 
530 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
531 	return imr;
532 out_mr:
533 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
534 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
535 	return ERR_PTR(err);
536 }
537 
538 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
539 {
540 	struct mlx5_ib_mr *mtt;
541 	unsigned long idx;
542 
543 	/*
544 	 * If this is an implicit MR it is already invalidated so we can just
545 	 * delete the children mkeys.
546 	 */
547 	xa_for_each(&mr->implicit_children, idx, mtt) {
548 		xa_erase(&mr->implicit_children, idx);
549 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
550 	}
551 }
552 
553 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
554 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
555 #define MLX5_PF_FLAGS_ENABLE BIT(3)
556 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
557 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
558 			     u32 flags)
559 {
560 	int page_shift, ret, np;
561 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
562 	u64 access_mask;
563 	u64 start_idx;
564 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
565 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
566 
567 	if (flags & MLX5_PF_FLAGS_ENABLE)
568 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
569 
570 	page_shift = odp->page_shift;
571 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
572 	access_mask = ODP_READ_ALLOWED_BIT;
573 
574 	if (odp->umem.writable && !downgrade)
575 		access_mask |= ODP_WRITE_ALLOWED_BIT;
576 
577 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
578 	if (np < 0)
579 		return np;
580 
581 	/*
582 	 * No need to check whether the MTTs really belong to this MR, since
583 	 * ib_umem_odp_map_dma_and_lock already checks this.
584 	 */
585 	ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
586 	mutex_unlock(&odp->umem_mutex);
587 
588 	if (ret < 0) {
589 		if (ret != -EAGAIN)
590 			mlx5_ib_err(mr_to_mdev(mr),
591 				    "Failed to update mkey page tables\n");
592 		goto out;
593 	}
594 
595 	if (bytes_mapped) {
596 		u32 new_mappings = (np << page_shift) -
597 			(user_va - round_down(user_va, 1 << page_shift));
598 
599 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
600 	}
601 
602 	return np << (page_shift - PAGE_SHIFT);
603 
604 out:
605 	return ret;
606 }
607 
608 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
609 				 struct ib_umem_odp *odp_imr, u64 user_va,
610 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
611 {
612 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
613 	unsigned long upd_start_idx = end_idx + 1;
614 	unsigned long upd_len = 0;
615 	unsigned long npages = 0;
616 	int err;
617 	int ret;
618 
619 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
620 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
621 		return -EFAULT;
622 
623 	/* Fault each child mr that intersects with our interval. */
624 	while (bcnt) {
625 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
626 		struct ib_umem_odp *umem_odp;
627 		struct mlx5_ib_mr *mtt;
628 		u64 len;
629 
630 		xa_lock(&imr->implicit_children);
631 		mtt = xa_load(&imr->implicit_children, idx);
632 		if (unlikely(!mtt)) {
633 			xa_unlock(&imr->implicit_children);
634 			mtt = implicit_get_child_mr(imr, idx);
635 			if (IS_ERR(mtt)) {
636 				ret = PTR_ERR(mtt);
637 				goto out;
638 			}
639 			upd_start_idx = min(upd_start_idx, idx);
640 			upd_len = idx - upd_start_idx + 1;
641 		} else {
642 			refcount_inc(&mtt->mmkey.usecount);
643 			xa_unlock(&imr->implicit_children);
644 		}
645 
646 		umem_odp = to_ib_umem_odp(mtt->umem);
647 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
648 		      user_va;
649 
650 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
651 					bytes_mapped, flags);
652 
653 		mlx5r_deref_odp_mkey(&mtt->mmkey);
654 
655 		if (ret < 0)
656 			goto out;
657 		user_va += len;
658 		bcnt -= len;
659 		npages += ret;
660 	}
661 
662 	ret = npages;
663 
664 	/*
665 	 * Any time the implicit_children are changed we must perform an
666 	 * update of the xlt before exiting to ensure the HW and the
667 	 * implicit_children remains synchronized.
668 	 */
669 out:
670 	if (likely(!upd_len))
671 		return ret;
672 
673 	/*
674 	 * Notice this is not strictly ordered right, the KSM is updated after
675 	 * the implicit_children is updated, so a parallel page fault could
676 	 * see a MR that is not yet visible in the KSM.  This is similar to a
677 	 * parallel page fault seeing a MR that is being concurrently removed
678 	 * from the KSM. Both of these improbable situations are resolved
679 	 * safely by resuming the HW and then taking another page fault. The
680 	 * next pagefault handler will see the new information.
681 	 */
682 	mutex_lock(&odp_imr->umem_mutex);
683 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
684 				 MLX5_IB_UPD_XLT_INDIRECT |
685 					 MLX5_IB_UPD_XLT_ATOMIC);
686 	mutex_unlock(&odp_imr->umem_mutex);
687 	if (err) {
688 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
689 		return err;
690 	}
691 	return ret;
692 }
693 
694 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
695 			       u32 *bytes_mapped, u32 flags)
696 {
697 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
698 	u32 xlt_flags = 0;
699 	int err;
700 	unsigned int page_size;
701 
702 	if (flags & MLX5_PF_FLAGS_ENABLE)
703 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
704 
705 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
706 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
707 	if (err) {
708 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
709 		return err;
710 	}
711 
712 	page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
713 					     log_page_size, 0,
714 					     umem_dmabuf->umem.iova);
715 	if (unlikely(page_size < PAGE_SIZE)) {
716 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
717 		err = -EINVAL;
718 	} else {
719 		err = mlx5_ib_update_mr_pas(mr, xlt_flags);
720 	}
721 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
722 
723 	if (err)
724 		return err;
725 
726 	if (bytes_mapped)
727 		*bytes_mapped += bcnt;
728 
729 	return ib_umem_num_pages(mr->umem);
730 }
731 
732 /*
733  * Returns:
734  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
735  *           not accessible, or the MR is no longer valid.
736  *  -EAGAIN/-ENOMEM: The operation should be retried
737  *
738  *  -EINVAL/others: General internal malfunction
739  *  >0: Number of pages mapped
740  */
741 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
742 			u32 *bytes_mapped, u32 flags)
743 {
744 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
745 
746 	if (unlikely(io_virt < mr->ibmr.iova))
747 		return -EFAULT;
748 
749 	if (mr->umem->is_dmabuf)
750 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
751 
752 	if (!odp->is_implicit_odp) {
753 		u64 user_va;
754 
755 		if (check_add_overflow(io_virt - mr->ibmr.iova,
756 				       (u64)odp->umem.address, &user_va))
757 			return -EFAULT;
758 		if (unlikely(user_va >= ib_umem_end(odp) ||
759 			     ib_umem_end(odp) - user_va < bcnt))
760 			return -EFAULT;
761 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
762 					 flags);
763 	}
764 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
765 				     flags);
766 }
767 
768 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
769 {
770 	int ret;
771 
772 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
773 				mr->umem->length, NULL,
774 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
775 	return ret >= 0 ? 0 : ret;
776 }
777 
778 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
779 {
780 	int ret;
781 
782 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
783 				  MLX5_PF_FLAGS_ENABLE);
784 
785 	return ret >= 0 ? 0 : ret;
786 }
787 
788 struct pf_frame {
789 	struct pf_frame *next;
790 	u32 key;
791 	u64 io_virt;
792 	size_t bcnt;
793 	int depth;
794 };
795 
796 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
797 {
798 	if (!mmkey)
799 		return false;
800 	if (mmkey->type == MLX5_MKEY_MW)
801 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
802 	return mmkey->key == key;
803 }
804 
805 /*
806  * Handle a single data segment in a page-fault WQE or RDMA region.
807  *
808  * Returns number of OS pages retrieved on success. The caller may continue to
809  * the next data segment.
810  * Can return the following error codes:
811  * -EAGAIN to designate a temporary error. The caller will abort handling the
812  *  page fault and resolve it.
813  * -EFAULT when there's an error mapping the requested pages. The caller will
814  *  abort the page fault handling.
815  */
816 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
817 					 struct ib_pd *pd, u32 key,
818 					 u64 io_virt, size_t bcnt,
819 					 u32 *bytes_committed,
820 					 u32 *bytes_mapped)
821 {
822 	int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
823 	struct pf_frame *head = NULL, *frame;
824 	struct mlx5_ib_mkey *mmkey;
825 	struct mlx5_ib_mr *mr;
826 	struct mlx5_klm *pklm;
827 	u32 *out = NULL;
828 	size_t offset;
829 
830 	io_virt += *bytes_committed;
831 	bcnt -= *bytes_committed;
832 
833 next_mr:
834 	xa_lock(&dev->odp_mkeys);
835 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
836 	if (!mmkey) {
837 		xa_unlock(&dev->odp_mkeys);
838 		mlx5_ib_dbg(
839 			dev,
840 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
841 			key);
842 		if (bytes_mapped)
843 			*bytes_mapped += bcnt;
844 		/*
845 		 * The user could specify a SGL with multiple lkeys and only
846 		 * some of them are ODP. Treat the non-ODP ones as fully
847 		 * faulted.
848 		 */
849 		ret = 0;
850 		goto end;
851 	}
852 	refcount_inc(&mmkey->usecount);
853 	xa_unlock(&dev->odp_mkeys);
854 
855 	if (!mkey_is_eq(mmkey, key)) {
856 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
857 		ret = -EFAULT;
858 		goto end;
859 	}
860 
861 	switch (mmkey->type) {
862 	case MLX5_MKEY_MR:
863 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
864 
865 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
866 		if (ret < 0)
867 			goto end;
868 
869 		mlx5_update_odp_stats(mr, faults, ret);
870 
871 		npages += ret;
872 		ret = 0;
873 		break;
874 
875 	case MLX5_MKEY_MW:
876 	case MLX5_MKEY_INDIRECT_DEVX:
877 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
878 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
879 			ret = -EFAULT;
880 			goto end;
881 		}
882 
883 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
884 			sizeof(*pklm) * (mmkey->ndescs - 2);
885 
886 		if (outlen > cur_outlen) {
887 			kfree(out);
888 			out = kzalloc(outlen, GFP_KERNEL);
889 			if (!out) {
890 				ret = -ENOMEM;
891 				goto end;
892 			}
893 			cur_outlen = outlen;
894 		}
895 
896 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
897 						       bsf0_klm0_pas_mtt0_1);
898 
899 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
900 		if (ret)
901 			goto end;
902 
903 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
904 					      memory_key_mkey_entry.start_addr);
905 
906 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
907 			if (offset >= be32_to_cpu(pklm->bcount)) {
908 				offset -= be32_to_cpu(pklm->bcount);
909 				continue;
910 			}
911 
912 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
913 			if (!frame) {
914 				ret = -ENOMEM;
915 				goto end;
916 			}
917 
918 			frame->key = be32_to_cpu(pklm->key);
919 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
920 			frame->bcnt = min_t(size_t, bcnt,
921 					    be32_to_cpu(pklm->bcount) - offset);
922 			frame->depth = depth + 1;
923 			frame->next = head;
924 			head = frame;
925 
926 			bcnt -= frame->bcnt;
927 			offset = 0;
928 		}
929 		break;
930 
931 	default:
932 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
933 		ret = -EFAULT;
934 		goto end;
935 	}
936 
937 	if (head) {
938 		frame = head;
939 		head = frame->next;
940 
941 		key = frame->key;
942 		io_virt = frame->io_virt;
943 		bcnt = frame->bcnt;
944 		depth = frame->depth;
945 		kfree(frame);
946 
947 		mlx5r_deref_odp_mkey(mmkey);
948 		goto next_mr;
949 	}
950 
951 end:
952 	if (mmkey)
953 		mlx5r_deref_odp_mkey(mmkey);
954 	while (head) {
955 		frame = head;
956 		head = frame->next;
957 		kfree(frame);
958 	}
959 	kfree(out);
960 
961 	*bytes_committed = 0;
962 	return ret ? ret : npages;
963 }
964 
965 /*
966  * Parse a series of data segments for page fault handling.
967  *
968  * @dev:  Pointer to mlx5 IB device
969  * @pfault: contains page fault information.
970  * @wqe: points at the first data segment in the WQE.
971  * @wqe_end: points after the end of the WQE.
972  * @bytes_mapped: receives the number of bytes that the function was able to
973  *                map. This allows the caller to decide intelligently whether
974  *                enough memory was mapped to resolve the page fault
975  *                successfully (e.g. enough for the next MTU, or the entire
976  *                WQE).
977  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
978  *                   the committed bytes).
979  * @receive_queue: receive WQE end of sg list
980  *
981  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
982  * negative error code.
983  */
984 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
985 				   struct mlx5_pagefault *pfault,
986 				   void *wqe,
987 				   void *wqe_end, u32 *bytes_mapped,
988 				   u32 *total_wqe_bytes, bool receive_queue)
989 {
990 	int ret = 0, npages = 0;
991 	u64 io_virt;
992 	u32 key;
993 	u32 byte_count;
994 	size_t bcnt;
995 	int inline_segment;
996 
997 	if (bytes_mapped)
998 		*bytes_mapped = 0;
999 	if (total_wqe_bytes)
1000 		*total_wqe_bytes = 0;
1001 
1002 	while (wqe < wqe_end) {
1003 		struct mlx5_wqe_data_seg *dseg = wqe;
1004 
1005 		io_virt = be64_to_cpu(dseg->addr);
1006 		key = be32_to_cpu(dseg->lkey);
1007 		byte_count = be32_to_cpu(dseg->byte_count);
1008 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1009 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1010 
1011 		if (inline_segment) {
1012 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1013 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1014 				     16);
1015 		} else {
1016 			wqe += sizeof(*dseg);
1017 		}
1018 
1019 		/* receive WQE end of sg list. */
1020 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1021 		    io_virt == 0)
1022 			break;
1023 
1024 		if (!inline_segment && total_wqe_bytes) {
1025 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1026 					pfault->bytes_committed);
1027 		}
1028 
1029 		/* A zero length data segment designates a length of 2GB. */
1030 		if (bcnt == 0)
1031 			bcnt = 1U << 31;
1032 
1033 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1034 			pfault->bytes_committed -=
1035 				min_t(size_t, bcnt,
1036 				      pfault->bytes_committed);
1037 			continue;
1038 		}
1039 
1040 		ret = pagefault_single_data_segment(dev, NULL, key,
1041 						    io_virt, bcnt,
1042 						    &pfault->bytes_committed,
1043 						    bytes_mapped);
1044 		if (ret < 0)
1045 			break;
1046 		npages += ret;
1047 	}
1048 
1049 	return ret < 0 ? ret : npages;
1050 }
1051 
1052 /*
1053  * Parse initiator WQE. Advances the wqe pointer to point at the
1054  * scatter-gather list, and set wqe_end to the end of the WQE.
1055  */
1056 static int mlx5_ib_mr_initiator_pfault_handler(
1057 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1058 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1059 {
1060 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1061 	u16 wqe_index = pfault->wqe.wqe_index;
1062 	struct mlx5_base_av *av;
1063 	unsigned ds, opcode;
1064 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1065 
1066 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1067 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1068 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1069 			    ds, wqe_length);
1070 		return -EFAULT;
1071 	}
1072 
1073 	if (ds == 0) {
1074 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1075 			    wqe_index, qpn);
1076 		return -EFAULT;
1077 	}
1078 
1079 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1080 	*wqe += sizeof(*ctrl);
1081 
1082 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1083 		 MLX5_WQE_CTRL_OPCODE_MASK;
1084 
1085 	if (qp->type == IB_QPT_XRC_INI)
1086 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1087 
1088 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1089 		av = *wqe;
1090 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1091 			*wqe += sizeof(struct mlx5_av);
1092 		else
1093 			*wqe += sizeof(struct mlx5_base_av);
1094 	}
1095 
1096 	switch (opcode) {
1097 	case MLX5_OPCODE_RDMA_WRITE:
1098 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1099 	case MLX5_OPCODE_RDMA_READ:
1100 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1101 		break;
1102 	case MLX5_OPCODE_ATOMIC_CS:
1103 	case MLX5_OPCODE_ATOMIC_FA:
1104 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1105 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1106 		break;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Parse responder WQE and set wqe_end to the end of the WQE.
1114  */
1115 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1116 						   struct mlx5_ib_srq *srq,
1117 						   void **wqe, void **wqe_end,
1118 						   int wqe_length)
1119 {
1120 	int wqe_size = 1 << srq->msrq.wqe_shift;
1121 
1122 	if (wqe_size > wqe_length) {
1123 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1124 		return -EFAULT;
1125 	}
1126 
1127 	*wqe_end = *wqe + wqe_size;
1128 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1129 
1130 	return 0;
1131 }
1132 
1133 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1134 						  struct mlx5_ib_qp *qp,
1135 						  void *wqe, void **wqe_end,
1136 						  int wqe_length)
1137 {
1138 	struct mlx5_ib_wq *wq = &qp->rq;
1139 	int wqe_size = 1 << wq->wqe_shift;
1140 
1141 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1142 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1143 		return -EFAULT;
1144 	}
1145 
1146 	if (wqe_size > wqe_length) {
1147 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1148 		return -EFAULT;
1149 	}
1150 
1151 	*wqe_end = wqe + wqe_size;
1152 
1153 	return 0;
1154 }
1155 
1156 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1157 						       u32 wq_num, int pf_type)
1158 {
1159 	struct mlx5_core_rsc_common *common = NULL;
1160 	struct mlx5_core_srq *srq;
1161 
1162 	switch (pf_type) {
1163 	case MLX5_WQE_PF_TYPE_RMP:
1164 		srq = mlx5_cmd_get_srq(dev, wq_num);
1165 		if (srq)
1166 			common = &srq->common;
1167 		break;
1168 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1169 	case MLX5_WQE_PF_TYPE_RESP:
1170 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1171 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1172 		break;
1173 	default:
1174 		break;
1175 	}
1176 
1177 	return common;
1178 }
1179 
1180 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1181 {
1182 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1183 
1184 	return to_mibqp(mqp);
1185 }
1186 
1187 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1188 {
1189 	struct mlx5_core_srq *msrq =
1190 		container_of(res, struct mlx5_core_srq, common);
1191 
1192 	return to_mibsrq(msrq);
1193 }
1194 
1195 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1196 					  struct mlx5_pagefault *pfault)
1197 {
1198 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1199 	u16 wqe_index = pfault->wqe.wqe_index;
1200 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1201 	u32 bytes_mapped, total_wqe_bytes;
1202 	struct mlx5_core_rsc_common *res;
1203 	int resume_with_error = 1;
1204 	struct mlx5_ib_qp *qp;
1205 	size_t bytes_copied;
1206 	int ret = 0;
1207 
1208 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1209 	if (!res) {
1210 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1211 		return;
1212 	}
1213 
1214 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1215 	    res->res != MLX5_RES_XSRQ) {
1216 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1217 			    pfault->type);
1218 		goto resolve_page_fault;
1219 	}
1220 
1221 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1222 	if (!wqe_start) {
1223 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1224 		goto resolve_page_fault;
1225 	}
1226 
1227 	wqe = wqe_start;
1228 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1229 	if (qp && sq) {
1230 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1231 					  &bytes_copied);
1232 		if (ret)
1233 			goto read_user;
1234 		ret = mlx5_ib_mr_initiator_pfault_handler(
1235 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1236 	} else if (qp && !sq) {
1237 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1238 					  &bytes_copied);
1239 		if (ret)
1240 			goto read_user;
1241 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1242 			dev, qp, wqe, &wqe_end, bytes_copied);
1243 	} else if (!qp) {
1244 		struct mlx5_ib_srq *srq = res_to_srq(res);
1245 
1246 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1247 					   &bytes_copied);
1248 		if (ret)
1249 			goto read_user;
1250 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1251 			dev, srq, &wqe, &wqe_end, bytes_copied);
1252 	}
1253 
1254 	if (ret < 0 || wqe >= wqe_end)
1255 		goto resolve_page_fault;
1256 
1257 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1258 				      &total_wqe_bytes, !sq);
1259 	if (ret == -EAGAIN)
1260 		goto out;
1261 
1262 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1263 		goto resolve_page_fault;
1264 
1265 out:
1266 	ret = 0;
1267 	resume_with_error = 0;
1268 
1269 read_user:
1270 	if (ret)
1271 		mlx5_ib_err(
1272 			dev,
1273 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1274 			ret, wqe_index, pfault->token);
1275 
1276 resolve_page_fault:
1277 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1278 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1279 		    pfault->wqe.wq_num, resume_with_error,
1280 		    pfault->type);
1281 	mlx5_core_res_put(res);
1282 	free_page((unsigned long)wqe_start);
1283 }
1284 
1285 static int pages_in_range(u64 address, u32 length)
1286 {
1287 	return (ALIGN(address + length, PAGE_SIZE) -
1288 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1289 }
1290 
1291 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1292 					   struct mlx5_pagefault *pfault)
1293 {
1294 	u64 address;
1295 	u32 length;
1296 	u32 prefetch_len = pfault->bytes_committed;
1297 	int prefetch_activated = 0;
1298 	u32 rkey = pfault->rdma.r_key;
1299 	int ret;
1300 
1301 	/* The RDMA responder handler handles the page fault in two parts.
1302 	 * First it brings the necessary pages for the current packet
1303 	 * (and uses the pfault context), and then (after resuming the QP)
1304 	 * prefetches more pages. The second operation cannot use the pfault
1305 	 * context and therefore uses the dummy_pfault context allocated on
1306 	 * the stack */
1307 	pfault->rdma.rdma_va += pfault->bytes_committed;
1308 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1309 					 pfault->rdma.rdma_op_len);
1310 	pfault->bytes_committed = 0;
1311 
1312 	address = pfault->rdma.rdma_va;
1313 	length  = pfault->rdma.rdma_op_len;
1314 
1315 	/* For some operations, the hardware cannot tell the exact message
1316 	 * length, and in those cases it reports zero. Use prefetch
1317 	 * logic. */
1318 	if (length == 0) {
1319 		prefetch_activated = 1;
1320 		length = pfault->rdma.packet_size;
1321 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1322 	}
1323 
1324 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1325 					    &pfault->bytes_committed, NULL);
1326 	if (ret == -EAGAIN) {
1327 		/* We're racing with an invalidation, don't prefetch */
1328 		prefetch_activated = 0;
1329 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1330 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1331 		if (ret != -ENOENT)
1332 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1333 				    ret, pfault->token, pfault->type);
1334 		return;
1335 	}
1336 
1337 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1338 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1339 		    pfault->token, pfault->type,
1340 		    prefetch_activated);
1341 
1342 	/* At this point, there might be a new pagefault already arriving in
1343 	 * the eq, switch to the dummy pagefault for the rest of the
1344 	 * processing. We're still OK with the objects being alive as the
1345 	 * work-queue is being fenced. */
1346 
1347 	if (prefetch_activated) {
1348 		u32 bytes_committed = 0;
1349 
1350 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1351 						    prefetch_len,
1352 						    &bytes_committed, NULL);
1353 		if (ret < 0 && ret != -EAGAIN) {
1354 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1355 				    ret, pfault->token, address, prefetch_len);
1356 		}
1357 	}
1358 }
1359 
1360 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1361 {
1362 	u8 event_subtype = pfault->event_subtype;
1363 
1364 	switch (event_subtype) {
1365 	case MLX5_PFAULT_SUBTYPE_WQE:
1366 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1367 		break;
1368 	case MLX5_PFAULT_SUBTYPE_RDMA:
1369 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1370 		break;
1371 	default:
1372 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1373 			    event_subtype);
1374 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1375 	}
1376 }
1377 
1378 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1379 {
1380 	struct mlx5_pagefault *pfault = container_of(work,
1381 						     struct mlx5_pagefault,
1382 						     work);
1383 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1384 
1385 	mlx5_ib_pfault(eq->dev, pfault);
1386 	mempool_free(pfault, eq->pool);
1387 }
1388 
1389 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1390 {
1391 	struct mlx5_eqe_page_fault *pf_eqe;
1392 	struct mlx5_pagefault *pfault;
1393 	struct mlx5_eqe *eqe;
1394 	int cc = 0;
1395 
1396 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1397 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1398 		if (!pfault) {
1399 			schedule_work(&eq->work);
1400 			break;
1401 		}
1402 
1403 		pf_eqe = &eqe->data.page_fault;
1404 		pfault->event_subtype = eqe->sub_type;
1405 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1406 
1407 		mlx5_ib_dbg(eq->dev,
1408 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1409 			    eqe->sub_type, pfault->bytes_committed);
1410 
1411 		switch (eqe->sub_type) {
1412 		case MLX5_PFAULT_SUBTYPE_RDMA:
1413 			/* RDMA based event */
1414 			pfault->type =
1415 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1416 			pfault->token =
1417 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1418 				MLX5_24BIT_MASK;
1419 			pfault->rdma.r_key =
1420 				be32_to_cpu(pf_eqe->rdma.r_key);
1421 			pfault->rdma.packet_size =
1422 				be16_to_cpu(pf_eqe->rdma.packet_length);
1423 			pfault->rdma.rdma_op_len =
1424 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1425 			pfault->rdma.rdma_va =
1426 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1427 			mlx5_ib_dbg(eq->dev,
1428 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1429 				    pfault->type, pfault->token,
1430 				    pfault->rdma.r_key);
1431 			mlx5_ib_dbg(eq->dev,
1432 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1433 				    pfault->rdma.rdma_op_len,
1434 				    pfault->rdma.rdma_va);
1435 			break;
1436 
1437 		case MLX5_PFAULT_SUBTYPE_WQE:
1438 			/* WQE based event */
1439 			pfault->type =
1440 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1441 			pfault->token =
1442 				be32_to_cpu(pf_eqe->wqe.token);
1443 			pfault->wqe.wq_num =
1444 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1445 				MLX5_24BIT_MASK;
1446 			pfault->wqe.wqe_index =
1447 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1448 			pfault->wqe.packet_size =
1449 				be16_to_cpu(pf_eqe->wqe.packet_length);
1450 			mlx5_ib_dbg(eq->dev,
1451 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1452 				    pfault->type, pfault->token,
1453 				    pfault->wqe.wq_num,
1454 				    pfault->wqe.wqe_index);
1455 			break;
1456 
1457 		default:
1458 			mlx5_ib_warn(eq->dev,
1459 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1460 				     eqe->sub_type);
1461 			/* Unsupported page faults should still be
1462 			 * resolved by the page fault handler
1463 			 */
1464 		}
1465 
1466 		pfault->eq = eq;
1467 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1468 		queue_work(eq->wq, &pfault->work);
1469 
1470 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1471 	}
1472 
1473 	mlx5_eq_update_ci(eq->core, cc, 1);
1474 }
1475 
1476 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1477 			     void *data)
1478 {
1479 	struct mlx5_ib_pf_eq *eq =
1480 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1481 	unsigned long flags;
1482 
1483 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1484 		mlx5_ib_eq_pf_process(eq);
1485 		spin_unlock_irqrestore(&eq->lock, flags);
1486 	} else {
1487 		schedule_work(&eq->work);
1488 	}
1489 
1490 	return IRQ_HANDLED;
1491 }
1492 
1493 /* mempool_refill() was proposed but unfortunately wasn't accepted
1494  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1495  * Cheap workaround.
1496  */
1497 static void mempool_refill(mempool_t *pool)
1498 {
1499 	while (pool->curr_nr < pool->min_nr)
1500 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1501 }
1502 
1503 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1504 {
1505 	struct mlx5_ib_pf_eq *eq =
1506 		container_of(work, struct mlx5_ib_pf_eq, work);
1507 
1508 	mempool_refill(eq->pool);
1509 
1510 	spin_lock_irq(&eq->lock);
1511 	mlx5_ib_eq_pf_process(eq);
1512 	spin_unlock_irq(&eq->lock);
1513 }
1514 
1515 enum {
1516 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1517 	MLX5_IB_NUM_PF_DRAIN	= 64,
1518 };
1519 
1520 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1521 {
1522 	struct mlx5_eq_param param = {};
1523 	int err = 0;
1524 
1525 	mutex_lock(&dev->odp_eq_mutex);
1526 	if (eq->core)
1527 		goto unlock;
1528 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1529 	spin_lock_init(&eq->lock);
1530 	eq->dev = dev;
1531 
1532 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1533 					       sizeof(struct mlx5_pagefault));
1534 	if (!eq->pool) {
1535 		err = -ENOMEM;
1536 		goto unlock;
1537 	}
1538 
1539 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1540 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1541 				 MLX5_NUM_CMD_EQE);
1542 	if (!eq->wq) {
1543 		err = -ENOMEM;
1544 		goto err_mempool;
1545 	}
1546 
1547 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1548 	param = (struct mlx5_eq_param) {
1549 		.nent = MLX5_IB_NUM_PF_EQE,
1550 	};
1551 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1552 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1553 	if (IS_ERR(eq->core)) {
1554 		err = PTR_ERR(eq->core);
1555 		goto err_wq;
1556 	}
1557 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1558 	if (err) {
1559 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1560 		goto err_eq;
1561 	}
1562 
1563 	mutex_unlock(&dev->odp_eq_mutex);
1564 	return 0;
1565 err_eq:
1566 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1567 err_wq:
1568 	eq->core = NULL;
1569 	destroy_workqueue(eq->wq);
1570 err_mempool:
1571 	mempool_destroy(eq->pool);
1572 unlock:
1573 	mutex_unlock(&dev->odp_eq_mutex);
1574 	return err;
1575 }
1576 
1577 static int
1578 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1579 {
1580 	int err;
1581 
1582 	if (!eq->core)
1583 		return 0;
1584 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1585 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1586 	cancel_work_sync(&eq->work);
1587 	destroy_workqueue(eq->wq);
1588 	mempool_destroy(eq->pool);
1589 
1590 	return err;
1591 }
1592 
1593 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1594 {
1595 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1596 		return;
1597 
1598 	switch (ent->order - 2) {
1599 	case MLX5_IMR_MTT_CACHE_ENTRY:
1600 		ent->page = PAGE_SHIFT;
1601 		ent->ndescs = MLX5_IMR_MTT_ENTRIES;
1602 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1603 		ent->limit = 0;
1604 		break;
1605 
1606 	case MLX5_IMR_KSM_CACHE_ENTRY:
1607 		ent->page = MLX5_KSM_PAGE_SHIFT;
1608 		ent->ndescs = mlx5_imr_ksm_entries;
1609 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1610 		ent->limit = 0;
1611 		break;
1612 	}
1613 }
1614 
1615 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1616 	.advise_mr = mlx5_ib_advise_mr,
1617 };
1618 
1619 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1620 {
1621 	int ret = 0;
1622 
1623 	internal_fill_odp_caps(dev);
1624 
1625 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1626 		return ret;
1627 
1628 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1629 
1630 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1631 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1632 		if (ret) {
1633 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1634 			return ret;
1635 		}
1636 	}
1637 
1638 	mutex_init(&dev->odp_eq_mutex);
1639 	return ret;
1640 }
1641 
1642 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1643 {
1644 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1645 		return;
1646 
1647 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1648 }
1649 
1650 int mlx5_ib_odp_init(void)
1651 {
1652 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1653 				       MLX5_IMR_MTT_BITS);
1654 
1655 	return 0;
1656 }
1657 
1658 struct prefetch_mr_work {
1659 	struct work_struct work;
1660 	u32 pf_flags;
1661 	u32 num_sge;
1662 	struct {
1663 		u64 io_virt;
1664 		struct mlx5_ib_mr *mr;
1665 		size_t length;
1666 	} frags[];
1667 };
1668 
1669 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1670 {
1671 	u32 i;
1672 
1673 	for (i = 0; i < work->num_sge; ++i)
1674 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1675 
1676 	kvfree(work);
1677 }
1678 
1679 static struct mlx5_ib_mr *
1680 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1681 		    u32 lkey)
1682 {
1683 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1684 	struct mlx5_ib_mr *mr = NULL;
1685 	struct mlx5_ib_mkey *mmkey;
1686 
1687 	xa_lock(&dev->odp_mkeys);
1688 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1689 	if (!mmkey || mmkey->key != lkey) {
1690 		mr = ERR_PTR(-ENOENT);
1691 		goto end;
1692 	}
1693 	if (mmkey->type != MLX5_MKEY_MR) {
1694 		mr = ERR_PTR(-EINVAL);
1695 		goto end;
1696 	}
1697 
1698 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1699 
1700 	if (mr->ibmr.pd != pd) {
1701 		mr = ERR_PTR(-EPERM);
1702 		goto end;
1703 	}
1704 
1705 	/* prefetch with write-access must be supported by the MR */
1706 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1707 	    !mr->umem->writable) {
1708 		mr = ERR_PTR(-EPERM);
1709 		goto end;
1710 	}
1711 
1712 	refcount_inc(&mmkey->usecount);
1713 end:
1714 	xa_unlock(&dev->odp_mkeys);
1715 	return mr;
1716 }
1717 
1718 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1719 {
1720 	struct prefetch_mr_work *work =
1721 		container_of(w, struct prefetch_mr_work, work);
1722 	u32 bytes_mapped = 0;
1723 	int ret;
1724 	u32 i;
1725 
1726 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1727 	WARN_ON(!work->num_sge);
1728 	for (i = 0; i < work->num_sge; ++i) {
1729 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1730 				   work->frags[i].length, &bytes_mapped,
1731 				   work->pf_flags);
1732 		if (ret <= 0)
1733 			continue;
1734 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1735 	}
1736 
1737 	destroy_prefetch_work(work);
1738 }
1739 
1740 static int init_prefetch_work(struct ib_pd *pd,
1741 			       enum ib_uverbs_advise_mr_advice advice,
1742 			       u32 pf_flags, struct prefetch_mr_work *work,
1743 			       struct ib_sge *sg_list, u32 num_sge)
1744 {
1745 	u32 i;
1746 
1747 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1748 	work->pf_flags = pf_flags;
1749 
1750 	for (i = 0; i < num_sge; ++i) {
1751 		struct mlx5_ib_mr *mr;
1752 
1753 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1754 		if (IS_ERR(mr)) {
1755 			work->num_sge = i;
1756 			return PTR_ERR(mr);
1757 		}
1758 		work->frags[i].io_virt = sg_list[i].addr;
1759 		work->frags[i].length = sg_list[i].length;
1760 		work->frags[i].mr = mr;
1761 	}
1762 	work->num_sge = num_sge;
1763 	return 0;
1764 }
1765 
1766 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1767 				    enum ib_uverbs_advise_mr_advice advice,
1768 				    u32 pf_flags, struct ib_sge *sg_list,
1769 				    u32 num_sge)
1770 {
1771 	u32 bytes_mapped = 0;
1772 	int ret = 0;
1773 	u32 i;
1774 
1775 	for (i = 0; i < num_sge; ++i) {
1776 		struct mlx5_ib_mr *mr;
1777 
1778 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1779 		if (IS_ERR(mr))
1780 			return PTR_ERR(mr);
1781 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1782 				   &bytes_mapped, pf_flags);
1783 		if (ret < 0) {
1784 			mlx5r_deref_odp_mkey(&mr->mmkey);
1785 			return ret;
1786 		}
1787 		mlx5_update_odp_stats(mr, prefetch, ret);
1788 		mlx5r_deref_odp_mkey(&mr->mmkey);
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1795 			       enum ib_uverbs_advise_mr_advice advice,
1796 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1797 {
1798 	u32 pf_flags = 0;
1799 	struct prefetch_mr_work *work;
1800 	int rc;
1801 
1802 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1803 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1804 
1805 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1806 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1807 
1808 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1809 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1810 						num_sge);
1811 
1812 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1813 	if (!work)
1814 		return -ENOMEM;
1815 
1816 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
1817 	if (rc) {
1818 		destroy_prefetch_work(work);
1819 		return rc;
1820 	}
1821 	queue_work(system_unbound_wq, &work->work);
1822 	return 0;
1823 }
1824