xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 18b1746b)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u32			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 	};
78 
79 	struct mlx5_ib_pf_eq	*eq;
80 	struct work_struct	work;
81 };
82 
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84 
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88 
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94 
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96 
97 static u64 mlx5_imr_ksm_entries;
98 
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100 			struct mlx5_ib_mr *imr, int flags)
101 {
102 	struct mlx5_klm *end = pklm + nentries;
103 
104 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
105 		for (; pklm != end; pklm++, idx++) {
106 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108 			pklm->va = 0;
109 		}
110 		return;
111 	}
112 
113 	/*
114 	 * The locking here is pretty subtle. Ideally the implicit_children
115 	 * xarray would be protected by the umem_mutex, however that is not
116 	 * possible. Instead this uses a weaker update-then-lock pattern:
117 	 *
118 	 *    xa_store()
119 	 *    mutex_lock(umem_mutex)
120 	 *     mlx5r_umr_update_xlt()
121 	 *    mutex_unlock(umem_mutex)
122 	 *    destroy lkey
123 	 *
124 	 * ie any change the xarray must be followed by the locked update_xlt
125 	 * before destroying.
126 	 *
127 	 * The umem_mutex provides the acquire/release semantic needed to make
128 	 * the xa_store() visible to a racing thread.
129 	 */
130 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 
132 	for (; pklm != end; pklm++, idx++) {
133 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134 
135 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136 		if (mtt) {
137 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139 		} else {
140 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141 			pklm->va = 0;
142 		}
143 	}
144 }
145 
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149 
150 	if (umem_dma & ODP_READ_ALLOWED_BIT)
151 		mtt_entry |= MLX5_IB_MTT_READ;
152 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_WRITE;
154 
155 	return mtt_entry;
156 }
157 
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159 			 struct mlx5_ib_mr *mr, int flags)
160 {
161 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162 	dma_addr_t pa;
163 	size_t i;
164 
165 	if (flags & MLX5_IB_UPD_XLT_ZAP)
166 		return;
167 
168 	for (i = 0; i < nentries; i++) {
169 		pa = odp->dma_list[idx + i];
170 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171 	}
172 }
173 
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175 			   struct mlx5_ib_mr *mr, int flags)
176 {
177 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178 		populate_klm(xlt, idx, nentries, mr, flags);
179 	} else {
180 		populate_mtt(xlt, idx, nentries, mr, flags);
181 	}
182 }
183 
184 /*
185  * This must be called after the mr has been removed from implicit_children.
186  * NOTE: The MR does not necessarily have to be
187  * empty here, parallel page faults could have raced with the free process and
188  * added pages to it.
189  */
190 static void free_implicit_child_mr_work(struct work_struct *work)
191 {
192 	struct mlx5_ib_mr *mr =
193 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194 	struct mlx5_ib_mr *imr = mr->parent;
195 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197 
198 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199 
200 	mutex_lock(&odp_imr->umem_mutex);
201 	mlx5r_umr_update_xlt(mr->parent,
202 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
203 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204 	mutex_unlock(&odp_imr->umem_mutex);
205 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206 
207 	mlx5r_deref_odp_mkey(&imr->mmkey);
208 }
209 
210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211 {
212 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214 	struct mlx5_ib_mr *imr = mr->parent;
215 
216 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217 		return;
218 
219 	xa_erase(&imr->implicit_children, idx);
220 
221 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
222 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
224 }
225 
226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227 				     const struct mmu_notifier_range *range,
228 				     unsigned long cur_seq)
229 {
230 	struct ib_umem_odp *umem_odp =
231 		container_of(mni, struct ib_umem_odp, notifier);
232 	struct mlx5_ib_mr *mr;
233 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
234 	u64 idx = 0, blk_start_idx = 0;
235 	u64 invalidations = 0;
236 	unsigned long start;
237 	unsigned long end;
238 	int in_block = 0;
239 	u64 addr;
240 
241 	if (!mmu_notifier_range_blockable(range))
242 		return false;
243 
244 	mutex_lock(&umem_odp->umem_mutex);
245 	mmu_interval_set_seq(mni, cur_seq);
246 	/*
247 	 * If npages is zero then umem_odp->private may not be setup yet. This
248 	 * does not complete until after the first page is mapped for DMA.
249 	 */
250 	if (!umem_odp->npages)
251 		goto out;
252 	mr = umem_odp->private;
253 
254 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
255 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
256 
257 	/*
258 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
259 	 * while we are doing the invalidation, no page fault will attempt to
260 	 * overwrite the same MTTs.  Concurent invalidations might race us,
261 	 * but they will write 0s as well, so no difference in the end result.
262 	 */
263 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
264 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
265 		/*
266 		 * Strive to write the MTTs in chunks, but avoid overwriting
267 		 * non-existing MTTs. The huristic here can be improved to
268 		 * estimate the cost of another UMR vs. the cost of bigger
269 		 * UMR.
270 		 */
271 		if (umem_odp->dma_list[idx] &
272 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
273 			if (!in_block) {
274 				blk_start_idx = idx;
275 				in_block = 1;
276 			}
277 
278 			/* Count page invalidations */
279 			invalidations += idx - blk_start_idx + 1;
280 		} else {
281 			u64 umr_offset = idx & umr_block_mask;
282 
283 			if (in_block && umr_offset == 0) {
284 				mlx5r_umr_update_xlt(mr, blk_start_idx,
285 						     idx - blk_start_idx, 0,
286 						     MLX5_IB_UPD_XLT_ZAP |
287 						     MLX5_IB_UPD_XLT_ATOMIC);
288 				in_block = 0;
289 			}
290 		}
291 	}
292 	if (in_block)
293 		mlx5r_umr_update_xlt(mr, blk_start_idx,
294 				     idx - blk_start_idx + 1, 0,
295 				     MLX5_IB_UPD_XLT_ZAP |
296 				     MLX5_IB_UPD_XLT_ATOMIC);
297 
298 	mlx5_update_odp_stats(mr, invalidations, invalidations);
299 
300 	/*
301 	 * We are now sure that the device will not access the
302 	 * memory. We can safely unmap it, and mark it as dirty if
303 	 * needed.
304 	 */
305 
306 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
307 
308 	if (unlikely(!umem_odp->npages && mr->parent))
309 		destroy_unused_implicit_child_mr(mr);
310 out:
311 	mutex_unlock(&umem_odp->umem_mutex);
312 	return true;
313 }
314 
315 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
316 	.invalidate = mlx5_ib_invalidate_range,
317 };
318 
319 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
320 {
321 	struct ib_odp_caps *caps = &dev->odp_caps;
322 
323 	memset(caps, 0, sizeof(*caps));
324 
325 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
326 		return;
327 
328 	caps->general_caps = IB_ODP_SUPPORT;
329 
330 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
331 		dev->odp_max_size = U64_MAX;
332 	else
333 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
334 
335 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
336 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
337 
338 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
339 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
340 
341 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
342 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
343 
344 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
345 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
346 
347 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
348 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
349 
350 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
351 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
352 
353 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
354 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
355 
356 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
357 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
358 
359 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
360 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
361 
362 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
363 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
364 
365 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
366 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
367 
368 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
369 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
370 
371 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
372 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
373 
374 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
375 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
376 
377 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
378 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
379 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
380 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
381 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
382 }
383 
384 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
385 				      struct mlx5_pagefault *pfault,
386 				      int error)
387 {
388 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
389 		     pfault->wqe.wq_num : pfault->token;
390 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
391 	int err;
392 
393 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
394 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
395 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
396 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
397 	MLX5_SET(page_fault_resume_in, in, error, !!error);
398 
399 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
400 	if (err)
401 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
402 			    wq_num, err);
403 }
404 
405 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
406 						unsigned long idx)
407 {
408 	int order = order_base_2(MLX5_IMR_MTT_ENTRIES);
409 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
410 	struct ib_umem_odp *odp;
411 	struct mlx5_ib_mr *mr;
412 	struct mlx5_ib_mr *ret;
413 	int err;
414 
415 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
416 				      idx * MLX5_IMR_MTT_SIZE,
417 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
418 	if (IS_ERR(odp))
419 		return ERR_CAST(odp);
420 
421 	BUILD_BUG_ON(order > MKEY_CACHE_LAST_STD_ENTRY);
422 	mr = mlx5_mr_cache_alloc(dev, &dev->cache.ent[order],
423 				 imr->access_flags);
424 	if (IS_ERR(mr)) {
425 		ib_umem_odp_release(odp);
426 		return mr;
427 	}
428 
429 	mr->access_flags = imr->access_flags;
430 	mr->ibmr.pd = imr->ibmr.pd;
431 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
432 	mr->umem = &odp->umem;
433 	mr->ibmr.lkey = mr->mmkey.key;
434 	mr->ibmr.rkey = mr->mmkey.key;
435 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
436 	mr->parent = imr;
437 	odp->private = mr;
438 
439 	/*
440 	 * First refcount is owned by the xarray and second refconut
441 	 * is returned to the caller.
442 	 */
443 	refcount_set(&mr->mmkey.usecount, 2);
444 
445 	err = mlx5r_umr_update_xlt(mr, 0,
446 				   MLX5_IMR_MTT_ENTRIES,
447 				   PAGE_SHIFT,
448 				   MLX5_IB_UPD_XLT_ZAP |
449 				   MLX5_IB_UPD_XLT_ENABLE);
450 	if (err) {
451 		ret = ERR_PTR(err);
452 		goto out_mr;
453 	}
454 
455 	xa_lock(&imr->implicit_children);
456 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
457 			   GFP_KERNEL);
458 	if (unlikely(ret)) {
459 		if (xa_is_err(ret)) {
460 			ret = ERR_PTR(xa_err(ret));
461 			goto out_lock;
462 		}
463 		/*
464 		 * Another thread beat us to creating the child mr, use
465 		 * theirs.
466 		 */
467 		refcount_inc(&ret->mmkey.usecount);
468 		goto out_lock;
469 	}
470 	xa_unlock(&imr->implicit_children);
471 
472 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
473 	return mr;
474 
475 out_lock:
476 	xa_unlock(&imr->implicit_children);
477 out_mr:
478 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
479 	return ret;
480 }
481 
482 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
483 					     int access_flags)
484 {
485 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
486 	struct ib_umem_odp *umem_odp;
487 	struct mlx5_ib_mr *imr;
488 	int err;
489 
490 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
491 		return ERR_PTR(-EOPNOTSUPP);
492 
493 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
494 	if (IS_ERR(umem_odp))
495 		return ERR_CAST(umem_odp);
496 
497 	imr = mlx5_mr_cache_alloc(dev,
498 				  &dev->cache.ent[MLX5_IMR_KSM_CACHE_ENTRY],
499 				  access_flags);
500 	if (IS_ERR(imr)) {
501 		ib_umem_odp_release(umem_odp);
502 		return imr;
503 	}
504 
505 	imr->access_flags = access_flags;
506 	imr->ibmr.pd = &pd->ibpd;
507 	imr->ibmr.iova = 0;
508 	imr->umem = &umem_odp->umem;
509 	imr->ibmr.lkey = imr->mmkey.key;
510 	imr->ibmr.rkey = imr->mmkey.key;
511 	imr->ibmr.device = &dev->ib_dev;
512 	imr->is_odp_implicit = true;
513 	xa_init(&imr->implicit_children);
514 
515 	err = mlx5r_umr_update_xlt(imr, 0,
516 				   mlx5_imr_ksm_entries,
517 				   MLX5_KSM_PAGE_SHIFT,
518 				   MLX5_IB_UPD_XLT_INDIRECT |
519 				   MLX5_IB_UPD_XLT_ZAP |
520 				   MLX5_IB_UPD_XLT_ENABLE);
521 	if (err)
522 		goto out_mr;
523 
524 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
525 	if (err)
526 		goto out_mr;
527 
528 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
529 	return imr;
530 out_mr:
531 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
532 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
533 	return ERR_PTR(err);
534 }
535 
536 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
537 {
538 	struct mlx5_ib_mr *mtt;
539 	unsigned long idx;
540 
541 	/*
542 	 * If this is an implicit MR it is already invalidated so we can just
543 	 * delete the children mkeys.
544 	 */
545 	xa_for_each(&mr->implicit_children, idx, mtt) {
546 		xa_erase(&mr->implicit_children, idx);
547 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
548 	}
549 }
550 
551 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
552 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
553 #define MLX5_PF_FLAGS_ENABLE BIT(3)
554 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
555 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
556 			     u32 flags)
557 {
558 	int page_shift, ret, np;
559 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
560 	u64 access_mask;
561 	u64 start_idx;
562 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
563 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
564 
565 	if (flags & MLX5_PF_FLAGS_ENABLE)
566 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
567 
568 	page_shift = odp->page_shift;
569 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
570 	access_mask = ODP_READ_ALLOWED_BIT;
571 
572 	if (odp->umem.writable && !downgrade)
573 		access_mask |= ODP_WRITE_ALLOWED_BIT;
574 
575 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
576 	if (np < 0)
577 		return np;
578 
579 	/*
580 	 * No need to check whether the MTTs really belong to this MR, since
581 	 * ib_umem_odp_map_dma_and_lock already checks this.
582 	 */
583 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
584 	mutex_unlock(&odp->umem_mutex);
585 
586 	if (ret < 0) {
587 		if (ret != -EAGAIN)
588 			mlx5_ib_err(mr_to_mdev(mr),
589 				    "Failed to update mkey page tables\n");
590 		goto out;
591 	}
592 
593 	if (bytes_mapped) {
594 		u32 new_mappings = (np << page_shift) -
595 			(user_va - round_down(user_va, 1 << page_shift));
596 
597 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
598 	}
599 
600 	return np << (page_shift - PAGE_SHIFT);
601 
602 out:
603 	return ret;
604 }
605 
606 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
607 				 struct ib_umem_odp *odp_imr, u64 user_va,
608 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
609 {
610 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
611 	unsigned long upd_start_idx = end_idx + 1;
612 	unsigned long upd_len = 0;
613 	unsigned long npages = 0;
614 	int err;
615 	int ret;
616 
617 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
618 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
619 		return -EFAULT;
620 
621 	/* Fault each child mr that intersects with our interval. */
622 	while (bcnt) {
623 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
624 		struct ib_umem_odp *umem_odp;
625 		struct mlx5_ib_mr *mtt;
626 		u64 len;
627 
628 		xa_lock(&imr->implicit_children);
629 		mtt = xa_load(&imr->implicit_children, idx);
630 		if (unlikely(!mtt)) {
631 			xa_unlock(&imr->implicit_children);
632 			mtt = implicit_get_child_mr(imr, idx);
633 			if (IS_ERR(mtt)) {
634 				ret = PTR_ERR(mtt);
635 				goto out;
636 			}
637 			upd_start_idx = min(upd_start_idx, idx);
638 			upd_len = idx - upd_start_idx + 1;
639 		} else {
640 			refcount_inc(&mtt->mmkey.usecount);
641 			xa_unlock(&imr->implicit_children);
642 		}
643 
644 		umem_odp = to_ib_umem_odp(mtt->umem);
645 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
646 		      user_va;
647 
648 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
649 					bytes_mapped, flags);
650 
651 		mlx5r_deref_odp_mkey(&mtt->mmkey);
652 
653 		if (ret < 0)
654 			goto out;
655 		user_va += len;
656 		bcnt -= len;
657 		npages += ret;
658 	}
659 
660 	ret = npages;
661 
662 	/*
663 	 * Any time the implicit_children are changed we must perform an
664 	 * update of the xlt before exiting to ensure the HW and the
665 	 * implicit_children remains synchronized.
666 	 */
667 out:
668 	if (likely(!upd_len))
669 		return ret;
670 
671 	/*
672 	 * Notice this is not strictly ordered right, the KSM is updated after
673 	 * the implicit_children is updated, so a parallel page fault could
674 	 * see a MR that is not yet visible in the KSM.  This is similar to a
675 	 * parallel page fault seeing a MR that is being concurrently removed
676 	 * from the KSM. Both of these improbable situations are resolved
677 	 * safely by resuming the HW and then taking another page fault. The
678 	 * next pagefault handler will see the new information.
679 	 */
680 	mutex_lock(&odp_imr->umem_mutex);
681 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
682 				   MLX5_IB_UPD_XLT_INDIRECT |
683 					  MLX5_IB_UPD_XLT_ATOMIC);
684 	mutex_unlock(&odp_imr->umem_mutex);
685 	if (err) {
686 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
687 		return err;
688 	}
689 	return ret;
690 }
691 
692 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
693 			       u32 *bytes_mapped, u32 flags)
694 {
695 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
696 	u32 xlt_flags = 0;
697 	int err;
698 	unsigned int page_size;
699 
700 	if (flags & MLX5_PF_FLAGS_ENABLE)
701 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
702 
703 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
704 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
705 	if (err) {
706 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
707 		return err;
708 	}
709 
710 	page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
711 					     log_page_size, 0,
712 					     umem_dmabuf->umem.iova);
713 	if (unlikely(page_size < PAGE_SIZE)) {
714 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
715 		err = -EINVAL;
716 	} else {
717 		err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
718 	}
719 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
720 
721 	if (err)
722 		return err;
723 
724 	if (bytes_mapped)
725 		*bytes_mapped += bcnt;
726 
727 	return ib_umem_num_pages(mr->umem);
728 }
729 
730 /*
731  * Returns:
732  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
733  *           not accessible, or the MR is no longer valid.
734  *  -EAGAIN/-ENOMEM: The operation should be retried
735  *
736  *  -EINVAL/others: General internal malfunction
737  *  >0: Number of pages mapped
738  */
739 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
740 			u32 *bytes_mapped, u32 flags)
741 {
742 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
743 
744 	if (unlikely(io_virt < mr->ibmr.iova))
745 		return -EFAULT;
746 
747 	if (mr->umem->is_dmabuf)
748 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
749 
750 	if (!odp->is_implicit_odp) {
751 		u64 user_va;
752 
753 		if (check_add_overflow(io_virt - mr->ibmr.iova,
754 				       (u64)odp->umem.address, &user_va))
755 			return -EFAULT;
756 		if (unlikely(user_va >= ib_umem_end(odp) ||
757 			     ib_umem_end(odp) - user_va < bcnt))
758 			return -EFAULT;
759 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
760 					 flags);
761 	}
762 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
763 				     flags);
764 }
765 
766 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
767 {
768 	int ret;
769 
770 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
771 				mr->umem->length, NULL,
772 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
773 	return ret >= 0 ? 0 : ret;
774 }
775 
776 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
777 {
778 	int ret;
779 
780 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
781 				  MLX5_PF_FLAGS_ENABLE);
782 
783 	return ret >= 0 ? 0 : ret;
784 }
785 
786 struct pf_frame {
787 	struct pf_frame *next;
788 	u32 key;
789 	u64 io_virt;
790 	size_t bcnt;
791 	int depth;
792 };
793 
794 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
795 {
796 	if (!mmkey)
797 		return false;
798 	if (mmkey->type == MLX5_MKEY_MW ||
799 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
800 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
801 	return mmkey->key == key;
802 }
803 
804 /*
805  * Handle a single data segment in a page-fault WQE or RDMA region.
806  *
807  * Returns number of OS pages retrieved on success. The caller may continue to
808  * the next data segment.
809  * Can return the following error codes:
810  * -EAGAIN to designate a temporary error. The caller will abort handling the
811  *  page fault and resolve it.
812  * -EFAULT when there's an error mapping the requested pages. The caller will
813  *  abort the page fault handling.
814  */
815 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
816 					 struct ib_pd *pd, u32 key,
817 					 u64 io_virt, size_t bcnt,
818 					 u32 *bytes_committed,
819 					 u32 *bytes_mapped)
820 {
821 	int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
822 	struct pf_frame *head = NULL, *frame;
823 	struct mlx5_ib_mkey *mmkey;
824 	struct mlx5_ib_mr *mr;
825 	struct mlx5_klm *pklm;
826 	u32 *out = NULL;
827 	size_t offset;
828 
829 	io_virt += *bytes_committed;
830 	bcnt -= *bytes_committed;
831 
832 next_mr:
833 	xa_lock(&dev->odp_mkeys);
834 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
835 	if (!mmkey) {
836 		xa_unlock(&dev->odp_mkeys);
837 		mlx5_ib_dbg(
838 			dev,
839 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
840 			key);
841 		if (bytes_mapped)
842 			*bytes_mapped += bcnt;
843 		/*
844 		 * The user could specify a SGL with multiple lkeys and only
845 		 * some of them are ODP. Treat the non-ODP ones as fully
846 		 * faulted.
847 		 */
848 		ret = 0;
849 		goto end;
850 	}
851 	refcount_inc(&mmkey->usecount);
852 	xa_unlock(&dev->odp_mkeys);
853 
854 	if (!mkey_is_eq(mmkey, key)) {
855 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
856 		ret = -EFAULT;
857 		goto end;
858 	}
859 
860 	switch (mmkey->type) {
861 	case MLX5_MKEY_MR:
862 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
863 
864 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
865 		if (ret < 0)
866 			goto end;
867 
868 		mlx5_update_odp_stats(mr, faults, ret);
869 
870 		npages += ret;
871 		ret = 0;
872 		break;
873 
874 	case MLX5_MKEY_MW:
875 	case MLX5_MKEY_INDIRECT_DEVX:
876 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
877 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
878 			ret = -EFAULT;
879 			goto end;
880 		}
881 
882 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
883 			sizeof(*pklm) * (mmkey->ndescs - 2);
884 
885 		if (outlen > cur_outlen) {
886 			kfree(out);
887 			out = kzalloc(outlen, GFP_KERNEL);
888 			if (!out) {
889 				ret = -ENOMEM;
890 				goto end;
891 			}
892 			cur_outlen = outlen;
893 		}
894 
895 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
896 						       bsf0_klm0_pas_mtt0_1);
897 
898 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
899 		if (ret)
900 			goto end;
901 
902 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
903 					      memory_key_mkey_entry.start_addr);
904 
905 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
906 			if (offset >= be32_to_cpu(pklm->bcount)) {
907 				offset -= be32_to_cpu(pklm->bcount);
908 				continue;
909 			}
910 
911 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
912 			if (!frame) {
913 				ret = -ENOMEM;
914 				goto end;
915 			}
916 
917 			frame->key = be32_to_cpu(pklm->key);
918 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
919 			frame->bcnt = min_t(size_t, bcnt,
920 					    be32_to_cpu(pklm->bcount) - offset);
921 			frame->depth = depth + 1;
922 			frame->next = head;
923 			head = frame;
924 
925 			bcnt -= frame->bcnt;
926 			offset = 0;
927 		}
928 		break;
929 
930 	default:
931 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
932 		ret = -EFAULT;
933 		goto end;
934 	}
935 
936 	if (head) {
937 		frame = head;
938 		head = frame->next;
939 
940 		key = frame->key;
941 		io_virt = frame->io_virt;
942 		bcnt = frame->bcnt;
943 		depth = frame->depth;
944 		kfree(frame);
945 
946 		mlx5r_deref_odp_mkey(mmkey);
947 		goto next_mr;
948 	}
949 
950 end:
951 	if (mmkey)
952 		mlx5r_deref_odp_mkey(mmkey);
953 	while (head) {
954 		frame = head;
955 		head = frame->next;
956 		kfree(frame);
957 	}
958 	kfree(out);
959 
960 	*bytes_committed = 0;
961 	return ret ? ret : npages;
962 }
963 
964 /*
965  * Parse a series of data segments for page fault handling.
966  *
967  * @dev:  Pointer to mlx5 IB device
968  * @pfault: contains page fault information.
969  * @wqe: points at the first data segment in the WQE.
970  * @wqe_end: points after the end of the WQE.
971  * @bytes_mapped: receives the number of bytes that the function was able to
972  *                map. This allows the caller to decide intelligently whether
973  *                enough memory was mapped to resolve the page fault
974  *                successfully (e.g. enough for the next MTU, or the entire
975  *                WQE).
976  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
977  *                   the committed bytes).
978  * @receive_queue: receive WQE end of sg list
979  *
980  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
981  * negative error code.
982  */
983 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
984 				   struct mlx5_pagefault *pfault,
985 				   void *wqe,
986 				   void *wqe_end, u32 *bytes_mapped,
987 				   u32 *total_wqe_bytes, bool receive_queue)
988 {
989 	int ret = 0, npages = 0;
990 	u64 io_virt;
991 	u32 key;
992 	u32 byte_count;
993 	size_t bcnt;
994 	int inline_segment;
995 
996 	if (bytes_mapped)
997 		*bytes_mapped = 0;
998 	if (total_wqe_bytes)
999 		*total_wqe_bytes = 0;
1000 
1001 	while (wqe < wqe_end) {
1002 		struct mlx5_wqe_data_seg *dseg = wqe;
1003 
1004 		io_virt = be64_to_cpu(dseg->addr);
1005 		key = be32_to_cpu(dseg->lkey);
1006 		byte_count = be32_to_cpu(dseg->byte_count);
1007 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1008 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1009 
1010 		if (inline_segment) {
1011 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1012 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1013 				     16);
1014 		} else {
1015 			wqe += sizeof(*dseg);
1016 		}
1017 
1018 		/* receive WQE end of sg list. */
1019 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1020 		    io_virt == 0)
1021 			break;
1022 
1023 		if (!inline_segment && total_wqe_bytes) {
1024 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1025 					pfault->bytes_committed);
1026 		}
1027 
1028 		/* A zero length data segment designates a length of 2GB. */
1029 		if (bcnt == 0)
1030 			bcnt = 1U << 31;
1031 
1032 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1033 			pfault->bytes_committed -=
1034 				min_t(size_t, bcnt,
1035 				      pfault->bytes_committed);
1036 			continue;
1037 		}
1038 
1039 		ret = pagefault_single_data_segment(dev, NULL, key,
1040 						    io_virt, bcnt,
1041 						    &pfault->bytes_committed,
1042 						    bytes_mapped);
1043 		if (ret < 0)
1044 			break;
1045 		npages += ret;
1046 	}
1047 
1048 	return ret < 0 ? ret : npages;
1049 }
1050 
1051 /*
1052  * Parse initiator WQE. Advances the wqe pointer to point at the
1053  * scatter-gather list, and set wqe_end to the end of the WQE.
1054  */
1055 static int mlx5_ib_mr_initiator_pfault_handler(
1056 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1057 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1058 {
1059 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1060 	u16 wqe_index = pfault->wqe.wqe_index;
1061 	struct mlx5_base_av *av;
1062 	unsigned ds, opcode;
1063 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1064 
1065 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1066 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1067 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1068 			    ds, wqe_length);
1069 		return -EFAULT;
1070 	}
1071 
1072 	if (ds == 0) {
1073 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1074 			    wqe_index, qpn);
1075 		return -EFAULT;
1076 	}
1077 
1078 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1079 	*wqe += sizeof(*ctrl);
1080 
1081 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1082 		 MLX5_WQE_CTRL_OPCODE_MASK;
1083 
1084 	if (qp->type == IB_QPT_XRC_INI)
1085 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1086 
1087 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1088 		av = *wqe;
1089 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1090 			*wqe += sizeof(struct mlx5_av);
1091 		else
1092 			*wqe += sizeof(struct mlx5_base_av);
1093 	}
1094 
1095 	switch (opcode) {
1096 	case MLX5_OPCODE_RDMA_WRITE:
1097 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1098 	case MLX5_OPCODE_RDMA_READ:
1099 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1100 		break;
1101 	case MLX5_OPCODE_ATOMIC_CS:
1102 	case MLX5_OPCODE_ATOMIC_FA:
1103 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1104 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1105 		break;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Parse responder WQE and set wqe_end to the end of the WQE.
1113  */
1114 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1115 						   struct mlx5_ib_srq *srq,
1116 						   void **wqe, void **wqe_end,
1117 						   int wqe_length)
1118 {
1119 	int wqe_size = 1 << srq->msrq.wqe_shift;
1120 
1121 	if (wqe_size > wqe_length) {
1122 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1123 		return -EFAULT;
1124 	}
1125 
1126 	*wqe_end = *wqe + wqe_size;
1127 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1128 
1129 	return 0;
1130 }
1131 
1132 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1133 						  struct mlx5_ib_qp *qp,
1134 						  void *wqe, void **wqe_end,
1135 						  int wqe_length)
1136 {
1137 	struct mlx5_ib_wq *wq = &qp->rq;
1138 	int wqe_size = 1 << wq->wqe_shift;
1139 
1140 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1141 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1142 		return -EFAULT;
1143 	}
1144 
1145 	if (wqe_size > wqe_length) {
1146 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1147 		return -EFAULT;
1148 	}
1149 
1150 	*wqe_end = wqe + wqe_size;
1151 
1152 	return 0;
1153 }
1154 
1155 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1156 						       u32 wq_num, int pf_type)
1157 {
1158 	struct mlx5_core_rsc_common *common = NULL;
1159 	struct mlx5_core_srq *srq;
1160 
1161 	switch (pf_type) {
1162 	case MLX5_WQE_PF_TYPE_RMP:
1163 		srq = mlx5_cmd_get_srq(dev, wq_num);
1164 		if (srq)
1165 			common = &srq->common;
1166 		break;
1167 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1168 	case MLX5_WQE_PF_TYPE_RESP:
1169 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1170 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 
1176 	return common;
1177 }
1178 
1179 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1180 {
1181 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1182 
1183 	return to_mibqp(mqp);
1184 }
1185 
1186 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1187 {
1188 	struct mlx5_core_srq *msrq =
1189 		container_of(res, struct mlx5_core_srq, common);
1190 
1191 	return to_mibsrq(msrq);
1192 }
1193 
1194 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1195 					  struct mlx5_pagefault *pfault)
1196 {
1197 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1198 	u16 wqe_index = pfault->wqe.wqe_index;
1199 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1200 	u32 bytes_mapped, total_wqe_bytes;
1201 	struct mlx5_core_rsc_common *res;
1202 	int resume_with_error = 1;
1203 	struct mlx5_ib_qp *qp;
1204 	size_t bytes_copied;
1205 	int ret = 0;
1206 
1207 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1208 	if (!res) {
1209 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1210 		return;
1211 	}
1212 
1213 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1214 	    res->res != MLX5_RES_XSRQ) {
1215 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1216 			    pfault->type);
1217 		goto resolve_page_fault;
1218 	}
1219 
1220 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1221 	if (!wqe_start) {
1222 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1223 		goto resolve_page_fault;
1224 	}
1225 
1226 	wqe = wqe_start;
1227 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1228 	if (qp && sq) {
1229 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1230 					  &bytes_copied);
1231 		if (ret)
1232 			goto read_user;
1233 		ret = mlx5_ib_mr_initiator_pfault_handler(
1234 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1235 	} else if (qp && !sq) {
1236 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1237 					  &bytes_copied);
1238 		if (ret)
1239 			goto read_user;
1240 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1241 			dev, qp, wqe, &wqe_end, bytes_copied);
1242 	} else if (!qp) {
1243 		struct mlx5_ib_srq *srq = res_to_srq(res);
1244 
1245 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1246 					   &bytes_copied);
1247 		if (ret)
1248 			goto read_user;
1249 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1250 			dev, srq, &wqe, &wqe_end, bytes_copied);
1251 	}
1252 
1253 	if (ret < 0 || wqe >= wqe_end)
1254 		goto resolve_page_fault;
1255 
1256 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1257 				      &total_wqe_bytes, !sq);
1258 	if (ret == -EAGAIN)
1259 		goto out;
1260 
1261 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1262 		goto resolve_page_fault;
1263 
1264 out:
1265 	ret = 0;
1266 	resume_with_error = 0;
1267 
1268 read_user:
1269 	if (ret)
1270 		mlx5_ib_err(
1271 			dev,
1272 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1273 			ret, wqe_index, pfault->token);
1274 
1275 resolve_page_fault:
1276 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1277 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1278 		    pfault->wqe.wq_num, resume_with_error,
1279 		    pfault->type);
1280 	mlx5_core_res_put(res);
1281 	free_page((unsigned long)wqe_start);
1282 }
1283 
1284 static int pages_in_range(u64 address, u32 length)
1285 {
1286 	return (ALIGN(address + length, PAGE_SIZE) -
1287 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1288 }
1289 
1290 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1291 					   struct mlx5_pagefault *pfault)
1292 {
1293 	u64 address;
1294 	u32 length;
1295 	u32 prefetch_len = pfault->bytes_committed;
1296 	int prefetch_activated = 0;
1297 	u32 rkey = pfault->rdma.r_key;
1298 	int ret;
1299 
1300 	/* The RDMA responder handler handles the page fault in two parts.
1301 	 * First it brings the necessary pages for the current packet
1302 	 * (and uses the pfault context), and then (after resuming the QP)
1303 	 * prefetches more pages. The second operation cannot use the pfault
1304 	 * context and therefore uses the dummy_pfault context allocated on
1305 	 * the stack */
1306 	pfault->rdma.rdma_va += pfault->bytes_committed;
1307 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1308 					 pfault->rdma.rdma_op_len);
1309 	pfault->bytes_committed = 0;
1310 
1311 	address = pfault->rdma.rdma_va;
1312 	length  = pfault->rdma.rdma_op_len;
1313 
1314 	/* For some operations, the hardware cannot tell the exact message
1315 	 * length, and in those cases it reports zero. Use prefetch
1316 	 * logic. */
1317 	if (length == 0) {
1318 		prefetch_activated = 1;
1319 		length = pfault->rdma.packet_size;
1320 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1321 	}
1322 
1323 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1324 					    &pfault->bytes_committed, NULL);
1325 	if (ret == -EAGAIN) {
1326 		/* We're racing with an invalidation, don't prefetch */
1327 		prefetch_activated = 0;
1328 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1329 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1330 		if (ret != -ENOENT)
1331 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1332 				    ret, pfault->token, pfault->type);
1333 		return;
1334 	}
1335 
1336 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1337 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1338 		    pfault->token, pfault->type,
1339 		    prefetch_activated);
1340 
1341 	/* At this point, there might be a new pagefault already arriving in
1342 	 * the eq, switch to the dummy pagefault for the rest of the
1343 	 * processing. We're still OK with the objects being alive as the
1344 	 * work-queue is being fenced. */
1345 
1346 	if (prefetch_activated) {
1347 		u32 bytes_committed = 0;
1348 
1349 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1350 						    prefetch_len,
1351 						    &bytes_committed, NULL);
1352 		if (ret < 0 && ret != -EAGAIN) {
1353 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1354 				    ret, pfault->token, address, prefetch_len);
1355 		}
1356 	}
1357 }
1358 
1359 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1360 {
1361 	u8 event_subtype = pfault->event_subtype;
1362 
1363 	switch (event_subtype) {
1364 	case MLX5_PFAULT_SUBTYPE_WQE:
1365 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1366 		break;
1367 	case MLX5_PFAULT_SUBTYPE_RDMA:
1368 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1369 		break;
1370 	default:
1371 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1372 			    event_subtype);
1373 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1374 	}
1375 }
1376 
1377 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1378 {
1379 	struct mlx5_pagefault *pfault = container_of(work,
1380 						     struct mlx5_pagefault,
1381 						     work);
1382 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1383 
1384 	mlx5_ib_pfault(eq->dev, pfault);
1385 	mempool_free(pfault, eq->pool);
1386 }
1387 
1388 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1389 {
1390 	struct mlx5_eqe_page_fault *pf_eqe;
1391 	struct mlx5_pagefault *pfault;
1392 	struct mlx5_eqe *eqe;
1393 	int cc = 0;
1394 
1395 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1396 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1397 		if (!pfault) {
1398 			schedule_work(&eq->work);
1399 			break;
1400 		}
1401 
1402 		pf_eqe = &eqe->data.page_fault;
1403 		pfault->event_subtype = eqe->sub_type;
1404 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1405 
1406 		mlx5_ib_dbg(eq->dev,
1407 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1408 			    eqe->sub_type, pfault->bytes_committed);
1409 
1410 		switch (eqe->sub_type) {
1411 		case MLX5_PFAULT_SUBTYPE_RDMA:
1412 			/* RDMA based event */
1413 			pfault->type =
1414 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1415 			pfault->token =
1416 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1417 				MLX5_24BIT_MASK;
1418 			pfault->rdma.r_key =
1419 				be32_to_cpu(pf_eqe->rdma.r_key);
1420 			pfault->rdma.packet_size =
1421 				be16_to_cpu(pf_eqe->rdma.packet_length);
1422 			pfault->rdma.rdma_op_len =
1423 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1424 			pfault->rdma.rdma_va =
1425 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1426 			mlx5_ib_dbg(eq->dev,
1427 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1428 				    pfault->type, pfault->token,
1429 				    pfault->rdma.r_key);
1430 			mlx5_ib_dbg(eq->dev,
1431 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1432 				    pfault->rdma.rdma_op_len,
1433 				    pfault->rdma.rdma_va);
1434 			break;
1435 
1436 		case MLX5_PFAULT_SUBTYPE_WQE:
1437 			/* WQE based event */
1438 			pfault->type =
1439 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1440 			pfault->token =
1441 				be32_to_cpu(pf_eqe->wqe.token);
1442 			pfault->wqe.wq_num =
1443 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1444 				MLX5_24BIT_MASK;
1445 			pfault->wqe.wqe_index =
1446 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1447 			pfault->wqe.packet_size =
1448 				be16_to_cpu(pf_eqe->wqe.packet_length);
1449 			mlx5_ib_dbg(eq->dev,
1450 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1451 				    pfault->type, pfault->token,
1452 				    pfault->wqe.wq_num,
1453 				    pfault->wqe.wqe_index);
1454 			break;
1455 
1456 		default:
1457 			mlx5_ib_warn(eq->dev,
1458 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1459 				     eqe->sub_type);
1460 			/* Unsupported page faults should still be
1461 			 * resolved by the page fault handler
1462 			 */
1463 		}
1464 
1465 		pfault->eq = eq;
1466 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1467 		queue_work(eq->wq, &pfault->work);
1468 
1469 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1470 	}
1471 
1472 	mlx5_eq_update_ci(eq->core, cc, 1);
1473 }
1474 
1475 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1476 			     void *data)
1477 {
1478 	struct mlx5_ib_pf_eq *eq =
1479 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1480 	unsigned long flags;
1481 
1482 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1483 		mlx5_ib_eq_pf_process(eq);
1484 		spin_unlock_irqrestore(&eq->lock, flags);
1485 	} else {
1486 		schedule_work(&eq->work);
1487 	}
1488 
1489 	return IRQ_HANDLED;
1490 }
1491 
1492 /* mempool_refill() was proposed but unfortunately wasn't accepted
1493  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1494  * Cheap workaround.
1495  */
1496 static void mempool_refill(mempool_t *pool)
1497 {
1498 	while (pool->curr_nr < pool->min_nr)
1499 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1500 }
1501 
1502 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1503 {
1504 	struct mlx5_ib_pf_eq *eq =
1505 		container_of(work, struct mlx5_ib_pf_eq, work);
1506 
1507 	mempool_refill(eq->pool);
1508 
1509 	spin_lock_irq(&eq->lock);
1510 	mlx5_ib_eq_pf_process(eq);
1511 	spin_unlock_irq(&eq->lock);
1512 }
1513 
1514 enum {
1515 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1516 	MLX5_IB_NUM_PF_DRAIN	= 64,
1517 };
1518 
1519 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1520 {
1521 	struct mlx5_eq_param param = {};
1522 	int err = 0;
1523 
1524 	mutex_lock(&dev->odp_eq_mutex);
1525 	if (eq->core)
1526 		goto unlock;
1527 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1528 	spin_lock_init(&eq->lock);
1529 	eq->dev = dev;
1530 
1531 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1532 					       sizeof(struct mlx5_pagefault));
1533 	if (!eq->pool) {
1534 		err = -ENOMEM;
1535 		goto unlock;
1536 	}
1537 
1538 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1539 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1540 				 MLX5_NUM_CMD_EQE);
1541 	if (!eq->wq) {
1542 		err = -ENOMEM;
1543 		goto err_mempool;
1544 	}
1545 
1546 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1547 	param = (struct mlx5_eq_param) {
1548 		.nent = MLX5_IB_NUM_PF_EQE,
1549 	};
1550 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1551 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1552 	if (IS_ERR(eq->core)) {
1553 		err = PTR_ERR(eq->core);
1554 		goto err_wq;
1555 	}
1556 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1557 	if (err) {
1558 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1559 		goto err_eq;
1560 	}
1561 
1562 	mutex_unlock(&dev->odp_eq_mutex);
1563 	return 0;
1564 err_eq:
1565 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1566 err_wq:
1567 	eq->core = NULL;
1568 	destroy_workqueue(eq->wq);
1569 err_mempool:
1570 	mempool_destroy(eq->pool);
1571 unlock:
1572 	mutex_unlock(&dev->odp_eq_mutex);
1573 	return err;
1574 }
1575 
1576 static int
1577 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1578 {
1579 	int err;
1580 
1581 	if (!eq->core)
1582 		return 0;
1583 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1584 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1585 	cancel_work_sync(&eq->work);
1586 	destroy_workqueue(eq->wq);
1587 	mempool_destroy(eq->pool);
1588 
1589 	return err;
1590 }
1591 
1592 void mlx5_odp_init_mkey_cache_entry(struct mlx5_cache_ent *ent)
1593 {
1594 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1595 		return;
1596 	ent->ndescs = mlx5_imr_ksm_entries;
1597 	ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1598 }
1599 
1600 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1601 	.advise_mr = mlx5_ib_advise_mr,
1602 };
1603 
1604 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1605 {
1606 	int ret = 0;
1607 
1608 	internal_fill_odp_caps(dev);
1609 
1610 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1611 		return ret;
1612 
1613 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1614 
1615 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1616 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1617 		if (ret) {
1618 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1619 			return ret;
1620 		}
1621 	}
1622 
1623 	mutex_init(&dev->odp_eq_mutex);
1624 	return ret;
1625 }
1626 
1627 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1628 {
1629 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1630 		return;
1631 
1632 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1633 }
1634 
1635 int mlx5_ib_odp_init(void)
1636 {
1637 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1638 				       MLX5_IMR_MTT_BITS);
1639 
1640 	return 0;
1641 }
1642 
1643 struct prefetch_mr_work {
1644 	struct work_struct work;
1645 	u32 pf_flags;
1646 	u32 num_sge;
1647 	struct {
1648 		u64 io_virt;
1649 		struct mlx5_ib_mr *mr;
1650 		size_t length;
1651 	} frags[];
1652 };
1653 
1654 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1655 {
1656 	u32 i;
1657 
1658 	for (i = 0; i < work->num_sge; ++i)
1659 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1660 
1661 	kvfree(work);
1662 }
1663 
1664 static struct mlx5_ib_mr *
1665 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1666 		    u32 lkey)
1667 {
1668 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1669 	struct mlx5_ib_mr *mr = NULL;
1670 	struct mlx5_ib_mkey *mmkey;
1671 
1672 	xa_lock(&dev->odp_mkeys);
1673 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1674 	if (!mmkey || mmkey->key != lkey) {
1675 		mr = ERR_PTR(-ENOENT);
1676 		goto end;
1677 	}
1678 	if (mmkey->type != MLX5_MKEY_MR) {
1679 		mr = ERR_PTR(-EINVAL);
1680 		goto end;
1681 	}
1682 
1683 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1684 
1685 	if (mr->ibmr.pd != pd) {
1686 		mr = ERR_PTR(-EPERM);
1687 		goto end;
1688 	}
1689 
1690 	/* prefetch with write-access must be supported by the MR */
1691 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1692 	    !mr->umem->writable) {
1693 		mr = ERR_PTR(-EPERM);
1694 		goto end;
1695 	}
1696 
1697 	refcount_inc(&mmkey->usecount);
1698 end:
1699 	xa_unlock(&dev->odp_mkeys);
1700 	return mr;
1701 }
1702 
1703 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1704 {
1705 	struct prefetch_mr_work *work =
1706 		container_of(w, struct prefetch_mr_work, work);
1707 	u32 bytes_mapped = 0;
1708 	int ret;
1709 	u32 i;
1710 
1711 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1712 	WARN_ON(!work->num_sge);
1713 	for (i = 0; i < work->num_sge; ++i) {
1714 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1715 				   work->frags[i].length, &bytes_mapped,
1716 				   work->pf_flags);
1717 		if (ret <= 0)
1718 			continue;
1719 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1720 	}
1721 
1722 	destroy_prefetch_work(work);
1723 }
1724 
1725 static int init_prefetch_work(struct ib_pd *pd,
1726 			       enum ib_uverbs_advise_mr_advice advice,
1727 			       u32 pf_flags, struct prefetch_mr_work *work,
1728 			       struct ib_sge *sg_list, u32 num_sge)
1729 {
1730 	u32 i;
1731 
1732 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1733 	work->pf_flags = pf_flags;
1734 
1735 	for (i = 0; i < num_sge; ++i) {
1736 		struct mlx5_ib_mr *mr;
1737 
1738 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1739 		if (IS_ERR(mr)) {
1740 			work->num_sge = i;
1741 			return PTR_ERR(mr);
1742 		}
1743 		work->frags[i].io_virt = sg_list[i].addr;
1744 		work->frags[i].length = sg_list[i].length;
1745 		work->frags[i].mr = mr;
1746 	}
1747 	work->num_sge = num_sge;
1748 	return 0;
1749 }
1750 
1751 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1752 				    enum ib_uverbs_advise_mr_advice advice,
1753 				    u32 pf_flags, struct ib_sge *sg_list,
1754 				    u32 num_sge)
1755 {
1756 	u32 bytes_mapped = 0;
1757 	int ret = 0;
1758 	u32 i;
1759 
1760 	for (i = 0; i < num_sge; ++i) {
1761 		struct mlx5_ib_mr *mr;
1762 
1763 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1764 		if (IS_ERR(mr))
1765 			return PTR_ERR(mr);
1766 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1767 				   &bytes_mapped, pf_flags);
1768 		if (ret < 0) {
1769 			mlx5r_deref_odp_mkey(&mr->mmkey);
1770 			return ret;
1771 		}
1772 		mlx5_update_odp_stats(mr, prefetch, ret);
1773 		mlx5r_deref_odp_mkey(&mr->mmkey);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1780 			       enum ib_uverbs_advise_mr_advice advice,
1781 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1782 {
1783 	u32 pf_flags = 0;
1784 	struct prefetch_mr_work *work;
1785 	int rc;
1786 
1787 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1788 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1789 
1790 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1791 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1792 
1793 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1794 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1795 						num_sge);
1796 
1797 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1798 	if (!work)
1799 		return -ENOMEM;
1800 
1801 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
1802 	if (rc) {
1803 		destroy_prefetch_work(work);
1804 		return rc;
1805 	}
1806 	queue_work(system_unbound_wq, &work->work);
1807 	return 0;
1808 }
1809