xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void
51 create_mkey_callback(int status, struct mlx5_async_work *context);
52 
53 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
54 					  struct ib_pd *pd)
55 {
56 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
57 
58 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
59 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
60 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
61 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
62 	MLX5_SET(mkc, mkc, lr, 1);
63 
64 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
65 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
66 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
67 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
68 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
69 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
70 
71 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
72 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
73 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
74 }
75 
76 static void
77 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
78 		    u32 *in)
79 {
80 	u8 key = atomic_inc_return(&dev->mkey_var);
81 	void *mkc;
82 
83 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
84 	MLX5_SET(mkc, mkc, mkey_7_0, key);
85 	mkey->key = key;
86 }
87 
88 static int
89 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
90 		    u32 *in, int inlen)
91 {
92 	assign_mkey_variant(dev, mkey, in);
93 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
94 }
95 
96 static int
97 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
98 		       struct mlx5_core_mkey *mkey,
99 		       struct mlx5_async_ctx *async_ctx,
100 		       u32 *in, int inlen, u32 *out, int outlen,
101 		       struct mlx5_async_work *context)
102 {
103 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
104 	assign_mkey_variant(dev, mkey, in);
105 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
106 				create_mkey_callback, context);
107 }
108 
109 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
110 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
111 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
112 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
113 
114 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
115 {
116 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
117 }
118 
119 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
120 {
121 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
122 
123 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
124 }
125 
126 static inline bool mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr *mr, u64 start,
127 					  u64 length)
128 {
129 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
130 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
131 }
132 
133 static void create_mkey_callback(int status, struct mlx5_async_work *context)
134 {
135 	struct mlx5_ib_mr *mr =
136 		container_of(context, struct mlx5_ib_mr, cb_work);
137 	struct mlx5_ib_dev *dev = mr->dev;
138 	struct mlx5_cache_ent *ent = mr->cache_ent;
139 	unsigned long flags;
140 
141 	if (status) {
142 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 		kfree(mr);
144 		spin_lock_irqsave(&ent->lock, flags);
145 		ent->pending--;
146 		WRITE_ONCE(dev->fill_delay, 1);
147 		spin_unlock_irqrestore(&ent->lock, flags);
148 		mod_timer(&dev->delay_timer, jiffies + HZ);
149 		return;
150 	}
151 
152 	mr->mmkey.type = MLX5_MKEY_MR;
153 	mr->mmkey.key |= mlx5_idx_to_mkey(
154 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
155 
156 	WRITE_ONCE(dev->cache.last_add, jiffies);
157 
158 	spin_lock_irqsave(&ent->lock, flags);
159 	list_add_tail(&mr->list, &ent->head);
160 	ent->available_mrs++;
161 	ent->total_mrs++;
162 	/* If we are doing fill_to_high_water then keep going. */
163 	queue_adjust_cache_locked(ent);
164 	ent->pending--;
165 	spin_unlock_irqrestore(&ent->lock, flags);
166 }
167 
168 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
169 {
170 	struct mlx5_ib_mr *mr;
171 
172 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
173 	if (!mr)
174 		return NULL;
175 	mr->order = ent->order;
176 	mr->cache_ent = ent;
177 	mr->dev = ent->dev;
178 
179 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
180 	MLX5_SET(mkc, mkc, free, 1);
181 	MLX5_SET(mkc, mkc, umr_en, 1);
182 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
183 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
184 
185 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
186 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
187 	return mr;
188 }
189 
190 /* Asynchronously schedule new MRs to be populated in the cache. */
191 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
192 {
193 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
194 	struct mlx5_ib_mr *mr;
195 	void *mkc;
196 	u32 *in;
197 	int err = 0;
198 	int i;
199 
200 	in = kzalloc(inlen, GFP_KERNEL);
201 	if (!in)
202 		return -ENOMEM;
203 
204 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
205 	for (i = 0; i < num; i++) {
206 		mr = alloc_cache_mr(ent, mkc);
207 		if (!mr) {
208 			err = -ENOMEM;
209 			break;
210 		}
211 		spin_lock_irq(&ent->lock);
212 		if (ent->pending >= MAX_PENDING_REG_MR) {
213 			err = -EAGAIN;
214 			spin_unlock_irq(&ent->lock);
215 			kfree(mr);
216 			break;
217 		}
218 		ent->pending++;
219 		spin_unlock_irq(&ent->lock);
220 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
221 					     &ent->dev->async_ctx, in, inlen,
222 					     mr->out, sizeof(mr->out),
223 					     &mr->cb_work);
224 		if (err) {
225 			spin_lock_irq(&ent->lock);
226 			ent->pending--;
227 			spin_unlock_irq(&ent->lock);
228 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
229 			kfree(mr);
230 			break;
231 		}
232 	}
233 
234 	kfree(in);
235 	return err;
236 }
237 
238 /* Synchronously create a MR in the cache */
239 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
240 {
241 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
242 	struct mlx5_ib_mr *mr;
243 	void *mkc;
244 	u32 *in;
245 	int err;
246 
247 	in = kzalloc(inlen, GFP_KERNEL);
248 	if (!in)
249 		return ERR_PTR(-ENOMEM);
250 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
251 
252 	mr = alloc_cache_mr(ent, mkc);
253 	if (!mr) {
254 		err = -ENOMEM;
255 		goto free_in;
256 	}
257 
258 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
259 	if (err)
260 		goto free_mr;
261 
262 	mr->mmkey.type = MLX5_MKEY_MR;
263 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
264 	spin_lock_irq(&ent->lock);
265 	ent->total_mrs++;
266 	spin_unlock_irq(&ent->lock);
267 	kfree(in);
268 	return mr;
269 free_mr:
270 	kfree(mr);
271 free_in:
272 	kfree(in);
273 	return ERR_PTR(err);
274 }
275 
276 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
277 {
278 	struct mlx5_ib_mr *mr;
279 
280 	lockdep_assert_held(&ent->lock);
281 	if (list_empty(&ent->head))
282 		return;
283 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
284 	list_del(&mr->list);
285 	ent->available_mrs--;
286 	ent->total_mrs--;
287 	spin_unlock_irq(&ent->lock);
288 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
289 	kfree(mr);
290 	spin_lock_irq(&ent->lock);
291 }
292 
293 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
294 				bool limit_fill)
295 {
296 	int err;
297 
298 	lockdep_assert_held(&ent->lock);
299 
300 	while (true) {
301 		if (limit_fill)
302 			target = ent->limit * 2;
303 		if (target == ent->available_mrs + ent->pending)
304 			return 0;
305 		if (target > ent->available_mrs + ent->pending) {
306 			u32 todo = target - (ent->available_mrs + ent->pending);
307 
308 			spin_unlock_irq(&ent->lock);
309 			err = add_keys(ent, todo);
310 			if (err == -EAGAIN)
311 				usleep_range(3000, 5000);
312 			spin_lock_irq(&ent->lock);
313 			if (err) {
314 				if (err != -EAGAIN)
315 					return err;
316 			} else
317 				return 0;
318 		} else {
319 			remove_cache_mr_locked(ent);
320 		}
321 	}
322 }
323 
324 static ssize_t size_write(struct file *filp, const char __user *buf,
325 			  size_t count, loff_t *pos)
326 {
327 	struct mlx5_cache_ent *ent = filp->private_data;
328 	u32 target;
329 	int err;
330 
331 	err = kstrtou32_from_user(buf, count, 0, &target);
332 	if (err)
333 		return err;
334 
335 	/*
336 	 * Target is the new value of total_mrs the user requests, however we
337 	 * cannot free MRs that are in use. Compute the target value for
338 	 * available_mrs.
339 	 */
340 	spin_lock_irq(&ent->lock);
341 	if (target < ent->total_mrs - ent->available_mrs) {
342 		err = -EINVAL;
343 		goto err_unlock;
344 	}
345 	target = target - (ent->total_mrs - ent->available_mrs);
346 	if (target < ent->limit || target > ent->limit*2) {
347 		err = -EINVAL;
348 		goto err_unlock;
349 	}
350 	err = resize_available_mrs(ent, target, false);
351 	if (err)
352 		goto err_unlock;
353 	spin_unlock_irq(&ent->lock);
354 
355 	return count;
356 
357 err_unlock:
358 	spin_unlock_irq(&ent->lock);
359 	return err;
360 }
361 
362 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
363 			 loff_t *pos)
364 {
365 	struct mlx5_cache_ent *ent = filp->private_data;
366 	char lbuf[20];
367 	int err;
368 
369 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
370 	if (err < 0)
371 		return err;
372 
373 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
374 }
375 
376 static const struct file_operations size_fops = {
377 	.owner	= THIS_MODULE,
378 	.open	= simple_open,
379 	.write	= size_write,
380 	.read	= size_read,
381 };
382 
383 static ssize_t limit_write(struct file *filp, const char __user *buf,
384 			   size_t count, loff_t *pos)
385 {
386 	struct mlx5_cache_ent *ent = filp->private_data;
387 	u32 var;
388 	int err;
389 
390 	err = kstrtou32_from_user(buf, count, 0, &var);
391 	if (err)
392 		return err;
393 
394 	/*
395 	 * Upon set we immediately fill the cache to high water mark implied by
396 	 * the limit.
397 	 */
398 	spin_lock_irq(&ent->lock);
399 	ent->limit = var;
400 	err = resize_available_mrs(ent, 0, true);
401 	spin_unlock_irq(&ent->lock);
402 	if (err)
403 		return err;
404 	return count;
405 }
406 
407 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
408 			  loff_t *pos)
409 {
410 	struct mlx5_cache_ent *ent = filp->private_data;
411 	char lbuf[20];
412 	int err;
413 
414 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
415 	if (err < 0)
416 		return err;
417 
418 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
419 }
420 
421 static const struct file_operations limit_fops = {
422 	.owner	= THIS_MODULE,
423 	.open	= simple_open,
424 	.write	= limit_write,
425 	.read	= limit_read,
426 };
427 
428 static bool someone_adding(struct mlx5_mr_cache *cache)
429 {
430 	unsigned int i;
431 
432 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
433 		struct mlx5_cache_ent *ent = &cache->ent[i];
434 		bool ret;
435 
436 		spin_lock_irq(&ent->lock);
437 		ret = ent->available_mrs < ent->limit;
438 		spin_unlock_irq(&ent->lock);
439 		if (ret)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 /*
446  * Check if the bucket is outside the high/low water mark and schedule an async
447  * update. The cache refill has hysteresis, once the low water mark is hit it is
448  * refilled up to the high mark.
449  */
450 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
451 {
452 	lockdep_assert_held(&ent->lock);
453 
454 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
455 		return;
456 	if (ent->available_mrs < ent->limit) {
457 		ent->fill_to_high_water = true;
458 		queue_work(ent->dev->cache.wq, &ent->work);
459 	} else if (ent->fill_to_high_water &&
460 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
461 		/*
462 		 * Once we start populating due to hitting a low water mark
463 		 * continue until we pass the high water mark.
464 		 */
465 		queue_work(ent->dev->cache.wq, &ent->work);
466 	} else if (ent->available_mrs == 2 * ent->limit) {
467 		ent->fill_to_high_water = false;
468 	} else if (ent->available_mrs > 2 * ent->limit) {
469 		/* Queue deletion of excess entries */
470 		ent->fill_to_high_water = false;
471 		if (ent->pending)
472 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
473 					   msecs_to_jiffies(1000));
474 		else
475 			queue_work(ent->dev->cache.wq, &ent->work);
476 	}
477 }
478 
479 static void __cache_work_func(struct mlx5_cache_ent *ent)
480 {
481 	struct mlx5_ib_dev *dev = ent->dev;
482 	struct mlx5_mr_cache *cache = &dev->cache;
483 	int err;
484 
485 	spin_lock_irq(&ent->lock);
486 	if (ent->disabled)
487 		goto out;
488 
489 	if (ent->fill_to_high_water &&
490 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
491 	    !READ_ONCE(dev->fill_delay)) {
492 		spin_unlock_irq(&ent->lock);
493 		err = add_keys(ent, 1);
494 		spin_lock_irq(&ent->lock);
495 		if (ent->disabled)
496 			goto out;
497 		if (err) {
498 			/*
499 			 * EAGAIN only happens if pending is positive, so we
500 			 * will be rescheduled from reg_mr_callback(). The only
501 			 * failure path here is ENOMEM.
502 			 */
503 			if (err != -EAGAIN) {
504 				mlx5_ib_warn(
505 					dev,
506 					"command failed order %d, err %d\n",
507 					ent->order, err);
508 				queue_delayed_work(cache->wq, &ent->dwork,
509 						   msecs_to_jiffies(1000));
510 			}
511 		}
512 	} else if (ent->available_mrs > 2 * ent->limit) {
513 		bool need_delay;
514 
515 		/*
516 		 * The remove_cache_mr() logic is performed as garbage
517 		 * collection task. Such task is intended to be run when no
518 		 * other active processes are running.
519 		 *
520 		 * The need_resched() will return TRUE if there are user tasks
521 		 * to be activated in near future.
522 		 *
523 		 * In such case, we don't execute remove_cache_mr() and postpone
524 		 * the garbage collection work to try to run in next cycle, in
525 		 * order to free CPU resources to other tasks.
526 		 */
527 		spin_unlock_irq(&ent->lock);
528 		need_delay = need_resched() || someone_adding(cache) ||
529 			     time_after(jiffies,
530 					READ_ONCE(cache->last_add) + 300 * HZ);
531 		spin_lock_irq(&ent->lock);
532 		if (ent->disabled)
533 			goto out;
534 		if (need_delay)
535 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
536 		remove_cache_mr_locked(ent);
537 		queue_adjust_cache_locked(ent);
538 	}
539 out:
540 	spin_unlock_irq(&ent->lock);
541 }
542 
543 static void delayed_cache_work_func(struct work_struct *work)
544 {
545 	struct mlx5_cache_ent *ent;
546 
547 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
548 	__cache_work_func(ent);
549 }
550 
551 static void cache_work_func(struct work_struct *work)
552 {
553 	struct mlx5_cache_ent *ent;
554 
555 	ent = container_of(work, struct mlx5_cache_ent, work);
556 	__cache_work_func(ent);
557 }
558 
559 /* Allocate a special entry from the cache */
560 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
561 				       unsigned int entry, int access_flags)
562 {
563 	struct mlx5_mr_cache *cache = &dev->cache;
564 	struct mlx5_cache_ent *ent;
565 	struct mlx5_ib_mr *mr;
566 
567 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
568 		    entry >= ARRAY_SIZE(cache->ent)))
569 		return ERR_PTR(-EINVAL);
570 
571 	/* Matches access in alloc_cache_mr() */
572 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
573 		return ERR_PTR(-EOPNOTSUPP);
574 
575 	ent = &cache->ent[entry];
576 	spin_lock_irq(&ent->lock);
577 	if (list_empty(&ent->head)) {
578 		spin_unlock_irq(&ent->lock);
579 		mr = create_cache_mr(ent);
580 		if (IS_ERR(mr))
581 			return mr;
582 	} else {
583 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
584 		list_del(&mr->list);
585 		ent->available_mrs--;
586 		queue_adjust_cache_locked(ent);
587 		spin_unlock_irq(&ent->lock);
588 	}
589 	mr->access_flags = access_flags;
590 	return mr;
591 }
592 
593 /* Return a MR already available in the cache */
594 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
595 {
596 	struct mlx5_ib_dev *dev = req_ent->dev;
597 	struct mlx5_ib_mr *mr = NULL;
598 	struct mlx5_cache_ent *ent = req_ent;
599 
600 	/* Try larger MR pools from the cache to satisfy the allocation */
601 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
602 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
603 			    ent - dev->cache.ent);
604 
605 		spin_lock_irq(&ent->lock);
606 		if (!list_empty(&ent->head)) {
607 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
608 					      list);
609 			list_del(&mr->list);
610 			ent->available_mrs--;
611 			queue_adjust_cache_locked(ent);
612 			spin_unlock_irq(&ent->lock);
613 			break;
614 		}
615 		queue_adjust_cache_locked(ent);
616 		spin_unlock_irq(&ent->lock);
617 	}
618 
619 	if (!mr)
620 		req_ent->miss++;
621 
622 	return mr;
623 }
624 
625 static void detach_mr_from_cache(struct mlx5_ib_mr *mr)
626 {
627 	struct mlx5_cache_ent *ent = mr->cache_ent;
628 
629 	mr->cache_ent = NULL;
630 	spin_lock_irq(&ent->lock);
631 	ent->total_mrs--;
632 	spin_unlock_irq(&ent->lock);
633 }
634 
635 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
636 {
637 	struct mlx5_cache_ent *ent = mr->cache_ent;
638 
639 	if (!ent)
640 		return;
641 
642 	if (mlx5_mr_cache_invalidate(mr)) {
643 		detach_mr_from_cache(mr);
644 		destroy_mkey(dev, mr);
645 		return;
646 	}
647 
648 	spin_lock_irq(&ent->lock);
649 	list_add_tail(&mr->list, &ent->head);
650 	ent->available_mrs++;
651 	queue_adjust_cache_locked(ent);
652 	spin_unlock_irq(&ent->lock);
653 }
654 
655 static void clean_keys(struct mlx5_ib_dev *dev, int c)
656 {
657 	struct mlx5_mr_cache *cache = &dev->cache;
658 	struct mlx5_cache_ent *ent = &cache->ent[c];
659 	struct mlx5_ib_mr *tmp_mr;
660 	struct mlx5_ib_mr *mr;
661 	LIST_HEAD(del_list);
662 
663 	cancel_delayed_work(&ent->dwork);
664 	while (1) {
665 		spin_lock_irq(&ent->lock);
666 		if (list_empty(&ent->head)) {
667 			spin_unlock_irq(&ent->lock);
668 			break;
669 		}
670 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
671 		list_move(&mr->list, &del_list);
672 		ent->available_mrs--;
673 		ent->total_mrs--;
674 		spin_unlock_irq(&ent->lock);
675 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
676 	}
677 
678 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
679 		list_del(&mr->list);
680 		kfree(mr);
681 	}
682 }
683 
684 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
685 {
686 	if (!mlx5_debugfs_root || dev->is_rep)
687 		return;
688 
689 	debugfs_remove_recursive(dev->cache.root);
690 	dev->cache.root = NULL;
691 }
692 
693 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
694 {
695 	struct mlx5_mr_cache *cache = &dev->cache;
696 	struct mlx5_cache_ent *ent;
697 	struct dentry *dir;
698 	int i;
699 
700 	if (!mlx5_debugfs_root || dev->is_rep)
701 		return;
702 
703 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
704 
705 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
706 		ent = &cache->ent[i];
707 		sprintf(ent->name, "%d", ent->order);
708 		dir = debugfs_create_dir(ent->name, cache->root);
709 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
710 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
711 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
712 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
713 	}
714 }
715 
716 static void delay_time_func(struct timer_list *t)
717 {
718 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
719 
720 	WRITE_ONCE(dev->fill_delay, 0);
721 }
722 
723 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
724 {
725 	struct mlx5_mr_cache *cache = &dev->cache;
726 	struct mlx5_cache_ent *ent;
727 	int i;
728 
729 	mutex_init(&dev->slow_path_mutex);
730 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
731 	if (!cache->wq) {
732 		mlx5_ib_warn(dev, "failed to create work queue\n");
733 		return -ENOMEM;
734 	}
735 
736 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
737 	timer_setup(&dev->delay_timer, delay_time_func, 0);
738 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
739 		ent = &cache->ent[i];
740 		INIT_LIST_HEAD(&ent->head);
741 		spin_lock_init(&ent->lock);
742 		ent->order = i + 2;
743 		ent->dev = dev;
744 		ent->limit = 0;
745 
746 		INIT_WORK(&ent->work, cache_work_func);
747 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
748 
749 		if (i > MR_CACHE_LAST_STD_ENTRY) {
750 			mlx5_odp_init_mr_cache_entry(ent);
751 			continue;
752 		}
753 
754 		if (ent->order > mr_cache_max_order(dev))
755 			continue;
756 
757 		ent->page = PAGE_SHIFT;
758 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
759 			   MLX5_IB_UMR_OCTOWORD;
760 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
761 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
762 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
763 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
764 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
765 		else
766 			ent->limit = 0;
767 		spin_lock_irq(&ent->lock);
768 		queue_adjust_cache_locked(ent);
769 		spin_unlock_irq(&ent->lock);
770 	}
771 
772 	mlx5_mr_cache_debugfs_init(dev);
773 
774 	return 0;
775 }
776 
777 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
778 {
779 	unsigned int i;
780 
781 	if (!dev->cache.wq)
782 		return 0;
783 
784 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
785 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
786 
787 		spin_lock_irq(&ent->lock);
788 		ent->disabled = true;
789 		spin_unlock_irq(&ent->lock);
790 		cancel_work_sync(&ent->work);
791 		cancel_delayed_work_sync(&ent->dwork);
792 	}
793 
794 	mlx5_mr_cache_debugfs_cleanup(dev);
795 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
796 
797 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
798 		clean_keys(dev, i);
799 
800 	destroy_workqueue(dev->cache.wq);
801 	del_timer_sync(&dev->delay_timer);
802 
803 	return 0;
804 }
805 
806 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
807 {
808 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
809 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
810 	struct mlx5_ib_mr *mr;
811 	void *mkc;
812 	u32 *in;
813 	int err;
814 
815 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
816 	if (!mr)
817 		return ERR_PTR(-ENOMEM);
818 
819 	in = kzalloc(inlen, GFP_KERNEL);
820 	if (!in) {
821 		err = -ENOMEM;
822 		goto err_free;
823 	}
824 
825 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
826 
827 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
828 	MLX5_SET(mkc, mkc, length64, 1);
829 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
830 
831 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
832 	if (err)
833 		goto err_in;
834 
835 	kfree(in);
836 	mr->mmkey.type = MLX5_MKEY_MR;
837 	mr->ibmr.lkey = mr->mmkey.key;
838 	mr->ibmr.rkey = mr->mmkey.key;
839 	mr->umem = NULL;
840 
841 	return &mr->ibmr;
842 
843 err_in:
844 	kfree(in);
845 
846 err_free:
847 	kfree(mr);
848 
849 	return ERR_PTR(err);
850 }
851 
852 static int get_octo_len(u64 addr, u64 len, int page_shift)
853 {
854 	u64 page_size = 1ULL << page_shift;
855 	u64 offset;
856 	int npages;
857 
858 	offset = addr & (page_size - 1);
859 	npages = ALIGN(len + offset, page_size) >> page_shift;
860 	return (npages + 1) / 2;
861 }
862 
863 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
864 {
865 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
866 		return MR_CACHE_LAST_STD_ENTRY + 2;
867 	return MLX5_MAX_UMR_SHIFT;
868 }
869 
870 static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length,
871 		       int access_flags, struct ib_umem **umem, int *npages,
872 		       int *page_shift, int *ncont, int *order)
873 {
874 	struct ib_umem *u;
875 
876 	*umem = NULL;
877 
878 	if (access_flags & IB_ACCESS_ON_DEMAND) {
879 		struct ib_umem_odp *odp;
880 
881 		odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
882 				      &mlx5_mn_ops);
883 		if (IS_ERR(odp)) {
884 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
885 				    PTR_ERR(odp));
886 			return PTR_ERR(odp);
887 		}
888 
889 		u = &odp->umem;
890 
891 		*page_shift = odp->page_shift;
892 		*ncont = ib_umem_odp_num_pages(odp);
893 		*npages = *ncont << (*page_shift - PAGE_SHIFT);
894 		if (order)
895 			*order = ilog2(roundup_pow_of_two(*ncont));
896 	} else {
897 		u = ib_umem_get(&dev->ib_dev, start, length, access_flags);
898 		if (IS_ERR(u)) {
899 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
900 			return PTR_ERR(u);
901 		}
902 
903 		mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
904 				   page_shift, ncont, order);
905 	}
906 
907 	if (!*npages) {
908 		mlx5_ib_warn(dev, "avoid zero region\n");
909 		ib_umem_release(u);
910 		return -EINVAL;
911 	}
912 
913 	*umem = u;
914 
915 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
916 		    *npages, *ncont, *order, *page_shift);
917 
918 	return 0;
919 }
920 
921 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
922 {
923 	struct mlx5_ib_umr_context *context =
924 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
925 
926 	context->status = wc->status;
927 	complete(&context->done);
928 }
929 
930 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
931 {
932 	context->cqe.done = mlx5_ib_umr_done;
933 	context->status = -1;
934 	init_completion(&context->done);
935 }
936 
937 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
938 				  struct mlx5_umr_wr *umrwr)
939 {
940 	struct umr_common *umrc = &dev->umrc;
941 	const struct ib_send_wr *bad;
942 	int err;
943 	struct mlx5_ib_umr_context umr_context;
944 
945 	mlx5_ib_init_umr_context(&umr_context);
946 	umrwr->wr.wr_cqe = &umr_context.cqe;
947 
948 	down(&umrc->sem);
949 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
950 	if (err) {
951 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
952 	} else {
953 		wait_for_completion(&umr_context.done);
954 		if (umr_context.status != IB_WC_SUCCESS) {
955 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
956 				     umr_context.status);
957 			err = -EFAULT;
958 		}
959 	}
960 	up(&umrc->sem);
961 	return err;
962 }
963 
964 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
965 						      unsigned int order)
966 {
967 	struct mlx5_mr_cache *cache = &dev->cache;
968 
969 	if (order < cache->ent[0].order)
970 		return &cache->ent[0];
971 	order = order - cache->ent[0].order;
972 	if (order > MR_CACHE_LAST_STD_ENTRY)
973 		return NULL;
974 	return &cache->ent[order];
975 }
976 
977 static struct mlx5_ib_mr *
978 alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr,
979 		    u64 len, int npages, int page_shift, unsigned int order,
980 		    int access_flags)
981 {
982 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
983 	struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order);
984 	struct mlx5_ib_mr *mr;
985 
986 	if (!ent)
987 		return ERR_PTR(-E2BIG);
988 
989 	/* Matches access in alloc_cache_mr() */
990 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
991 		return ERR_PTR(-EOPNOTSUPP);
992 
993 	mr = get_cache_mr(ent);
994 	if (!mr) {
995 		mr = create_cache_mr(ent);
996 		if (IS_ERR(mr))
997 			return mr;
998 	}
999 
1000 	mr->ibmr.pd = pd;
1001 	mr->umem = umem;
1002 	mr->access_flags = access_flags;
1003 	mr->desc_size = sizeof(struct mlx5_mtt);
1004 	mr->mmkey.iova = virt_addr;
1005 	mr->mmkey.size = len;
1006 	mr->mmkey.pd = to_mpd(pd)->pdn;
1007 
1008 	return mr;
1009 }
1010 
1011 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
1012 			    MLX5_UMR_MTT_ALIGNMENT)
1013 #define MLX5_SPARE_UMR_CHUNK 0x10000
1014 
1015 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1016 		       int page_shift, int flags)
1017 {
1018 	struct mlx5_ib_dev *dev = mr->dev;
1019 	struct device *ddev = dev->ib_dev.dev.parent;
1020 	int size;
1021 	void *xlt;
1022 	dma_addr_t dma;
1023 	struct mlx5_umr_wr wr;
1024 	struct ib_sge sg;
1025 	int err = 0;
1026 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1027 			       ? sizeof(struct mlx5_klm)
1028 			       : sizeof(struct mlx5_mtt);
1029 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1030 	const int page_mask = page_align - 1;
1031 	size_t pages_mapped = 0;
1032 	size_t pages_to_map = 0;
1033 	size_t pages_iter = 0;
1034 	size_t size_to_map = 0;
1035 	gfp_t gfp;
1036 	bool use_emergency_page = false;
1037 
1038 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1039 	    !umr_can_use_indirect_mkey(dev))
1040 		return -EPERM;
1041 
1042 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1043 	 * so we need to align the offset and length accordingly
1044 	 */
1045 	if (idx & page_mask) {
1046 		npages += idx & page_mask;
1047 		idx &= ~page_mask;
1048 	}
1049 
1050 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
1051 	gfp |= __GFP_ZERO | __GFP_NOWARN;
1052 
1053 	pages_to_map = ALIGN(npages, page_align);
1054 	size = desc_size * pages_to_map;
1055 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
1056 
1057 	xlt = (void *)__get_free_pages(gfp, get_order(size));
1058 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
1059 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
1060 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
1061 
1062 		size = MLX5_SPARE_UMR_CHUNK;
1063 		xlt = (void *)__get_free_pages(gfp, get_order(size));
1064 	}
1065 
1066 	if (!xlt) {
1067 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
1068 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
1069 		size = PAGE_SIZE;
1070 		memset(xlt, 0, size);
1071 		use_emergency_page = true;
1072 	}
1073 	pages_iter = size / desc_size;
1074 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
1075 	if (dma_mapping_error(ddev, dma)) {
1076 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1077 		err = -ENOMEM;
1078 		goto free_xlt;
1079 	}
1080 
1081 	if (mr->umem->is_odp) {
1082 		if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1083 			struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1084 			size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1085 
1086 			pages_to_map = min_t(size_t, pages_to_map, max_pages);
1087 		}
1088 	}
1089 
1090 	sg.addr = dma;
1091 	sg.lkey = dev->umrc.pd->local_dma_lkey;
1092 
1093 	memset(&wr, 0, sizeof(wr));
1094 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1095 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1096 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1097 	wr.wr.sg_list = &sg;
1098 	wr.wr.num_sge = 1;
1099 	wr.wr.opcode = MLX5_IB_WR_UMR;
1100 
1101 	wr.pd = mr->ibmr.pd;
1102 	wr.mkey = mr->mmkey.key;
1103 	wr.length = mr->mmkey.size;
1104 	wr.virt_addr = mr->mmkey.iova;
1105 	wr.access_flags = mr->access_flags;
1106 	wr.page_shift = page_shift;
1107 
1108 	for (pages_mapped = 0;
1109 	     pages_mapped < pages_to_map && !err;
1110 	     pages_mapped += pages_iter, idx += pages_iter) {
1111 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1112 		size_to_map = npages * desc_size;
1113 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1114 		if (mr->umem->is_odp) {
1115 			mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1116 		} else {
1117 			__mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx,
1118 					       npages, xlt,
1119 					       MLX5_IB_MTT_PRESENT);
1120 			/* Clear padding after the pages
1121 			 * brought from the umem.
1122 			 */
1123 			memset(xlt + size_to_map, 0, size - size_to_map);
1124 		}
1125 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1126 
1127 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1128 
1129 		if (pages_mapped + pages_iter >= pages_to_map) {
1130 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1131 				wr.wr.send_flags |=
1132 					MLX5_IB_SEND_UMR_ENABLE_MR |
1133 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1134 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1135 			if (flags & MLX5_IB_UPD_XLT_PD ||
1136 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1137 				wr.wr.send_flags |=
1138 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1139 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1140 				wr.wr.send_flags |=
1141 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1142 		}
1143 
1144 		wr.offset = idx * desc_size;
1145 		wr.xlt_size = sg.length;
1146 
1147 		err = mlx5_ib_post_send_wait(dev, &wr);
1148 	}
1149 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1150 
1151 free_xlt:
1152 	if (use_emergency_page)
1153 		mlx5_ib_put_xlt_emergency_page();
1154 	else
1155 		free_pages((unsigned long)xlt, get_order(size));
1156 
1157 	return err;
1158 }
1159 
1160 /*
1161  * If ibmr is NULL it will be allocated by reg_create.
1162  * Else, the given ibmr will be used.
1163  */
1164 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1165 				     u64 virt_addr, u64 length,
1166 				     struct ib_umem *umem, int npages,
1167 				     int page_shift, int access_flags,
1168 				     bool populate)
1169 {
1170 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1171 	struct mlx5_ib_mr *mr;
1172 	__be64 *pas;
1173 	void *mkc;
1174 	int inlen;
1175 	u32 *in;
1176 	int err;
1177 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1178 
1179 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1180 	if (!mr)
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	mr->ibmr.pd = pd;
1184 	mr->access_flags = access_flags;
1185 
1186 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1187 	if (populate)
1188 		inlen += sizeof(*pas) * roundup(npages, 2);
1189 	in = kvzalloc(inlen, GFP_KERNEL);
1190 	if (!in) {
1191 		err = -ENOMEM;
1192 		goto err_1;
1193 	}
1194 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1195 	if (populate) {
1196 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1197 			err = -EINVAL;
1198 			goto err_2;
1199 		}
1200 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1201 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1202 	}
1203 
1204 	/* The pg_access bit allows setting the access flags
1205 	 * in the page list submitted with the command. */
1206 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1207 
1208 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1209 	set_mkc_access_pd_addr_fields(mkc, access_flags, virt_addr,
1210 				      populate ? pd : dev->umrc.pd);
1211 	MLX5_SET(mkc, mkc, free, !populate);
1212 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1213 	MLX5_SET(mkc, mkc, umr_en, 1);
1214 
1215 	MLX5_SET64(mkc, mkc, len, length);
1216 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1217 	MLX5_SET(mkc, mkc, translations_octword_size,
1218 		 get_octo_len(virt_addr, length, page_shift));
1219 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1220 	if (populate) {
1221 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1222 			 get_octo_len(virt_addr, length, page_shift));
1223 	}
1224 
1225 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1226 	if (err) {
1227 		mlx5_ib_warn(dev, "create mkey failed\n");
1228 		goto err_2;
1229 	}
1230 	mr->mmkey.type = MLX5_MKEY_MR;
1231 	mr->desc_size = sizeof(struct mlx5_mtt);
1232 	mr->dev = dev;
1233 	kvfree(in);
1234 
1235 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1236 
1237 	return mr;
1238 
1239 err_2:
1240 	kvfree(in);
1241 
1242 err_1:
1243 	if (!ibmr)
1244 		kfree(mr);
1245 
1246 	return ERR_PTR(err);
1247 }
1248 
1249 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1250 			  int npages, u64 length, int access_flags)
1251 {
1252 	mr->npages = npages;
1253 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1254 	mr->ibmr.lkey = mr->mmkey.key;
1255 	mr->ibmr.rkey = mr->mmkey.key;
1256 	mr->ibmr.length = length;
1257 	mr->access_flags = access_flags;
1258 }
1259 
1260 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1261 				       u64 length, int acc, int mode)
1262 {
1263 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1264 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1265 	struct mlx5_ib_mr *mr;
1266 	void *mkc;
1267 	u32 *in;
1268 	int err;
1269 
1270 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1271 	if (!mr)
1272 		return ERR_PTR(-ENOMEM);
1273 
1274 	in = kzalloc(inlen, GFP_KERNEL);
1275 	if (!in) {
1276 		err = -ENOMEM;
1277 		goto err_free;
1278 	}
1279 
1280 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1281 
1282 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1283 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1284 	MLX5_SET64(mkc, mkc, len, length);
1285 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1286 
1287 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1288 	if (err)
1289 		goto err_in;
1290 
1291 	kfree(in);
1292 
1293 	mr->umem = NULL;
1294 	set_mr_fields(dev, mr, 0, length, acc);
1295 
1296 	return &mr->ibmr;
1297 
1298 err_in:
1299 	kfree(in);
1300 
1301 err_free:
1302 	kfree(mr);
1303 
1304 	return ERR_PTR(err);
1305 }
1306 
1307 int mlx5_ib_advise_mr(struct ib_pd *pd,
1308 		      enum ib_uverbs_advise_mr_advice advice,
1309 		      u32 flags,
1310 		      struct ib_sge *sg_list,
1311 		      u32 num_sge,
1312 		      struct uverbs_attr_bundle *attrs)
1313 {
1314 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1315 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1316 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1317 		return -EOPNOTSUPP;
1318 
1319 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1320 					 sg_list, num_sge);
1321 }
1322 
1323 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1324 				struct ib_dm_mr_attr *attr,
1325 				struct uverbs_attr_bundle *attrs)
1326 {
1327 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1328 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1329 	u64 start_addr = mdm->dev_addr + attr->offset;
1330 	int mode;
1331 
1332 	switch (mdm->type) {
1333 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1334 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1335 			return ERR_PTR(-EINVAL);
1336 
1337 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1338 		start_addr -= pci_resource_start(dev->pdev, 0);
1339 		break;
1340 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1341 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1342 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1343 			return ERR_PTR(-EINVAL);
1344 
1345 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1346 		break;
1347 	default:
1348 		return ERR_PTR(-EINVAL);
1349 	}
1350 
1351 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1352 				 attr->access_flags, mode);
1353 }
1354 
1355 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1356 				  u64 virt_addr, int access_flags,
1357 				  struct ib_udata *udata)
1358 {
1359 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1360 	struct mlx5_ib_mr *mr = NULL;
1361 	bool xlt_with_umr;
1362 	struct ib_umem *umem;
1363 	int page_shift;
1364 	int npages;
1365 	int ncont;
1366 	int order;
1367 	int err;
1368 
1369 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1370 		return ERR_PTR(-EOPNOTSUPP);
1371 
1372 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1373 		    start, virt_addr, length, access_flags);
1374 
1375 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, length);
1376 	/* ODP requires xlt update via umr to work. */
1377 	if (!xlt_with_umr && (access_flags & IB_ACCESS_ON_DEMAND))
1378 		return ERR_PTR(-EINVAL);
1379 
1380 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1381 	    length == U64_MAX) {
1382 		if (virt_addr != start)
1383 			return ERR_PTR(-EINVAL);
1384 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1385 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1386 			return ERR_PTR(-EINVAL);
1387 
1388 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1389 		if (IS_ERR(mr))
1390 			return ERR_CAST(mr);
1391 		return &mr->ibmr;
1392 	}
1393 
1394 	err = mr_umem_get(dev, start, length, access_flags, &umem,
1395 			  &npages, &page_shift, &ncont, &order);
1396 
1397 	if (err < 0)
1398 		return ERR_PTR(err);
1399 
1400 	if (xlt_with_umr) {
1401 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1402 					 page_shift, order, access_flags);
1403 		if (IS_ERR(mr))
1404 			mr = NULL;
1405 	}
1406 
1407 	if (!mr) {
1408 		mutex_lock(&dev->slow_path_mutex);
1409 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1410 				page_shift, access_flags, !xlt_with_umr);
1411 		mutex_unlock(&dev->slow_path_mutex);
1412 	}
1413 
1414 	if (IS_ERR(mr)) {
1415 		err = PTR_ERR(mr);
1416 		goto error;
1417 	}
1418 
1419 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1420 
1421 	mr->umem = umem;
1422 	set_mr_fields(dev, mr, npages, length, access_flags);
1423 
1424 	if (xlt_with_umr && !(access_flags & IB_ACCESS_ON_DEMAND)) {
1425 		/*
1426 		 * If the MR was created with reg_create then it will be
1427 		 * configured properly but left disabled. It is safe to go ahead
1428 		 * and configure it again via UMR while enabling it.
1429 		 */
1430 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1431 
1432 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1433 					 update_xlt_flags);
1434 		if (err) {
1435 			dereg_mr(dev, mr);
1436 			return ERR_PTR(err);
1437 		}
1438 	}
1439 
1440 	if (is_odp_mr(mr)) {
1441 		to_ib_umem_odp(mr->umem)->private = mr;
1442 		init_waitqueue_head(&mr->q_deferred_work);
1443 		atomic_set(&mr->num_deferred_work, 0);
1444 		err = xa_err(xa_store(&dev->odp_mkeys,
1445 				      mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
1446 				      GFP_KERNEL));
1447 		if (err) {
1448 			dereg_mr(dev, mr);
1449 			return ERR_PTR(err);
1450 		}
1451 
1452 		err = mlx5_ib_init_odp_mr(mr, xlt_with_umr);
1453 		if (err) {
1454 			dereg_mr(dev, mr);
1455 			return ERR_PTR(err);
1456 		}
1457 	}
1458 
1459 	return &mr->ibmr;
1460 error:
1461 	ib_umem_release(umem);
1462 	return ERR_PTR(err);
1463 }
1464 
1465 /**
1466  * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1467  * @mr: The MR to fence
1468  *
1469  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1470  * and any DMA inprogress will be completed. Failure of this function
1471  * indicates the HW has failed catastrophically.
1472  */
1473 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1474 {
1475 	struct mlx5_umr_wr umrwr = {};
1476 
1477 	if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1478 		return 0;
1479 
1480 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1481 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1482 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1483 	umrwr.pd = mr->dev->umrc.pd;
1484 	umrwr.mkey = mr->mmkey.key;
1485 	umrwr.ignore_free_state = 1;
1486 
1487 	return mlx5_ib_post_send_wait(mr->dev, &umrwr);
1488 }
1489 
1490 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1491 		     int access_flags, int flags)
1492 {
1493 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1494 	struct mlx5_umr_wr umrwr = {};
1495 	int err;
1496 
1497 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1498 
1499 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1500 	umrwr.mkey = mr->mmkey.key;
1501 
1502 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1503 		umrwr.pd = pd;
1504 		umrwr.access_flags = access_flags;
1505 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1506 	}
1507 
1508 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1509 
1510 	return err;
1511 }
1512 
1513 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1514 			  u64 length, u64 virt_addr, int new_access_flags,
1515 			  struct ib_pd *new_pd, struct ib_udata *udata)
1516 {
1517 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1518 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1519 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1520 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1521 			    new_access_flags :
1522 			    mr->access_flags;
1523 	int page_shift = 0;
1524 	int upd_flags = 0;
1525 	int npages = 0;
1526 	int ncont = 0;
1527 	int order = 0;
1528 	u64 addr, len;
1529 	int err;
1530 
1531 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1532 		    start, virt_addr, length, access_flags);
1533 
1534 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1535 
1536 	if (!mr->umem)
1537 		return -EINVAL;
1538 
1539 	if (is_odp_mr(mr))
1540 		return -EOPNOTSUPP;
1541 
1542 	if (flags & IB_MR_REREG_TRANS) {
1543 		addr = virt_addr;
1544 		len = length;
1545 	} else {
1546 		addr = mr->umem->address;
1547 		len = mr->umem->length;
1548 	}
1549 
1550 	if (flags != IB_MR_REREG_PD) {
1551 		/*
1552 		 * Replace umem. This needs to be done whether or not UMR is
1553 		 * used.
1554 		 */
1555 		flags |= IB_MR_REREG_TRANS;
1556 		ib_umem_release(mr->umem);
1557 		mr->umem = NULL;
1558 		err = mr_umem_get(dev, addr, len, access_flags, &mr->umem,
1559 				  &npages, &page_shift, &ncont, &order);
1560 		if (err)
1561 			goto err;
1562 	}
1563 
1564 	if (!mlx5_ib_can_reconfig_with_umr(dev, mr->access_flags,
1565 					   access_flags) ||
1566 	    !mlx5_ib_can_load_pas_with_umr(dev, len) ||
1567 	    (flags & IB_MR_REREG_TRANS &&
1568 	     !mlx5_ib_pas_fits_in_mr(mr, addr, len))) {
1569 		/*
1570 		 * UMR can't be used - MKey needs to be replaced.
1571 		 */
1572 		if (mr->cache_ent)
1573 			detach_mr_from_cache(mr);
1574 		err = destroy_mkey(dev, mr);
1575 		if (err)
1576 			goto err;
1577 
1578 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1579 				page_shift, access_flags, true);
1580 
1581 		if (IS_ERR(mr)) {
1582 			err = PTR_ERR(mr);
1583 			mr = to_mmr(ib_mr);
1584 			goto err;
1585 		}
1586 	} else {
1587 		/*
1588 		 * Send a UMR WQE
1589 		 */
1590 		mr->ibmr.pd = pd;
1591 		mr->access_flags = access_flags;
1592 		mr->mmkey.iova = addr;
1593 		mr->mmkey.size = len;
1594 		mr->mmkey.pd = to_mpd(pd)->pdn;
1595 
1596 		if (flags & IB_MR_REREG_TRANS) {
1597 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1598 			if (flags & IB_MR_REREG_PD)
1599 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1600 			if (flags & IB_MR_REREG_ACCESS)
1601 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1602 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1603 						 upd_flags);
1604 		} else {
1605 			err = rereg_umr(pd, mr, access_flags, flags);
1606 		}
1607 
1608 		if (err)
1609 			goto err;
1610 	}
1611 
1612 	set_mr_fields(dev, mr, npages, len, access_flags);
1613 
1614 	return 0;
1615 
1616 err:
1617 	ib_umem_release(mr->umem);
1618 	mr->umem = NULL;
1619 
1620 	clean_mr(dev, mr);
1621 	return err;
1622 }
1623 
1624 static int
1625 mlx5_alloc_priv_descs(struct ib_device *device,
1626 		      struct mlx5_ib_mr *mr,
1627 		      int ndescs,
1628 		      int desc_size)
1629 {
1630 	int size = ndescs * desc_size;
1631 	int add_size;
1632 	int ret;
1633 
1634 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1635 
1636 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1637 	if (!mr->descs_alloc)
1638 		return -ENOMEM;
1639 
1640 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1641 
1642 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1643 				      size, DMA_TO_DEVICE);
1644 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1645 		ret = -ENOMEM;
1646 		goto err;
1647 	}
1648 
1649 	return 0;
1650 err:
1651 	kfree(mr->descs_alloc);
1652 
1653 	return ret;
1654 }
1655 
1656 static void
1657 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1658 {
1659 	if (mr->descs) {
1660 		struct ib_device *device = mr->ibmr.device;
1661 		int size = mr->max_descs * mr->desc_size;
1662 
1663 		dma_unmap_single(device->dev.parent, mr->desc_map,
1664 				 size, DMA_TO_DEVICE);
1665 		kfree(mr->descs_alloc);
1666 		mr->descs = NULL;
1667 	}
1668 }
1669 
1670 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1671 {
1672 	if (mr->sig) {
1673 		if (mlx5_core_destroy_psv(dev->mdev,
1674 					  mr->sig->psv_memory.psv_idx))
1675 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1676 				     mr->sig->psv_memory.psv_idx);
1677 		if (mlx5_core_destroy_psv(dev->mdev,
1678 					  mr->sig->psv_wire.psv_idx))
1679 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1680 				     mr->sig->psv_wire.psv_idx);
1681 		xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1682 		kfree(mr->sig);
1683 		mr->sig = NULL;
1684 	}
1685 
1686 	if (!mr->cache_ent) {
1687 		destroy_mkey(dev, mr);
1688 		mlx5_free_priv_descs(mr);
1689 	}
1690 }
1691 
1692 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1693 {
1694 	int npages = mr->npages;
1695 	struct ib_umem *umem = mr->umem;
1696 
1697 	/* Stop all DMA */
1698 	if (is_odp_mr(mr))
1699 		mlx5_ib_fence_odp_mr(mr);
1700 	else
1701 		clean_mr(dev, mr);
1702 
1703 	if (mr->cache_ent)
1704 		mlx5_mr_cache_free(dev, mr);
1705 	else
1706 		kfree(mr);
1707 
1708 	ib_umem_release(umem);
1709 	atomic_sub(npages, &dev->mdev->priv.reg_pages);
1710 
1711 }
1712 
1713 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1714 {
1715 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1716 
1717 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1718 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1719 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1720 	}
1721 
1722 	if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
1723 		mlx5_ib_free_implicit_mr(mmr);
1724 		return 0;
1725 	}
1726 
1727 	dereg_mr(to_mdev(ibmr->device), mmr);
1728 
1729 	return 0;
1730 }
1731 
1732 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1733 				   int access_mode, int page_shift)
1734 {
1735 	void *mkc;
1736 
1737 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1738 
1739 	/* This is only used from the kernel, so setting the PD is OK. */
1740 	set_mkc_access_pd_addr_fields(mkc, 0, 0, pd);
1741 	MLX5_SET(mkc, mkc, free, 1);
1742 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1743 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1744 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1745 	MLX5_SET(mkc, mkc, umr_en, 1);
1746 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1747 }
1748 
1749 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1750 				  int ndescs, int desc_size, int page_shift,
1751 				  int access_mode, u32 *in, int inlen)
1752 {
1753 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1754 	int err;
1755 
1756 	mr->access_mode = access_mode;
1757 	mr->desc_size = desc_size;
1758 	mr->max_descs = ndescs;
1759 
1760 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1761 	if (err)
1762 		return err;
1763 
1764 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1765 
1766 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1767 	if (err)
1768 		goto err_free_descs;
1769 
1770 	mr->mmkey.type = MLX5_MKEY_MR;
1771 	mr->ibmr.lkey = mr->mmkey.key;
1772 	mr->ibmr.rkey = mr->mmkey.key;
1773 
1774 	return 0;
1775 
1776 err_free_descs:
1777 	mlx5_free_priv_descs(mr);
1778 	return err;
1779 }
1780 
1781 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1782 				u32 max_num_sg, u32 max_num_meta_sg,
1783 				int desc_size, int access_mode)
1784 {
1785 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1786 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1787 	int page_shift = 0;
1788 	struct mlx5_ib_mr *mr;
1789 	u32 *in;
1790 	int err;
1791 
1792 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1793 	if (!mr)
1794 		return ERR_PTR(-ENOMEM);
1795 
1796 	mr->ibmr.pd = pd;
1797 	mr->ibmr.device = pd->device;
1798 
1799 	in = kzalloc(inlen, GFP_KERNEL);
1800 	if (!in) {
1801 		err = -ENOMEM;
1802 		goto err_free;
1803 	}
1804 
1805 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1806 		page_shift = PAGE_SHIFT;
1807 
1808 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1809 				     access_mode, in, inlen);
1810 	if (err)
1811 		goto err_free_in;
1812 
1813 	mr->umem = NULL;
1814 	kfree(in);
1815 
1816 	return mr;
1817 
1818 err_free_in:
1819 	kfree(in);
1820 err_free:
1821 	kfree(mr);
1822 	return ERR_PTR(err);
1823 }
1824 
1825 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1826 				    int ndescs, u32 *in, int inlen)
1827 {
1828 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1829 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1830 				      inlen);
1831 }
1832 
1833 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1834 				    int ndescs, u32 *in, int inlen)
1835 {
1836 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1837 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1838 }
1839 
1840 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1841 				      int max_num_sg, int max_num_meta_sg,
1842 				      u32 *in, int inlen)
1843 {
1844 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1845 	u32 psv_index[2];
1846 	void *mkc;
1847 	int err;
1848 
1849 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1850 	if (!mr->sig)
1851 		return -ENOMEM;
1852 
1853 	/* create mem & wire PSVs */
1854 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1855 	if (err)
1856 		goto err_free_sig;
1857 
1858 	mr->sig->psv_memory.psv_idx = psv_index[0];
1859 	mr->sig->psv_wire.psv_idx = psv_index[1];
1860 
1861 	mr->sig->sig_status_checked = true;
1862 	mr->sig->sig_err_exists = false;
1863 	/* Next UMR, Arm SIGERR */
1864 	++mr->sig->sigerr_count;
1865 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1866 					 sizeof(struct mlx5_klm),
1867 					 MLX5_MKC_ACCESS_MODE_KLMS);
1868 	if (IS_ERR(mr->klm_mr)) {
1869 		err = PTR_ERR(mr->klm_mr);
1870 		goto err_destroy_psv;
1871 	}
1872 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1873 					 sizeof(struct mlx5_mtt),
1874 					 MLX5_MKC_ACCESS_MODE_MTT);
1875 	if (IS_ERR(mr->mtt_mr)) {
1876 		err = PTR_ERR(mr->mtt_mr);
1877 		goto err_free_klm_mr;
1878 	}
1879 
1880 	/* Set bsf descriptors for mkey */
1881 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1882 	MLX5_SET(mkc, mkc, bsf_en, 1);
1883 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1884 
1885 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1886 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1887 	if (err)
1888 		goto err_free_mtt_mr;
1889 
1890 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1891 			      mr->sig, GFP_KERNEL));
1892 	if (err)
1893 		goto err_free_descs;
1894 	return 0;
1895 
1896 err_free_descs:
1897 	destroy_mkey(dev, mr);
1898 	mlx5_free_priv_descs(mr);
1899 err_free_mtt_mr:
1900 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1901 	mr->mtt_mr = NULL;
1902 err_free_klm_mr:
1903 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1904 	mr->klm_mr = NULL;
1905 err_destroy_psv:
1906 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1907 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1908 			     mr->sig->psv_memory.psv_idx);
1909 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1910 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1911 			     mr->sig->psv_wire.psv_idx);
1912 err_free_sig:
1913 	kfree(mr->sig);
1914 
1915 	return err;
1916 }
1917 
1918 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1919 					enum ib_mr_type mr_type, u32 max_num_sg,
1920 					u32 max_num_meta_sg)
1921 {
1922 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1923 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1924 	int ndescs = ALIGN(max_num_sg, 4);
1925 	struct mlx5_ib_mr *mr;
1926 	u32 *in;
1927 	int err;
1928 
1929 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1930 	if (!mr)
1931 		return ERR_PTR(-ENOMEM);
1932 
1933 	in = kzalloc(inlen, GFP_KERNEL);
1934 	if (!in) {
1935 		err = -ENOMEM;
1936 		goto err_free;
1937 	}
1938 
1939 	mr->ibmr.device = pd->device;
1940 	mr->umem = NULL;
1941 
1942 	switch (mr_type) {
1943 	case IB_MR_TYPE_MEM_REG:
1944 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1945 		break;
1946 	case IB_MR_TYPE_SG_GAPS:
1947 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1948 		break;
1949 	case IB_MR_TYPE_INTEGRITY:
1950 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1951 						 max_num_meta_sg, in, inlen);
1952 		break;
1953 	default:
1954 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1955 		err = -EINVAL;
1956 	}
1957 
1958 	if (err)
1959 		goto err_free_in;
1960 
1961 	kfree(in);
1962 
1963 	return &mr->ibmr;
1964 
1965 err_free_in:
1966 	kfree(in);
1967 err_free:
1968 	kfree(mr);
1969 	return ERR_PTR(err);
1970 }
1971 
1972 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1973 			       u32 max_num_sg)
1974 {
1975 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1976 }
1977 
1978 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1979 					 u32 max_num_sg, u32 max_num_meta_sg)
1980 {
1981 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1982 				  max_num_meta_sg);
1983 }
1984 
1985 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1986 {
1987 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1988 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1989 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
1990 	u32 *in = NULL;
1991 	void *mkc;
1992 	int ndescs;
1993 	int err;
1994 	struct mlx5_ib_alloc_mw req = {};
1995 	struct {
1996 		__u32	comp_mask;
1997 		__u32	response_length;
1998 	} resp = {};
1999 
2000 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2001 	if (err)
2002 		return err;
2003 
2004 	if (req.comp_mask || req.reserved1 || req.reserved2)
2005 		return -EOPNOTSUPP;
2006 
2007 	if (udata->inlen > sizeof(req) &&
2008 	    !ib_is_udata_cleared(udata, sizeof(req),
2009 				 udata->inlen - sizeof(req)))
2010 		return -EOPNOTSUPP;
2011 
2012 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2013 
2014 	in = kzalloc(inlen, GFP_KERNEL);
2015 	if (!in) {
2016 		err = -ENOMEM;
2017 		goto free;
2018 	}
2019 
2020 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2021 
2022 	MLX5_SET(mkc, mkc, free, 1);
2023 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2024 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2025 	MLX5_SET(mkc, mkc, umr_en, 1);
2026 	MLX5_SET(mkc, mkc, lr, 1);
2027 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2028 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2029 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2030 
2031 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2032 	if (err)
2033 		goto free;
2034 
2035 	mw->mmkey.type = MLX5_MKEY_MW;
2036 	ibmw->rkey = mw->mmkey.key;
2037 	mw->ndescs = ndescs;
2038 
2039 	resp.response_length =
2040 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2041 	if (resp.response_length) {
2042 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2043 		if (err)
2044 			goto free_mkey;
2045 	}
2046 
2047 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2048 		err = xa_err(xa_store(&dev->odp_mkeys,
2049 				      mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
2050 				      GFP_KERNEL));
2051 		if (err)
2052 			goto free_mkey;
2053 	}
2054 
2055 	kfree(in);
2056 	return 0;
2057 
2058 free_mkey:
2059 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2060 free:
2061 	kfree(in);
2062 	return err;
2063 }
2064 
2065 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2066 {
2067 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2068 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2069 
2070 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2071 		xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
2072 		/*
2073 		 * pagefault_single_data_segment() may be accessing mmw under
2074 		 * SRCU if the user bound an ODP MR to this MW.
2075 		 */
2076 		synchronize_srcu(&dev->odp_srcu);
2077 	}
2078 
2079 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2080 }
2081 
2082 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2083 			    struct ib_mr_status *mr_status)
2084 {
2085 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2086 	int ret = 0;
2087 
2088 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2089 		pr_err("Invalid status check mask\n");
2090 		ret = -EINVAL;
2091 		goto done;
2092 	}
2093 
2094 	mr_status->fail_status = 0;
2095 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2096 		if (!mmr->sig) {
2097 			ret = -EINVAL;
2098 			pr_err("signature status check requested on a non-signature enabled MR\n");
2099 			goto done;
2100 		}
2101 
2102 		mmr->sig->sig_status_checked = true;
2103 		if (!mmr->sig->sig_err_exists)
2104 			goto done;
2105 
2106 		if (ibmr->lkey == mmr->sig->err_item.key)
2107 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2108 			       sizeof(mr_status->sig_err));
2109 		else {
2110 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2111 			mr_status->sig_err.sig_err_offset = 0;
2112 			mr_status->sig_err.key = mmr->sig->err_item.key;
2113 		}
2114 
2115 		mmr->sig->sig_err_exists = false;
2116 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2117 	}
2118 
2119 done:
2120 	return ret;
2121 }
2122 
2123 static int
2124 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2125 			int data_sg_nents, unsigned int *data_sg_offset,
2126 			struct scatterlist *meta_sg, int meta_sg_nents,
2127 			unsigned int *meta_sg_offset)
2128 {
2129 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2130 	unsigned int sg_offset = 0;
2131 	int n = 0;
2132 
2133 	mr->meta_length = 0;
2134 	if (data_sg_nents == 1) {
2135 		n++;
2136 		mr->ndescs = 1;
2137 		if (data_sg_offset)
2138 			sg_offset = *data_sg_offset;
2139 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2140 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2141 		if (meta_sg_nents == 1) {
2142 			n++;
2143 			mr->meta_ndescs = 1;
2144 			if (meta_sg_offset)
2145 				sg_offset = *meta_sg_offset;
2146 			else
2147 				sg_offset = 0;
2148 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2149 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2150 		}
2151 		ibmr->length = mr->data_length + mr->meta_length;
2152 	}
2153 
2154 	return n;
2155 }
2156 
2157 static int
2158 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2159 		   struct scatterlist *sgl,
2160 		   unsigned short sg_nents,
2161 		   unsigned int *sg_offset_p,
2162 		   struct scatterlist *meta_sgl,
2163 		   unsigned short meta_sg_nents,
2164 		   unsigned int *meta_sg_offset_p)
2165 {
2166 	struct scatterlist *sg = sgl;
2167 	struct mlx5_klm *klms = mr->descs;
2168 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2169 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2170 	int i, j = 0;
2171 
2172 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2173 	mr->ibmr.length = 0;
2174 
2175 	for_each_sg(sgl, sg, sg_nents, i) {
2176 		if (unlikely(i >= mr->max_descs))
2177 			break;
2178 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2179 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2180 		klms[i].key = cpu_to_be32(lkey);
2181 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2182 
2183 		sg_offset = 0;
2184 	}
2185 
2186 	if (sg_offset_p)
2187 		*sg_offset_p = sg_offset;
2188 
2189 	mr->ndescs = i;
2190 	mr->data_length = mr->ibmr.length;
2191 
2192 	if (meta_sg_nents) {
2193 		sg = meta_sgl;
2194 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2195 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2196 			if (unlikely(i + j >= mr->max_descs))
2197 				break;
2198 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2199 						     sg_offset);
2200 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2201 							 sg_offset);
2202 			klms[i + j].key = cpu_to_be32(lkey);
2203 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2204 
2205 			sg_offset = 0;
2206 		}
2207 		if (meta_sg_offset_p)
2208 			*meta_sg_offset_p = sg_offset;
2209 
2210 		mr->meta_ndescs = j;
2211 		mr->meta_length = mr->ibmr.length - mr->data_length;
2212 	}
2213 
2214 	return i + j;
2215 }
2216 
2217 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2218 {
2219 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2220 	__be64 *descs;
2221 
2222 	if (unlikely(mr->ndescs == mr->max_descs))
2223 		return -ENOMEM;
2224 
2225 	descs = mr->descs;
2226 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2227 
2228 	return 0;
2229 }
2230 
2231 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2232 {
2233 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2234 	__be64 *descs;
2235 
2236 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2237 		return -ENOMEM;
2238 
2239 	descs = mr->descs;
2240 	descs[mr->ndescs + mr->meta_ndescs++] =
2241 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2242 
2243 	return 0;
2244 }
2245 
2246 static int
2247 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2248 			 int data_sg_nents, unsigned int *data_sg_offset,
2249 			 struct scatterlist *meta_sg, int meta_sg_nents,
2250 			 unsigned int *meta_sg_offset)
2251 {
2252 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2253 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2254 	int n;
2255 
2256 	pi_mr->ndescs = 0;
2257 	pi_mr->meta_ndescs = 0;
2258 	pi_mr->meta_length = 0;
2259 
2260 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2261 				   pi_mr->desc_size * pi_mr->max_descs,
2262 				   DMA_TO_DEVICE);
2263 
2264 	pi_mr->ibmr.page_size = ibmr->page_size;
2265 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2266 			   mlx5_set_page);
2267 	if (n != data_sg_nents)
2268 		return n;
2269 
2270 	pi_mr->data_iova = pi_mr->ibmr.iova;
2271 	pi_mr->data_length = pi_mr->ibmr.length;
2272 	pi_mr->ibmr.length = pi_mr->data_length;
2273 	ibmr->length = pi_mr->data_length;
2274 
2275 	if (meta_sg_nents) {
2276 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2277 		u64 iova = pi_mr->data_iova;
2278 
2279 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2280 				    meta_sg_offset, mlx5_set_page_pi);
2281 
2282 		pi_mr->meta_length = pi_mr->ibmr.length;
2283 		/*
2284 		 * PI address for the HW is the offset of the metadata address
2285 		 * relative to the first data page address.
2286 		 * It equals to first data page address + size of data pages +
2287 		 * metadata offset at the first metadata page
2288 		 */
2289 		pi_mr->pi_iova = (iova & page_mask) +
2290 				 pi_mr->ndescs * ibmr->page_size +
2291 				 (pi_mr->ibmr.iova & ~page_mask);
2292 		/*
2293 		 * In order to use one MTT MR for data and metadata, we register
2294 		 * also the gaps between the end of the data and the start of
2295 		 * the metadata (the sig MR will verify that the HW will access
2296 		 * to right addresses). This mapping is safe because we use
2297 		 * internal mkey for the registration.
2298 		 */
2299 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2300 		pi_mr->ibmr.iova = iova;
2301 		ibmr->length += pi_mr->meta_length;
2302 	}
2303 
2304 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2305 				      pi_mr->desc_size * pi_mr->max_descs,
2306 				      DMA_TO_DEVICE);
2307 
2308 	return n;
2309 }
2310 
2311 static int
2312 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2313 			 int data_sg_nents, unsigned int *data_sg_offset,
2314 			 struct scatterlist *meta_sg, int meta_sg_nents,
2315 			 unsigned int *meta_sg_offset)
2316 {
2317 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2318 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2319 	int n;
2320 
2321 	pi_mr->ndescs = 0;
2322 	pi_mr->meta_ndescs = 0;
2323 	pi_mr->meta_length = 0;
2324 
2325 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2326 				   pi_mr->desc_size * pi_mr->max_descs,
2327 				   DMA_TO_DEVICE);
2328 
2329 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2330 			       meta_sg, meta_sg_nents, meta_sg_offset);
2331 
2332 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2333 				      pi_mr->desc_size * pi_mr->max_descs,
2334 				      DMA_TO_DEVICE);
2335 
2336 	/* This is zero-based memory region */
2337 	pi_mr->data_iova = 0;
2338 	pi_mr->ibmr.iova = 0;
2339 	pi_mr->pi_iova = pi_mr->data_length;
2340 	ibmr->length = pi_mr->ibmr.length;
2341 
2342 	return n;
2343 }
2344 
2345 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2346 			 int data_sg_nents, unsigned int *data_sg_offset,
2347 			 struct scatterlist *meta_sg, int meta_sg_nents,
2348 			 unsigned int *meta_sg_offset)
2349 {
2350 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2351 	struct mlx5_ib_mr *pi_mr = NULL;
2352 	int n;
2353 
2354 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2355 
2356 	mr->ndescs = 0;
2357 	mr->data_length = 0;
2358 	mr->data_iova = 0;
2359 	mr->meta_ndescs = 0;
2360 	mr->pi_iova = 0;
2361 	/*
2362 	 * As a performance optimization, if possible, there is no need to
2363 	 * perform UMR operation to register the data/metadata buffers.
2364 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2365 	 * Fallback to UMR only in case of a failure.
2366 	 */
2367 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2368 				    data_sg_offset, meta_sg, meta_sg_nents,
2369 				    meta_sg_offset);
2370 	if (n == data_sg_nents + meta_sg_nents)
2371 		goto out;
2372 	/*
2373 	 * As a performance optimization, if possible, there is no need to map
2374 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2375 	 * descriptors and fallback to KLM only in case of a failure.
2376 	 * It's more efficient for the HW to work with MTT descriptors
2377 	 * (especially in high load).
2378 	 * Use KLM (indirect access) only if it's mandatory.
2379 	 */
2380 	pi_mr = mr->mtt_mr;
2381 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2382 				     data_sg_offset, meta_sg, meta_sg_nents,
2383 				     meta_sg_offset);
2384 	if (n == data_sg_nents + meta_sg_nents)
2385 		goto out;
2386 
2387 	pi_mr = mr->klm_mr;
2388 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2389 				     data_sg_offset, meta_sg, meta_sg_nents,
2390 				     meta_sg_offset);
2391 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2392 		return -ENOMEM;
2393 
2394 out:
2395 	/* This is zero-based memory region */
2396 	ibmr->iova = 0;
2397 	mr->pi_mr = pi_mr;
2398 	if (pi_mr)
2399 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2400 	else
2401 		ibmr->sig_attrs->meta_length = mr->meta_length;
2402 
2403 	return 0;
2404 }
2405 
2406 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2407 		      unsigned int *sg_offset)
2408 {
2409 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2410 	int n;
2411 
2412 	mr->ndescs = 0;
2413 
2414 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2415 				   mr->desc_size * mr->max_descs,
2416 				   DMA_TO_DEVICE);
2417 
2418 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2419 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2420 				       NULL);
2421 	else
2422 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2423 				mlx5_set_page);
2424 
2425 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2426 				      mr->desc_size * mr->max_descs,
2427 				      DMA_TO_DEVICE);
2428 
2429 	return n;
2430 }
2431