xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision b2b1043a)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73 
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 		    (MLX5_CAP_GEN(dev->mdev,
76 				  relaxed_ordering_read_pci_enabled) &&
77 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 	}
80 
81 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
84 }
85 
86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87 {
88 	u8 key = atomic_inc_return(&dev->mkey_var);
89 	void *mkc;
90 
91 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 	MLX5_SET(mkc, mkc, mkey_7_0, key);
93 	*mkey = key;
94 }
95 
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 	int ret;
100 
101 	assign_mkey_variant(dev, &mkey->key, in);
102 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 	if (!ret)
104 		init_waitqueue_head(&mkey->wait);
105 
106 	return ret;
107 }
108 
109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110 {
111 	struct mlx5_ib_dev *dev = async_create->ent->dev;
112 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114 
115 	MLX5_SET(create_mkey_in, async_create->in, opcode,
116 		 MLX5_CMD_OP_CREATE_MKEY);
117 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 				async_create->out, outlen, create_mkey_callback,
120 				&async_create->cb_work);
121 }
122 
123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125 
126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127 {
128 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129 
130 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131 }
132 
133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134 {
135 	if (status == -ENXIO) /* core driver is not available */
136 		return;
137 
138 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 	if (status != -EREMOTEIO) /* driver specific failure */
140 		return;
141 
142 	/* Failed in FW, print cmd out failure details */
143 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144 }
145 
146 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
147 			    void *to_store)
148 {
149 	XA_STATE(xas, &ent->mkeys, 0);
150 	void *curr;
151 
152 	if (limit_pendings &&
153 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
154 		return -EAGAIN;
155 
156 	while (1) {
157 		/*
158 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
159 		 * doesn't transparently unlock. Instead we set the xas index to
160 		 * the current value of reserved every iteration.
161 		 */
162 		xas_set(&xas, ent->reserved);
163 		curr = xas_load(&xas);
164 		if (!curr) {
165 			if (to_store && ent->stored == ent->reserved)
166 				xas_store(&xas, to_store);
167 			else
168 				xas_store(&xas, XA_ZERO_ENTRY);
169 			if (xas_valid(&xas)) {
170 				ent->reserved++;
171 				if (to_store) {
172 					if (ent->stored != ent->reserved)
173 						__xa_store(&ent->mkeys,
174 							   ent->stored,
175 							   to_store,
176 							   GFP_KERNEL);
177 					ent->stored++;
178 					queue_adjust_cache_locked(ent);
179 					WRITE_ONCE(ent->dev->cache.last_add,
180 						   jiffies);
181 				}
182 			}
183 		}
184 		xa_unlock_irq(&ent->mkeys);
185 
186 		/*
187 		 * Notice xas_nomem() must always be called as it cleans
188 		 * up any cached allocation.
189 		 */
190 		if (!xas_nomem(&xas, GFP_KERNEL))
191 			break;
192 		xa_lock_irq(&ent->mkeys);
193 	}
194 	xa_lock_irq(&ent->mkeys);
195 	if (xas_error(&xas))
196 		return xas_error(&xas);
197 	if (WARN_ON(curr))
198 		return -EINVAL;
199 	return 0;
200 }
201 
202 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
203 		     void *to_store)
204 {
205 	int ret;
206 
207 	xa_lock_irq(&ent->mkeys);
208 	ret = push_mkey_locked(ent, limit_pendings, to_store);
209 	xa_unlock_irq(&ent->mkeys);
210 	return ret;
211 }
212 
213 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
214 {
215 	void *old;
216 
217 	ent->reserved--;
218 	old = __xa_erase(&ent->mkeys, ent->reserved);
219 	WARN_ON(old);
220 }
221 
222 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
223 {
224 	void *old;
225 
226 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
227 	WARN_ON(old);
228 	ent->stored++;
229 }
230 
231 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
232 {
233 	void *old, *xa_mkey;
234 
235 	ent->stored--;
236 	ent->reserved--;
237 
238 	if (ent->stored == ent->reserved) {
239 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
240 		WARN_ON(!xa_mkey);
241 		return (u32)xa_to_value(xa_mkey);
242 	}
243 
244 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
245 			     GFP_KERNEL);
246 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
247 	old = __xa_erase(&ent->mkeys, ent->reserved);
248 	WARN_ON(old);
249 	return (u32)xa_to_value(xa_mkey);
250 }
251 
252 static void create_mkey_callback(int status, struct mlx5_async_work *context)
253 {
254 	struct mlx5r_async_create_mkey *mkey_out =
255 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
256 	struct mlx5_cache_ent *ent = mkey_out->ent;
257 	struct mlx5_ib_dev *dev = ent->dev;
258 	unsigned long flags;
259 
260 	if (status) {
261 		create_mkey_warn(dev, status, mkey_out->out);
262 		kfree(mkey_out);
263 		xa_lock_irqsave(&ent->mkeys, flags);
264 		undo_push_reserve_mkey(ent);
265 		WRITE_ONCE(dev->fill_delay, 1);
266 		xa_unlock_irqrestore(&ent->mkeys, flags);
267 		mod_timer(&dev->delay_timer, jiffies + HZ);
268 		return;
269 	}
270 
271 	mkey_out->mkey |= mlx5_idx_to_mkey(
272 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
273 	WRITE_ONCE(dev->cache.last_add, jiffies);
274 
275 	xa_lock_irqsave(&ent->mkeys, flags);
276 	push_to_reserved(ent, mkey_out->mkey);
277 	/* If we are doing fill_to_high_water then keep going. */
278 	queue_adjust_cache_locked(ent);
279 	xa_unlock_irqrestore(&ent->mkeys, flags);
280 	kfree(mkey_out);
281 }
282 
283 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
284 {
285 	int ret = 0;
286 
287 	switch (access_mode) {
288 	case MLX5_MKC_ACCESS_MODE_MTT:
289 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
290 						   sizeof(struct mlx5_mtt));
291 		break;
292 	case MLX5_MKC_ACCESS_MODE_KSM:
293 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
294 						   sizeof(struct mlx5_klm));
295 		break;
296 	default:
297 		WARN_ON(1);
298 	}
299 	return ret;
300 }
301 
302 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
303 {
304 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
305 				      ent->dev->umrc.pd);
306 	MLX5_SET(mkc, mkc, free, 1);
307 	MLX5_SET(mkc, mkc, umr_en, 1);
308 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
309 	MLX5_SET(mkc, mkc, access_mode_4_2,
310 		(ent->rb_key.access_mode >> 2) & 0x7);
311 
312 	MLX5_SET(mkc, mkc, translations_octword_size,
313 		 get_mkc_octo_size(ent->rb_key.access_mode,
314 				   ent->rb_key.ndescs));
315 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
316 }
317 
318 /* Asynchronously schedule new MRs to be populated in the cache. */
319 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
320 {
321 	struct mlx5r_async_create_mkey *async_create;
322 	void *mkc;
323 	int err = 0;
324 	int i;
325 
326 	for (i = 0; i < num; i++) {
327 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
328 				       GFP_KERNEL);
329 		if (!async_create)
330 			return -ENOMEM;
331 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
332 				   memory_key_mkey_entry);
333 		set_cache_mkc(ent, mkc);
334 		async_create->ent = ent;
335 
336 		err = push_mkey(ent, true, NULL);
337 		if (err)
338 			goto free_async_create;
339 
340 		err = mlx5_ib_create_mkey_cb(async_create);
341 		if (err) {
342 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
343 			goto err_undo_reserve;
344 		}
345 	}
346 
347 	return 0;
348 
349 err_undo_reserve:
350 	xa_lock_irq(&ent->mkeys);
351 	undo_push_reserve_mkey(ent);
352 	xa_unlock_irq(&ent->mkeys);
353 free_async_create:
354 	kfree(async_create);
355 	return err;
356 }
357 
358 /* Synchronously create a MR in the cache */
359 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
360 {
361 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
362 	void *mkc;
363 	u32 *in;
364 	int err;
365 
366 	in = kzalloc(inlen, GFP_KERNEL);
367 	if (!in)
368 		return -ENOMEM;
369 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
370 	set_cache_mkc(ent, mkc);
371 
372 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
373 	if (err)
374 		goto free_in;
375 
376 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
377 free_in:
378 	kfree(in);
379 	return err;
380 }
381 
382 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
383 {
384 	u32 mkey;
385 
386 	lockdep_assert_held(&ent->mkeys.xa_lock);
387 	if (!ent->stored)
388 		return;
389 	mkey = pop_stored_mkey(ent);
390 	xa_unlock_irq(&ent->mkeys);
391 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
392 	xa_lock_irq(&ent->mkeys);
393 }
394 
395 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
396 				bool limit_fill)
397 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
398 {
399 	int err;
400 
401 	lockdep_assert_held(&ent->mkeys.xa_lock);
402 
403 	while (true) {
404 		if (limit_fill)
405 			target = ent->limit * 2;
406 		if (target == ent->reserved)
407 			return 0;
408 		if (target > ent->reserved) {
409 			u32 todo = target - ent->reserved;
410 
411 			xa_unlock_irq(&ent->mkeys);
412 			err = add_keys(ent, todo);
413 			if (err == -EAGAIN)
414 				usleep_range(3000, 5000);
415 			xa_lock_irq(&ent->mkeys);
416 			if (err) {
417 				if (err != -EAGAIN)
418 					return err;
419 			} else
420 				return 0;
421 		} else {
422 			remove_cache_mr_locked(ent);
423 		}
424 	}
425 }
426 
427 static ssize_t size_write(struct file *filp, const char __user *buf,
428 			  size_t count, loff_t *pos)
429 {
430 	struct mlx5_cache_ent *ent = filp->private_data;
431 	u32 target;
432 	int err;
433 
434 	err = kstrtou32_from_user(buf, count, 0, &target);
435 	if (err)
436 		return err;
437 
438 	/*
439 	 * Target is the new value of total_mrs the user requests, however we
440 	 * cannot free MRs that are in use. Compute the target value for stored
441 	 * mkeys.
442 	 */
443 	xa_lock_irq(&ent->mkeys);
444 	if (target < ent->in_use) {
445 		err = -EINVAL;
446 		goto err_unlock;
447 	}
448 	target = target - ent->in_use;
449 	if (target < ent->limit || target > ent->limit*2) {
450 		err = -EINVAL;
451 		goto err_unlock;
452 	}
453 	err = resize_available_mrs(ent, target, false);
454 	if (err)
455 		goto err_unlock;
456 	xa_unlock_irq(&ent->mkeys);
457 
458 	return count;
459 
460 err_unlock:
461 	xa_unlock_irq(&ent->mkeys);
462 	return err;
463 }
464 
465 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
466 			 loff_t *pos)
467 {
468 	struct mlx5_cache_ent *ent = filp->private_data;
469 	char lbuf[20];
470 	int err;
471 
472 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
473 	if (err < 0)
474 		return err;
475 
476 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
477 }
478 
479 static const struct file_operations size_fops = {
480 	.owner	= THIS_MODULE,
481 	.open	= simple_open,
482 	.write	= size_write,
483 	.read	= size_read,
484 };
485 
486 static ssize_t limit_write(struct file *filp, const char __user *buf,
487 			   size_t count, loff_t *pos)
488 {
489 	struct mlx5_cache_ent *ent = filp->private_data;
490 	u32 var;
491 	int err;
492 
493 	err = kstrtou32_from_user(buf, count, 0, &var);
494 	if (err)
495 		return err;
496 
497 	/*
498 	 * Upon set we immediately fill the cache to high water mark implied by
499 	 * the limit.
500 	 */
501 	xa_lock_irq(&ent->mkeys);
502 	ent->limit = var;
503 	err = resize_available_mrs(ent, 0, true);
504 	xa_unlock_irq(&ent->mkeys);
505 	if (err)
506 		return err;
507 	return count;
508 }
509 
510 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
511 			  loff_t *pos)
512 {
513 	struct mlx5_cache_ent *ent = filp->private_data;
514 	char lbuf[20];
515 	int err;
516 
517 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
518 	if (err < 0)
519 		return err;
520 
521 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
522 }
523 
524 static const struct file_operations limit_fops = {
525 	.owner	= THIS_MODULE,
526 	.open	= simple_open,
527 	.write	= limit_write,
528 	.read	= limit_read,
529 };
530 
531 static bool someone_adding(struct mlx5_mkey_cache *cache)
532 {
533 	struct mlx5_cache_ent *ent;
534 	struct rb_node *node;
535 	bool ret;
536 
537 	mutex_lock(&cache->rb_lock);
538 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
539 		ent = rb_entry(node, struct mlx5_cache_ent, node);
540 		xa_lock_irq(&ent->mkeys);
541 		ret = ent->stored < ent->limit;
542 		xa_unlock_irq(&ent->mkeys);
543 		if (ret) {
544 			mutex_unlock(&cache->rb_lock);
545 			return true;
546 		}
547 	}
548 	mutex_unlock(&cache->rb_lock);
549 	return false;
550 }
551 
552 /*
553  * Check if the bucket is outside the high/low water mark and schedule an async
554  * update. The cache refill has hysteresis, once the low water mark is hit it is
555  * refilled up to the high mark.
556  */
557 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
558 {
559 	lockdep_assert_held(&ent->mkeys.xa_lock);
560 
561 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
562 		return;
563 	if (ent->stored < ent->limit) {
564 		ent->fill_to_high_water = true;
565 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
566 	} else if (ent->fill_to_high_water &&
567 		   ent->reserved < 2 * ent->limit) {
568 		/*
569 		 * Once we start populating due to hitting a low water mark
570 		 * continue until we pass the high water mark.
571 		 */
572 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
573 	} else if (ent->stored == 2 * ent->limit) {
574 		ent->fill_to_high_water = false;
575 	} else if (ent->stored > 2 * ent->limit) {
576 		/* Queue deletion of excess entries */
577 		ent->fill_to_high_water = false;
578 		if (ent->stored != ent->reserved)
579 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
580 					   msecs_to_jiffies(1000));
581 		else
582 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
583 	}
584 }
585 
586 static void __cache_work_func(struct mlx5_cache_ent *ent)
587 {
588 	struct mlx5_ib_dev *dev = ent->dev;
589 	struct mlx5_mkey_cache *cache = &dev->cache;
590 	int err;
591 
592 	xa_lock_irq(&ent->mkeys);
593 	if (ent->disabled)
594 		goto out;
595 
596 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
597 	    !READ_ONCE(dev->fill_delay)) {
598 		xa_unlock_irq(&ent->mkeys);
599 		err = add_keys(ent, 1);
600 		xa_lock_irq(&ent->mkeys);
601 		if (ent->disabled)
602 			goto out;
603 		if (err) {
604 			/*
605 			 * EAGAIN only happens if there are pending MRs, so we
606 			 * will be rescheduled when storing them. The only
607 			 * failure path here is ENOMEM.
608 			 */
609 			if (err != -EAGAIN) {
610 				mlx5_ib_warn(
611 					dev,
612 					"add keys command failed, err %d\n",
613 					err);
614 				queue_delayed_work(cache->wq, &ent->dwork,
615 						   msecs_to_jiffies(1000));
616 			}
617 		}
618 	} else if (ent->stored > 2 * ent->limit) {
619 		bool need_delay;
620 
621 		/*
622 		 * The remove_cache_mr() logic is performed as garbage
623 		 * collection task. Such task is intended to be run when no
624 		 * other active processes are running.
625 		 *
626 		 * The need_resched() will return TRUE if there are user tasks
627 		 * to be activated in near future.
628 		 *
629 		 * In such case, we don't execute remove_cache_mr() and postpone
630 		 * the garbage collection work to try to run in next cycle, in
631 		 * order to free CPU resources to other tasks.
632 		 */
633 		xa_unlock_irq(&ent->mkeys);
634 		need_delay = need_resched() || someone_adding(cache) ||
635 			     !time_after(jiffies,
636 					 READ_ONCE(cache->last_add) + 300 * HZ);
637 		xa_lock_irq(&ent->mkeys);
638 		if (ent->disabled)
639 			goto out;
640 		if (need_delay) {
641 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
642 			goto out;
643 		}
644 		remove_cache_mr_locked(ent);
645 		queue_adjust_cache_locked(ent);
646 	}
647 out:
648 	xa_unlock_irq(&ent->mkeys);
649 }
650 
651 static void delayed_cache_work_func(struct work_struct *work)
652 {
653 	struct mlx5_cache_ent *ent;
654 
655 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
656 	__cache_work_func(ent);
657 }
658 
659 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
660 			     struct mlx5r_cache_rb_key key2)
661 {
662 	int res;
663 
664 	res = key1.ats - key2.ats;
665 	if (res)
666 		return res;
667 
668 	res = key1.access_mode - key2.access_mode;
669 	if (res)
670 		return res;
671 
672 	res = key1.access_flags - key2.access_flags;
673 	if (res)
674 		return res;
675 
676 	/*
677 	 * keep ndescs the last in the compare table since the find function
678 	 * searches for an exact match on all properties and only closest
679 	 * match in size.
680 	 */
681 	return key1.ndescs - key2.ndescs;
682 }
683 
684 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
685 				 struct mlx5_cache_ent *ent)
686 {
687 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
688 	struct mlx5_cache_ent *cur;
689 	int cmp;
690 
691 	/* Figure out where to put new node */
692 	while (*new) {
693 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
694 		parent = *new;
695 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
696 		if (cmp > 0)
697 			new = &((*new)->rb_left);
698 		if (cmp < 0)
699 			new = &((*new)->rb_right);
700 		if (cmp == 0) {
701 			mutex_unlock(&cache->rb_lock);
702 			return -EEXIST;
703 		}
704 	}
705 
706 	/* Add new node and rebalance tree. */
707 	rb_link_node(&ent->node, parent, new);
708 	rb_insert_color(&ent->node, &cache->rb_root);
709 
710 	return 0;
711 }
712 
713 static struct mlx5_cache_ent *
714 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
715 			   struct mlx5r_cache_rb_key rb_key)
716 {
717 	struct rb_node *node = dev->cache.rb_root.rb_node;
718 	struct mlx5_cache_ent *cur, *smallest = NULL;
719 	int cmp;
720 
721 	/*
722 	 * Find the smallest ent with order >= requested_order.
723 	 */
724 	while (node) {
725 		cur = rb_entry(node, struct mlx5_cache_ent, node);
726 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
727 		if (cmp > 0) {
728 			smallest = cur;
729 			node = node->rb_left;
730 		}
731 		if (cmp < 0)
732 			node = node->rb_right;
733 		if (cmp == 0)
734 			return cur;
735 	}
736 
737 	return (smallest &&
738 		smallest->rb_key.access_mode == rb_key.access_mode &&
739 		smallest->rb_key.access_flags == rb_key.access_flags &&
740 		smallest->rb_key.ats == rb_key.ats) ?
741 		       smallest :
742 		       NULL;
743 }
744 
745 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
746 					struct mlx5_cache_ent *ent,
747 					int access_flags)
748 {
749 	struct mlx5_ib_mr *mr;
750 	int err;
751 
752 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
753 	if (!mr)
754 		return ERR_PTR(-ENOMEM);
755 
756 	xa_lock_irq(&ent->mkeys);
757 	ent->in_use++;
758 
759 	if (!ent->stored) {
760 		queue_adjust_cache_locked(ent);
761 		ent->miss++;
762 		xa_unlock_irq(&ent->mkeys);
763 		err = create_cache_mkey(ent, &mr->mmkey.key);
764 		if (err) {
765 			xa_lock_irq(&ent->mkeys);
766 			ent->in_use--;
767 			xa_unlock_irq(&ent->mkeys);
768 			kfree(mr);
769 			return ERR_PTR(err);
770 		}
771 	} else {
772 		mr->mmkey.key = pop_stored_mkey(ent);
773 		queue_adjust_cache_locked(ent);
774 		xa_unlock_irq(&ent->mkeys);
775 	}
776 	mr->mmkey.cache_ent = ent;
777 	mr->mmkey.type = MLX5_MKEY_MR;
778 	init_waitqueue_head(&mr->mmkey.wait);
779 	return mr;
780 }
781 
782 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
783 					 int access_flags)
784 {
785 	int ret = 0;
786 
787 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
788 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
789 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
790 		ret |= IB_ACCESS_REMOTE_ATOMIC;
791 
792 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
793 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
794 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
795 		ret |= IB_ACCESS_RELAXED_ORDERING;
796 
797 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
798 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
799 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
800 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
801 		ret |= IB_ACCESS_RELAXED_ORDERING;
802 
803 	return ret;
804 }
805 
806 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
807 				       int access_flags, int access_mode,
808 				       int ndescs)
809 {
810 	struct mlx5r_cache_rb_key rb_key = {
811 		.ndescs = ndescs,
812 		.access_mode = access_mode,
813 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
814 	};
815 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
816 
817 	if (!ent)
818 		return ERR_PTR(-EOPNOTSUPP);
819 
820 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
821 }
822 
823 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
824 {
825 	u32 mkey;
826 
827 	cancel_delayed_work(&ent->dwork);
828 	xa_lock_irq(&ent->mkeys);
829 	while (ent->stored) {
830 		mkey = pop_stored_mkey(ent);
831 		xa_unlock_irq(&ent->mkeys);
832 		mlx5_core_destroy_mkey(dev->mdev, mkey);
833 		xa_lock_irq(&ent->mkeys);
834 	}
835 	xa_unlock_irq(&ent->mkeys);
836 }
837 
838 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
839 {
840 	if (!mlx5_debugfs_root || dev->is_rep)
841 		return;
842 
843 	debugfs_remove_recursive(dev->cache.fs_root);
844 	dev->cache.fs_root = NULL;
845 }
846 
847 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
848 					    struct mlx5_cache_ent *ent)
849 {
850 	int order = order_base_2(ent->rb_key.ndescs);
851 	struct dentry *dir;
852 
853 	if (!mlx5_debugfs_root || dev->is_rep)
854 		return;
855 
856 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
857 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
858 
859 	sprintf(ent->name, "%d", order);
860 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
861 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
862 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
863 	debugfs_create_ulong("cur", 0400, dir, &ent->stored);
864 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
865 }
866 
867 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
868 {
869 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
870 	struct mlx5_mkey_cache *cache = &dev->cache;
871 
872 	if (!mlx5_debugfs_root || dev->is_rep)
873 		return;
874 
875 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
876 }
877 
878 static void delay_time_func(struct timer_list *t)
879 {
880 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
881 
882 	WRITE_ONCE(dev->fill_delay, 0);
883 }
884 
885 struct mlx5_cache_ent *
886 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
887 			      struct mlx5r_cache_rb_key rb_key,
888 			      bool persistent_entry)
889 {
890 	struct mlx5_cache_ent *ent;
891 	int order;
892 	int ret;
893 
894 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
895 	if (!ent)
896 		return ERR_PTR(-ENOMEM);
897 
898 	xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
899 	ent->rb_key = rb_key;
900 	ent->dev = dev;
901 	ent->is_tmp = !persistent_entry;
902 
903 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
904 
905 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
906 	if (ret) {
907 		kfree(ent);
908 		return ERR_PTR(ret);
909 	}
910 
911 	if (persistent_entry) {
912 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
913 			order = MLX5_IMR_KSM_CACHE_ENTRY;
914 		else
915 			order = order_base_2(rb_key.ndescs) - 2;
916 
917 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
918 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
919 		    mlx5r_umr_can_load_pas(dev, 0))
920 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
921 		else
922 			ent->limit = 0;
923 
924 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
925 	} else {
926 		mod_delayed_work(ent->dev->cache.wq,
927 				 &ent->dev->cache.remove_ent_dwork,
928 				 msecs_to_jiffies(30 * 1000));
929 	}
930 
931 	return ent;
932 }
933 
934 static void remove_ent_work_func(struct work_struct *work)
935 {
936 	struct mlx5_mkey_cache *cache;
937 	struct mlx5_cache_ent *ent;
938 	struct rb_node *cur;
939 
940 	cache = container_of(work, struct mlx5_mkey_cache,
941 			     remove_ent_dwork.work);
942 	mutex_lock(&cache->rb_lock);
943 	cur = rb_last(&cache->rb_root);
944 	while (cur) {
945 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
946 		cur = rb_prev(cur);
947 		mutex_unlock(&cache->rb_lock);
948 
949 		xa_lock_irq(&ent->mkeys);
950 		if (!ent->is_tmp) {
951 			xa_unlock_irq(&ent->mkeys);
952 			mutex_lock(&cache->rb_lock);
953 			continue;
954 		}
955 		xa_unlock_irq(&ent->mkeys);
956 
957 		clean_keys(ent->dev, ent);
958 		mutex_lock(&cache->rb_lock);
959 	}
960 	mutex_unlock(&cache->rb_lock);
961 }
962 
963 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
964 {
965 	struct mlx5_mkey_cache *cache = &dev->cache;
966 	struct rb_root *root = &dev->cache.rb_root;
967 	struct mlx5r_cache_rb_key rb_key = {
968 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
969 	};
970 	struct mlx5_cache_ent *ent;
971 	struct rb_node *node;
972 	int ret;
973 	int i;
974 
975 	mutex_init(&dev->slow_path_mutex);
976 	mutex_init(&dev->cache.rb_lock);
977 	dev->cache.rb_root = RB_ROOT;
978 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
979 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
980 	if (!cache->wq) {
981 		mlx5_ib_warn(dev, "failed to create work queue\n");
982 		return -ENOMEM;
983 	}
984 
985 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
986 	timer_setup(&dev->delay_timer, delay_time_func, 0);
987 	mlx5_mkey_cache_debugfs_init(dev);
988 	mutex_lock(&cache->rb_lock);
989 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
990 		rb_key.ndescs = 1 << (i + 2);
991 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
992 		if (IS_ERR(ent)) {
993 			ret = PTR_ERR(ent);
994 			goto err;
995 		}
996 	}
997 
998 	ret = mlx5_odp_init_mkey_cache(dev);
999 	if (ret)
1000 		goto err;
1001 
1002 	mutex_unlock(&cache->rb_lock);
1003 	for (node = rb_first(root); node; node = rb_next(node)) {
1004 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1005 		xa_lock_irq(&ent->mkeys);
1006 		queue_adjust_cache_locked(ent);
1007 		xa_unlock_irq(&ent->mkeys);
1008 	}
1009 
1010 	return 0;
1011 
1012 err:
1013 	mutex_unlock(&cache->rb_lock);
1014 	mlx5_mkey_cache_debugfs_cleanup(dev);
1015 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1016 	return ret;
1017 }
1018 
1019 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1020 {
1021 	struct rb_root *root = &dev->cache.rb_root;
1022 	struct mlx5_cache_ent *ent;
1023 	struct rb_node *node;
1024 
1025 	if (!dev->cache.wq)
1026 		return;
1027 
1028 	mutex_lock(&dev->cache.rb_lock);
1029 	cancel_delayed_work(&dev->cache.remove_ent_dwork);
1030 	for (node = rb_first(root); node; node = rb_next(node)) {
1031 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1032 		xa_lock_irq(&ent->mkeys);
1033 		ent->disabled = true;
1034 		xa_unlock_irq(&ent->mkeys);
1035 		cancel_delayed_work(&ent->dwork);
1036 	}
1037 	mutex_unlock(&dev->cache.rb_lock);
1038 
1039 	/*
1040 	 * After all entries are disabled and will not reschedule on WQ,
1041 	 * flush it and all async commands.
1042 	 */
1043 	flush_workqueue(dev->cache.wq);
1044 
1045 	mlx5_mkey_cache_debugfs_cleanup(dev);
1046 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1047 
1048 	/* At this point all entries are disabled and have no concurrent work. */
1049 	mutex_lock(&dev->cache.rb_lock);
1050 	node = rb_first(root);
1051 	while (node) {
1052 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1053 		node = rb_next(node);
1054 		clean_keys(dev, ent);
1055 		rb_erase(&ent->node, root);
1056 		kfree(ent);
1057 	}
1058 	mutex_unlock(&dev->cache.rb_lock);
1059 
1060 	destroy_workqueue(dev->cache.wq);
1061 	del_timer_sync(&dev->delay_timer);
1062 }
1063 
1064 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1065 {
1066 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1067 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1068 	struct mlx5_ib_mr *mr;
1069 	void *mkc;
1070 	u32 *in;
1071 	int err;
1072 
1073 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1074 	if (!mr)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	in = kzalloc(inlen, GFP_KERNEL);
1078 	if (!in) {
1079 		err = -ENOMEM;
1080 		goto err_free;
1081 	}
1082 
1083 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1084 
1085 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1086 	MLX5_SET(mkc, mkc, length64, 1);
1087 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1088 				      pd);
1089 
1090 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1091 	if (err)
1092 		goto err_in;
1093 
1094 	kfree(in);
1095 	mr->mmkey.type = MLX5_MKEY_MR;
1096 	mr->ibmr.lkey = mr->mmkey.key;
1097 	mr->ibmr.rkey = mr->mmkey.key;
1098 	mr->umem = NULL;
1099 
1100 	return &mr->ibmr;
1101 
1102 err_in:
1103 	kfree(in);
1104 
1105 err_free:
1106 	kfree(mr);
1107 
1108 	return ERR_PTR(err);
1109 }
1110 
1111 static int get_octo_len(u64 addr, u64 len, int page_shift)
1112 {
1113 	u64 page_size = 1ULL << page_shift;
1114 	u64 offset;
1115 	int npages;
1116 
1117 	offset = addr & (page_size - 1);
1118 	npages = ALIGN(len + offset, page_size) >> page_shift;
1119 	return (npages + 1) / 2;
1120 }
1121 
1122 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1123 {
1124 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1125 		return MKEY_CACHE_LAST_STD_ENTRY;
1126 	return MLX5_MAX_UMR_SHIFT;
1127 }
1128 
1129 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1130 			  u64 length, int access_flags, u64 iova)
1131 {
1132 	mr->ibmr.lkey = mr->mmkey.key;
1133 	mr->ibmr.rkey = mr->mmkey.key;
1134 	mr->ibmr.length = length;
1135 	mr->ibmr.device = &dev->ib_dev;
1136 	mr->ibmr.iova = iova;
1137 	mr->access_flags = access_flags;
1138 }
1139 
1140 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1141 						  u64 iova)
1142 {
1143 	/*
1144 	 * The alignment of iova has already been checked upon entering
1145 	 * UVERBS_METHOD_REG_DMABUF_MR
1146 	 */
1147 	umem->iova = iova;
1148 	return PAGE_SIZE;
1149 }
1150 
1151 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1152 					     struct ib_umem *umem, u64 iova,
1153 					     int access_flags)
1154 {
1155 	struct mlx5r_cache_rb_key rb_key = {
1156 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1157 	};
1158 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1159 	struct mlx5_cache_ent *ent;
1160 	struct mlx5_ib_mr *mr;
1161 	unsigned int page_size;
1162 
1163 	if (umem->is_dmabuf)
1164 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1165 	else
1166 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1167 						     0, iova);
1168 	if (WARN_ON(!page_size))
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1172 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1173 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1174 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1175 	/*
1176 	 * If the MR can't come from the cache then synchronously create an uncached
1177 	 * one.
1178 	 */
1179 	if (!ent) {
1180 		mutex_lock(&dev->slow_path_mutex);
1181 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1182 		mutex_unlock(&dev->slow_path_mutex);
1183 		if (IS_ERR(mr))
1184 			return mr;
1185 		mr->mmkey.rb_key = rb_key;
1186 		return mr;
1187 	}
1188 
1189 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1190 	if (IS_ERR(mr))
1191 		return mr;
1192 
1193 	mr->ibmr.pd = pd;
1194 	mr->umem = umem;
1195 	mr->page_shift = order_base_2(page_size);
1196 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1197 
1198 	return mr;
1199 }
1200 
1201 /*
1202  * If ibmr is NULL it will be allocated by reg_create.
1203  * Else, the given ibmr will be used.
1204  */
1205 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1206 				     u64 iova, int access_flags,
1207 				     unsigned int page_size, bool populate)
1208 {
1209 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1210 	struct mlx5_ib_mr *mr;
1211 	__be64 *pas;
1212 	void *mkc;
1213 	int inlen;
1214 	u32 *in;
1215 	int err;
1216 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1217 
1218 	if (!page_size)
1219 		return ERR_PTR(-EINVAL);
1220 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1221 	if (!mr)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	mr->ibmr.pd = pd;
1225 	mr->access_flags = access_flags;
1226 	mr->page_shift = order_base_2(page_size);
1227 
1228 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1229 	if (populate)
1230 		inlen += sizeof(*pas) *
1231 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1232 	in = kvzalloc(inlen, GFP_KERNEL);
1233 	if (!in) {
1234 		err = -ENOMEM;
1235 		goto err_1;
1236 	}
1237 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1238 	if (populate) {
1239 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1240 			err = -EINVAL;
1241 			goto err_2;
1242 		}
1243 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1244 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1245 	}
1246 
1247 	/* The pg_access bit allows setting the access flags
1248 	 * in the page list submitted with the command.
1249 	 */
1250 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1251 
1252 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1253 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1254 				      populate ? pd : dev->umrc.pd);
1255 	MLX5_SET(mkc, mkc, free, !populate);
1256 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1257 	MLX5_SET(mkc, mkc, umr_en, 1);
1258 
1259 	MLX5_SET64(mkc, mkc, len, umem->length);
1260 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1261 	MLX5_SET(mkc, mkc, translations_octword_size,
1262 		 get_octo_len(iova, umem->length, mr->page_shift));
1263 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1264 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1265 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1266 	if (populate) {
1267 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1268 			 get_octo_len(iova, umem->length, mr->page_shift));
1269 	}
1270 
1271 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1272 	if (err) {
1273 		mlx5_ib_warn(dev, "create mkey failed\n");
1274 		goto err_2;
1275 	}
1276 	mr->mmkey.type = MLX5_MKEY_MR;
1277 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1278 	mr->umem = umem;
1279 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1280 	kvfree(in);
1281 
1282 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1283 
1284 	return mr;
1285 
1286 err_2:
1287 	kvfree(in);
1288 err_1:
1289 	kfree(mr);
1290 	return ERR_PTR(err);
1291 }
1292 
1293 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1294 				       u64 length, int acc, int mode)
1295 {
1296 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1297 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1298 	struct mlx5_ib_mr *mr;
1299 	void *mkc;
1300 	u32 *in;
1301 	int err;
1302 
1303 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1304 	if (!mr)
1305 		return ERR_PTR(-ENOMEM);
1306 
1307 	in = kzalloc(inlen, GFP_KERNEL);
1308 	if (!in) {
1309 		err = -ENOMEM;
1310 		goto err_free;
1311 	}
1312 
1313 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1314 
1315 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1316 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1317 	MLX5_SET64(mkc, mkc, len, length);
1318 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1319 
1320 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1321 	if (err)
1322 		goto err_in;
1323 
1324 	kfree(in);
1325 
1326 	set_mr_fields(dev, mr, length, acc, start_addr);
1327 
1328 	return &mr->ibmr;
1329 
1330 err_in:
1331 	kfree(in);
1332 
1333 err_free:
1334 	kfree(mr);
1335 
1336 	return ERR_PTR(err);
1337 }
1338 
1339 int mlx5_ib_advise_mr(struct ib_pd *pd,
1340 		      enum ib_uverbs_advise_mr_advice advice,
1341 		      u32 flags,
1342 		      struct ib_sge *sg_list,
1343 		      u32 num_sge,
1344 		      struct uverbs_attr_bundle *attrs)
1345 {
1346 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1347 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1348 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1349 		return -EOPNOTSUPP;
1350 
1351 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1352 					 sg_list, num_sge);
1353 }
1354 
1355 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1356 				struct ib_dm_mr_attr *attr,
1357 				struct uverbs_attr_bundle *attrs)
1358 {
1359 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1360 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1361 	u64 start_addr = mdm->dev_addr + attr->offset;
1362 	int mode;
1363 
1364 	switch (mdm->type) {
1365 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1366 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1367 			return ERR_PTR(-EINVAL);
1368 
1369 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1370 		start_addr -= pci_resource_start(dev->pdev, 0);
1371 		break;
1372 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1373 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1374 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1375 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1376 			return ERR_PTR(-EINVAL);
1377 
1378 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1379 		break;
1380 	default:
1381 		return ERR_PTR(-EINVAL);
1382 	}
1383 
1384 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1385 				 attr->access_flags, mode);
1386 }
1387 
1388 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1389 				    u64 iova, int access_flags)
1390 {
1391 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1392 	struct mlx5_ib_mr *mr = NULL;
1393 	bool xlt_with_umr;
1394 	int err;
1395 
1396 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1397 	if (xlt_with_umr) {
1398 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1399 	} else {
1400 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1401 			umem, mkc, log_page_size, 0, iova);
1402 
1403 		mutex_lock(&dev->slow_path_mutex);
1404 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1405 		mutex_unlock(&dev->slow_path_mutex);
1406 	}
1407 	if (IS_ERR(mr)) {
1408 		ib_umem_release(umem);
1409 		return ERR_CAST(mr);
1410 	}
1411 
1412 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1413 
1414 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1415 
1416 	if (xlt_with_umr) {
1417 		/*
1418 		 * If the MR was created with reg_create then it will be
1419 		 * configured properly but left disabled. It is safe to go ahead
1420 		 * and configure it again via UMR while enabling it.
1421 		 */
1422 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1423 		if (err) {
1424 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1425 			return ERR_PTR(err);
1426 		}
1427 	}
1428 	return &mr->ibmr;
1429 }
1430 
1431 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1432 					u64 iova, int access_flags,
1433 					struct ib_udata *udata)
1434 {
1435 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1436 	struct ib_umem_odp *odp;
1437 	struct mlx5_ib_mr *mr;
1438 	int err;
1439 
1440 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1441 		return ERR_PTR(-EOPNOTSUPP);
1442 
1443 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1444 	if (err)
1445 		return ERR_PTR(err);
1446 	if (!start && length == U64_MAX) {
1447 		if (iova != 0)
1448 			return ERR_PTR(-EINVAL);
1449 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1450 			return ERR_PTR(-EINVAL);
1451 
1452 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1453 		if (IS_ERR(mr))
1454 			return ERR_CAST(mr);
1455 		return &mr->ibmr;
1456 	}
1457 
1458 	/* ODP requires xlt update via umr to work. */
1459 	if (!mlx5r_umr_can_load_pas(dev, length))
1460 		return ERR_PTR(-EINVAL);
1461 
1462 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1463 			      &mlx5_mn_ops);
1464 	if (IS_ERR(odp))
1465 		return ERR_CAST(odp);
1466 
1467 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1468 	if (IS_ERR(mr)) {
1469 		ib_umem_release(&odp->umem);
1470 		return ERR_CAST(mr);
1471 	}
1472 	xa_init(&mr->implicit_children);
1473 
1474 	odp->private = mr;
1475 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1476 	if (err)
1477 		goto err_dereg_mr;
1478 
1479 	err = mlx5_ib_init_odp_mr(mr);
1480 	if (err)
1481 		goto err_dereg_mr;
1482 	return &mr->ibmr;
1483 
1484 err_dereg_mr:
1485 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1486 	return ERR_PTR(err);
1487 }
1488 
1489 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1490 				  u64 iova, int access_flags,
1491 				  struct ib_udata *udata)
1492 {
1493 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1494 	struct ib_umem *umem;
1495 
1496 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1497 		return ERR_PTR(-EOPNOTSUPP);
1498 
1499 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1500 		    start, iova, length, access_flags);
1501 
1502 	if (access_flags & IB_ACCESS_ON_DEMAND)
1503 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1504 					  udata);
1505 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1506 	if (IS_ERR(umem))
1507 		return ERR_CAST(umem);
1508 	return create_real_mr(pd, umem, iova, access_flags);
1509 }
1510 
1511 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1512 {
1513 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1514 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1515 
1516 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1517 
1518 	if (!umem_dmabuf->sgt)
1519 		return;
1520 
1521 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1522 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1523 }
1524 
1525 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1526 	.allow_peer2peer = 1,
1527 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1528 };
1529 
1530 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1531 					 u64 length, u64 virt_addr,
1532 					 int fd, int access_flags,
1533 					 struct ib_udata *udata)
1534 {
1535 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1536 	struct mlx5_ib_mr *mr = NULL;
1537 	struct ib_umem_dmabuf *umem_dmabuf;
1538 	int err;
1539 
1540 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1541 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1542 		return ERR_PTR(-EOPNOTSUPP);
1543 
1544 	mlx5_ib_dbg(dev,
1545 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1546 		    offset, virt_addr, length, fd, access_flags);
1547 
1548 	/* dmabuf requires xlt update via umr to work. */
1549 	if (!mlx5r_umr_can_load_pas(dev, length))
1550 		return ERR_PTR(-EINVAL);
1551 
1552 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1553 					 access_flags,
1554 					 &mlx5_ib_dmabuf_attach_ops);
1555 	if (IS_ERR(umem_dmabuf)) {
1556 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1557 			    PTR_ERR(umem_dmabuf));
1558 		return ERR_CAST(umem_dmabuf);
1559 	}
1560 
1561 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1562 				access_flags);
1563 	if (IS_ERR(mr)) {
1564 		ib_umem_release(&umem_dmabuf->umem);
1565 		return ERR_CAST(mr);
1566 	}
1567 
1568 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1569 
1570 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1571 	umem_dmabuf->private = mr;
1572 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1573 	if (err)
1574 		goto err_dereg_mr;
1575 
1576 	err = mlx5_ib_init_dmabuf_mr(mr);
1577 	if (err)
1578 		goto err_dereg_mr;
1579 	return &mr->ibmr;
1580 
1581 err_dereg_mr:
1582 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1583 	return ERR_PTR(err);
1584 }
1585 
1586 /*
1587  * True if the change in access flags can be done via UMR, only some access
1588  * flags can be updated.
1589  */
1590 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1591 				     unsigned int current_access_flags,
1592 				     unsigned int target_access_flags)
1593 {
1594 	unsigned int diffs = current_access_flags ^ target_access_flags;
1595 
1596 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1597 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1598 		      IB_ACCESS_REMOTE_ATOMIC))
1599 		return false;
1600 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1601 				      target_access_flags);
1602 }
1603 
1604 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1605 				  struct ib_umem *new_umem,
1606 				  int new_access_flags, u64 iova,
1607 				  unsigned long *page_size)
1608 {
1609 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1610 
1611 	/* We only track the allocated sizes of MRs from the cache */
1612 	if (!mr->mmkey.cache_ent)
1613 		return false;
1614 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1615 		return false;
1616 
1617 	*page_size =
1618 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1619 	if (WARN_ON(!*page_size))
1620 		return false;
1621 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1622 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1623 }
1624 
1625 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1626 			 int access_flags, int flags, struct ib_umem *new_umem,
1627 			 u64 iova, unsigned long page_size)
1628 {
1629 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1630 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1631 	struct ib_umem *old_umem = mr->umem;
1632 	int err;
1633 
1634 	/*
1635 	 * To keep everything simple the MR is revoked before we start to mess
1636 	 * with it. This ensure the change is atomic relative to any use of the
1637 	 * MR.
1638 	 */
1639 	err = mlx5r_umr_revoke_mr(mr);
1640 	if (err)
1641 		return err;
1642 
1643 	if (flags & IB_MR_REREG_PD) {
1644 		mr->ibmr.pd = pd;
1645 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1646 	}
1647 	if (flags & IB_MR_REREG_ACCESS) {
1648 		mr->access_flags = access_flags;
1649 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1650 	}
1651 
1652 	mr->ibmr.iova = iova;
1653 	mr->ibmr.length = new_umem->length;
1654 	mr->page_shift = order_base_2(page_size);
1655 	mr->umem = new_umem;
1656 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1657 	if (err) {
1658 		/*
1659 		 * The MR is revoked at this point so there is no issue to free
1660 		 * new_umem.
1661 		 */
1662 		mr->umem = old_umem;
1663 		return err;
1664 	}
1665 
1666 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1667 	ib_umem_release(old_umem);
1668 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1669 	return 0;
1670 }
1671 
1672 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1673 				    u64 length, u64 iova, int new_access_flags,
1674 				    struct ib_pd *new_pd,
1675 				    struct ib_udata *udata)
1676 {
1677 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1678 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1679 	int err;
1680 
1681 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1682 		return ERR_PTR(-EOPNOTSUPP);
1683 
1684 	mlx5_ib_dbg(
1685 		dev,
1686 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1687 		start, iova, length, new_access_flags);
1688 
1689 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1690 		return ERR_PTR(-EOPNOTSUPP);
1691 
1692 	if (!(flags & IB_MR_REREG_ACCESS))
1693 		new_access_flags = mr->access_flags;
1694 	if (!(flags & IB_MR_REREG_PD))
1695 		new_pd = ib_mr->pd;
1696 
1697 	if (!(flags & IB_MR_REREG_TRANS)) {
1698 		struct ib_umem *umem;
1699 
1700 		/* Fast path for PD/access change */
1701 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1702 					     new_access_flags)) {
1703 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1704 							new_access_flags);
1705 			if (err)
1706 				return ERR_PTR(err);
1707 			return NULL;
1708 		}
1709 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1710 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1711 			goto recreate;
1712 
1713 		/*
1714 		 * Only one active MR can refer to a umem at one time, revoke
1715 		 * the old MR before assigning the umem to the new one.
1716 		 */
1717 		err = mlx5r_umr_revoke_mr(mr);
1718 		if (err)
1719 			return ERR_PTR(err);
1720 		umem = mr->umem;
1721 		mr->umem = NULL;
1722 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1723 
1724 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1725 				      new_access_flags);
1726 	}
1727 
1728 	/*
1729 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1730 	 * but the logic around releasing the umem is different
1731 	 */
1732 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1733 		goto recreate;
1734 
1735 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1736 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1737 		struct ib_umem *new_umem;
1738 		unsigned long page_size;
1739 
1740 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1741 				       new_access_flags);
1742 		if (IS_ERR(new_umem))
1743 			return ERR_CAST(new_umem);
1744 
1745 		/* Fast path for PAS change */
1746 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1747 					  &page_size)) {
1748 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1749 					    new_umem, iova, page_size);
1750 			if (err) {
1751 				ib_umem_release(new_umem);
1752 				return ERR_PTR(err);
1753 			}
1754 			return NULL;
1755 		}
1756 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1757 	}
1758 
1759 	/*
1760 	 * Everything else has no state we can preserve, just create a new MR
1761 	 * from scratch
1762 	 */
1763 recreate:
1764 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1765 				   new_access_flags, udata);
1766 }
1767 
1768 static int
1769 mlx5_alloc_priv_descs(struct ib_device *device,
1770 		      struct mlx5_ib_mr *mr,
1771 		      int ndescs,
1772 		      int desc_size)
1773 {
1774 	struct mlx5_ib_dev *dev = to_mdev(device);
1775 	struct device *ddev = &dev->mdev->pdev->dev;
1776 	int size = ndescs * desc_size;
1777 	int add_size;
1778 	int ret;
1779 
1780 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1781 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1782 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1783 
1784 		add_size = min_t(int, end - size, add_size);
1785 	}
1786 
1787 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1788 	if (!mr->descs_alloc)
1789 		return -ENOMEM;
1790 
1791 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1792 
1793 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1794 	if (dma_mapping_error(ddev, mr->desc_map)) {
1795 		ret = -ENOMEM;
1796 		goto err;
1797 	}
1798 
1799 	return 0;
1800 err:
1801 	kfree(mr->descs_alloc);
1802 
1803 	return ret;
1804 }
1805 
1806 static void
1807 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1808 {
1809 	if (!mr->umem && mr->descs) {
1810 		struct ib_device *device = mr->ibmr.device;
1811 		int size = mr->max_descs * mr->desc_size;
1812 		struct mlx5_ib_dev *dev = to_mdev(device);
1813 
1814 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1815 				 DMA_TO_DEVICE);
1816 		kfree(mr->descs_alloc);
1817 		mr->descs = NULL;
1818 	}
1819 }
1820 
1821 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1822 				    struct mlx5_ib_mr *mr)
1823 {
1824 	struct mlx5_mkey_cache *cache = &dev->cache;
1825 	struct mlx5_cache_ent *ent;
1826 	int ret;
1827 
1828 	if (mr->mmkey.cache_ent) {
1829 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1830 		mr->mmkey.cache_ent->in_use--;
1831 		goto end;
1832 	}
1833 
1834 	mutex_lock(&cache->rb_lock);
1835 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1836 	if (ent) {
1837 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1838 			if (ent->disabled) {
1839 				mutex_unlock(&cache->rb_lock);
1840 				return -EOPNOTSUPP;
1841 			}
1842 			mr->mmkey.cache_ent = ent;
1843 			xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1844 			mutex_unlock(&cache->rb_lock);
1845 			goto end;
1846 		}
1847 	}
1848 
1849 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1850 	mutex_unlock(&cache->rb_lock);
1851 	if (IS_ERR(ent))
1852 		return PTR_ERR(ent);
1853 
1854 	mr->mmkey.cache_ent = ent;
1855 	xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1856 
1857 end:
1858 	ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1859 			       xa_mk_value(mr->mmkey.key));
1860 	xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1861 	return ret;
1862 }
1863 
1864 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1865 {
1866 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1867 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1868 	int rc;
1869 
1870 	/*
1871 	 * Any async use of the mr must hold the refcount, once the refcount
1872 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1873 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1874 	 */
1875 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1876 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1877 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1878 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1879 
1880 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1881 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1882 			   mr->sig, NULL, GFP_KERNEL);
1883 
1884 		if (mr->mtt_mr) {
1885 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1886 			if (rc)
1887 				return rc;
1888 			mr->mtt_mr = NULL;
1889 		}
1890 		if (mr->klm_mr) {
1891 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1892 			if (rc)
1893 				return rc;
1894 			mr->klm_mr = NULL;
1895 		}
1896 
1897 		if (mlx5_core_destroy_psv(dev->mdev,
1898 					  mr->sig->psv_memory.psv_idx))
1899 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1900 				     mr->sig->psv_memory.psv_idx);
1901 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1902 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1903 				     mr->sig->psv_wire.psv_idx);
1904 		kfree(mr->sig);
1905 		mr->sig = NULL;
1906 	}
1907 
1908 	/* Stop DMA */
1909 	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1910 		if (mlx5r_umr_revoke_mr(mr) ||
1911 		    cache_ent_find_and_store(dev, mr))
1912 			mr->mmkey.cache_ent = NULL;
1913 
1914 	if (!mr->mmkey.cache_ent) {
1915 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1916 		if (rc)
1917 			return rc;
1918 	}
1919 
1920 	if (mr->umem) {
1921 		bool is_odp = is_odp_mr(mr);
1922 
1923 		if (!is_odp)
1924 			atomic_sub(ib_umem_num_pages(mr->umem),
1925 				   &dev->mdev->priv.reg_pages);
1926 		ib_umem_release(mr->umem);
1927 		if (is_odp)
1928 			mlx5_ib_free_odp_mr(mr);
1929 	}
1930 
1931 	if (!mr->mmkey.cache_ent)
1932 		mlx5_free_priv_descs(mr);
1933 
1934 	kfree(mr);
1935 	return 0;
1936 }
1937 
1938 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1939 				   int access_mode, int page_shift)
1940 {
1941 	void *mkc;
1942 
1943 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1944 
1945 	/* This is only used from the kernel, so setting the PD is OK. */
1946 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1947 	MLX5_SET(mkc, mkc, free, 1);
1948 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1949 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1950 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1951 	MLX5_SET(mkc, mkc, umr_en, 1);
1952 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1953 }
1954 
1955 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1956 				  int ndescs, int desc_size, int page_shift,
1957 				  int access_mode, u32 *in, int inlen)
1958 {
1959 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1960 	int err;
1961 
1962 	mr->access_mode = access_mode;
1963 	mr->desc_size = desc_size;
1964 	mr->max_descs = ndescs;
1965 
1966 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1967 	if (err)
1968 		return err;
1969 
1970 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1971 
1972 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1973 	if (err)
1974 		goto err_free_descs;
1975 
1976 	mr->mmkey.type = MLX5_MKEY_MR;
1977 	mr->ibmr.lkey = mr->mmkey.key;
1978 	mr->ibmr.rkey = mr->mmkey.key;
1979 
1980 	return 0;
1981 
1982 err_free_descs:
1983 	mlx5_free_priv_descs(mr);
1984 	return err;
1985 }
1986 
1987 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1988 				u32 max_num_sg, u32 max_num_meta_sg,
1989 				int desc_size, int access_mode)
1990 {
1991 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1992 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1993 	int page_shift = 0;
1994 	struct mlx5_ib_mr *mr;
1995 	u32 *in;
1996 	int err;
1997 
1998 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1999 	if (!mr)
2000 		return ERR_PTR(-ENOMEM);
2001 
2002 	mr->ibmr.pd = pd;
2003 	mr->ibmr.device = pd->device;
2004 
2005 	in = kzalloc(inlen, GFP_KERNEL);
2006 	if (!in) {
2007 		err = -ENOMEM;
2008 		goto err_free;
2009 	}
2010 
2011 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2012 		page_shift = PAGE_SHIFT;
2013 
2014 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2015 				     access_mode, in, inlen);
2016 	if (err)
2017 		goto err_free_in;
2018 
2019 	mr->umem = NULL;
2020 	kfree(in);
2021 
2022 	return mr;
2023 
2024 err_free_in:
2025 	kfree(in);
2026 err_free:
2027 	kfree(mr);
2028 	return ERR_PTR(err);
2029 }
2030 
2031 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2032 				    int ndescs, u32 *in, int inlen)
2033 {
2034 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2035 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2036 				      inlen);
2037 }
2038 
2039 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2040 				    int ndescs, u32 *in, int inlen)
2041 {
2042 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2043 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2044 }
2045 
2046 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2047 				      int max_num_sg, int max_num_meta_sg,
2048 				      u32 *in, int inlen)
2049 {
2050 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2051 	u32 psv_index[2];
2052 	void *mkc;
2053 	int err;
2054 
2055 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2056 	if (!mr->sig)
2057 		return -ENOMEM;
2058 
2059 	/* create mem & wire PSVs */
2060 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2061 	if (err)
2062 		goto err_free_sig;
2063 
2064 	mr->sig->psv_memory.psv_idx = psv_index[0];
2065 	mr->sig->psv_wire.psv_idx = psv_index[1];
2066 
2067 	mr->sig->sig_status_checked = true;
2068 	mr->sig->sig_err_exists = false;
2069 	/* Next UMR, Arm SIGERR */
2070 	++mr->sig->sigerr_count;
2071 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2072 					 sizeof(struct mlx5_klm),
2073 					 MLX5_MKC_ACCESS_MODE_KLMS);
2074 	if (IS_ERR(mr->klm_mr)) {
2075 		err = PTR_ERR(mr->klm_mr);
2076 		goto err_destroy_psv;
2077 	}
2078 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2079 					 sizeof(struct mlx5_mtt),
2080 					 MLX5_MKC_ACCESS_MODE_MTT);
2081 	if (IS_ERR(mr->mtt_mr)) {
2082 		err = PTR_ERR(mr->mtt_mr);
2083 		goto err_free_klm_mr;
2084 	}
2085 
2086 	/* Set bsf descriptors for mkey */
2087 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2088 	MLX5_SET(mkc, mkc, bsf_en, 1);
2089 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2090 
2091 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2092 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2093 	if (err)
2094 		goto err_free_mtt_mr;
2095 
2096 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2097 			      mr->sig, GFP_KERNEL));
2098 	if (err)
2099 		goto err_free_descs;
2100 	return 0;
2101 
2102 err_free_descs:
2103 	destroy_mkey(dev, mr);
2104 	mlx5_free_priv_descs(mr);
2105 err_free_mtt_mr:
2106 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2107 	mr->mtt_mr = NULL;
2108 err_free_klm_mr:
2109 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2110 	mr->klm_mr = NULL;
2111 err_destroy_psv:
2112 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2113 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2114 			     mr->sig->psv_memory.psv_idx);
2115 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2116 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2117 			     mr->sig->psv_wire.psv_idx);
2118 err_free_sig:
2119 	kfree(mr->sig);
2120 
2121 	return err;
2122 }
2123 
2124 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2125 					enum ib_mr_type mr_type, u32 max_num_sg,
2126 					u32 max_num_meta_sg)
2127 {
2128 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2129 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2130 	int ndescs = ALIGN(max_num_sg, 4);
2131 	struct mlx5_ib_mr *mr;
2132 	u32 *in;
2133 	int err;
2134 
2135 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2136 	if (!mr)
2137 		return ERR_PTR(-ENOMEM);
2138 
2139 	in = kzalloc(inlen, GFP_KERNEL);
2140 	if (!in) {
2141 		err = -ENOMEM;
2142 		goto err_free;
2143 	}
2144 
2145 	mr->ibmr.device = pd->device;
2146 	mr->umem = NULL;
2147 
2148 	switch (mr_type) {
2149 	case IB_MR_TYPE_MEM_REG:
2150 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2151 		break;
2152 	case IB_MR_TYPE_SG_GAPS:
2153 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2154 		break;
2155 	case IB_MR_TYPE_INTEGRITY:
2156 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2157 						 max_num_meta_sg, in, inlen);
2158 		break;
2159 	default:
2160 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2161 		err = -EINVAL;
2162 	}
2163 
2164 	if (err)
2165 		goto err_free_in;
2166 
2167 	kfree(in);
2168 
2169 	return &mr->ibmr;
2170 
2171 err_free_in:
2172 	kfree(in);
2173 err_free:
2174 	kfree(mr);
2175 	return ERR_PTR(err);
2176 }
2177 
2178 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2179 			       u32 max_num_sg)
2180 {
2181 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2182 }
2183 
2184 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2185 					 u32 max_num_sg, u32 max_num_meta_sg)
2186 {
2187 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2188 				  max_num_meta_sg);
2189 }
2190 
2191 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2192 {
2193 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2194 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2195 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2196 	unsigned int ndescs;
2197 	u32 *in = NULL;
2198 	void *mkc;
2199 	int err;
2200 	struct mlx5_ib_alloc_mw req = {};
2201 	struct {
2202 		__u32	comp_mask;
2203 		__u32	response_length;
2204 	} resp = {};
2205 
2206 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2207 	if (err)
2208 		return err;
2209 
2210 	if (req.comp_mask || req.reserved1 || req.reserved2)
2211 		return -EOPNOTSUPP;
2212 
2213 	if (udata->inlen > sizeof(req) &&
2214 	    !ib_is_udata_cleared(udata, sizeof(req),
2215 				 udata->inlen - sizeof(req)))
2216 		return -EOPNOTSUPP;
2217 
2218 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2219 
2220 	in = kzalloc(inlen, GFP_KERNEL);
2221 	if (!in)
2222 		return -ENOMEM;
2223 
2224 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2225 
2226 	MLX5_SET(mkc, mkc, free, 1);
2227 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2228 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2229 	MLX5_SET(mkc, mkc, umr_en, 1);
2230 	MLX5_SET(mkc, mkc, lr, 1);
2231 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2232 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2233 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2234 
2235 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2236 	if (err)
2237 		goto free;
2238 
2239 	mw->mmkey.type = MLX5_MKEY_MW;
2240 	ibmw->rkey = mw->mmkey.key;
2241 	mw->mmkey.ndescs = ndescs;
2242 
2243 	resp.response_length =
2244 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2245 	if (resp.response_length) {
2246 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2247 		if (err)
2248 			goto free_mkey;
2249 	}
2250 
2251 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2252 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2253 		if (err)
2254 			goto free_mkey;
2255 	}
2256 
2257 	kfree(in);
2258 	return 0;
2259 
2260 free_mkey:
2261 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2262 free:
2263 	kfree(in);
2264 	return err;
2265 }
2266 
2267 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2268 {
2269 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2270 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2271 
2272 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2273 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2274 		/*
2275 		 * pagefault_single_data_segment() may be accessing mmw
2276 		 * if the user bound an ODP MR to this MW.
2277 		 */
2278 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2279 
2280 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2281 }
2282 
2283 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2284 			    struct ib_mr_status *mr_status)
2285 {
2286 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2287 	int ret = 0;
2288 
2289 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2290 		pr_err("Invalid status check mask\n");
2291 		ret = -EINVAL;
2292 		goto done;
2293 	}
2294 
2295 	mr_status->fail_status = 0;
2296 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2297 		if (!mmr->sig) {
2298 			ret = -EINVAL;
2299 			pr_err("signature status check requested on a non-signature enabled MR\n");
2300 			goto done;
2301 		}
2302 
2303 		mmr->sig->sig_status_checked = true;
2304 		if (!mmr->sig->sig_err_exists)
2305 			goto done;
2306 
2307 		if (ibmr->lkey == mmr->sig->err_item.key)
2308 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2309 			       sizeof(mr_status->sig_err));
2310 		else {
2311 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2312 			mr_status->sig_err.sig_err_offset = 0;
2313 			mr_status->sig_err.key = mmr->sig->err_item.key;
2314 		}
2315 
2316 		mmr->sig->sig_err_exists = false;
2317 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2318 	}
2319 
2320 done:
2321 	return ret;
2322 }
2323 
2324 static int
2325 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2326 			int data_sg_nents, unsigned int *data_sg_offset,
2327 			struct scatterlist *meta_sg, int meta_sg_nents,
2328 			unsigned int *meta_sg_offset)
2329 {
2330 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2331 	unsigned int sg_offset = 0;
2332 	int n = 0;
2333 
2334 	mr->meta_length = 0;
2335 	if (data_sg_nents == 1) {
2336 		n++;
2337 		mr->mmkey.ndescs = 1;
2338 		if (data_sg_offset)
2339 			sg_offset = *data_sg_offset;
2340 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2341 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2342 		if (meta_sg_nents == 1) {
2343 			n++;
2344 			mr->meta_ndescs = 1;
2345 			if (meta_sg_offset)
2346 				sg_offset = *meta_sg_offset;
2347 			else
2348 				sg_offset = 0;
2349 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2350 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2351 		}
2352 		ibmr->length = mr->data_length + mr->meta_length;
2353 	}
2354 
2355 	return n;
2356 }
2357 
2358 static int
2359 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2360 		   struct scatterlist *sgl,
2361 		   unsigned short sg_nents,
2362 		   unsigned int *sg_offset_p,
2363 		   struct scatterlist *meta_sgl,
2364 		   unsigned short meta_sg_nents,
2365 		   unsigned int *meta_sg_offset_p)
2366 {
2367 	struct scatterlist *sg = sgl;
2368 	struct mlx5_klm *klms = mr->descs;
2369 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2370 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2371 	int i, j = 0;
2372 
2373 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2374 	mr->ibmr.length = 0;
2375 
2376 	for_each_sg(sgl, sg, sg_nents, i) {
2377 		if (unlikely(i >= mr->max_descs))
2378 			break;
2379 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2380 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2381 		klms[i].key = cpu_to_be32(lkey);
2382 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2383 
2384 		sg_offset = 0;
2385 	}
2386 
2387 	if (sg_offset_p)
2388 		*sg_offset_p = sg_offset;
2389 
2390 	mr->mmkey.ndescs = i;
2391 	mr->data_length = mr->ibmr.length;
2392 
2393 	if (meta_sg_nents) {
2394 		sg = meta_sgl;
2395 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2396 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2397 			if (unlikely(i + j >= mr->max_descs))
2398 				break;
2399 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2400 						     sg_offset);
2401 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2402 							 sg_offset);
2403 			klms[i + j].key = cpu_to_be32(lkey);
2404 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2405 
2406 			sg_offset = 0;
2407 		}
2408 		if (meta_sg_offset_p)
2409 			*meta_sg_offset_p = sg_offset;
2410 
2411 		mr->meta_ndescs = j;
2412 		mr->meta_length = mr->ibmr.length - mr->data_length;
2413 	}
2414 
2415 	return i + j;
2416 }
2417 
2418 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2419 {
2420 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2421 	__be64 *descs;
2422 
2423 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2424 		return -ENOMEM;
2425 
2426 	descs = mr->descs;
2427 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2428 
2429 	return 0;
2430 }
2431 
2432 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2433 {
2434 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2435 	__be64 *descs;
2436 
2437 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2438 		return -ENOMEM;
2439 
2440 	descs = mr->descs;
2441 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2442 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2443 
2444 	return 0;
2445 }
2446 
2447 static int
2448 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2449 			 int data_sg_nents, unsigned int *data_sg_offset,
2450 			 struct scatterlist *meta_sg, int meta_sg_nents,
2451 			 unsigned int *meta_sg_offset)
2452 {
2453 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2454 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2455 	int n;
2456 
2457 	pi_mr->mmkey.ndescs = 0;
2458 	pi_mr->meta_ndescs = 0;
2459 	pi_mr->meta_length = 0;
2460 
2461 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2462 				   pi_mr->desc_size * pi_mr->max_descs,
2463 				   DMA_TO_DEVICE);
2464 
2465 	pi_mr->ibmr.page_size = ibmr->page_size;
2466 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2467 			   mlx5_set_page);
2468 	if (n != data_sg_nents)
2469 		return n;
2470 
2471 	pi_mr->data_iova = pi_mr->ibmr.iova;
2472 	pi_mr->data_length = pi_mr->ibmr.length;
2473 	pi_mr->ibmr.length = pi_mr->data_length;
2474 	ibmr->length = pi_mr->data_length;
2475 
2476 	if (meta_sg_nents) {
2477 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2478 		u64 iova = pi_mr->data_iova;
2479 
2480 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2481 				    meta_sg_offset, mlx5_set_page_pi);
2482 
2483 		pi_mr->meta_length = pi_mr->ibmr.length;
2484 		/*
2485 		 * PI address for the HW is the offset of the metadata address
2486 		 * relative to the first data page address.
2487 		 * It equals to first data page address + size of data pages +
2488 		 * metadata offset at the first metadata page
2489 		 */
2490 		pi_mr->pi_iova = (iova & page_mask) +
2491 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2492 				 (pi_mr->ibmr.iova & ~page_mask);
2493 		/*
2494 		 * In order to use one MTT MR for data and metadata, we register
2495 		 * also the gaps between the end of the data and the start of
2496 		 * the metadata (the sig MR will verify that the HW will access
2497 		 * to right addresses). This mapping is safe because we use
2498 		 * internal mkey for the registration.
2499 		 */
2500 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2501 		pi_mr->ibmr.iova = iova;
2502 		ibmr->length += pi_mr->meta_length;
2503 	}
2504 
2505 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2506 				      pi_mr->desc_size * pi_mr->max_descs,
2507 				      DMA_TO_DEVICE);
2508 
2509 	return n;
2510 }
2511 
2512 static int
2513 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2514 			 int data_sg_nents, unsigned int *data_sg_offset,
2515 			 struct scatterlist *meta_sg, int meta_sg_nents,
2516 			 unsigned int *meta_sg_offset)
2517 {
2518 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2519 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2520 	int n;
2521 
2522 	pi_mr->mmkey.ndescs = 0;
2523 	pi_mr->meta_ndescs = 0;
2524 	pi_mr->meta_length = 0;
2525 
2526 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2527 				   pi_mr->desc_size * pi_mr->max_descs,
2528 				   DMA_TO_DEVICE);
2529 
2530 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2531 			       meta_sg, meta_sg_nents, meta_sg_offset);
2532 
2533 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2534 				      pi_mr->desc_size * pi_mr->max_descs,
2535 				      DMA_TO_DEVICE);
2536 
2537 	/* This is zero-based memory region */
2538 	pi_mr->data_iova = 0;
2539 	pi_mr->ibmr.iova = 0;
2540 	pi_mr->pi_iova = pi_mr->data_length;
2541 	ibmr->length = pi_mr->ibmr.length;
2542 
2543 	return n;
2544 }
2545 
2546 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2547 			 int data_sg_nents, unsigned int *data_sg_offset,
2548 			 struct scatterlist *meta_sg, int meta_sg_nents,
2549 			 unsigned int *meta_sg_offset)
2550 {
2551 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2552 	struct mlx5_ib_mr *pi_mr = NULL;
2553 	int n;
2554 
2555 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2556 
2557 	mr->mmkey.ndescs = 0;
2558 	mr->data_length = 0;
2559 	mr->data_iova = 0;
2560 	mr->meta_ndescs = 0;
2561 	mr->pi_iova = 0;
2562 	/*
2563 	 * As a performance optimization, if possible, there is no need to
2564 	 * perform UMR operation to register the data/metadata buffers.
2565 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2566 	 * Fallback to UMR only in case of a failure.
2567 	 */
2568 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2569 				    data_sg_offset, meta_sg, meta_sg_nents,
2570 				    meta_sg_offset);
2571 	if (n == data_sg_nents + meta_sg_nents)
2572 		goto out;
2573 	/*
2574 	 * As a performance optimization, if possible, there is no need to map
2575 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2576 	 * descriptors and fallback to KLM only in case of a failure.
2577 	 * It's more efficient for the HW to work with MTT descriptors
2578 	 * (especially in high load).
2579 	 * Use KLM (indirect access) only if it's mandatory.
2580 	 */
2581 	pi_mr = mr->mtt_mr;
2582 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2583 				     data_sg_offset, meta_sg, meta_sg_nents,
2584 				     meta_sg_offset);
2585 	if (n == data_sg_nents + meta_sg_nents)
2586 		goto out;
2587 
2588 	pi_mr = mr->klm_mr;
2589 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2590 				     data_sg_offset, meta_sg, meta_sg_nents,
2591 				     meta_sg_offset);
2592 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2593 		return -ENOMEM;
2594 
2595 out:
2596 	/* This is zero-based memory region */
2597 	ibmr->iova = 0;
2598 	mr->pi_mr = pi_mr;
2599 	if (pi_mr)
2600 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2601 	else
2602 		ibmr->sig_attrs->meta_length = mr->meta_length;
2603 
2604 	return 0;
2605 }
2606 
2607 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2608 		      unsigned int *sg_offset)
2609 {
2610 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2611 	int n;
2612 
2613 	mr->mmkey.ndescs = 0;
2614 
2615 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2616 				   mr->desc_size * mr->max_descs,
2617 				   DMA_TO_DEVICE);
2618 
2619 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2620 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2621 				       NULL);
2622 	else
2623 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2624 				mlx5_set_page);
2625 
2626 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2627 				      mr->desc_size * mr->max_descs,
2628 				      DMA_TO_DEVICE);
2629 
2630 	return n;
2631 }
2632