1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 34 #include <linux/kref.h> 35 #include <linux/random.h> 36 #include <linux/debugfs.h> 37 #include <linux/export.h> 38 #include <linux/delay.h> 39 #include <rdma/ib_umem.h> 40 #include <rdma/ib_umem_odp.h> 41 #include <rdma/ib_verbs.h> 42 #include "mlx5_ib.h" 43 44 enum { 45 MAX_PENDING_REG_MR = 8, 46 }; 47 48 #define MLX5_UMR_ALIGN 2048 49 50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 52 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 54 55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 56 { 57 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 58 } 59 60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 61 { 62 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 63 64 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 65 /* Wait until all page fault handlers using the mr complete. */ 66 synchronize_srcu(&dev->mr_srcu); 67 68 return err; 69 } 70 71 static int order2idx(struct mlx5_ib_dev *dev, int order) 72 { 73 struct mlx5_mr_cache *cache = &dev->cache; 74 75 if (order < cache->ent[0].order) 76 return 0; 77 else 78 return order - cache->ent[0].order; 79 } 80 81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) 82 { 83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= 84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); 85 } 86 87 static void update_odp_mr(struct mlx5_ib_mr *mr) 88 { 89 if (is_odp_mr(mr)) { 90 /* 91 * This barrier prevents the compiler from moving the 92 * setting of umem->odp_data->private to point to our 93 * MR, before reg_umr finished, to ensure that the MR 94 * initialization have finished before starting to 95 * handle invalidations. 96 */ 97 smp_wmb(); 98 to_ib_umem_odp(mr->umem)->private = mr; 99 /* 100 * Make sure we will see the new 101 * umem->odp_data->private value in the invalidation 102 * routines, before we can get page faults on the 103 * MR. Page faults can happen once we put the MR in 104 * the tree, below this line. Without the barrier, 105 * there can be a fault handling and an invalidation 106 * before umem->odp_data->private == mr is visible to 107 * the invalidation handler. 108 */ 109 smp_wmb(); 110 } 111 } 112 113 static void reg_mr_callback(int status, struct mlx5_async_work *context) 114 { 115 struct mlx5_ib_mr *mr = 116 container_of(context, struct mlx5_ib_mr, cb_work); 117 struct mlx5_ib_dev *dev = mr->dev; 118 struct mlx5_mr_cache *cache = &dev->cache; 119 int c = order2idx(dev, mr->order); 120 struct mlx5_cache_ent *ent = &cache->ent[c]; 121 u8 key; 122 unsigned long flags; 123 struct xarray *mkeys = &dev->mdev->priv.mkey_table; 124 int err; 125 126 spin_lock_irqsave(&ent->lock, flags); 127 ent->pending--; 128 spin_unlock_irqrestore(&ent->lock, flags); 129 if (status) { 130 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 131 kfree(mr); 132 dev->fill_delay = 1; 133 mod_timer(&dev->delay_timer, jiffies + HZ); 134 return; 135 } 136 137 mr->mmkey.type = MLX5_MKEY_MR; 138 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags); 139 key = dev->mdev->priv.mkey_key++; 140 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags); 141 mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key; 142 143 cache->last_add = jiffies; 144 145 spin_lock_irqsave(&ent->lock, flags); 146 list_add_tail(&mr->list, &ent->head); 147 ent->cur++; 148 ent->size++; 149 spin_unlock_irqrestore(&ent->lock, flags); 150 151 xa_lock_irqsave(mkeys, flags); 152 err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key), 153 &mr->mmkey, GFP_ATOMIC)); 154 xa_unlock_irqrestore(mkeys, flags); 155 if (err) 156 pr_err("Error inserting to mkey tree. 0x%x\n", -err); 157 158 if (!completion_done(&ent->compl)) 159 complete(&ent->compl); 160 } 161 162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num) 163 { 164 struct mlx5_mr_cache *cache = &dev->cache; 165 struct mlx5_cache_ent *ent = &cache->ent[c]; 166 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 167 struct mlx5_ib_mr *mr; 168 void *mkc; 169 u32 *in; 170 int err = 0; 171 int i; 172 173 in = kzalloc(inlen, GFP_KERNEL); 174 if (!in) 175 return -ENOMEM; 176 177 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 178 for (i = 0; i < num; i++) { 179 if (ent->pending >= MAX_PENDING_REG_MR) { 180 err = -EAGAIN; 181 break; 182 } 183 184 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 185 if (!mr) { 186 err = -ENOMEM; 187 break; 188 } 189 mr->order = ent->order; 190 mr->allocated_from_cache = 1; 191 mr->dev = dev; 192 193 MLX5_SET(mkc, mkc, free, 1); 194 MLX5_SET(mkc, mkc, umr_en, 1); 195 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 196 MLX5_SET(mkc, mkc, access_mode_4_2, 197 (ent->access_mode >> 2) & 0x7); 198 199 MLX5_SET(mkc, mkc, qpn, 0xffffff); 200 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 201 MLX5_SET(mkc, mkc, log_page_size, ent->page); 202 203 spin_lock_irq(&ent->lock); 204 ent->pending++; 205 spin_unlock_irq(&ent->lock); 206 err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey, 207 &dev->async_ctx, in, inlen, 208 mr->out, sizeof(mr->out), 209 reg_mr_callback, &mr->cb_work); 210 if (err) { 211 spin_lock_irq(&ent->lock); 212 ent->pending--; 213 spin_unlock_irq(&ent->lock); 214 mlx5_ib_warn(dev, "create mkey failed %d\n", err); 215 kfree(mr); 216 break; 217 } 218 } 219 220 kfree(in); 221 return err; 222 } 223 224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num) 225 { 226 struct mlx5_mr_cache *cache = &dev->cache; 227 struct mlx5_cache_ent *ent = &cache->ent[c]; 228 struct mlx5_ib_mr *tmp_mr; 229 struct mlx5_ib_mr *mr; 230 LIST_HEAD(del_list); 231 int i; 232 233 for (i = 0; i < num; i++) { 234 spin_lock_irq(&ent->lock); 235 if (list_empty(&ent->head)) { 236 spin_unlock_irq(&ent->lock); 237 break; 238 } 239 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 240 list_move(&mr->list, &del_list); 241 ent->cur--; 242 ent->size--; 243 spin_unlock_irq(&ent->lock); 244 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 245 } 246 247 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 248 synchronize_srcu(&dev->mr_srcu); 249 250 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 251 list_del(&mr->list); 252 kfree(mr); 253 } 254 } 255 256 static ssize_t size_write(struct file *filp, const char __user *buf, 257 size_t count, loff_t *pos) 258 { 259 struct mlx5_cache_ent *ent = filp->private_data; 260 struct mlx5_ib_dev *dev = ent->dev; 261 char lbuf[20] = {0}; 262 u32 var; 263 int err; 264 int c; 265 266 count = min(count, sizeof(lbuf) - 1); 267 if (copy_from_user(lbuf, buf, count)) 268 return -EFAULT; 269 270 c = order2idx(dev, ent->order); 271 272 if (sscanf(lbuf, "%u", &var) != 1) 273 return -EINVAL; 274 275 if (var < ent->limit) 276 return -EINVAL; 277 278 if (var > ent->size) { 279 do { 280 err = add_keys(dev, c, var - ent->size); 281 if (err && err != -EAGAIN) 282 return err; 283 284 usleep_range(3000, 5000); 285 } while (err); 286 } else if (var < ent->size) { 287 remove_keys(dev, c, ent->size - var); 288 } 289 290 return count; 291 } 292 293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 294 loff_t *pos) 295 { 296 struct mlx5_cache_ent *ent = filp->private_data; 297 char lbuf[20]; 298 int err; 299 300 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size); 301 if (err < 0) 302 return err; 303 304 return simple_read_from_buffer(buf, count, pos, lbuf, err); 305 } 306 307 static const struct file_operations size_fops = { 308 .owner = THIS_MODULE, 309 .open = simple_open, 310 .write = size_write, 311 .read = size_read, 312 }; 313 314 static ssize_t limit_write(struct file *filp, const char __user *buf, 315 size_t count, loff_t *pos) 316 { 317 struct mlx5_cache_ent *ent = filp->private_data; 318 struct mlx5_ib_dev *dev = ent->dev; 319 char lbuf[20] = {0}; 320 u32 var; 321 int err; 322 int c; 323 324 count = min(count, sizeof(lbuf) - 1); 325 if (copy_from_user(lbuf, buf, count)) 326 return -EFAULT; 327 328 c = order2idx(dev, ent->order); 329 330 if (sscanf(lbuf, "%u", &var) != 1) 331 return -EINVAL; 332 333 if (var > ent->size) 334 return -EINVAL; 335 336 ent->limit = var; 337 338 if (ent->cur < ent->limit) { 339 err = add_keys(dev, c, 2 * ent->limit - ent->cur); 340 if (err) 341 return err; 342 } 343 344 return count; 345 } 346 347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 348 loff_t *pos) 349 { 350 struct mlx5_cache_ent *ent = filp->private_data; 351 char lbuf[20]; 352 int err; 353 354 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 355 if (err < 0) 356 return err; 357 358 return simple_read_from_buffer(buf, count, pos, lbuf, err); 359 } 360 361 static const struct file_operations limit_fops = { 362 .owner = THIS_MODULE, 363 .open = simple_open, 364 .write = limit_write, 365 .read = limit_read, 366 }; 367 368 static int someone_adding(struct mlx5_mr_cache *cache) 369 { 370 int i; 371 372 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 373 if (cache->ent[i].cur < cache->ent[i].limit) 374 return 1; 375 } 376 377 return 0; 378 } 379 380 static void __cache_work_func(struct mlx5_cache_ent *ent) 381 { 382 struct mlx5_ib_dev *dev = ent->dev; 383 struct mlx5_mr_cache *cache = &dev->cache; 384 int i = order2idx(dev, ent->order); 385 int err; 386 387 if (cache->stopped) 388 return; 389 390 ent = &dev->cache.ent[i]; 391 if (ent->cur < 2 * ent->limit && !dev->fill_delay) { 392 err = add_keys(dev, i, 1); 393 if (ent->cur < 2 * ent->limit) { 394 if (err == -EAGAIN) { 395 mlx5_ib_dbg(dev, "returned eagain, order %d\n", 396 i + 2); 397 queue_delayed_work(cache->wq, &ent->dwork, 398 msecs_to_jiffies(3)); 399 } else if (err) { 400 mlx5_ib_warn(dev, "command failed order %d, err %d\n", 401 i + 2, err); 402 queue_delayed_work(cache->wq, &ent->dwork, 403 msecs_to_jiffies(1000)); 404 } else { 405 queue_work(cache->wq, &ent->work); 406 } 407 } 408 } else if (ent->cur > 2 * ent->limit) { 409 /* 410 * The remove_keys() logic is performed as garbage collection 411 * task. Such task is intended to be run when no other active 412 * processes are running. 413 * 414 * The need_resched() will return TRUE if there are user tasks 415 * to be activated in near future. 416 * 417 * In such case, we don't execute remove_keys() and postpone 418 * the garbage collection work to try to run in next cycle, 419 * in order to free CPU resources to other tasks. 420 */ 421 if (!need_resched() && !someone_adding(cache) && 422 time_after(jiffies, cache->last_add + 300 * HZ)) { 423 remove_keys(dev, i, 1); 424 if (ent->cur > ent->limit) 425 queue_work(cache->wq, &ent->work); 426 } else { 427 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 428 } 429 } 430 } 431 432 static void delayed_cache_work_func(struct work_struct *work) 433 { 434 struct mlx5_cache_ent *ent; 435 436 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 437 __cache_work_func(ent); 438 } 439 440 static void cache_work_func(struct work_struct *work) 441 { 442 struct mlx5_cache_ent *ent; 443 444 ent = container_of(work, struct mlx5_cache_ent, work); 445 __cache_work_func(ent); 446 } 447 448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry) 449 { 450 struct mlx5_mr_cache *cache = &dev->cache; 451 struct mlx5_cache_ent *ent; 452 struct mlx5_ib_mr *mr; 453 int err; 454 455 if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) { 456 mlx5_ib_err(dev, "cache entry %d is out of range\n", entry); 457 return NULL; 458 } 459 460 ent = &cache->ent[entry]; 461 while (1) { 462 spin_lock_irq(&ent->lock); 463 if (list_empty(&ent->head)) { 464 spin_unlock_irq(&ent->lock); 465 466 err = add_keys(dev, entry, 1); 467 if (err && err != -EAGAIN) 468 return ERR_PTR(err); 469 470 wait_for_completion(&ent->compl); 471 } else { 472 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 473 list); 474 list_del(&mr->list); 475 ent->cur--; 476 spin_unlock_irq(&ent->lock); 477 if (ent->cur < ent->limit) 478 queue_work(cache->wq, &ent->work); 479 return mr; 480 } 481 } 482 } 483 484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order) 485 { 486 struct mlx5_mr_cache *cache = &dev->cache; 487 struct mlx5_ib_mr *mr = NULL; 488 struct mlx5_cache_ent *ent; 489 int last_umr_cache_entry; 490 int c; 491 int i; 492 493 c = order2idx(dev, order); 494 last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev)); 495 if (c < 0 || c > last_umr_cache_entry) { 496 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c); 497 return NULL; 498 } 499 500 for (i = c; i <= last_umr_cache_entry; i++) { 501 ent = &cache->ent[i]; 502 503 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i); 504 505 spin_lock_irq(&ent->lock); 506 if (!list_empty(&ent->head)) { 507 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 508 list); 509 list_del(&mr->list); 510 ent->cur--; 511 spin_unlock_irq(&ent->lock); 512 if (ent->cur < ent->limit) 513 queue_work(cache->wq, &ent->work); 514 break; 515 } 516 spin_unlock_irq(&ent->lock); 517 518 queue_work(cache->wq, &ent->work); 519 } 520 521 if (!mr) 522 cache->ent[c].miss++; 523 524 return mr; 525 } 526 527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 528 { 529 struct mlx5_mr_cache *cache = &dev->cache; 530 struct mlx5_cache_ent *ent; 531 int shrink = 0; 532 int c; 533 534 if (!mr->allocated_from_cache) 535 return; 536 537 c = order2idx(dev, mr->order); 538 WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES); 539 540 if (unreg_umr(dev, mr)) { 541 mr->allocated_from_cache = false; 542 destroy_mkey(dev, mr); 543 ent = &cache->ent[c]; 544 if (ent->cur < ent->limit) 545 queue_work(cache->wq, &ent->work); 546 return; 547 } 548 549 ent = &cache->ent[c]; 550 spin_lock_irq(&ent->lock); 551 list_add_tail(&mr->list, &ent->head); 552 ent->cur++; 553 if (ent->cur > 2 * ent->limit) 554 shrink = 1; 555 spin_unlock_irq(&ent->lock); 556 557 if (shrink) 558 queue_work(cache->wq, &ent->work); 559 } 560 561 static void clean_keys(struct mlx5_ib_dev *dev, int c) 562 { 563 struct mlx5_mr_cache *cache = &dev->cache; 564 struct mlx5_cache_ent *ent = &cache->ent[c]; 565 struct mlx5_ib_mr *tmp_mr; 566 struct mlx5_ib_mr *mr; 567 LIST_HEAD(del_list); 568 569 cancel_delayed_work(&ent->dwork); 570 while (1) { 571 spin_lock_irq(&ent->lock); 572 if (list_empty(&ent->head)) { 573 spin_unlock_irq(&ent->lock); 574 break; 575 } 576 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 577 list_move(&mr->list, &del_list); 578 ent->cur--; 579 ent->size--; 580 spin_unlock_irq(&ent->lock); 581 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 582 } 583 584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 585 synchronize_srcu(&dev->mr_srcu); 586 #endif 587 588 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 589 list_del(&mr->list); 590 kfree(mr); 591 } 592 } 593 594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 595 { 596 if (!mlx5_debugfs_root || dev->is_rep) 597 return; 598 599 debugfs_remove_recursive(dev->cache.root); 600 dev->cache.root = NULL; 601 } 602 603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 604 { 605 struct mlx5_mr_cache *cache = &dev->cache; 606 struct mlx5_cache_ent *ent; 607 struct dentry *dir; 608 int i; 609 610 if (!mlx5_debugfs_root || dev->is_rep) 611 return; 612 613 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 614 615 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 616 ent = &cache->ent[i]; 617 sprintf(ent->name, "%d", ent->order); 618 dir = debugfs_create_dir(ent->name, cache->root); 619 debugfs_create_file("size", 0600, dir, ent, &size_fops); 620 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 621 debugfs_create_u32("cur", 0400, dir, &ent->cur); 622 debugfs_create_u32("miss", 0600, dir, &ent->miss); 623 } 624 } 625 626 static void delay_time_func(struct timer_list *t) 627 { 628 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 629 630 dev->fill_delay = 0; 631 } 632 633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 634 { 635 struct mlx5_mr_cache *cache = &dev->cache; 636 struct mlx5_cache_ent *ent; 637 int i; 638 639 mutex_init(&dev->slow_path_mutex); 640 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 641 if (!cache->wq) { 642 mlx5_ib_warn(dev, "failed to create work queue\n"); 643 return -ENOMEM; 644 } 645 646 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 647 timer_setup(&dev->delay_timer, delay_time_func, 0); 648 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 649 ent = &cache->ent[i]; 650 INIT_LIST_HEAD(&ent->head); 651 spin_lock_init(&ent->lock); 652 ent->order = i + 2; 653 ent->dev = dev; 654 ent->limit = 0; 655 656 init_completion(&ent->compl); 657 INIT_WORK(&ent->work, cache_work_func); 658 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 659 660 if (i > MR_CACHE_LAST_STD_ENTRY) { 661 mlx5_odp_init_mr_cache_entry(ent); 662 continue; 663 } 664 665 if (ent->order > mr_cache_max_order(dev)) 666 continue; 667 668 ent->page = PAGE_SHIFT; 669 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 670 MLX5_IB_UMR_OCTOWORD; 671 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 672 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && 673 !dev->is_rep && 674 mlx5_core_is_pf(dev->mdev)) 675 ent->limit = dev->mdev->profile->mr_cache[i].limit; 676 else 677 ent->limit = 0; 678 queue_work(cache->wq, &ent->work); 679 } 680 681 mlx5_mr_cache_debugfs_init(dev); 682 683 return 0; 684 } 685 686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 687 { 688 int i; 689 690 if (!dev->cache.wq) 691 return 0; 692 693 dev->cache.stopped = 1; 694 flush_workqueue(dev->cache.wq); 695 696 mlx5_mr_cache_debugfs_cleanup(dev); 697 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 698 699 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 700 clean_keys(dev, i); 701 702 destroy_workqueue(dev->cache.wq); 703 del_timer_sync(&dev->delay_timer); 704 705 return 0; 706 } 707 708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 709 { 710 struct mlx5_ib_dev *dev = to_mdev(pd->device); 711 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 712 struct mlx5_core_dev *mdev = dev->mdev; 713 struct mlx5_ib_mr *mr; 714 void *mkc; 715 u32 *in; 716 int err; 717 718 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 719 if (!mr) 720 return ERR_PTR(-ENOMEM); 721 722 in = kzalloc(inlen, GFP_KERNEL); 723 if (!in) { 724 err = -ENOMEM; 725 goto err_free; 726 } 727 728 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 729 730 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 731 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 732 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 733 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 734 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 735 MLX5_SET(mkc, mkc, lr, 1); 736 737 MLX5_SET(mkc, mkc, length64, 1); 738 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 739 MLX5_SET(mkc, mkc, qpn, 0xffffff); 740 MLX5_SET64(mkc, mkc, start_addr, 0); 741 742 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); 743 if (err) 744 goto err_in; 745 746 kfree(in); 747 mr->mmkey.type = MLX5_MKEY_MR; 748 mr->ibmr.lkey = mr->mmkey.key; 749 mr->ibmr.rkey = mr->mmkey.key; 750 mr->umem = NULL; 751 752 return &mr->ibmr; 753 754 err_in: 755 kfree(in); 756 757 err_free: 758 kfree(mr); 759 760 return ERR_PTR(err); 761 } 762 763 static int get_octo_len(u64 addr, u64 len, int page_shift) 764 { 765 u64 page_size = 1ULL << page_shift; 766 u64 offset; 767 int npages; 768 769 offset = addr & (page_size - 1); 770 npages = ALIGN(len + offset, page_size) >> page_shift; 771 return (npages + 1) / 2; 772 } 773 774 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 775 { 776 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 777 return MR_CACHE_LAST_STD_ENTRY + 2; 778 return MLX5_MAX_UMR_SHIFT; 779 } 780 781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata, 782 u64 start, u64 length, int access_flags, 783 struct ib_umem **umem, int *npages, int *page_shift, 784 int *ncont, int *order) 785 { 786 struct ib_umem *u; 787 int err; 788 789 *umem = NULL; 790 791 u = ib_umem_get(udata, start, length, access_flags, 0); 792 err = PTR_ERR_OR_ZERO(u); 793 if (err) { 794 mlx5_ib_dbg(dev, "umem get failed (%d)\n", err); 795 return err; 796 } 797 798 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, 799 page_shift, ncont, order); 800 if (!*npages) { 801 mlx5_ib_warn(dev, "avoid zero region\n"); 802 ib_umem_release(u); 803 return -EINVAL; 804 } 805 806 *umem = u; 807 808 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", 809 *npages, *ncont, *order, *page_shift); 810 811 return 0; 812 } 813 814 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 815 { 816 struct mlx5_ib_umr_context *context = 817 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 818 819 context->status = wc->status; 820 complete(&context->done); 821 } 822 823 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 824 { 825 context->cqe.done = mlx5_ib_umr_done; 826 context->status = -1; 827 init_completion(&context->done); 828 } 829 830 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 831 struct mlx5_umr_wr *umrwr) 832 { 833 struct umr_common *umrc = &dev->umrc; 834 const struct ib_send_wr *bad; 835 int err; 836 struct mlx5_ib_umr_context umr_context; 837 838 mlx5_ib_init_umr_context(&umr_context); 839 umrwr->wr.wr_cqe = &umr_context.cqe; 840 841 down(&umrc->sem); 842 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 843 if (err) { 844 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 845 } else { 846 wait_for_completion(&umr_context.done); 847 if (umr_context.status != IB_WC_SUCCESS) { 848 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 849 umr_context.status); 850 err = -EFAULT; 851 } 852 } 853 up(&umrc->sem); 854 return err; 855 } 856 857 static struct mlx5_ib_mr *alloc_mr_from_cache( 858 struct ib_pd *pd, struct ib_umem *umem, 859 u64 virt_addr, u64 len, int npages, 860 int page_shift, int order, int access_flags) 861 { 862 struct mlx5_ib_dev *dev = to_mdev(pd->device); 863 struct mlx5_ib_mr *mr; 864 int err = 0; 865 int i; 866 867 for (i = 0; i < 1; i++) { 868 mr = alloc_cached_mr(dev, order); 869 if (mr) 870 break; 871 872 err = add_keys(dev, order2idx(dev, order), 1); 873 if (err && err != -EAGAIN) { 874 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err); 875 break; 876 } 877 } 878 879 if (!mr) 880 return ERR_PTR(-EAGAIN); 881 882 mr->ibmr.pd = pd; 883 mr->umem = umem; 884 mr->access_flags = access_flags; 885 mr->desc_size = sizeof(struct mlx5_mtt); 886 mr->mmkey.iova = virt_addr; 887 mr->mmkey.size = len; 888 mr->mmkey.pd = to_mpd(pd)->pdn; 889 890 return mr; 891 } 892 893 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages, 894 void *xlt, int page_shift, size_t size, 895 int flags) 896 { 897 struct mlx5_ib_dev *dev = mr->dev; 898 struct ib_umem *umem = mr->umem; 899 900 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 901 if (!umr_can_use_indirect_mkey(dev)) 902 return -EPERM; 903 mlx5_odp_populate_klm(xlt, idx, npages, mr, flags); 904 return npages; 905 } 906 907 npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx); 908 909 if (!(flags & MLX5_IB_UPD_XLT_ZAP)) { 910 __mlx5_ib_populate_pas(dev, umem, page_shift, 911 idx, npages, xlt, 912 MLX5_IB_MTT_PRESENT); 913 /* Clear padding after the pages 914 * brought from the umem. 915 */ 916 memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0, 917 size - npages * sizeof(struct mlx5_mtt)); 918 } 919 920 return npages; 921 } 922 923 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 924 MLX5_UMR_MTT_ALIGNMENT) 925 #define MLX5_SPARE_UMR_CHUNK 0x10000 926 927 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 928 int page_shift, int flags) 929 { 930 struct mlx5_ib_dev *dev = mr->dev; 931 struct device *ddev = dev->ib_dev.dev.parent; 932 int size; 933 void *xlt; 934 dma_addr_t dma; 935 struct mlx5_umr_wr wr; 936 struct ib_sge sg; 937 int err = 0; 938 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 939 ? sizeof(struct mlx5_klm) 940 : sizeof(struct mlx5_mtt); 941 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 942 const int page_mask = page_align - 1; 943 size_t pages_mapped = 0; 944 size_t pages_to_map = 0; 945 size_t pages_iter = 0; 946 gfp_t gfp; 947 bool use_emergency_page = false; 948 949 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 950 !umr_can_use_indirect_mkey(dev)) 951 return -EPERM; 952 953 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 954 * so we need to align the offset and length accordingly 955 */ 956 if (idx & page_mask) { 957 npages += idx & page_mask; 958 idx &= ~page_mask; 959 } 960 961 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL; 962 gfp |= __GFP_ZERO | __GFP_NOWARN; 963 964 pages_to_map = ALIGN(npages, page_align); 965 size = desc_size * pages_to_map; 966 size = min_t(int, size, MLX5_MAX_UMR_CHUNK); 967 968 xlt = (void *)__get_free_pages(gfp, get_order(size)); 969 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) { 970 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n", 971 size, get_order(size), MLX5_SPARE_UMR_CHUNK); 972 973 size = MLX5_SPARE_UMR_CHUNK; 974 xlt = (void *)__get_free_pages(gfp, get_order(size)); 975 } 976 977 if (!xlt) { 978 mlx5_ib_warn(dev, "Using XLT emergency buffer\n"); 979 xlt = (void *)mlx5_ib_get_xlt_emergency_page(); 980 size = PAGE_SIZE; 981 memset(xlt, 0, size); 982 use_emergency_page = true; 983 } 984 pages_iter = size / desc_size; 985 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE); 986 if (dma_mapping_error(ddev, dma)) { 987 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 988 err = -ENOMEM; 989 goto free_xlt; 990 } 991 992 sg.addr = dma; 993 sg.lkey = dev->umrc.pd->local_dma_lkey; 994 995 memset(&wr, 0, sizeof(wr)); 996 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 997 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 998 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 999 wr.wr.sg_list = &sg; 1000 wr.wr.num_sge = 1; 1001 wr.wr.opcode = MLX5_IB_WR_UMR; 1002 1003 wr.pd = mr->ibmr.pd; 1004 wr.mkey = mr->mmkey.key; 1005 wr.length = mr->mmkey.size; 1006 wr.virt_addr = mr->mmkey.iova; 1007 wr.access_flags = mr->access_flags; 1008 wr.page_shift = page_shift; 1009 1010 for (pages_mapped = 0; 1011 pages_mapped < pages_to_map && !err; 1012 pages_mapped += pages_iter, idx += pages_iter) { 1013 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1014 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); 1015 npages = populate_xlt(mr, idx, npages, xlt, 1016 page_shift, size, flags); 1017 1018 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); 1019 1020 sg.length = ALIGN(npages * desc_size, 1021 MLX5_UMR_MTT_ALIGNMENT); 1022 1023 if (pages_mapped + pages_iter >= pages_to_map) { 1024 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1025 wr.wr.send_flags |= 1026 MLX5_IB_SEND_UMR_ENABLE_MR | 1027 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1028 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1029 if (flags & MLX5_IB_UPD_XLT_PD || 1030 flags & MLX5_IB_UPD_XLT_ACCESS) 1031 wr.wr.send_flags |= 1032 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1033 if (flags & MLX5_IB_UPD_XLT_ADDR) 1034 wr.wr.send_flags |= 1035 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1036 } 1037 1038 wr.offset = idx * desc_size; 1039 wr.xlt_size = sg.length; 1040 1041 err = mlx5_ib_post_send_wait(dev, &wr); 1042 } 1043 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); 1044 1045 free_xlt: 1046 if (use_emergency_page) 1047 mlx5_ib_put_xlt_emergency_page(); 1048 else 1049 free_pages((unsigned long)xlt, get_order(size)); 1050 1051 return err; 1052 } 1053 1054 /* 1055 * If ibmr is NULL it will be allocated by reg_create. 1056 * Else, the given ibmr will be used. 1057 */ 1058 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, 1059 u64 virt_addr, u64 length, 1060 struct ib_umem *umem, int npages, 1061 int page_shift, int access_flags, 1062 bool populate) 1063 { 1064 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1065 struct mlx5_ib_mr *mr; 1066 __be64 *pas; 1067 void *mkc; 1068 int inlen; 1069 u32 *in; 1070 int err; 1071 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1072 1073 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); 1074 if (!mr) 1075 return ERR_PTR(-ENOMEM); 1076 1077 mr->ibmr.pd = pd; 1078 mr->access_flags = access_flags; 1079 1080 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1081 if (populate) 1082 inlen += sizeof(*pas) * roundup(npages, 2); 1083 in = kvzalloc(inlen, GFP_KERNEL); 1084 if (!in) { 1085 err = -ENOMEM; 1086 goto err_1; 1087 } 1088 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1089 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND)) 1090 mlx5_ib_populate_pas(dev, umem, page_shift, pas, 1091 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1092 1093 /* The pg_access bit allows setting the access flags 1094 * in the page list submitted with the command. */ 1095 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1096 1097 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1098 MLX5_SET(mkc, mkc, free, !populate); 1099 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1100 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); 1101 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); 1102 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); 1103 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); 1104 MLX5_SET(mkc, mkc, lr, 1); 1105 MLX5_SET(mkc, mkc, umr_en, 1); 1106 1107 MLX5_SET64(mkc, mkc, start_addr, virt_addr); 1108 MLX5_SET64(mkc, mkc, len, length); 1109 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1110 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1111 MLX5_SET(mkc, mkc, translations_octword_size, 1112 get_octo_len(virt_addr, length, page_shift)); 1113 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1114 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1115 if (populate) { 1116 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1117 get_octo_len(virt_addr, length, page_shift)); 1118 } 1119 1120 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); 1121 if (err) { 1122 mlx5_ib_warn(dev, "create mkey failed\n"); 1123 goto err_2; 1124 } 1125 mr->mmkey.type = MLX5_MKEY_MR; 1126 mr->desc_size = sizeof(struct mlx5_mtt); 1127 mr->dev = dev; 1128 kvfree(in); 1129 1130 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1131 1132 return mr; 1133 1134 err_2: 1135 kvfree(in); 1136 1137 err_1: 1138 if (!ibmr) 1139 kfree(mr); 1140 1141 return ERR_PTR(err); 1142 } 1143 1144 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 1145 int npages, u64 length, int access_flags) 1146 { 1147 mr->npages = npages; 1148 atomic_add(npages, &dev->mdev->priv.reg_pages); 1149 mr->ibmr.lkey = mr->mmkey.key; 1150 mr->ibmr.rkey = mr->mmkey.key; 1151 mr->ibmr.length = length; 1152 mr->access_flags = access_flags; 1153 } 1154 1155 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1156 u64 length, int acc, int mode) 1157 { 1158 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1159 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1160 struct mlx5_core_dev *mdev = dev->mdev; 1161 struct mlx5_ib_mr *mr; 1162 void *mkc; 1163 u32 *in; 1164 int err; 1165 1166 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1167 if (!mr) 1168 return ERR_PTR(-ENOMEM); 1169 1170 in = kzalloc(inlen, GFP_KERNEL); 1171 if (!in) { 1172 err = -ENOMEM; 1173 goto err_free; 1174 } 1175 1176 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1177 1178 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1179 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1180 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 1181 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 1182 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 1183 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 1184 MLX5_SET(mkc, mkc, lr, 1); 1185 1186 MLX5_SET64(mkc, mkc, len, length); 1187 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1188 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1189 MLX5_SET64(mkc, mkc, start_addr, start_addr); 1190 1191 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); 1192 if (err) 1193 goto err_in; 1194 1195 kfree(in); 1196 1197 mr->umem = NULL; 1198 set_mr_fields(dev, mr, 0, length, acc); 1199 1200 return &mr->ibmr; 1201 1202 err_in: 1203 kfree(in); 1204 1205 err_free: 1206 kfree(mr); 1207 1208 return ERR_PTR(err); 1209 } 1210 1211 int mlx5_ib_advise_mr(struct ib_pd *pd, 1212 enum ib_uverbs_advise_mr_advice advice, 1213 u32 flags, 1214 struct ib_sge *sg_list, 1215 u32 num_sge, 1216 struct uverbs_attr_bundle *attrs) 1217 { 1218 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1219 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE) 1220 return -EOPNOTSUPP; 1221 1222 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1223 sg_list, num_sge); 1224 } 1225 1226 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1227 struct ib_dm_mr_attr *attr, 1228 struct uverbs_attr_bundle *attrs) 1229 { 1230 struct mlx5_ib_dm *mdm = to_mdm(dm); 1231 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1232 u64 start_addr = mdm->dev_addr + attr->offset; 1233 int mode; 1234 1235 switch (mdm->type) { 1236 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1237 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1238 return ERR_PTR(-EINVAL); 1239 1240 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1241 start_addr -= pci_resource_start(dev->pdev, 0); 1242 break; 1243 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1244 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1245 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1246 return ERR_PTR(-EINVAL); 1247 1248 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1249 break; 1250 default: 1251 return ERR_PTR(-EINVAL); 1252 } 1253 1254 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1255 attr->access_flags, mode); 1256 } 1257 1258 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1259 u64 virt_addr, int access_flags, 1260 struct ib_udata *udata) 1261 { 1262 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1263 struct mlx5_ib_mr *mr = NULL; 1264 bool use_umr; 1265 struct ib_umem *umem; 1266 int page_shift; 1267 int npages; 1268 int ncont; 1269 int order; 1270 int err; 1271 1272 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1273 return ERR_PTR(-EOPNOTSUPP); 1274 1275 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1276 start, virt_addr, length, access_flags); 1277 1278 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && 1279 length == U64_MAX) { 1280 if (!(access_flags & IB_ACCESS_ON_DEMAND) || 1281 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1282 return ERR_PTR(-EINVAL); 1283 1284 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1285 if (IS_ERR(mr)) 1286 return ERR_CAST(mr); 1287 return &mr->ibmr; 1288 } 1289 1290 err = mr_umem_get(dev, udata, start, length, access_flags, &umem, 1291 &npages, &page_shift, &ncont, &order); 1292 1293 if (err < 0) 1294 return ERR_PTR(err); 1295 1296 use_umr = mlx5_ib_can_use_umr(dev, true); 1297 1298 if (order <= mr_cache_max_order(dev) && use_umr) { 1299 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont, 1300 page_shift, order, access_flags); 1301 if (PTR_ERR(mr) == -EAGAIN) { 1302 mlx5_ib_dbg(dev, "cache empty for order %d\n", order); 1303 mr = NULL; 1304 } 1305 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) { 1306 if (access_flags & IB_ACCESS_ON_DEMAND) { 1307 err = -EINVAL; 1308 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n"); 1309 goto error; 1310 } 1311 use_umr = false; 1312 } 1313 1314 if (!mr) { 1315 mutex_lock(&dev->slow_path_mutex); 1316 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, 1317 page_shift, access_flags, !use_umr); 1318 mutex_unlock(&dev->slow_path_mutex); 1319 } 1320 1321 if (IS_ERR(mr)) { 1322 err = PTR_ERR(mr); 1323 goto error; 1324 } 1325 1326 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1327 1328 mr->umem = umem; 1329 set_mr_fields(dev, mr, npages, length, access_flags); 1330 1331 update_odp_mr(mr); 1332 1333 if (use_umr) { 1334 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; 1335 1336 if (access_flags & IB_ACCESS_ON_DEMAND) 1337 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP; 1338 1339 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift, 1340 update_xlt_flags); 1341 1342 if (err) { 1343 dereg_mr(dev, mr); 1344 return ERR_PTR(err); 1345 } 1346 } 1347 1348 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 1349 mr->live = 1; 1350 atomic_set(&mr->num_pending_prefetch, 0); 1351 } 1352 1353 return &mr->ibmr; 1354 error: 1355 ib_umem_release(umem); 1356 return ERR_PTR(err); 1357 } 1358 1359 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1360 { 1361 struct mlx5_core_dev *mdev = dev->mdev; 1362 struct mlx5_umr_wr umrwr = {}; 1363 1364 if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1365 return 0; 1366 1367 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1368 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1369 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1370 umrwr.pd = dev->umrc.pd; 1371 umrwr.mkey = mr->mmkey.key; 1372 umrwr.ignore_free_state = 1; 1373 1374 return mlx5_ib_post_send_wait(dev, &umrwr); 1375 } 1376 1377 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1378 int access_flags, int flags) 1379 { 1380 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1381 struct mlx5_umr_wr umrwr = {}; 1382 int err; 1383 1384 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1385 1386 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1387 umrwr.mkey = mr->mmkey.key; 1388 1389 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { 1390 umrwr.pd = pd; 1391 umrwr.access_flags = access_flags; 1392 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1393 } 1394 1395 err = mlx5_ib_post_send_wait(dev, &umrwr); 1396 1397 return err; 1398 } 1399 1400 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1401 u64 length, u64 virt_addr, int new_access_flags, 1402 struct ib_pd *new_pd, struct ib_udata *udata) 1403 { 1404 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1405 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1406 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; 1407 int access_flags = flags & IB_MR_REREG_ACCESS ? 1408 new_access_flags : 1409 mr->access_flags; 1410 int page_shift = 0; 1411 int upd_flags = 0; 1412 int npages = 0; 1413 int ncont = 0; 1414 int order = 0; 1415 u64 addr, len; 1416 int err; 1417 1418 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1419 start, virt_addr, length, access_flags); 1420 1421 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); 1422 1423 if (!mr->umem) 1424 return -EINVAL; 1425 1426 if (flags & IB_MR_REREG_TRANS) { 1427 addr = virt_addr; 1428 len = length; 1429 } else { 1430 addr = mr->umem->address; 1431 len = mr->umem->length; 1432 } 1433 1434 if (flags != IB_MR_REREG_PD) { 1435 /* 1436 * Replace umem. This needs to be done whether or not UMR is 1437 * used. 1438 */ 1439 flags |= IB_MR_REREG_TRANS; 1440 ib_umem_release(mr->umem); 1441 mr->umem = NULL; 1442 err = mr_umem_get(dev, udata, addr, len, access_flags, 1443 &mr->umem, &npages, &page_shift, &ncont, 1444 &order); 1445 if (err) 1446 goto err; 1447 } 1448 1449 if (!mlx5_ib_can_use_umr(dev, true) || 1450 (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) { 1451 /* 1452 * UMR can't be used - MKey needs to be replaced. 1453 */ 1454 if (mr->allocated_from_cache) 1455 err = unreg_umr(dev, mr); 1456 else 1457 err = destroy_mkey(dev, mr); 1458 if (err) 1459 goto err; 1460 1461 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, 1462 page_shift, access_flags, true); 1463 1464 if (IS_ERR(mr)) { 1465 err = PTR_ERR(mr); 1466 mr = to_mmr(ib_mr); 1467 goto err; 1468 } 1469 1470 mr->allocated_from_cache = 0; 1471 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1472 mr->live = 1; 1473 } else { 1474 /* 1475 * Send a UMR WQE 1476 */ 1477 mr->ibmr.pd = pd; 1478 mr->access_flags = access_flags; 1479 mr->mmkey.iova = addr; 1480 mr->mmkey.size = len; 1481 mr->mmkey.pd = to_mpd(pd)->pdn; 1482 1483 if (flags & IB_MR_REREG_TRANS) { 1484 upd_flags = MLX5_IB_UPD_XLT_ADDR; 1485 if (flags & IB_MR_REREG_PD) 1486 upd_flags |= MLX5_IB_UPD_XLT_PD; 1487 if (flags & IB_MR_REREG_ACCESS) 1488 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1489 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift, 1490 upd_flags); 1491 } else { 1492 err = rereg_umr(pd, mr, access_flags, flags); 1493 } 1494 1495 if (err) 1496 goto err; 1497 } 1498 1499 set_mr_fields(dev, mr, npages, len, access_flags); 1500 1501 update_odp_mr(mr); 1502 return 0; 1503 1504 err: 1505 ib_umem_release(mr->umem); 1506 mr->umem = NULL; 1507 1508 clean_mr(dev, mr); 1509 return err; 1510 } 1511 1512 static int 1513 mlx5_alloc_priv_descs(struct ib_device *device, 1514 struct mlx5_ib_mr *mr, 1515 int ndescs, 1516 int desc_size) 1517 { 1518 int size = ndescs * desc_size; 1519 int add_size; 1520 int ret; 1521 1522 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1523 1524 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1525 if (!mr->descs_alloc) 1526 return -ENOMEM; 1527 1528 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1529 1530 mr->desc_map = dma_map_single(device->dev.parent, mr->descs, 1531 size, DMA_TO_DEVICE); 1532 if (dma_mapping_error(device->dev.parent, mr->desc_map)) { 1533 ret = -ENOMEM; 1534 goto err; 1535 } 1536 1537 return 0; 1538 err: 1539 kfree(mr->descs_alloc); 1540 1541 return ret; 1542 } 1543 1544 static void 1545 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1546 { 1547 if (mr->descs) { 1548 struct ib_device *device = mr->ibmr.device; 1549 int size = mr->max_descs * mr->desc_size; 1550 1551 dma_unmap_single(device->dev.parent, mr->desc_map, 1552 size, DMA_TO_DEVICE); 1553 kfree(mr->descs_alloc); 1554 mr->descs = NULL; 1555 } 1556 } 1557 1558 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1559 { 1560 int allocated_from_cache = mr->allocated_from_cache; 1561 1562 if (mr->sig) { 1563 if (mlx5_core_destroy_psv(dev->mdev, 1564 mr->sig->psv_memory.psv_idx)) 1565 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1566 mr->sig->psv_memory.psv_idx); 1567 if (mlx5_core_destroy_psv(dev->mdev, 1568 mr->sig->psv_wire.psv_idx)) 1569 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1570 mr->sig->psv_wire.psv_idx); 1571 kfree(mr->sig); 1572 mr->sig = NULL; 1573 } 1574 1575 if (!allocated_from_cache) { 1576 destroy_mkey(dev, mr); 1577 mlx5_free_priv_descs(mr); 1578 } 1579 } 1580 1581 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1582 { 1583 int npages = mr->npages; 1584 struct ib_umem *umem = mr->umem; 1585 1586 if (is_odp_mr(mr)) { 1587 struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem); 1588 1589 /* Prevent new page faults and 1590 * prefetch requests from succeeding 1591 */ 1592 mr->live = 0; 1593 1594 /* dequeue pending prefetch requests for the mr */ 1595 if (atomic_read(&mr->num_pending_prefetch)) 1596 flush_workqueue(system_unbound_wq); 1597 WARN_ON(atomic_read(&mr->num_pending_prefetch)); 1598 1599 /* Wait for all running page-fault handlers to finish. */ 1600 synchronize_srcu(&dev->mr_srcu); 1601 /* Destroy all page mappings */ 1602 if (umem_odp->page_list) 1603 mlx5_ib_invalidate_range(umem_odp, 1604 ib_umem_start(umem_odp), 1605 ib_umem_end(umem_odp)); 1606 else 1607 mlx5_ib_free_implicit_mr(mr); 1608 /* 1609 * We kill the umem before the MR for ODP, 1610 * so that there will not be any invalidations in 1611 * flight, looking at the *mr struct. 1612 */ 1613 ib_umem_release(umem); 1614 atomic_sub(npages, &dev->mdev->priv.reg_pages); 1615 1616 /* Avoid double-freeing the umem. */ 1617 umem = NULL; 1618 } 1619 1620 clean_mr(dev, mr); 1621 1622 /* 1623 * We should unregister the DMA address from the HCA before 1624 * remove the DMA mapping. 1625 */ 1626 mlx5_mr_cache_free(dev, mr); 1627 ib_umem_release(umem); 1628 if (umem) 1629 atomic_sub(npages, &dev->mdev->priv.reg_pages); 1630 1631 if (!mr->allocated_from_cache) 1632 kfree(mr); 1633 } 1634 1635 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1636 { 1637 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1638 1639 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1640 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); 1641 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); 1642 } 1643 1644 dereg_mr(to_mdev(ibmr->device), mmr); 1645 1646 return 0; 1647 } 1648 1649 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 1650 int access_mode, int page_shift) 1651 { 1652 void *mkc; 1653 1654 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1655 1656 MLX5_SET(mkc, mkc, free, 1); 1657 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1658 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1659 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1660 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 1661 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 1662 MLX5_SET(mkc, mkc, umr_en, 1); 1663 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1664 } 1665 1666 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1667 int ndescs, int desc_size, int page_shift, 1668 int access_mode, u32 *in, int inlen) 1669 { 1670 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1671 int err; 1672 1673 mr->access_mode = access_mode; 1674 mr->desc_size = desc_size; 1675 mr->max_descs = ndescs; 1676 1677 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 1678 if (err) 1679 return err; 1680 1681 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 1682 1683 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); 1684 if (err) 1685 goto err_free_descs; 1686 1687 mr->mmkey.type = MLX5_MKEY_MR; 1688 mr->ibmr.lkey = mr->mmkey.key; 1689 mr->ibmr.rkey = mr->mmkey.key; 1690 1691 return 0; 1692 1693 err_free_descs: 1694 mlx5_free_priv_descs(mr); 1695 return err; 1696 } 1697 1698 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 1699 u32 max_num_sg, u32 max_num_meta_sg, 1700 int desc_size, int access_mode) 1701 { 1702 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1703 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 1704 int page_shift = 0; 1705 struct mlx5_ib_mr *mr; 1706 u32 *in; 1707 int err; 1708 1709 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1710 if (!mr) 1711 return ERR_PTR(-ENOMEM); 1712 1713 mr->ibmr.pd = pd; 1714 mr->ibmr.device = pd->device; 1715 1716 in = kzalloc(inlen, GFP_KERNEL); 1717 if (!in) { 1718 err = -ENOMEM; 1719 goto err_free; 1720 } 1721 1722 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 1723 page_shift = PAGE_SHIFT; 1724 1725 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 1726 access_mode, in, inlen); 1727 if (err) 1728 goto err_free_in; 1729 1730 mr->umem = NULL; 1731 kfree(in); 1732 1733 return mr; 1734 1735 err_free_in: 1736 kfree(in); 1737 err_free: 1738 kfree(mr); 1739 return ERR_PTR(err); 1740 } 1741 1742 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1743 int ndescs, u32 *in, int inlen) 1744 { 1745 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 1746 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 1747 inlen); 1748 } 1749 1750 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1751 int ndescs, u32 *in, int inlen) 1752 { 1753 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 1754 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1755 } 1756 1757 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1758 int max_num_sg, int max_num_meta_sg, 1759 u32 *in, int inlen) 1760 { 1761 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1762 u32 psv_index[2]; 1763 void *mkc; 1764 int err; 1765 1766 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 1767 if (!mr->sig) 1768 return -ENOMEM; 1769 1770 /* create mem & wire PSVs */ 1771 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 1772 if (err) 1773 goto err_free_sig; 1774 1775 mr->sig->psv_memory.psv_idx = psv_index[0]; 1776 mr->sig->psv_wire.psv_idx = psv_index[1]; 1777 1778 mr->sig->sig_status_checked = true; 1779 mr->sig->sig_err_exists = false; 1780 /* Next UMR, Arm SIGERR */ 1781 ++mr->sig->sigerr_count; 1782 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1783 sizeof(struct mlx5_klm), 1784 MLX5_MKC_ACCESS_MODE_KLMS); 1785 if (IS_ERR(mr->klm_mr)) { 1786 err = PTR_ERR(mr->klm_mr); 1787 goto err_destroy_psv; 1788 } 1789 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1790 sizeof(struct mlx5_mtt), 1791 MLX5_MKC_ACCESS_MODE_MTT); 1792 if (IS_ERR(mr->mtt_mr)) { 1793 err = PTR_ERR(mr->mtt_mr); 1794 goto err_free_klm_mr; 1795 } 1796 1797 /* Set bsf descriptors for mkey */ 1798 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1799 MLX5_SET(mkc, mkc, bsf_en, 1); 1800 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 1801 1802 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 1803 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1804 if (err) 1805 goto err_free_mtt_mr; 1806 1807 return 0; 1808 1809 err_free_mtt_mr: 1810 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); 1811 mr->mtt_mr = NULL; 1812 err_free_klm_mr: 1813 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); 1814 mr->klm_mr = NULL; 1815 err_destroy_psv: 1816 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 1817 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1818 mr->sig->psv_memory.psv_idx); 1819 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1820 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1821 mr->sig->psv_wire.psv_idx); 1822 err_free_sig: 1823 kfree(mr->sig); 1824 1825 return err; 1826 } 1827 1828 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 1829 enum ib_mr_type mr_type, u32 max_num_sg, 1830 u32 max_num_meta_sg) 1831 { 1832 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1833 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1834 int ndescs = ALIGN(max_num_sg, 4); 1835 struct mlx5_ib_mr *mr; 1836 u32 *in; 1837 int err; 1838 1839 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1840 if (!mr) 1841 return ERR_PTR(-ENOMEM); 1842 1843 in = kzalloc(inlen, GFP_KERNEL); 1844 if (!in) { 1845 err = -ENOMEM; 1846 goto err_free; 1847 } 1848 1849 mr->ibmr.device = pd->device; 1850 mr->umem = NULL; 1851 1852 switch (mr_type) { 1853 case IB_MR_TYPE_MEM_REG: 1854 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 1855 break; 1856 case IB_MR_TYPE_SG_GAPS: 1857 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 1858 break; 1859 case IB_MR_TYPE_INTEGRITY: 1860 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 1861 max_num_meta_sg, in, inlen); 1862 break; 1863 default: 1864 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 1865 err = -EINVAL; 1866 } 1867 1868 if (err) 1869 goto err_free_in; 1870 1871 kfree(in); 1872 1873 return &mr->ibmr; 1874 1875 err_free_in: 1876 kfree(in); 1877 err_free: 1878 kfree(mr); 1879 return ERR_PTR(err); 1880 } 1881 1882 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 1883 u32 max_num_sg, struct ib_udata *udata) 1884 { 1885 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 1886 } 1887 1888 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 1889 u32 max_num_sg, u32 max_num_meta_sg) 1890 { 1891 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 1892 max_num_meta_sg); 1893 } 1894 1895 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, 1896 struct ib_udata *udata) 1897 { 1898 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1899 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1900 struct mlx5_ib_mw *mw = NULL; 1901 u32 *in = NULL; 1902 void *mkc; 1903 int ndescs; 1904 int err; 1905 struct mlx5_ib_alloc_mw req = {}; 1906 struct { 1907 __u32 comp_mask; 1908 __u32 response_length; 1909 } resp = {}; 1910 1911 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 1912 if (err) 1913 return ERR_PTR(err); 1914 1915 if (req.comp_mask || req.reserved1 || req.reserved2) 1916 return ERR_PTR(-EOPNOTSUPP); 1917 1918 if (udata->inlen > sizeof(req) && 1919 !ib_is_udata_cleared(udata, sizeof(req), 1920 udata->inlen - sizeof(req))) 1921 return ERR_PTR(-EOPNOTSUPP); 1922 1923 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 1924 1925 mw = kzalloc(sizeof(*mw), GFP_KERNEL); 1926 in = kzalloc(inlen, GFP_KERNEL); 1927 if (!mw || !in) { 1928 err = -ENOMEM; 1929 goto free; 1930 } 1931 1932 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1933 1934 MLX5_SET(mkc, mkc, free, 1); 1935 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1936 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1937 MLX5_SET(mkc, mkc, umr_en, 1); 1938 MLX5_SET(mkc, mkc, lr, 1); 1939 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 1940 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); 1941 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1942 1943 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen); 1944 if (err) 1945 goto free; 1946 1947 mw->mmkey.type = MLX5_MKEY_MW; 1948 mw->ibmw.rkey = mw->mmkey.key; 1949 mw->ndescs = ndescs; 1950 1951 resp.response_length = min(offsetof(typeof(resp), response_length) + 1952 sizeof(resp.response_length), udata->outlen); 1953 if (resp.response_length) { 1954 err = ib_copy_to_udata(udata, &resp, resp.response_length); 1955 if (err) { 1956 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 1957 goto free; 1958 } 1959 } 1960 1961 kfree(in); 1962 return &mw->ibmw; 1963 1964 free: 1965 kfree(mw); 1966 kfree(in); 1967 return ERR_PTR(err); 1968 } 1969 1970 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 1971 { 1972 struct mlx5_ib_mw *mmw = to_mmw(mw); 1973 int err; 1974 1975 err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev, 1976 &mmw->mmkey); 1977 if (!err) 1978 kfree(mmw); 1979 return err; 1980 } 1981 1982 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 1983 struct ib_mr_status *mr_status) 1984 { 1985 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1986 int ret = 0; 1987 1988 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 1989 pr_err("Invalid status check mask\n"); 1990 ret = -EINVAL; 1991 goto done; 1992 } 1993 1994 mr_status->fail_status = 0; 1995 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 1996 if (!mmr->sig) { 1997 ret = -EINVAL; 1998 pr_err("signature status check requested on a non-signature enabled MR\n"); 1999 goto done; 2000 } 2001 2002 mmr->sig->sig_status_checked = true; 2003 if (!mmr->sig->sig_err_exists) 2004 goto done; 2005 2006 if (ibmr->lkey == mmr->sig->err_item.key) 2007 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2008 sizeof(mr_status->sig_err)); 2009 else { 2010 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2011 mr_status->sig_err.sig_err_offset = 0; 2012 mr_status->sig_err.key = mmr->sig->err_item.key; 2013 } 2014 2015 mmr->sig->sig_err_exists = false; 2016 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2017 } 2018 2019 done: 2020 return ret; 2021 } 2022 2023 static int 2024 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2025 int data_sg_nents, unsigned int *data_sg_offset, 2026 struct scatterlist *meta_sg, int meta_sg_nents, 2027 unsigned int *meta_sg_offset) 2028 { 2029 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2030 unsigned int sg_offset = 0; 2031 int n = 0; 2032 2033 mr->meta_length = 0; 2034 if (data_sg_nents == 1) { 2035 n++; 2036 mr->ndescs = 1; 2037 if (data_sg_offset) 2038 sg_offset = *data_sg_offset; 2039 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2040 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2041 if (meta_sg_nents == 1) { 2042 n++; 2043 mr->meta_ndescs = 1; 2044 if (meta_sg_offset) 2045 sg_offset = *meta_sg_offset; 2046 else 2047 sg_offset = 0; 2048 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2049 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2050 } 2051 ibmr->length = mr->data_length + mr->meta_length; 2052 } 2053 2054 return n; 2055 } 2056 2057 static int 2058 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2059 struct scatterlist *sgl, 2060 unsigned short sg_nents, 2061 unsigned int *sg_offset_p, 2062 struct scatterlist *meta_sgl, 2063 unsigned short meta_sg_nents, 2064 unsigned int *meta_sg_offset_p) 2065 { 2066 struct scatterlist *sg = sgl; 2067 struct mlx5_klm *klms = mr->descs; 2068 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2069 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2070 int i, j = 0; 2071 2072 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2073 mr->ibmr.length = 0; 2074 2075 for_each_sg(sgl, sg, sg_nents, i) { 2076 if (unlikely(i >= mr->max_descs)) 2077 break; 2078 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2079 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2080 klms[i].key = cpu_to_be32(lkey); 2081 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2082 2083 sg_offset = 0; 2084 } 2085 2086 if (sg_offset_p) 2087 *sg_offset_p = sg_offset; 2088 2089 mr->ndescs = i; 2090 mr->data_length = mr->ibmr.length; 2091 2092 if (meta_sg_nents) { 2093 sg = meta_sgl; 2094 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2095 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2096 if (unlikely(i + j >= mr->max_descs)) 2097 break; 2098 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2099 sg_offset); 2100 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2101 sg_offset); 2102 klms[i + j].key = cpu_to_be32(lkey); 2103 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2104 2105 sg_offset = 0; 2106 } 2107 if (meta_sg_offset_p) 2108 *meta_sg_offset_p = sg_offset; 2109 2110 mr->meta_ndescs = j; 2111 mr->meta_length = mr->ibmr.length - mr->data_length; 2112 } 2113 2114 return i + j; 2115 } 2116 2117 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2118 { 2119 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2120 __be64 *descs; 2121 2122 if (unlikely(mr->ndescs == mr->max_descs)) 2123 return -ENOMEM; 2124 2125 descs = mr->descs; 2126 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2127 2128 return 0; 2129 } 2130 2131 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2132 { 2133 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2134 __be64 *descs; 2135 2136 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2137 return -ENOMEM; 2138 2139 descs = mr->descs; 2140 descs[mr->ndescs + mr->meta_ndescs++] = 2141 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2142 2143 return 0; 2144 } 2145 2146 static int 2147 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2148 int data_sg_nents, unsigned int *data_sg_offset, 2149 struct scatterlist *meta_sg, int meta_sg_nents, 2150 unsigned int *meta_sg_offset) 2151 { 2152 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2153 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2154 int n; 2155 2156 pi_mr->ndescs = 0; 2157 pi_mr->meta_ndescs = 0; 2158 pi_mr->meta_length = 0; 2159 2160 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2161 pi_mr->desc_size * pi_mr->max_descs, 2162 DMA_TO_DEVICE); 2163 2164 pi_mr->ibmr.page_size = ibmr->page_size; 2165 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2166 mlx5_set_page); 2167 if (n != data_sg_nents) 2168 return n; 2169 2170 pi_mr->data_iova = pi_mr->ibmr.iova; 2171 pi_mr->data_length = pi_mr->ibmr.length; 2172 pi_mr->ibmr.length = pi_mr->data_length; 2173 ibmr->length = pi_mr->data_length; 2174 2175 if (meta_sg_nents) { 2176 u64 page_mask = ~((u64)ibmr->page_size - 1); 2177 u64 iova = pi_mr->data_iova; 2178 2179 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2180 meta_sg_offset, mlx5_set_page_pi); 2181 2182 pi_mr->meta_length = pi_mr->ibmr.length; 2183 /* 2184 * PI address for the HW is the offset of the metadata address 2185 * relative to the first data page address. 2186 * It equals to first data page address + size of data pages + 2187 * metadata offset at the first metadata page 2188 */ 2189 pi_mr->pi_iova = (iova & page_mask) + 2190 pi_mr->ndescs * ibmr->page_size + 2191 (pi_mr->ibmr.iova & ~page_mask); 2192 /* 2193 * In order to use one MTT MR for data and metadata, we register 2194 * also the gaps between the end of the data and the start of 2195 * the metadata (the sig MR will verify that the HW will access 2196 * to right addresses). This mapping is safe because we use 2197 * internal mkey for the registration. 2198 */ 2199 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2200 pi_mr->ibmr.iova = iova; 2201 ibmr->length += pi_mr->meta_length; 2202 } 2203 2204 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2205 pi_mr->desc_size * pi_mr->max_descs, 2206 DMA_TO_DEVICE); 2207 2208 return n; 2209 } 2210 2211 static int 2212 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2213 int data_sg_nents, unsigned int *data_sg_offset, 2214 struct scatterlist *meta_sg, int meta_sg_nents, 2215 unsigned int *meta_sg_offset) 2216 { 2217 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2218 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2219 int n; 2220 2221 pi_mr->ndescs = 0; 2222 pi_mr->meta_ndescs = 0; 2223 pi_mr->meta_length = 0; 2224 2225 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2226 pi_mr->desc_size * pi_mr->max_descs, 2227 DMA_TO_DEVICE); 2228 2229 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2230 meta_sg, meta_sg_nents, meta_sg_offset); 2231 2232 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2233 pi_mr->desc_size * pi_mr->max_descs, 2234 DMA_TO_DEVICE); 2235 2236 /* This is zero-based memory region */ 2237 pi_mr->data_iova = 0; 2238 pi_mr->ibmr.iova = 0; 2239 pi_mr->pi_iova = pi_mr->data_length; 2240 ibmr->length = pi_mr->ibmr.length; 2241 2242 return n; 2243 } 2244 2245 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2246 int data_sg_nents, unsigned int *data_sg_offset, 2247 struct scatterlist *meta_sg, int meta_sg_nents, 2248 unsigned int *meta_sg_offset) 2249 { 2250 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2251 struct mlx5_ib_mr *pi_mr = NULL; 2252 int n; 2253 2254 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2255 2256 mr->ndescs = 0; 2257 mr->data_length = 0; 2258 mr->data_iova = 0; 2259 mr->meta_ndescs = 0; 2260 mr->pi_iova = 0; 2261 /* 2262 * As a performance optimization, if possible, there is no need to 2263 * perform UMR operation to register the data/metadata buffers. 2264 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2265 * Fallback to UMR only in case of a failure. 2266 */ 2267 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2268 data_sg_offset, meta_sg, meta_sg_nents, 2269 meta_sg_offset); 2270 if (n == data_sg_nents + meta_sg_nents) 2271 goto out; 2272 /* 2273 * As a performance optimization, if possible, there is no need to map 2274 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2275 * descriptors and fallback to KLM only in case of a failure. 2276 * It's more efficient for the HW to work with MTT descriptors 2277 * (especially in high load). 2278 * Use KLM (indirect access) only if it's mandatory. 2279 */ 2280 pi_mr = mr->mtt_mr; 2281 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2282 data_sg_offset, meta_sg, meta_sg_nents, 2283 meta_sg_offset); 2284 if (n == data_sg_nents + meta_sg_nents) 2285 goto out; 2286 2287 pi_mr = mr->klm_mr; 2288 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2289 data_sg_offset, meta_sg, meta_sg_nents, 2290 meta_sg_offset); 2291 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2292 return -ENOMEM; 2293 2294 out: 2295 /* This is zero-based memory region */ 2296 ibmr->iova = 0; 2297 mr->pi_mr = pi_mr; 2298 if (pi_mr) 2299 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2300 else 2301 ibmr->sig_attrs->meta_length = mr->meta_length; 2302 2303 return 0; 2304 } 2305 2306 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2307 unsigned int *sg_offset) 2308 { 2309 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2310 int n; 2311 2312 mr->ndescs = 0; 2313 2314 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2315 mr->desc_size * mr->max_descs, 2316 DMA_TO_DEVICE); 2317 2318 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2319 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2320 NULL); 2321 else 2322 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2323 mlx5_set_page); 2324 2325 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2326 mr->desc_size * mr->max_descs, 2327 DMA_TO_DEVICE); 2328 2329 return n; 2330 } 2331