xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision b08918fb)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54 
55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59 
60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 	int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63 
64 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 		/* Wait until all page fault handlers using the mr complete. */
66 		synchronize_srcu(&dev->mr_srcu);
67 
68 	return err;
69 }
70 
71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 	struct mlx5_mr_cache *cache = &dev->cache;
74 
75 	if (order < cache->ent[0].order)
76 		return 0;
77 	else
78 		return order - cache->ent[0].order;
79 }
80 
81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86 
87 static void update_odp_mr(struct mlx5_ib_mr *mr)
88 {
89 	if (is_odp_mr(mr)) {
90 		/*
91 		 * This barrier prevents the compiler from moving the
92 		 * setting of umem->odp_data->private to point to our
93 		 * MR, before reg_umr finished, to ensure that the MR
94 		 * initialization have finished before starting to
95 		 * handle invalidations.
96 		 */
97 		smp_wmb();
98 		to_ib_umem_odp(mr->umem)->private = mr;
99 		/*
100 		 * Make sure we will see the new
101 		 * umem->odp_data->private value in the invalidation
102 		 * routines, before we can get page faults on the
103 		 * MR. Page faults can happen once we put the MR in
104 		 * the tree, below this line. Without the barrier,
105 		 * there can be a fault handling and an invalidation
106 		 * before umem->odp_data->private == mr is visible to
107 		 * the invalidation handler.
108 		 */
109 		smp_wmb();
110 	}
111 }
112 
113 static void reg_mr_callback(int status, struct mlx5_async_work *context)
114 {
115 	struct mlx5_ib_mr *mr =
116 		container_of(context, struct mlx5_ib_mr, cb_work);
117 	struct mlx5_ib_dev *dev = mr->dev;
118 	struct mlx5_mr_cache *cache = &dev->cache;
119 	int c = order2idx(dev, mr->order);
120 	struct mlx5_cache_ent *ent = &cache->ent[c];
121 	u8 key;
122 	unsigned long flags;
123 	struct xarray *mkeys = &dev->mdev->priv.mkey_table;
124 	int err;
125 
126 	spin_lock_irqsave(&ent->lock, flags);
127 	ent->pending--;
128 	spin_unlock_irqrestore(&ent->lock, flags);
129 	if (status) {
130 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
131 		kfree(mr);
132 		dev->fill_delay = 1;
133 		mod_timer(&dev->delay_timer, jiffies + HZ);
134 		return;
135 	}
136 
137 	mr->mmkey.type = MLX5_MKEY_MR;
138 	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
139 	key = dev->mdev->priv.mkey_key++;
140 	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
141 	mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
142 
143 	cache->last_add = jiffies;
144 
145 	spin_lock_irqsave(&ent->lock, flags);
146 	list_add_tail(&mr->list, &ent->head);
147 	ent->cur++;
148 	ent->size++;
149 	spin_unlock_irqrestore(&ent->lock, flags);
150 
151 	xa_lock_irqsave(mkeys, flags);
152 	err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
153 				&mr->mmkey, GFP_ATOMIC));
154 	xa_unlock_irqrestore(mkeys, flags);
155 	if (err)
156 		pr_err("Error inserting to mkey tree. 0x%x\n", -err);
157 
158 	if (!completion_done(&ent->compl))
159 		complete(&ent->compl);
160 }
161 
162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
163 {
164 	struct mlx5_mr_cache *cache = &dev->cache;
165 	struct mlx5_cache_ent *ent = &cache->ent[c];
166 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
167 	struct mlx5_ib_mr *mr;
168 	void *mkc;
169 	u32 *in;
170 	int err = 0;
171 	int i;
172 
173 	in = kzalloc(inlen, GFP_KERNEL);
174 	if (!in)
175 		return -ENOMEM;
176 
177 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
178 	for (i = 0; i < num; i++) {
179 		if (ent->pending >= MAX_PENDING_REG_MR) {
180 			err = -EAGAIN;
181 			break;
182 		}
183 
184 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
185 		if (!mr) {
186 			err = -ENOMEM;
187 			break;
188 		}
189 		mr->order = ent->order;
190 		mr->allocated_from_cache = 1;
191 		mr->dev = dev;
192 
193 		MLX5_SET(mkc, mkc, free, 1);
194 		MLX5_SET(mkc, mkc, umr_en, 1);
195 		MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
196 		MLX5_SET(mkc, mkc, access_mode_4_2,
197 			 (ent->access_mode >> 2) & 0x7);
198 
199 		MLX5_SET(mkc, mkc, qpn, 0xffffff);
200 		MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
201 		MLX5_SET(mkc, mkc, log_page_size, ent->page);
202 
203 		spin_lock_irq(&ent->lock);
204 		ent->pending++;
205 		spin_unlock_irq(&ent->lock);
206 		err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
207 					       &dev->async_ctx, in, inlen,
208 					       mr->out, sizeof(mr->out),
209 					       reg_mr_callback, &mr->cb_work);
210 		if (err) {
211 			spin_lock_irq(&ent->lock);
212 			ent->pending--;
213 			spin_unlock_irq(&ent->lock);
214 			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
215 			kfree(mr);
216 			break;
217 		}
218 	}
219 
220 	kfree(in);
221 	return err;
222 }
223 
224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
225 {
226 	struct mlx5_mr_cache *cache = &dev->cache;
227 	struct mlx5_cache_ent *ent = &cache->ent[c];
228 	struct mlx5_ib_mr *tmp_mr;
229 	struct mlx5_ib_mr *mr;
230 	LIST_HEAD(del_list);
231 	int i;
232 
233 	for (i = 0; i < num; i++) {
234 		spin_lock_irq(&ent->lock);
235 		if (list_empty(&ent->head)) {
236 			spin_unlock_irq(&ent->lock);
237 			break;
238 		}
239 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
240 		list_move(&mr->list, &del_list);
241 		ent->cur--;
242 		ent->size--;
243 		spin_unlock_irq(&ent->lock);
244 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
245 	}
246 
247 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
248 		synchronize_srcu(&dev->mr_srcu);
249 
250 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
251 		list_del(&mr->list);
252 		kfree(mr);
253 	}
254 }
255 
256 static ssize_t size_write(struct file *filp, const char __user *buf,
257 			  size_t count, loff_t *pos)
258 {
259 	struct mlx5_cache_ent *ent = filp->private_data;
260 	struct mlx5_ib_dev *dev = ent->dev;
261 	char lbuf[20] = {0};
262 	u32 var;
263 	int err;
264 	int c;
265 
266 	count = min(count, sizeof(lbuf) - 1);
267 	if (copy_from_user(lbuf, buf, count))
268 		return -EFAULT;
269 
270 	c = order2idx(dev, ent->order);
271 
272 	if (sscanf(lbuf, "%u", &var) != 1)
273 		return -EINVAL;
274 
275 	if (var < ent->limit)
276 		return -EINVAL;
277 
278 	if (var > ent->size) {
279 		do {
280 			err = add_keys(dev, c, var - ent->size);
281 			if (err && err != -EAGAIN)
282 				return err;
283 
284 			usleep_range(3000, 5000);
285 		} while (err);
286 	} else if (var < ent->size) {
287 		remove_keys(dev, c, ent->size - var);
288 	}
289 
290 	return count;
291 }
292 
293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
294 			 loff_t *pos)
295 {
296 	struct mlx5_cache_ent *ent = filp->private_data;
297 	char lbuf[20];
298 	int err;
299 
300 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
301 	if (err < 0)
302 		return err;
303 
304 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
305 }
306 
307 static const struct file_operations size_fops = {
308 	.owner	= THIS_MODULE,
309 	.open	= simple_open,
310 	.write	= size_write,
311 	.read	= size_read,
312 };
313 
314 static ssize_t limit_write(struct file *filp, const char __user *buf,
315 			   size_t count, loff_t *pos)
316 {
317 	struct mlx5_cache_ent *ent = filp->private_data;
318 	struct mlx5_ib_dev *dev = ent->dev;
319 	char lbuf[20] = {0};
320 	u32 var;
321 	int err;
322 	int c;
323 
324 	count = min(count, sizeof(lbuf) - 1);
325 	if (copy_from_user(lbuf, buf, count))
326 		return -EFAULT;
327 
328 	c = order2idx(dev, ent->order);
329 
330 	if (sscanf(lbuf, "%u", &var) != 1)
331 		return -EINVAL;
332 
333 	if (var > ent->size)
334 		return -EINVAL;
335 
336 	ent->limit = var;
337 
338 	if (ent->cur < ent->limit) {
339 		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
340 		if (err)
341 			return err;
342 	}
343 
344 	return count;
345 }
346 
347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
348 			  loff_t *pos)
349 {
350 	struct mlx5_cache_ent *ent = filp->private_data;
351 	char lbuf[20];
352 	int err;
353 
354 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
355 	if (err < 0)
356 		return err;
357 
358 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
359 }
360 
361 static const struct file_operations limit_fops = {
362 	.owner	= THIS_MODULE,
363 	.open	= simple_open,
364 	.write	= limit_write,
365 	.read	= limit_read,
366 };
367 
368 static int someone_adding(struct mlx5_mr_cache *cache)
369 {
370 	int i;
371 
372 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
373 		if (cache->ent[i].cur < cache->ent[i].limit)
374 			return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 static void __cache_work_func(struct mlx5_cache_ent *ent)
381 {
382 	struct mlx5_ib_dev *dev = ent->dev;
383 	struct mlx5_mr_cache *cache = &dev->cache;
384 	int i = order2idx(dev, ent->order);
385 	int err;
386 
387 	if (cache->stopped)
388 		return;
389 
390 	ent = &dev->cache.ent[i];
391 	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
392 		err = add_keys(dev, i, 1);
393 		if (ent->cur < 2 * ent->limit) {
394 			if (err == -EAGAIN) {
395 				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
396 					    i + 2);
397 				queue_delayed_work(cache->wq, &ent->dwork,
398 						   msecs_to_jiffies(3));
399 			} else if (err) {
400 				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
401 					     i + 2, err);
402 				queue_delayed_work(cache->wq, &ent->dwork,
403 						   msecs_to_jiffies(1000));
404 			} else {
405 				queue_work(cache->wq, &ent->work);
406 			}
407 		}
408 	} else if (ent->cur > 2 * ent->limit) {
409 		/*
410 		 * The remove_keys() logic is performed as garbage collection
411 		 * task. Such task is intended to be run when no other active
412 		 * processes are running.
413 		 *
414 		 * The need_resched() will return TRUE if there are user tasks
415 		 * to be activated in near future.
416 		 *
417 		 * In such case, we don't execute remove_keys() and postpone
418 		 * the garbage collection work to try to run in next cycle,
419 		 * in order to free CPU resources to other tasks.
420 		 */
421 		if (!need_resched() && !someone_adding(cache) &&
422 		    time_after(jiffies, cache->last_add + 300 * HZ)) {
423 			remove_keys(dev, i, 1);
424 			if (ent->cur > ent->limit)
425 				queue_work(cache->wq, &ent->work);
426 		} else {
427 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
428 		}
429 	}
430 }
431 
432 static void delayed_cache_work_func(struct work_struct *work)
433 {
434 	struct mlx5_cache_ent *ent;
435 
436 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
437 	__cache_work_func(ent);
438 }
439 
440 static void cache_work_func(struct work_struct *work)
441 {
442 	struct mlx5_cache_ent *ent;
443 
444 	ent = container_of(work, struct mlx5_cache_ent, work);
445 	__cache_work_func(ent);
446 }
447 
448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
449 {
450 	struct mlx5_mr_cache *cache = &dev->cache;
451 	struct mlx5_cache_ent *ent;
452 	struct mlx5_ib_mr *mr;
453 	int err;
454 
455 	if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
456 		mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
457 		return NULL;
458 	}
459 
460 	ent = &cache->ent[entry];
461 	while (1) {
462 		spin_lock_irq(&ent->lock);
463 		if (list_empty(&ent->head)) {
464 			spin_unlock_irq(&ent->lock);
465 
466 			err = add_keys(dev, entry, 1);
467 			if (err && err != -EAGAIN)
468 				return ERR_PTR(err);
469 
470 			wait_for_completion(&ent->compl);
471 		} else {
472 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
473 					      list);
474 			list_del(&mr->list);
475 			ent->cur--;
476 			spin_unlock_irq(&ent->lock);
477 			if (ent->cur < ent->limit)
478 				queue_work(cache->wq, &ent->work);
479 			return mr;
480 		}
481 	}
482 }
483 
484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
485 {
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	struct mlx5_ib_mr *mr = NULL;
488 	struct mlx5_cache_ent *ent;
489 	int last_umr_cache_entry;
490 	int c;
491 	int i;
492 
493 	c = order2idx(dev, order);
494 	last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
495 	if (c < 0 || c > last_umr_cache_entry) {
496 		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
497 		return NULL;
498 	}
499 
500 	for (i = c; i <= last_umr_cache_entry; i++) {
501 		ent = &cache->ent[i];
502 
503 		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
504 
505 		spin_lock_irq(&ent->lock);
506 		if (!list_empty(&ent->head)) {
507 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
508 					      list);
509 			list_del(&mr->list);
510 			ent->cur--;
511 			spin_unlock_irq(&ent->lock);
512 			if (ent->cur < ent->limit)
513 				queue_work(cache->wq, &ent->work);
514 			break;
515 		}
516 		spin_unlock_irq(&ent->lock);
517 
518 		queue_work(cache->wq, &ent->work);
519 	}
520 
521 	if (!mr)
522 		cache->ent[c].miss++;
523 
524 	return mr;
525 }
526 
527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
528 {
529 	struct mlx5_mr_cache *cache = &dev->cache;
530 	struct mlx5_cache_ent *ent;
531 	int shrink = 0;
532 	int c;
533 
534 	if (!mr->allocated_from_cache)
535 		return;
536 
537 	c = order2idx(dev, mr->order);
538 	WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
539 
540 	if (unreg_umr(dev, mr)) {
541 		mr->allocated_from_cache = false;
542 		destroy_mkey(dev, mr);
543 		ent = &cache->ent[c];
544 		if (ent->cur < ent->limit)
545 			queue_work(cache->wq, &ent->work);
546 		return;
547 	}
548 
549 	ent = &cache->ent[c];
550 	spin_lock_irq(&ent->lock);
551 	list_add_tail(&mr->list, &ent->head);
552 	ent->cur++;
553 	if (ent->cur > 2 * ent->limit)
554 		shrink = 1;
555 	spin_unlock_irq(&ent->lock);
556 
557 	if (shrink)
558 		queue_work(cache->wq, &ent->work);
559 }
560 
561 static void clean_keys(struct mlx5_ib_dev *dev, int c)
562 {
563 	struct mlx5_mr_cache *cache = &dev->cache;
564 	struct mlx5_cache_ent *ent = &cache->ent[c];
565 	struct mlx5_ib_mr *tmp_mr;
566 	struct mlx5_ib_mr *mr;
567 	LIST_HEAD(del_list);
568 
569 	cancel_delayed_work(&ent->dwork);
570 	while (1) {
571 		spin_lock_irq(&ent->lock);
572 		if (list_empty(&ent->head)) {
573 			spin_unlock_irq(&ent->lock);
574 			break;
575 		}
576 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
577 		list_move(&mr->list, &del_list);
578 		ent->cur--;
579 		ent->size--;
580 		spin_unlock_irq(&ent->lock);
581 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
582 	}
583 
584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
585 	synchronize_srcu(&dev->mr_srcu);
586 #endif
587 
588 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
589 		list_del(&mr->list);
590 		kfree(mr);
591 	}
592 }
593 
594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595 {
596 	if (!mlx5_debugfs_root || dev->is_rep)
597 		return;
598 
599 	debugfs_remove_recursive(dev->cache.root);
600 	dev->cache.root = NULL;
601 }
602 
603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
604 {
605 	struct mlx5_mr_cache *cache = &dev->cache;
606 	struct mlx5_cache_ent *ent;
607 	struct dentry *dir;
608 	int i;
609 
610 	if (!mlx5_debugfs_root || dev->is_rep)
611 		return;
612 
613 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
614 
615 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
616 		ent = &cache->ent[i];
617 		sprintf(ent->name, "%d", ent->order);
618 		dir = debugfs_create_dir(ent->name, cache->root);
619 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
620 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
621 		debugfs_create_u32("cur", 0400, dir, &ent->cur);
622 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
623 	}
624 }
625 
626 static void delay_time_func(struct timer_list *t)
627 {
628 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
629 
630 	dev->fill_delay = 0;
631 }
632 
633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
634 {
635 	struct mlx5_mr_cache *cache = &dev->cache;
636 	struct mlx5_cache_ent *ent;
637 	int i;
638 
639 	mutex_init(&dev->slow_path_mutex);
640 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
641 	if (!cache->wq) {
642 		mlx5_ib_warn(dev, "failed to create work queue\n");
643 		return -ENOMEM;
644 	}
645 
646 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
647 	timer_setup(&dev->delay_timer, delay_time_func, 0);
648 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
649 		ent = &cache->ent[i];
650 		INIT_LIST_HEAD(&ent->head);
651 		spin_lock_init(&ent->lock);
652 		ent->order = i + 2;
653 		ent->dev = dev;
654 		ent->limit = 0;
655 
656 		init_completion(&ent->compl);
657 		INIT_WORK(&ent->work, cache_work_func);
658 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
659 
660 		if (i > MR_CACHE_LAST_STD_ENTRY) {
661 			mlx5_odp_init_mr_cache_entry(ent);
662 			continue;
663 		}
664 
665 		if (ent->order > mr_cache_max_order(dev))
666 			continue;
667 
668 		ent->page = PAGE_SHIFT;
669 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
670 			   MLX5_IB_UMR_OCTOWORD;
671 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
672 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
673 		    !dev->is_rep &&
674 		    mlx5_core_is_pf(dev->mdev))
675 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
676 		else
677 			ent->limit = 0;
678 		queue_work(cache->wq, &ent->work);
679 	}
680 
681 	mlx5_mr_cache_debugfs_init(dev);
682 
683 	return 0;
684 }
685 
686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
687 {
688 	int i;
689 
690 	if (!dev->cache.wq)
691 		return 0;
692 
693 	dev->cache.stopped = 1;
694 	flush_workqueue(dev->cache.wq);
695 
696 	mlx5_mr_cache_debugfs_cleanup(dev);
697 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
698 
699 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
700 		clean_keys(dev, i);
701 
702 	destroy_workqueue(dev->cache.wq);
703 	del_timer_sync(&dev->delay_timer);
704 
705 	return 0;
706 }
707 
708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
709 {
710 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
711 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
712 	struct mlx5_core_dev *mdev = dev->mdev;
713 	struct mlx5_ib_mr *mr;
714 	void *mkc;
715 	u32 *in;
716 	int err;
717 
718 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
719 	if (!mr)
720 		return ERR_PTR(-ENOMEM);
721 
722 	in = kzalloc(inlen, GFP_KERNEL);
723 	if (!in) {
724 		err = -ENOMEM;
725 		goto err_free;
726 	}
727 
728 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
729 
730 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
731 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
732 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
733 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
734 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
735 	MLX5_SET(mkc, mkc, lr, 1);
736 
737 	MLX5_SET(mkc, mkc, length64, 1);
738 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
739 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
740 	MLX5_SET64(mkc, mkc, start_addr, 0);
741 
742 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
743 	if (err)
744 		goto err_in;
745 
746 	kfree(in);
747 	mr->mmkey.type = MLX5_MKEY_MR;
748 	mr->ibmr.lkey = mr->mmkey.key;
749 	mr->ibmr.rkey = mr->mmkey.key;
750 	mr->umem = NULL;
751 
752 	return &mr->ibmr;
753 
754 err_in:
755 	kfree(in);
756 
757 err_free:
758 	kfree(mr);
759 
760 	return ERR_PTR(err);
761 }
762 
763 static int get_octo_len(u64 addr, u64 len, int page_shift)
764 {
765 	u64 page_size = 1ULL << page_shift;
766 	u64 offset;
767 	int npages;
768 
769 	offset = addr & (page_size - 1);
770 	npages = ALIGN(len + offset, page_size) >> page_shift;
771 	return (npages + 1) / 2;
772 }
773 
774 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
775 {
776 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
777 		return MR_CACHE_LAST_STD_ENTRY + 2;
778 	return MLX5_MAX_UMR_SHIFT;
779 }
780 
781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
782 		       u64 start, u64 length, int access_flags,
783 		       struct ib_umem **umem, int *npages, int *page_shift,
784 		       int *ncont, int *order)
785 {
786 	struct ib_umem *u;
787 	int err;
788 
789 	*umem = NULL;
790 
791 	u = ib_umem_get(udata, start, length, access_flags, 0);
792 	err = PTR_ERR_OR_ZERO(u);
793 	if (err) {
794 		mlx5_ib_dbg(dev, "umem get failed (%d)\n", err);
795 		return err;
796 	}
797 
798 	mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
799 			   page_shift, ncont, order);
800 	if (!*npages) {
801 		mlx5_ib_warn(dev, "avoid zero region\n");
802 		ib_umem_release(u);
803 		return -EINVAL;
804 	}
805 
806 	*umem = u;
807 
808 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
809 		    *npages, *ncont, *order, *page_shift);
810 
811 	return 0;
812 }
813 
814 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
815 {
816 	struct mlx5_ib_umr_context *context =
817 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
818 
819 	context->status = wc->status;
820 	complete(&context->done);
821 }
822 
823 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
824 {
825 	context->cqe.done = mlx5_ib_umr_done;
826 	context->status = -1;
827 	init_completion(&context->done);
828 }
829 
830 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
831 				  struct mlx5_umr_wr *umrwr)
832 {
833 	struct umr_common *umrc = &dev->umrc;
834 	const struct ib_send_wr *bad;
835 	int err;
836 	struct mlx5_ib_umr_context umr_context;
837 
838 	mlx5_ib_init_umr_context(&umr_context);
839 	umrwr->wr.wr_cqe = &umr_context.cqe;
840 
841 	down(&umrc->sem);
842 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
843 	if (err) {
844 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
845 	} else {
846 		wait_for_completion(&umr_context.done);
847 		if (umr_context.status != IB_WC_SUCCESS) {
848 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
849 				     umr_context.status);
850 			err = -EFAULT;
851 		}
852 	}
853 	up(&umrc->sem);
854 	return err;
855 }
856 
857 static struct mlx5_ib_mr *alloc_mr_from_cache(
858 				  struct ib_pd *pd, struct ib_umem *umem,
859 				  u64 virt_addr, u64 len, int npages,
860 				  int page_shift, int order, int access_flags)
861 {
862 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
863 	struct mlx5_ib_mr *mr;
864 	int err = 0;
865 	int i;
866 
867 	for (i = 0; i < 1; i++) {
868 		mr = alloc_cached_mr(dev, order);
869 		if (mr)
870 			break;
871 
872 		err = add_keys(dev, order2idx(dev, order), 1);
873 		if (err && err != -EAGAIN) {
874 			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
875 			break;
876 		}
877 	}
878 
879 	if (!mr)
880 		return ERR_PTR(-EAGAIN);
881 
882 	mr->ibmr.pd = pd;
883 	mr->umem = umem;
884 	mr->access_flags = access_flags;
885 	mr->desc_size = sizeof(struct mlx5_mtt);
886 	mr->mmkey.iova = virt_addr;
887 	mr->mmkey.size = len;
888 	mr->mmkey.pd = to_mpd(pd)->pdn;
889 
890 	return mr;
891 }
892 
893 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
894 			       void *xlt, int page_shift, size_t size,
895 			       int flags)
896 {
897 	struct mlx5_ib_dev *dev = mr->dev;
898 	struct ib_umem *umem = mr->umem;
899 
900 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
901 		if (!umr_can_use_indirect_mkey(dev))
902 			return -EPERM;
903 		mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
904 		return npages;
905 	}
906 
907 	npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
908 
909 	if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
910 		__mlx5_ib_populate_pas(dev, umem, page_shift,
911 				       idx, npages, xlt,
912 				       MLX5_IB_MTT_PRESENT);
913 		/* Clear padding after the pages
914 		 * brought from the umem.
915 		 */
916 		memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
917 		       size - npages * sizeof(struct mlx5_mtt));
918 	}
919 
920 	return npages;
921 }
922 
923 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
924 			    MLX5_UMR_MTT_ALIGNMENT)
925 #define MLX5_SPARE_UMR_CHUNK 0x10000
926 
927 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
928 		       int page_shift, int flags)
929 {
930 	struct mlx5_ib_dev *dev = mr->dev;
931 	struct device *ddev = dev->ib_dev.dev.parent;
932 	int size;
933 	void *xlt;
934 	dma_addr_t dma;
935 	struct mlx5_umr_wr wr;
936 	struct ib_sge sg;
937 	int err = 0;
938 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
939 			       ? sizeof(struct mlx5_klm)
940 			       : sizeof(struct mlx5_mtt);
941 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
942 	const int page_mask = page_align - 1;
943 	size_t pages_mapped = 0;
944 	size_t pages_to_map = 0;
945 	size_t pages_iter = 0;
946 	gfp_t gfp;
947 	bool use_emergency_page = false;
948 
949 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
950 	    !umr_can_use_indirect_mkey(dev))
951 		return -EPERM;
952 
953 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
954 	 * so we need to align the offset and length accordingly
955 	 */
956 	if (idx & page_mask) {
957 		npages += idx & page_mask;
958 		idx &= ~page_mask;
959 	}
960 
961 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
962 	gfp |= __GFP_ZERO | __GFP_NOWARN;
963 
964 	pages_to_map = ALIGN(npages, page_align);
965 	size = desc_size * pages_to_map;
966 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
967 
968 	xlt = (void *)__get_free_pages(gfp, get_order(size));
969 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
970 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
971 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
972 
973 		size = MLX5_SPARE_UMR_CHUNK;
974 		xlt = (void *)__get_free_pages(gfp, get_order(size));
975 	}
976 
977 	if (!xlt) {
978 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
979 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
980 		size = PAGE_SIZE;
981 		memset(xlt, 0, size);
982 		use_emergency_page = true;
983 	}
984 	pages_iter = size / desc_size;
985 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
986 	if (dma_mapping_error(ddev, dma)) {
987 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
988 		err = -ENOMEM;
989 		goto free_xlt;
990 	}
991 
992 	sg.addr = dma;
993 	sg.lkey = dev->umrc.pd->local_dma_lkey;
994 
995 	memset(&wr, 0, sizeof(wr));
996 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
997 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
998 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
999 	wr.wr.sg_list = &sg;
1000 	wr.wr.num_sge = 1;
1001 	wr.wr.opcode = MLX5_IB_WR_UMR;
1002 
1003 	wr.pd = mr->ibmr.pd;
1004 	wr.mkey = mr->mmkey.key;
1005 	wr.length = mr->mmkey.size;
1006 	wr.virt_addr = mr->mmkey.iova;
1007 	wr.access_flags = mr->access_flags;
1008 	wr.page_shift = page_shift;
1009 
1010 	for (pages_mapped = 0;
1011 	     pages_mapped < pages_to_map && !err;
1012 	     pages_mapped += pages_iter, idx += pages_iter) {
1013 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1014 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1015 		npages = populate_xlt(mr, idx, npages, xlt,
1016 				      page_shift, size, flags);
1017 
1018 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1019 
1020 		sg.length = ALIGN(npages * desc_size,
1021 				  MLX5_UMR_MTT_ALIGNMENT);
1022 
1023 		if (pages_mapped + pages_iter >= pages_to_map) {
1024 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1025 				wr.wr.send_flags |=
1026 					MLX5_IB_SEND_UMR_ENABLE_MR |
1027 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1028 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1029 			if (flags & MLX5_IB_UPD_XLT_PD ||
1030 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1031 				wr.wr.send_flags |=
1032 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1033 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1034 				wr.wr.send_flags |=
1035 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1036 		}
1037 
1038 		wr.offset = idx * desc_size;
1039 		wr.xlt_size = sg.length;
1040 
1041 		err = mlx5_ib_post_send_wait(dev, &wr);
1042 	}
1043 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1044 
1045 free_xlt:
1046 	if (use_emergency_page)
1047 		mlx5_ib_put_xlt_emergency_page();
1048 	else
1049 		free_pages((unsigned long)xlt, get_order(size));
1050 
1051 	return err;
1052 }
1053 
1054 /*
1055  * If ibmr is NULL it will be allocated by reg_create.
1056  * Else, the given ibmr will be used.
1057  */
1058 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1059 				     u64 virt_addr, u64 length,
1060 				     struct ib_umem *umem, int npages,
1061 				     int page_shift, int access_flags,
1062 				     bool populate)
1063 {
1064 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1065 	struct mlx5_ib_mr *mr;
1066 	__be64 *pas;
1067 	void *mkc;
1068 	int inlen;
1069 	u32 *in;
1070 	int err;
1071 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1072 
1073 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1074 	if (!mr)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	mr->ibmr.pd = pd;
1078 	mr->access_flags = access_flags;
1079 
1080 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1081 	if (populate)
1082 		inlen += sizeof(*pas) * roundup(npages, 2);
1083 	in = kvzalloc(inlen, GFP_KERNEL);
1084 	if (!in) {
1085 		err = -ENOMEM;
1086 		goto err_1;
1087 	}
1088 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1089 	if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1090 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1091 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1092 
1093 	/* The pg_access bit allows setting the access flags
1094 	 * in the page list submitted with the command. */
1095 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1096 
1097 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1098 	MLX5_SET(mkc, mkc, free, !populate);
1099 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1100 	MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1101 	MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1102 	MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1103 	MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1104 	MLX5_SET(mkc, mkc, lr, 1);
1105 	MLX5_SET(mkc, mkc, umr_en, 1);
1106 
1107 	MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1108 	MLX5_SET64(mkc, mkc, len, length);
1109 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1110 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1111 	MLX5_SET(mkc, mkc, translations_octword_size,
1112 		 get_octo_len(virt_addr, length, page_shift));
1113 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1114 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1115 	if (populate) {
1116 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1117 			 get_octo_len(virt_addr, length, page_shift));
1118 	}
1119 
1120 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1121 	if (err) {
1122 		mlx5_ib_warn(dev, "create mkey failed\n");
1123 		goto err_2;
1124 	}
1125 	mr->mmkey.type = MLX5_MKEY_MR;
1126 	mr->desc_size = sizeof(struct mlx5_mtt);
1127 	mr->dev = dev;
1128 	kvfree(in);
1129 
1130 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1131 
1132 	return mr;
1133 
1134 err_2:
1135 	kvfree(in);
1136 
1137 err_1:
1138 	if (!ibmr)
1139 		kfree(mr);
1140 
1141 	return ERR_PTR(err);
1142 }
1143 
1144 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1145 			  int npages, u64 length, int access_flags)
1146 {
1147 	mr->npages = npages;
1148 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1149 	mr->ibmr.lkey = mr->mmkey.key;
1150 	mr->ibmr.rkey = mr->mmkey.key;
1151 	mr->ibmr.length = length;
1152 	mr->access_flags = access_flags;
1153 }
1154 
1155 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1156 				       u64 length, int acc, int mode)
1157 {
1158 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1159 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1160 	struct mlx5_core_dev *mdev = dev->mdev;
1161 	struct mlx5_ib_mr *mr;
1162 	void *mkc;
1163 	u32 *in;
1164 	int err;
1165 
1166 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1167 	if (!mr)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	in = kzalloc(inlen, GFP_KERNEL);
1171 	if (!in) {
1172 		err = -ENOMEM;
1173 		goto err_free;
1174 	}
1175 
1176 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1177 
1178 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1179 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1180 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1181 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1182 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1183 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1184 	MLX5_SET(mkc, mkc, lr, 1);
1185 
1186 	MLX5_SET64(mkc, mkc, len, length);
1187 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1188 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1189 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
1190 
1191 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1192 	if (err)
1193 		goto err_in;
1194 
1195 	kfree(in);
1196 
1197 	mr->umem = NULL;
1198 	set_mr_fields(dev, mr, 0, length, acc);
1199 
1200 	return &mr->ibmr;
1201 
1202 err_in:
1203 	kfree(in);
1204 
1205 err_free:
1206 	kfree(mr);
1207 
1208 	return ERR_PTR(err);
1209 }
1210 
1211 int mlx5_ib_advise_mr(struct ib_pd *pd,
1212 		      enum ib_uverbs_advise_mr_advice advice,
1213 		      u32 flags,
1214 		      struct ib_sge *sg_list,
1215 		      u32 num_sge,
1216 		      struct uverbs_attr_bundle *attrs)
1217 {
1218 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1219 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1220 		return -EOPNOTSUPP;
1221 
1222 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1223 					 sg_list, num_sge);
1224 }
1225 
1226 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1227 				struct ib_dm_mr_attr *attr,
1228 				struct uverbs_attr_bundle *attrs)
1229 {
1230 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1231 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1232 	u64 start_addr = mdm->dev_addr + attr->offset;
1233 	int mode;
1234 
1235 	switch (mdm->type) {
1236 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1237 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1238 			return ERR_PTR(-EINVAL);
1239 
1240 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1241 		start_addr -= pci_resource_start(dev->pdev, 0);
1242 		break;
1243 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1244 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1245 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1246 			return ERR_PTR(-EINVAL);
1247 
1248 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1249 		break;
1250 	default:
1251 		return ERR_PTR(-EINVAL);
1252 	}
1253 
1254 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1255 				 attr->access_flags, mode);
1256 }
1257 
1258 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1259 				  u64 virt_addr, int access_flags,
1260 				  struct ib_udata *udata)
1261 {
1262 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1263 	struct mlx5_ib_mr *mr = NULL;
1264 	bool use_umr;
1265 	struct ib_umem *umem;
1266 	int page_shift;
1267 	int npages;
1268 	int ncont;
1269 	int order;
1270 	int err;
1271 
1272 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1273 		return ERR_PTR(-EOPNOTSUPP);
1274 
1275 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1276 		    start, virt_addr, length, access_flags);
1277 
1278 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1279 	    length == U64_MAX) {
1280 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1281 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1282 			return ERR_PTR(-EINVAL);
1283 
1284 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1285 		if (IS_ERR(mr))
1286 			return ERR_CAST(mr);
1287 		return &mr->ibmr;
1288 	}
1289 
1290 	err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1291 			  &npages, &page_shift, &ncont, &order);
1292 
1293 	if (err < 0)
1294 		return ERR_PTR(err);
1295 
1296 	use_umr = mlx5_ib_can_use_umr(dev, true);
1297 
1298 	if (order <= mr_cache_max_order(dev) && use_umr) {
1299 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1300 					 page_shift, order, access_flags);
1301 		if (PTR_ERR(mr) == -EAGAIN) {
1302 			mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1303 			mr = NULL;
1304 		}
1305 	} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1306 		if (access_flags & IB_ACCESS_ON_DEMAND) {
1307 			err = -EINVAL;
1308 			pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1309 			goto error;
1310 		}
1311 		use_umr = false;
1312 	}
1313 
1314 	if (!mr) {
1315 		mutex_lock(&dev->slow_path_mutex);
1316 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1317 				page_shift, access_flags, !use_umr);
1318 		mutex_unlock(&dev->slow_path_mutex);
1319 	}
1320 
1321 	if (IS_ERR(mr)) {
1322 		err = PTR_ERR(mr);
1323 		goto error;
1324 	}
1325 
1326 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1327 
1328 	mr->umem = umem;
1329 	set_mr_fields(dev, mr, npages, length, access_flags);
1330 
1331 	update_odp_mr(mr);
1332 
1333 	if (use_umr) {
1334 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1335 
1336 		if (access_flags & IB_ACCESS_ON_DEMAND)
1337 			update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1338 
1339 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1340 					 update_xlt_flags);
1341 
1342 		if (err) {
1343 			dereg_mr(dev, mr);
1344 			return ERR_PTR(err);
1345 		}
1346 	}
1347 
1348 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1349 		mr->live = 1;
1350 		atomic_set(&mr->num_pending_prefetch, 0);
1351 	}
1352 
1353 	return &mr->ibmr;
1354 error:
1355 	ib_umem_release(umem);
1356 	return ERR_PTR(err);
1357 }
1358 
1359 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1360 {
1361 	struct mlx5_core_dev *mdev = dev->mdev;
1362 	struct mlx5_umr_wr umrwr = {};
1363 
1364 	if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1365 		return 0;
1366 
1367 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1368 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1369 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1370 	umrwr.pd = dev->umrc.pd;
1371 	umrwr.mkey = mr->mmkey.key;
1372 	umrwr.ignore_free_state = 1;
1373 
1374 	return mlx5_ib_post_send_wait(dev, &umrwr);
1375 }
1376 
1377 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1378 		     int access_flags, int flags)
1379 {
1380 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1381 	struct mlx5_umr_wr umrwr = {};
1382 	int err;
1383 
1384 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1385 
1386 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1387 	umrwr.mkey = mr->mmkey.key;
1388 
1389 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1390 		umrwr.pd = pd;
1391 		umrwr.access_flags = access_flags;
1392 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1393 	}
1394 
1395 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1396 
1397 	return err;
1398 }
1399 
1400 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1401 			  u64 length, u64 virt_addr, int new_access_flags,
1402 			  struct ib_pd *new_pd, struct ib_udata *udata)
1403 {
1404 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1405 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1406 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1407 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1408 			    new_access_flags :
1409 			    mr->access_flags;
1410 	int page_shift = 0;
1411 	int upd_flags = 0;
1412 	int npages = 0;
1413 	int ncont = 0;
1414 	int order = 0;
1415 	u64 addr, len;
1416 	int err;
1417 
1418 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1419 		    start, virt_addr, length, access_flags);
1420 
1421 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1422 
1423 	if (!mr->umem)
1424 		return -EINVAL;
1425 
1426 	if (flags & IB_MR_REREG_TRANS) {
1427 		addr = virt_addr;
1428 		len = length;
1429 	} else {
1430 		addr = mr->umem->address;
1431 		len = mr->umem->length;
1432 	}
1433 
1434 	if (flags != IB_MR_REREG_PD) {
1435 		/*
1436 		 * Replace umem. This needs to be done whether or not UMR is
1437 		 * used.
1438 		 */
1439 		flags |= IB_MR_REREG_TRANS;
1440 		ib_umem_release(mr->umem);
1441 		mr->umem = NULL;
1442 		err = mr_umem_get(dev, udata, addr, len, access_flags,
1443 				  &mr->umem, &npages, &page_shift, &ncont,
1444 				  &order);
1445 		if (err)
1446 			goto err;
1447 	}
1448 
1449 	if (!mlx5_ib_can_use_umr(dev, true) ||
1450 	    (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1451 		/*
1452 		 * UMR can't be used - MKey needs to be replaced.
1453 		 */
1454 		if (mr->allocated_from_cache)
1455 			err = unreg_umr(dev, mr);
1456 		else
1457 			err = destroy_mkey(dev, mr);
1458 		if (err)
1459 			goto err;
1460 
1461 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1462 				page_shift, access_flags, true);
1463 
1464 		if (IS_ERR(mr)) {
1465 			err = PTR_ERR(mr);
1466 			mr = to_mmr(ib_mr);
1467 			goto err;
1468 		}
1469 
1470 		mr->allocated_from_cache = 0;
1471 		if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1472 			mr->live = 1;
1473 	} else {
1474 		/*
1475 		 * Send a UMR WQE
1476 		 */
1477 		mr->ibmr.pd = pd;
1478 		mr->access_flags = access_flags;
1479 		mr->mmkey.iova = addr;
1480 		mr->mmkey.size = len;
1481 		mr->mmkey.pd = to_mpd(pd)->pdn;
1482 
1483 		if (flags & IB_MR_REREG_TRANS) {
1484 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1485 			if (flags & IB_MR_REREG_PD)
1486 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1487 			if (flags & IB_MR_REREG_ACCESS)
1488 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1489 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1490 						 upd_flags);
1491 		} else {
1492 			err = rereg_umr(pd, mr, access_flags, flags);
1493 		}
1494 
1495 		if (err)
1496 			goto err;
1497 	}
1498 
1499 	set_mr_fields(dev, mr, npages, len, access_flags);
1500 
1501 	update_odp_mr(mr);
1502 	return 0;
1503 
1504 err:
1505 	ib_umem_release(mr->umem);
1506 	mr->umem = NULL;
1507 
1508 	clean_mr(dev, mr);
1509 	return err;
1510 }
1511 
1512 static int
1513 mlx5_alloc_priv_descs(struct ib_device *device,
1514 		      struct mlx5_ib_mr *mr,
1515 		      int ndescs,
1516 		      int desc_size)
1517 {
1518 	int size = ndescs * desc_size;
1519 	int add_size;
1520 	int ret;
1521 
1522 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1523 
1524 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1525 	if (!mr->descs_alloc)
1526 		return -ENOMEM;
1527 
1528 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1529 
1530 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1531 				      size, DMA_TO_DEVICE);
1532 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1533 		ret = -ENOMEM;
1534 		goto err;
1535 	}
1536 
1537 	return 0;
1538 err:
1539 	kfree(mr->descs_alloc);
1540 
1541 	return ret;
1542 }
1543 
1544 static void
1545 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1546 {
1547 	if (mr->descs) {
1548 		struct ib_device *device = mr->ibmr.device;
1549 		int size = mr->max_descs * mr->desc_size;
1550 
1551 		dma_unmap_single(device->dev.parent, mr->desc_map,
1552 				 size, DMA_TO_DEVICE);
1553 		kfree(mr->descs_alloc);
1554 		mr->descs = NULL;
1555 	}
1556 }
1557 
1558 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1559 {
1560 	int allocated_from_cache = mr->allocated_from_cache;
1561 
1562 	if (mr->sig) {
1563 		if (mlx5_core_destroy_psv(dev->mdev,
1564 					  mr->sig->psv_memory.psv_idx))
1565 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1566 				     mr->sig->psv_memory.psv_idx);
1567 		if (mlx5_core_destroy_psv(dev->mdev,
1568 					  mr->sig->psv_wire.psv_idx))
1569 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1570 				     mr->sig->psv_wire.psv_idx);
1571 		kfree(mr->sig);
1572 		mr->sig = NULL;
1573 	}
1574 
1575 	if (!allocated_from_cache) {
1576 		destroy_mkey(dev, mr);
1577 		mlx5_free_priv_descs(mr);
1578 	}
1579 }
1580 
1581 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1582 {
1583 	int npages = mr->npages;
1584 	struct ib_umem *umem = mr->umem;
1585 
1586 	if (is_odp_mr(mr)) {
1587 		struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1588 
1589 		/* Prevent new page faults and
1590 		 * prefetch requests from succeeding
1591 		 */
1592 		mr->live = 0;
1593 
1594 		/* dequeue pending prefetch requests for the mr */
1595 		if (atomic_read(&mr->num_pending_prefetch))
1596 			flush_workqueue(system_unbound_wq);
1597 		WARN_ON(atomic_read(&mr->num_pending_prefetch));
1598 
1599 		/* Wait for all running page-fault handlers to finish. */
1600 		synchronize_srcu(&dev->mr_srcu);
1601 		/* Destroy all page mappings */
1602 		if (umem_odp->page_list)
1603 			mlx5_ib_invalidate_range(umem_odp,
1604 						 ib_umem_start(umem_odp),
1605 						 ib_umem_end(umem_odp));
1606 		else
1607 			mlx5_ib_free_implicit_mr(mr);
1608 		/*
1609 		 * We kill the umem before the MR for ODP,
1610 		 * so that there will not be any invalidations in
1611 		 * flight, looking at the *mr struct.
1612 		 */
1613 		ib_umem_release(umem);
1614 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1615 
1616 		/* Avoid double-freeing the umem. */
1617 		umem = NULL;
1618 	}
1619 
1620 	clean_mr(dev, mr);
1621 
1622 	/*
1623 	 * We should unregister the DMA address from the HCA before
1624 	 * remove the DMA mapping.
1625 	 */
1626 	mlx5_mr_cache_free(dev, mr);
1627 	ib_umem_release(umem);
1628 	if (umem)
1629 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1630 
1631 	if (!mr->allocated_from_cache)
1632 		kfree(mr);
1633 }
1634 
1635 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1636 {
1637 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1638 
1639 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1640 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1641 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1642 	}
1643 
1644 	dereg_mr(to_mdev(ibmr->device), mmr);
1645 
1646 	return 0;
1647 }
1648 
1649 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1650 				   int access_mode, int page_shift)
1651 {
1652 	void *mkc;
1653 
1654 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1655 
1656 	MLX5_SET(mkc, mkc, free, 1);
1657 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1658 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1659 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1660 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1661 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1662 	MLX5_SET(mkc, mkc, umr_en, 1);
1663 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1664 }
1665 
1666 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1667 				  int ndescs, int desc_size, int page_shift,
1668 				  int access_mode, u32 *in, int inlen)
1669 {
1670 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1671 	int err;
1672 
1673 	mr->access_mode = access_mode;
1674 	mr->desc_size = desc_size;
1675 	mr->max_descs = ndescs;
1676 
1677 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1678 	if (err)
1679 		return err;
1680 
1681 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1682 
1683 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1684 	if (err)
1685 		goto err_free_descs;
1686 
1687 	mr->mmkey.type = MLX5_MKEY_MR;
1688 	mr->ibmr.lkey = mr->mmkey.key;
1689 	mr->ibmr.rkey = mr->mmkey.key;
1690 
1691 	return 0;
1692 
1693 err_free_descs:
1694 	mlx5_free_priv_descs(mr);
1695 	return err;
1696 }
1697 
1698 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1699 				u32 max_num_sg, u32 max_num_meta_sg,
1700 				int desc_size, int access_mode)
1701 {
1702 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1703 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1704 	int page_shift = 0;
1705 	struct mlx5_ib_mr *mr;
1706 	u32 *in;
1707 	int err;
1708 
1709 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1710 	if (!mr)
1711 		return ERR_PTR(-ENOMEM);
1712 
1713 	mr->ibmr.pd = pd;
1714 	mr->ibmr.device = pd->device;
1715 
1716 	in = kzalloc(inlen, GFP_KERNEL);
1717 	if (!in) {
1718 		err = -ENOMEM;
1719 		goto err_free;
1720 	}
1721 
1722 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1723 		page_shift = PAGE_SHIFT;
1724 
1725 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1726 				     access_mode, in, inlen);
1727 	if (err)
1728 		goto err_free_in;
1729 
1730 	mr->umem = NULL;
1731 	kfree(in);
1732 
1733 	return mr;
1734 
1735 err_free_in:
1736 	kfree(in);
1737 err_free:
1738 	kfree(mr);
1739 	return ERR_PTR(err);
1740 }
1741 
1742 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1743 				    int ndescs, u32 *in, int inlen)
1744 {
1745 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1746 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1747 				      inlen);
1748 }
1749 
1750 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1751 				    int ndescs, u32 *in, int inlen)
1752 {
1753 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1754 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1755 }
1756 
1757 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1758 				      int max_num_sg, int max_num_meta_sg,
1759 				      u32 *in, int inlen)
1760 {
1761 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1762 	u32 psv_index[2];
1763 	void *mkc;
1764 	int err;
1765 
1766 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1767 	if (!mr->sig)
1768 		return -ENOMEM;
1769 
1770 	/* create mem & wire PSVs */
1771 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1772 	if (err)
1773 		goto err_free_sig;
1774 
1775 	mr->sig->psv_memory.psv_idx = psv_index[0];
1776 	mr->sig->psv_wire.psv_idx = psv_index[1];
1777 
1778 	mr->sig->sig_status_checked = true;
1779 	mr->sig->sig_err_exists = false;
1780 	/* Next UMR, Arm SIGERR */
1781 	++mr->sig->sigerr_count;
1782 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1783 					 sizeof(struct mlx5_klm),
1784 					 MLX5_MKC_ACCESS_MODE_KLMS);
1785 	if (IS_ERR(mr->klm_mr)) {
1786 		err = PTR_ERR(mr->klm_mr);
1787 		goto err_destroy_psv;
1788 	}
1789 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1790 					 sizeof(struct mlx5_mtt),
1791 					 MLX5_MKC_ACCESS_MODE_MTT);
1792 	if (IS_ERR(mr->mtt_mr)) {
1793 		err = PTR_ERR(mr->mtt_mr);
1794 		goto err_free_klm_mr;
1795 	}
1796 
1797 	/* Set bsf descriptors for mkey */
1798 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1799 	MLX5_SET(mkc, mkc, bsf_en, 1);
1800 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1801 
1802 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1803 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1804 	if (err)
1805 		goto err_free_mtt_mr;
1806 
1807 	return 0;
1808 
1809 err_free_mtt_mr:
1810 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1811 	mr->mtt_mr = NULL;
1812 err_free_klm_mr:
1813 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1814 	mr->klm_mr = NULL;
1815 err_destroy_psv:
1816 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1817 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1818 			     mr->sig->psv_memory.psv_idx);
1819 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1820 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1821 			     mr->sig->psv_wire.psv_idx);
1822 err_free_sig:
1823 	kfree(mr->sig);
1824 
1825 	return err;
1826 }
1827 
1828 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1829 					enum ib_mr_type mr_type, u32 max_num_sg,
1830 					u32 max_num_meta_sg)
1831 {
1832 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1833 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1834 	int ndescs = ALIGN(max_num_sg, 4);
1835 	struct mlx5_ib_mr *mr;
1836 	u32 *in;
1837 	int err;
1838 
1839 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1840 	if (!mr)
1841 		return ERR_PTR(-ENOMEM);
1842 
1843 	in = kzalloc(inlen, GFP_KERNEL);
1844 	if (!in) {
1845 		err = -ENOMEM;
1846 		goto err_free;
1847 	}
1848 
1849 	mr->ibmr.device = pd->device;
1850 	mr->umem = NULL;
1851 
1852 	switch (mr_type) {
1853 	case IB_MR_TYPE_MEM_REG:
1854 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1855 		break;
1856 	case IB_MR_TYPE_SG_GAPS:
1857 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1858 		break;
1859 	case IB_MR_TYPE_INTEGRITY:
1860 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1861 						 max_num_meta_sg, in, inlen);
1862 		break;
1863 	default:
1864 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1865 		err = -EINVAL;
1866 	}
1867 
1868 	if (err)
1869 		goto err_free_in;
1870 
1871 	kfree(in);
1872 
1873 	return &mr->ibmr;
1874 
1875 err_free_in:
1876 	kfree(in);
1877 err_free:
1878 	kfree(mr);
1879 	return ERR_PTR(err);
1880 }
1881 
1882 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1883 			       u32 max_num_sg, struct ib_udata *udata)
1884 {
1885 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1886 }
1887 
1888 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1889 					 u32 max_num_sg, u32 max_num_meta_sg)
1890 {
1891 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1892 				  max_num_meta_sg);
1893 }
1894 
1895 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1896 			       struct ib_udata *udata)
1897 {
1898 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1899 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1900 	struct mlx5_ib_mw *mw = NULL;
1901 	u32 *in = NULL;
1902 	void *mkc;
1903 	int ndescs;
1904 	int err;
1905 	struct mlx5_ib_alloc_mw req = {};
1906 	struct {
1907 		__u32	comp_mask;
1908 		__u32	response_length;
1909 	} resp = {};
1910 
1911 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1912 	if (err)
1913 		return ERR_PTR(err);
1914 
1915 	if (req.comp_mask || req.reserved1 || req.reserved2)
1916 		return ERR_PTR(-EOPNOTSUPP);
1917 
1918 	if (udata->inlen > sizeof(req) &&
1919 	    !ib_is_udata_cleared(udata, sizeof(req),
1920 				 udata->inlen - sizeof(req)))
1921 		return ERR_PTR(-EOPNOTSUPP);
1922 
1923 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1924 
1925 	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1926 	in = kzalloc(inlen, GFP_KERNEL);
1927 	if (!mw || !in) {
1928 		err = -ENOMEM;
1929 		goto free;
1930 	}
1931 
1932 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1933 
1934 	MLX5_SET(mkc, mkc, free, 1);
1935 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1936 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1937 	MLX5_SET(mkc, mkc, umr_en, 1);
1938 	MLX5_SET(mkc, mkc, lr, 1);
1939 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1940 	MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1941 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1942 
1943 	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1944 	if (err)
1945 		goto free;
1946 
1947 	mw->mmkey.type = MLX5_MKEY_MW;
1948 	mw->ibmw.rkey = mw->mmkey.key;
1949 	mw->ndescs = ndescs;
1950 
1951 	resp.response_length = min(offsetof(typeof(resp), response_length) +
1952 				   sizeof(resp.response_length), udata->outlen);
1953 	if (resp.response_length) {
1954 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1955 		if (err) {
1956 			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1957 			goto free;
1958 		}
1959 	}
1960 
1961 	kfree(in);
1962 	return &mw->ibmw;
1963 
1964 free:
1965 	kfree(mw);
1966 	kfree(in);
1967 	return ERR_PTR(err);
1968 }
1969 
1970 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1971 {
1972 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1973 	int err;
1974 
1975 	err =  mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1976 				      &mmw->mmkey);
1977 	if (!err)
1978 		kfree(mmw);
1979 	return err;
1980 }
1981 
1982 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1983 			    struct ib_mr_status *mr_status)
1984 {
1985 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1986 	int ret = 0;
1987 
1988 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1989 		pr_err("Invalid status check mask\n");
1990 		ret = -EINVAL;
1991 		goto done;
1992 	}
1993 
1994 	mr_status->fail_status = 0;
1995 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1996 		if (!mmr->sig) {
1997 			ret = -EINVAL;
1998 			pr_err("signature status check requested on a non-signature enabled MR\n");
1999 			goto done;
2000 		}
2001 
2002 		mmr->sig->sig_status_checked = true;
2003 		if (!mmr->sig->sig_err_exists)
2004 			goto done;
2005 
2006 		if (ibmr->lkey == mmr->sig->err_item.key)
2007 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2008 			       sizeof(mr_status->sig_err));
2009 		else {
2010 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2011 			mr_status->sig_err.sig_err_offset = 0;
2012 			mr_status->sig_err.key = mmr->sig->err_item.key;
2013 		}
2014 
2015 		mmr->sig->sig_err_exists = false;
2016 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2017 	}
2018 
2019 done:
2020 	return ret;
2021 }
2022 
2023 static int
2024 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2025 			int data_sg_nents, unsigned int *data_sg_offset,
2026 			struct scatterlist *meta_sg, int meta_sg_nents,
2027 			unsigned int *meta_sg_offset)
2028 {
2029 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2030 	unsigned int sg_offset = 0;
2031 	int n = 0;
2032 
2033 	mr->meta_length = 0;
2034 	if (data_sg_nents == 1) {
2035 		n++;
2036 		mr->ndescs = 1;
2037 		if (data_sg_offset)
2038 			sg_offset = *data_sg_offset;
2039 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2040 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2041 		if (meta_sg_nents == 1) {
2042 			n++;
2043 			mr->meta_ndescs = 1;
2044 			if (meta_sg_offset)
2045 				sg_offset = *meta_sg_offset;
2046 			else
2047 				sg_offset = 0;
2048 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2049 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2050 		}
2051 		ibmr->length = mr->data_length + mr->meta_length;
2052 	}
2053 
2054 	return n;
2055 }
2056 
2057 static int
2058 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2059 		   struct scatterlist *sgl,
2060 		   unsigned short sg_nents,
2061 		   unsigned int *sg_offset_p,
2062 		   struct scatterlist *meta_sgl,
2063 		   unsigned short meta_sg_nents,
2064 		   unsigned int *meta_sg_offset_p)
2065 {
2066 	struct scatterlist *sg = sgl;
2067 	struct mlx5_klm *klms = mr->descs;
2068 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2069 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2070 	int i, j = 0;
2071 
2072 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2073 	mr->ibmr.length = 0;
2074 
2075 	for_each_sg(sgl, sg, sg_nents, i) {
2076 		if (unlikely(i >= mr->max_descs))
2077 			break;
2078 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2079 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2080 		klms[i].key = cpu_to_be32(lkey);
2081 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2082 
2083 		sg_offset = 0;
2084 	}
2085 
2086 	if (sg_offset_p)
2087 		*sg_offset_p = sg_offset;
2088 
2089 	mr->ndescs = i;
2090 	mr->data_length = mr->ibmr.length;
2091 
2092 	if (meta_sg_nents) {
2093 		sg = meta_sgl;
2094 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2095 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2096 			if (unlikely(i + j >= mr->max_descs))
2097 				break;
2098 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2099 						     sg_offset);
2100 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2101 							 sg_offset);
2102 			klms[i + j].key = cpu_to_be32(lkey);
2103 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2104 
2105 			sg_offset = 0;
2106 		}
2107 		if (meta_sg_offset_p)
2108 			*meta_sg_offset_p = sg_offset;
2109 
2110 		mr->meta_ndescs = j;
2111 		mr->meta_length = mr->ibmr.length - mr->data_length;
2112 	}
2113 
2114 	return i + j;
2115 }
2116 
2117 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2118 {
2119 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2120 	__be64 *descs;
2121 
2122 	if (unlikely(mr->ndescs == mr->max_descs))
2123 		return -ENOMEM;
2124 
2125 	descs = mr->descs;
2126 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2127 
2128 	return 0;
2129 }
2130 
2131 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2132 {
2133 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2134 	__be64 *descs;
2135 
2136 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2137 		return -ENOMEM;
2138 
2139 	descs = mr->descs;
2140 	descs[mr->ndescs + mr->meta_ndescs++] =
2141 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2142 
2143 	return 0;
2144 }
2145 
2146 static int
2147 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2148 			 int data_sg_nents, unsigned int *data_sg_offset,
2149 			 struct scatterlist *meta_sg, int meta_sg_nents,
2150 			 unsigned int *meta_sg_offset)
2151 {
2152 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2153 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2154 	int n;
2155 
2156 	pi_mr->ndescs = 0;
2157 	pi_mr->meta_ndescs = 0;
2158 	pi_mr->meta_length = 0;
2159 
2160 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2161 				   pi_mr->desc_size * pi_mr->max_descs,
2162 				   DMA_TO_DEVICE);
2163 
2164 	pi_mr->ibmr.page_size = ibmr->page_size;
2165 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2166 			   mlx5_set_page);
2167 	if (n != data_sg_nents)
2168 		return n;
2169 
2170 	pi_mr->data_iova = pi_mr->ibmr.iova;
2171 	pi_mr->data_length = pi_mr->ibmr.length;
2172 	pi_mr->ibmr.length = pi_mr->data_length;
2173 	ibmr->length = pi_mr->data_length;
2174 
2175 	if (meta_sg_nents) {
2176 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2177 		u64 iova = pi_mr->data_iova;
2178 
2179 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2180 				    meta_sg_offset, mlx5_set_page_pi);
2181 
2182 		pi_mr->meta_length = pi_mr->ibmr.length;
2183 		/*
2184 		 * PI address for the HW is the offset of the metadata address
2185 		 * relative to the first data page address.
2186 		 * It equals to first data page address + size of data pages +
2187 		 * metadata offset at the first metadata page
2188 		 */
2189 		pi_mr->pi_iova = (iova & page_mask) +
2190 				 pi_mr->ndescs * ibmr->page_size +
2191 				 (pi_mr->ibmr.iova & ~page_mask);
2192 		/*
2193 		 * In order to use one MTT MR for data and metadata, we register
2194 		 * also the gaps between the end of the data and the start of
2195 		 * the metadata (the sig MR will verify that the HW will access
2196 		 * to right addresses). This mapping is safe because we use
2197 		 * internal mkey for the registration.
2198 		 */
2199 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2200 		pi_mr->ibmr.iova = iova;
2201 		ibmr->length += pi_mr->meta_length;
2202 	}
2203 
2204 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2205 				      pi_mr->desc_size * pi_mr->max_descs,
2206 				      DMA_TO_DEVICE);
2207 
2208 	return n;
2209 }
2210 
2211 static int
2212 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2213 			 int data_sg_nents, unsigned int *data_sg_offset,
2214 			 struct scatterlist *meta_sg, int meta_sg_nents,
2215 			 unsigned int *meta_sg_offset)
2216 {
2217 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2218 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2219 	int n;
2220 
2221 	pi_mr->ndescs = 0;
2222 	pi_mr->meta_ndescs = 0;
2223 	pi_mr->meta_length = 0;
2224 
2225 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2226 				   pi_mr->desc_size * pi_mr->max_descs,
2227 				   DMA_TO_DEVICE);
2228 
2229 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2230 			       meta_sg, meta_sg_nents, meta_sg_offset);
2231 
2232 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2233 				      pi_mr->desc_size * pi_mr->max_descs,
2234 				      DMA_TO_DEVICE);
2235 
2236 	/* This is zero-based memory region */
2237 	pi_mr->data_iova = 0;
2238 	pi_mr->ibmr.iova = 0;
2239 	pi_mr->pi_iova = pi_mr->data_length;
2240 	ibmr->length = pi_mr->ibmr.length;
2241 
2242 	return n;
2243 }
2244 
2245 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2246 			 int data_sg_nents, unsigned int *data_sg_offset,
2247 			 struct scatterlist *meta_sg, int meta_sg_nents,
2248 			 unsigned int *meta_sg_offset)
2249 {
2250 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2251 	struct mlx5_ib_mr *pi_mr = NULL;
2252 	int n;
2253 
2254 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2255 
2256 	mr->ndescs = 0;
2257 	mr->data_length = 0;
2258 	mr->data_iova = 0;
2259 	mr->meta_ndescs = 0;
2260 	mr->pi_iova = 0;
2261 	/*
2262 	 * As a performance optimization, if possible, there is no need to
2263 	 * perform UMR operation to register the data/metadata buffers.
2264 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2265 	 * Fallback to UMR only in case of a failure.
2266 	 */
2267 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2268 				    data_sg_offset, meta_sg, meta_sg_nents,
2269 				    meta_sg_offset);
2270 	if (n == data_sg_nents + meta_sg_nents)
2271 		goto out;
2272 	/*
2273 	 * As a performance optimization, if possible, there is no need to map
2274 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2275 	 * descriptors and fallback to KLM only in case of a failure.
2276 	 * It's more efficient for the HW to work with MTT descriptors
2277 	 * (especially in high load).
2278 	 * Use KLM (indirect access) only if it's mandatory.
2279 	 */
2280 	pi_mr = mr->mtt_mr;
2281 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2282 				     data_sg_offset, meta_sg, meta_sg_nents,
2283 				     meta_sg_offset);
2284 	if (n == data_sg_nents + meta_sg_nents)
2285 		goto out;
2286 
2287 	pi_mr = mr->klm_mr;
2288 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2289 				     data_sg_offset, meta_sg, meta_sg_nents,
2290 				     meta_sg_offset);
2291 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2292 		return -ENOMEM;
2293 
2294 out:
2295 	/* This is zero-based memory region */
2296 	ibmr->iova = 0;
2297 	mr->pi_mr = pi_mr;
2298 	if (pi_mr)
2299 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2300 	else
2301 		ibmr->sig_attrs->meta_length = mr->meta_length;
2302 
2303 	return 0;
2304 }
2305 
2306 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2307 		      unsigned int *sg_offset)
2308 {
2309 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2310 	int n;
2311 
2312 	mr->ndescs = 0;
2313 
2314 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2315 				   mr->desc_size * mr->max_descs,
2316 				   DMA_TO_DEVICE);
2317 
2318 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2319 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2320 				       NULL);
2321 	else
2322 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2323 				mlx5_set_page);
2324 
2325 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2326 				      mr->desc_size * mr->max_descs,
2327 				      DMA_TO_DEVICE);
2328 
2329 	return n;
2330 }
2331