xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
71 	    pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
72 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
73 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
75 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
76 	}
77 
78 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
79 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
80 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
81 }
82 
83 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
84 {
85 	u8 key = atomic_inc_return(&dev->mkey_var);
86 	void *mkc;
87 
88 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
89 	MLX5_SET(mkc, mkc, mkey_7_0, key);
90 	*mkey = key;
91 }
92 
93 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
94 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
95 {
96 	int ret;
97 
98 	assign_mkey_variant(dev, &mkey->key, in);
99 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
100 	if (!ret)
101 		init_waitqueue_head(&mkey->wait);
102 
103 	return ret;
104 }
105 
106 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
107 {
108 	struct mlx5_ib_dev *dev = async_create->ent->dev;
109 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
110 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
111 
112 	MLX5_SET(create_mkey_in, async_create->in, opcode,
113 		 MLX5_CMD_OP_CREATE_MKEY);
114 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
115 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
116 				async_create->out, outlen, create_mkey_callback,
117 				&async_create->cb_work);
118 }
119 
120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
121 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
122 
123 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
124 {
125 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
126 
127 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
128 }
129 
130 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
131 {
132 	if (status == -ENXIO) /* core driver is not available */
133 		return;
134 
135 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
136 	if (status != -EREMOTEIO) /* driver specific failure */
137 		return;
138 
139 	/* Failed in FW, print cmd out failure details */
140 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
141 }
142 
143 
144 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
145 		     void *to_store)
146 {
147 	XA_STATE(xas, &ent->mkeys, 0);
148 	void *curr;
149 
150 	xa_lock_irq(&ent->mkeys);
151 	if (limit_pendings &&
152 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR) {
153 		xa_unlock_irq(&ent->mkeys);
154 		return -EAGAIN;
155 	}
156 	while (1) {
157 		/*
158 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
159 		 * doesn't transparently unlock. Instead we set the xas index to
160 		 * the current value of reserved every iteration.
161 		 */
162 		xas_set(&xas, ent->reserved);
163 		curr = xas_load(&xas);
164 		if (!curr) {
165 			if (to_store && ent->stored == ent->reserved)
166 				xas_store(&xas, to_store);
167 			else
168 				xas_store(&xas, XA_ZERO_ENTRY);
169 			if (xas_valid(&xas)) {
170 				ent->reserved++;
171 				if (to_store) {
172 					if (ent->stored != ent->reserved)
173 						__xa_store(&ent->mkeys,
174 							   ent->stored,
175 							   to_store,
176 							   GFP_KERNEL);
177 					ent->stored++;
178 					queue_adjust_cache_locked(ent);
179 					WRITE_ONCE(ent->dev->cache.last_add,
180 						   jiffies);
181 				}
182 			}
183 		}
184 		xa_unlock_irq(&ent->mkeys);
185 
186 		/*
187 		 * Notice xas_nomem() must always be called as it cleans
188 		 * up any cached allocation.
189 		 */
190 		if (!xas_nomem(&xas, GFP_KERNEL))
191 			break;
192 		xa_lock_irq(&ent->mkeys);
193 	}
194 	if (xas_error(&xas))
195 		return xas_error(&xas);
196 	if (WARN_ON(curr))
197 		return -EINVAL;
198 	return 0;
199 }
200 
201 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
202 {
203 	void *old;
204 
205 	ent->reserved--;
206 	old = __xa_erase(&ent->mkeys, ent->reserved);
207 	WARN_ON(old);
208 }
209 
210 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
211 {
212 	void *old;
213 
214 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
215 	WARN_ON(old);
216 	ent->stored++;
217 }
218 
219 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
220 {
221 	void *old, *xa_mkey;
222 
223 	ent->stored--;
224 	ent->reserved--;
225 
226 	if (ent->stored == ent->reserved) {
227 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
228 		WARN_ON(!xa_mkey);
229 		return (u32)xa_to_value(xa_mkey);
230 	}
231 
232 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
233 			     GFP_KERNEL);
234 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
235 	old = __xa_erase(&ent->mkeys, ent->reserved);
236 	WARN_ON(old);
237 	return (u32)xa_to_value(xa_mkey);
238 }
239 
240 static void create_mkey_callback(int status, struct mlx5_async_work *context)
241 {
242 	struct mlx5r_async_create_mkey *mkey_out =
243 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
244 	struct mlx5_cache_ent *ent = mkey_out->ent;
245 	struct mlx5_ib_dev *dev = ent->dev;
246 	unsigned long flags;
247 
248 	if (status) {
249 		create_mkey_warn(dev, status, mkey_out->out);
250 		kfree(mkey_out);
251 		xa_lock_irqsave(&ent->mkeys, flags);
252 		undo_push_reserve_mkey(ent);
253 		WRITE_ONCE(dev->fill_delay, 1);
254 		xa_unlock_irqrestore(&ent->mkeys, flags);
255 		mod_timer(&dev->delay_timer, jiffies + HZ);
256 		return;
257 	}
258 
259 	mkey_out->mkey |= mlx5_idx_to_mkey(
260 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
261 	WRITE_ONCE(dev->cache.last_add, jiffies);
262 
263 	xa_lock_irqsave(&ent->mkeys, flags);
264 	push_to_reserved(ent, mkey_out->mkey);
265 	/* If we are doing fill_to_high_water then keep going. */
266 	queue_adjust_cache_locked(ent);
267 	xa_unlock_irqrestore(&ent->mkeys, flags);
268 	kfree(mkey_out);
269 }
270 
271 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
272 {
273 	int ret = 0;
274 
275 	switch (access_mode) {
276 	case MLX5_MKC_ACCESS_MODE_MTT:
277 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
278 						   sizeof(struct mlx5_mtt));
279 		break;
280 	case MLX5_MKC_ACCESS_MODE_KSM:
281 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
282 						   sizeof(struct mlx5_klm));
283 		break;
284 	default:
285 		WARN_ON(1);
286 	}
287 	return ret;
288 }
289 
290 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
291 {
292 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
293 	MLX5_SET(mkc, mkc, free, 1);
294 	MLX5_SET(mkc, mkc, umr_en, 1);
295 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
296 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
297 
298 	MLX5_SET(mkc, mkc, translations_octword_size,
299 		 get_mkc_octo_size(ent->access_mode, ent->ndescs));
300 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
301 }
302 
303 /* Asynchronously schedule new MRs to be populated in the cache. */
304 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
305 {
306 	struct mlx5r_async_create_mkey *async_create;
307 	void *mkc;
308 	int err = 0;
309 	int i;
310 
311 	for (i = 0; i < num; i++) {
312 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
313 				       GFP_KERNEL);
314 		if (!async_create)
315 			return -ENOMEM;
316 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
317 				   memory_key_mkey_entry);
318 		set_cache_mkc(ent, mkc);
319 		async_create->ent = ent;
320 
321 		err = push_mkey(ent, true, NULL);
322 		if (err)
323 			goto free_async_create;
324 
325 		err = mlx5_ib_create_mkey_cb(async_create);
326 		if (err) {
327 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
328 			goto err_undo_reserve;
329 		}
330 	}
331 
332 	return 0;
333 
334 err_undo_reserve:
335 	xa_lock_irq(&ent->mkeys);
336 	undo_push_reserve_mkey(ent);
337 	xa_unlock_irq(&ent->mkeys);
338 free_async_create:
339 	kfree(async_create);
340 	return err;
341 }
342 
343 /* Synchronously create a MR in the cache */
344 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
345 {
346 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
347 	void *mkc;
348 	u32 *in;
349 	int err;
350 
351 	in = kzalloc(inlen, GFP_KERNEL);
352 	if (!in)
353 		return -ENOMEM;
354 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
355 	set_cache_mkc(ent, mkc);
356 
357 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
358 	if (err)
359 		goto free_in;
360 
361 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
362 free_in:
363 	kfree(in);
364 	return err;
365 }
366 
367 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
368 {
369 	u32 mkey;
370 
371 	lockdep_assert_held(&ent->mkeys.xa_lock);
372 	if (!ent->stored)
373 		return;
374 	mkey = pop_stored_mkey(ent);
375 	xa_unlock_irq(&ent->mkeys);
376 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
377 	xa_lock_irq(&ent->mkeys);
378 }
379 
380 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
381 				bool limit_fill)
382 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
383 {
384 	int err;
385 
386 	lockdep_assert_held(&ent->mkeys.xa_lock);
387 
388 	while (true) {
389 		if (limit_fill)
390 			target = ent->limit * 2;
391 		if (target == ent->reserved)
392 			return 0;
393 		if (target > ent->reserved) {
394 			u32 todo = target - ent->reserved;
395 
396 			xa_unlock_irq(&ent->mkeys);
397 			err = add_keys(ent, todo);
398 			if (err == -EAGAIN)
399 				usleep_range(3000, 5000);
400 			xa_lock_irq(&ent->mkeys);
401 			if (err) {
402 				if (err != -EAGAIN)
403 					return err;
404 			} else
405 				return 0;
406 		} else {
407 			remove_cache_mr_locked(ent);
408 		}
409 	}
410 }
411 
412 static ssize_t size_write(struct file *filp, const char __user *buf,
413 			  size_t count, loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	u32 target;
417 	int err;
418 
419 	err = kstrtou32_from_user(buf, count, 0, &target);
420 	if (err)
421 		return err;
422 
423 	/*
424 	 * Target is the new value of total_mrs the user requests, however we
425 	 * cannot free MRs that are in use. Compute the target value for stored
426 	 * mkeys.
427 	 */
428 	xa_lock_irq(&ent->mkeys);
429 	if (target < ent->in_use) {
430 		err = -EINVAL;
431 		goto err_unlock;
432 	}
433 	target = target - ent->in_use;
434 	if (target < ent->limit || target > ent->limit*2) {
435 		err = -EINVAL;
436 		goto err_unlock;
437 	}
438 	err = resize_available_mrs(ent, target, false);
439 	if (err)
440 		goto err_unlock;
441 	xa_unlock_irq(&ent->mkeys);
442 
443 	return count;
444 
445 err_unlock:
446 	xa_unlock_irq(&ent->mkeys);
447 	return err;
448 }
449 
450 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
451 			 loff_t *pos)
452 {
453 	struct mlx5_cache_ent *ent = filp->private_data;
454 	char lbuf[20];
455 	int err;
456 
457 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
458 	if (err < 0)
459 		return err;
460 
461 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
462 }
463 
464 static const struct file_operations size_fops = {
465 	.owner	= THIS_MODULE,
466 	.open	= simple_open,
467 	.write	= size_write,
468 	.read	= size_read,
469 };
470 
471 static ssize_t limit_write(struct file *filp, const char __user *buf,
472 			   size_t count, loff_t *pos)
473 {
474 	struct mlx5_cache_ent *ent = filp->private_data;
475 	u32 var;
476 	int err;
477 
478 	err = kstrtou32_from_user(buf, count, 0, &var);
479 	if (err)
480 		return err;
481 
482 	/*
483 	 * Upon set we immediately fill the cache to high water mark implied by
484 	 * the limit.
485 	 */
486 	xa_lock_irq(&ent->mkeys);
487 	ent->limit = var;
488 	err = resize_available_mrs(ent, 0, true);
489 	xa_unlock_irq(&ent->mkeys);
490 	if (err)
491 		return err;
492 	return count;
493 }
494 
495 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
496 			  loff_t *pos)
497 {
498 	struct mlx5_cache_ent *ent = filp->private_data;
499 	char lbuf[20];
500 	int err;
501 
502 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
503 	if (err < 0)
504 		return err;
505 
506 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
507 }
508 
509 static const struct file_operations limit_fops = {
510 	.owner	= THIS_MODULE,
511 	.open	= simple_open,
512 	.write	= limit_write,
513 	.read	= limit_read,
514 };
515 
516 static bool someone_adding(struct mlx5_mkey_cache *cache)
517 {
518 	unsigned int i;
519 
520 	for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
521 		struct mlx5_cache_ent *ent = &cache->ent[i];
522 		bool ret;
523 
524 		xa_lock_irq(&ent->mkeys);
525 		ret = ent->stored < ent->limit;
526 		xa_unlock_irq(&ent->mkeys);
527 		if (ret)
528 			return true;
529 	}
530 	return false;
531 }
532 
533 /*
534  * Check if the bucket is outside the high/low water mark and schedule an async
535  * update. The cache refill has hysteresis, once the low water mark is hit it is
536  * refilled up to the high mark.
537  */
538 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
539 {
540 	lockdep_assert_held(&ent->mkeys.xa_lock);
541 
542 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
543 		return;
544 	if (ent->stored < ent->limit) {
545 		ent->fill_to_high_water = true;
546 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
547 	} else if (ent->fill_to_high_water &&
548 		   ent->reserved < 2 * ent->limit) {
549 		/*
550 		 * Once we start populating due to hitting a low water mark
551 		 * continue until we pass the high water mark.
552 		 */
553 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
554 	} else if (ent->stored == 2 * ent->limit) {
555 		ent->fill_to_high_water = false;
556 	} else if (ent->stored > 2 * ent->limit) {
557 		/* Queue deletion of excess entries */
558 		ent->fill_to_high_water = false;
559 		if (ent->stored != ent->reserved)
560 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
561 					   msecs_to_jiffies(1000));
562 		else
563 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
564 	}
565 }
566 
567 static void __cache_work_func(struct mlx5_cache_ent *ent)
568 {
569 	struct mlx5_ib_dev *dev = ent->dev;
570 	struct mlx5_mkey_cache *cache = &dev->cache;
571 	int err;
572 
573 	xa_lock_irq(&ent->mkeys);
574 	if (ent->disabled)
575 		goto out;
576 
577 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
578 	    !READ_ONCE(dev->fill_delay)) {
579 		xa_unlock_irq(&ent->mkeys);
580 		err = add_keys(ent, 1);
581 		xa_lock_irq(&ent->mkeys);
582 		if (ent->disabled)
583 			goto out;
584 		if (err) {
585 			/*
586 			 * EAGAIN only happens if there are pending MRs, so we
587 			 * will be rescheduled when storing them. The only
588 			 * failure path here is ENOMEM.
589 			 */
590 			if (err != -EAGAIN) {
591 				mlx5_ib_warn(
592 					dev,
593 					"command failed order %d, err %d\n",
594 					ent->order, err);
595 				queue_delayed_work(cache->wq, &ent->dwork,
596 						   msecs_to_jiffies(1000));
597 			}
598 		}
599 	} else if (ent->stored > 2 * ent->limit) {
600 		bool need_delay;
601 
602 		/*
603 		 * The remove_cache_mr() logic is performed as garbage
604 		 * collection task. Such task is intended to be run when no
605 		 * other active processes are running.
606 		 *
607 		 * The need_resched() will return TRUE if there are user tasks
608 		 * to be activated in near future.
609 		 *
610 		 * In such case, we don't execute remove_cache_mr() and postpone
611 		 * the garbage collection work to try to run in next cycle, in
612 		 * order to free CPU resources to other tasks.
613 		 */
614 		xa_unlock_irq(&ent->mkeys);
615 		need_delay = need_resched() || someone_adding(cache) ||
616 			     !time_after(jiffies,
617 					 READ_ONCE(cache->last_add) + 300 * HZ);
618 		xa_lock_irq(&ent->mkeys);
619 		if (ent->disabled)
620 			goto out;
621 		if (need_delay) {
622 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
623 			goto out;
624 		}
625 		remove_cache_mr_locked(ent);
626 		queue_adjust_cache_locked(ent);
627 	}
628 out:
629 	xa_unlock_irq(&ent->mkeys);
630 }
631 
632 static void delayed_cache_work_func(struct work_struct *work)
633 {
634 	struct mlx5_cache_ent *ent;
635 
636 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
637 	__cache_work_func(ent);
638 }
639 
640 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
641 				       struct mlx5_cache_ent *ent,
642 				       int access_flags)
643 {
644 	struct mlx5_ib_mr *mr;
645 	int err;
646 
647 	if (!mlx5r_umr_can_reconfig(dev, 0, access_flags))
648 		return ERR_PTR(-EOPNOTSUPP);
649 
650 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
651 	if (!mr)
652 		return ERR_PTR(-ENOMEM);
653 
654 	xa_lock_irq(&ent->mkeys);
655 	ent->in_use++;
656 
657 	if (!ent->stored) {
658 		queue_adjust_cache_locked(ent);
659 		ent->miss++;
660 		xa_unlock_irq(&ent->mkeys);
661 		err = create_cache_mkey(ent, &mr->mmkey.key);
662 		if (err) {
663 			xa_lock_irq(&ent->mkeys);
664 			ent->in_use--;
665 			xa_unlock_irq(&ent->mkeys);
666 			kfree(mr);
667 			return ERR_PTR(err);
668 		}
669 	} else {
670 		mr->mmkey.key = pop_stored_mkey(ent);
671 		queue_adjust_cache_locked(ent);
672 		xa_unlock_irq(&ent->mkeys);
673 	}
674 	mr->mmkey.cache_ent = ent;
675 	mr->mmkey.type = MLX5_MKEY_MR;
676 	init_waitqueue_head(&mr->mmkey.wait);
677 	return mr;
678 }
679 
680 static void clean_keys(struct mlx5_ib_dev *dev, int c)
681 {
682 	struct mlx5_mkey_cache *cache = &dev->cache;
683 	struct mlx5_cache_ent *ent = &cache->ent[c];
684 	u32 mkey;
685 
686 	cancel_delayed_work(&ent->dwork);
687 	xa_lock_irq(&ent->mkeys);
688 	while (ent->stored) {
689 		mkey = pop_stored_mkey(ent);
690 		xa_unlock_irq(&ent->mkeys);
691 		mlx5_core_destroy_mkey(dev->mdev, mkey);
692 		xa_lock_irq(&ent->mkeys);
693 	}
694 	xa_unlock_irq(&ent->mkeys);
695 }
696 
697 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
698 {
699 	if (!mlx5_debugfs_root || dev->is_rep)
700 		return;
701 
702 	debugfs_remove_recursive(dev->cache.root);
703 	dev->cache.root = NULL;
704 }
705 
706 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
707 {
708 	struct mlx5_mkey_cache *cache = &dev->cache;
709 	struct mlx5_cache_ent *ent;
710 	struct dentry *dir;
711 	int i;
712 
713 	if (!mlx5_debugfs_root || dev->is_rep)
714 		return;
715 
716 	cache->root = debugfs_create_dir("mr_cache", mlx5_debugfs_get_dev_root(dev->mdev));
717 
718 	for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
719 		ent = &cache->ent[i];
720 		sprintf(ent->name, "%d", ent->order);
721 		dir = debugfs_create_dir(ent->name, cache->root);
722 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
723 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
724 		debugfs_create_ulong("cur", 0400, dir, &ent->stored);
725 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
726 	}
727 }
728 
729 static void delay_time_func(struct timer_list *t)
730 {
731 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
732 
733 	WRITE_ONCE(dev->fill_delay, 0);
734 }
735 
736 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
737 {
738 	struct mlx5_mkey_cache *cache = &dev->cache;
739 	struct mlx5_cache_ent *ent;
740 	int i;
741 
742 	mutex_init(&dev->slow_path_mutex);
743 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
744 	if (!cache->wq) {
745 		mlx5_ib_warn(dev, "failed to create work queue\n");
746 		return -ENOMEM;
747 	}
748 
749 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
750 	timer_setup(&dev->delay_timer, delay_time_func, 0);
751 	for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
752 		ent = &cache->ent[i];
753 		xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
754 		ent->order = i + 2;
755 		ent->dev = dev;
756 		ent->limit = 0;
757 
758 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
759 
760 		if (i > MKEY_CACHE_LAST_STD_ENTRY) {
761 			mlx5_odp_init_mkey_cache_entry(ent);
762 			continue;
763 		}
764 
765 		if (ent->order > mkey_cache_max_order(dev))
766 			continue;
767 
768 		ent->page = PAGE_SHIFT;
769 		ent->ndescs = 1 << ent->order;
770 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
771 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
772 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
773 		    mlx5r_umr_can_load_pas(dev, 0))
774 			ent->limit = dev->mdev->profile.mr_cache[i].limit;
775 		else
776 			ent->limit = 0;
777 		xa_lock_irq(&ent->mkeys);
778 		queue_adjust_cache_locked(ent);
779 		xa_unlock_irq(&ent->mkeys);
780 	}
781 
782 	mlx5_mkey_cache_debugfs_init(dev);
783 
784 	return 0;
785 }
786 
787 int mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
788 {
789 	unsigned int i;
790 
791 	if (!dev->cache.wq)
792 		return 0;
793 
794 	for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
795 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
796 
797 		xa_lock_irq(&ent->mkeys);
798 		ent->disabled = true;
799 		xa_unlock_irq(&ent->mkeys);
800 		cancel_delayed_work_sync(&ent->dwork);
801 	}
802 
803 	mlx5_mkey_cache_debugfs_cleanup(dev);
804 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
805 
806 	for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++)
807 		clean_keys(dev, i);
808 
809 	destroy_workqueue(dev->cache.wq);
810 	del_timer_sync(&dev->delay_timer);
811 
812 	return 0;
813 }
814 
815 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
816 {
817 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
818 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
819 	struct mlx5_ib_mr *mr;
820 	void *mkc;
821 	u32 *in;
822 	int err;
823 
824 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
825 	if (!mr)
826 		return ERR_PTR(-ENOMEM);
827 
828 	in = kzalloc(inlen, GFP_KERNEL);
829 	if (!in) {
830 		err = -ENOMEM;
831 		goto err_free;
832 	}
833 
834 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
835 
836 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
837 	MLX5_SET(mkc, mkc, length64, 1);
838 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
839 				      pd);
840 
841 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
842 	if (err)
843 		goto err_in;
844 
845 	kfree(in);
846 	mr->mmkey.type = MLX5_MKEY_MR;
847 	mr->ibmr.lkey = mr->mmkey.key;
848 	mr->ibmr.rkey = mr->mmkey.key;
849 	mr->umem = NULL;
850 
851 	return &mr->ibmr;
852 
853 err_in:
854 	kfree(in);
855 
856 err_free:
857 	kfree(mr);
858 
859 	return ERR_PTR(err);
860 }
861 
862 static int get_octo_len(u64 addr, u64 len, int page_shift)
863 {
864 	u64 page_size = 1ULL << page_shift;
865 	u64 offset;
866 	int npages;
867 
868 	offset = addr & (page_size - 1);
869 	npages = ALIGN(len + offset, page_size) >> page_shift;
870 	return (npages + 1) / 2;
871 }
872 
873 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
874 {
875 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
876 		return MKEY_CACHE_LAST_STD_ENTRY + 2;
877 	return MLX5_MAX_UMR_SHIFT;
878 }
879 
880 static struct mlx5_cache_ent *mkey_cache_ent_from_order(struct mlx5_ib_dev *dev,
881 							unsigned int order)
882 {
883 	struct mlx5_mkey_cache *cache = &dev->cache;
884 
885 	if (order < cache->ent[0].order)
886 		return &cache->ent[0];
887 	order = order - cache->ent[0].order;
888 	if (order > MKEY_CACHE_LAST_STD_ENTRY)
889 		return NULL;
890 	return &cache->ent[order];
891 }
892 
893 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
894 			  u64 length, int access_flags, u64 iova)
895 {
896 	mr->ibmr.lkey = mr->mmkey.key;
897 	mr->ibmr.rkey = mr->mmkey.key;
898 	mr->ibmr.length = length;
899 	mr->ibmr.device = &dev->ib_dev;
900 	mr->ibmr.iova = iova;
901 	mr->access_flags = access_flags;
902 }
903 
904 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
905 						  u64 iova)
906 {
907 	/*
908 	 * The alignment of iova has already been checked upon entering
909 	 * UVERBS_METHOD_REG_DMABUF_MR
910 	 */
911 	umem->iova = iova;
912 	return PAGE_SIZE;
913 }
914 
915 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
916 					     struct ib_umem *umem, u64 iova,
917 					     int access_flags)
918 {
919 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
920 	struct mlx5_cache_ent *ent;
921 	struct mlx5_ib_mr *mr;
922 	unsigned int page_size;
923 
924 	if (umem->is_dmabuf)
925 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
926 	else
927 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
928 						     0, iova);
929 	if (WARN_ON(!page_size))
930 		return ERR_PTR(-EINVAL);
931 	ent = mkey_cache_ent_from_order(
932 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
933 	/*
934 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
935 	 * cache then synchronously create an uncached one.
936 	 */
937 	if (!ent || ent->limit == 0 ||
938 	    !mlx5r_umr_can_reconfig(dev, 0, access_flags) ||
939 	    mlx5_umem_needs_ats(dev, umem, access_flags)) {
940 		mutex_lock(&dev->slow_path_mutex);
941 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
942 		mutex_unlock(&dev->slow_path_mutex);
943 		return mr;
944 	}
945 
946 	mr = mlx5_mr_cache_alloc(dev, ent, access_flags);
947 	if (IS_ERR(mr))
948 		return mr;
949 
950 	mr->ibmr.pd = pd;
951 	mr->umem = umem;
952 	mr->page_shift = order_base_2(page_size);
953 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
954 
955 	return mr;
956 }
957 
958 /*
959  * If ibmr is NULL it will be allocated by reg_create.
960  * Else, the given ibmr will be used.
961  */
962 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
963 				     u64 iova, int access_flags,
964 				     unsigned int page_size, bool populate)
965 {
966 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
967 	struct mlx5_ib_mr *mr;
968 	__be64 *pas;
969 	void *mkc;
970 	int inlen;
971 	u32 *in;
972 	int err;
973 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
974 
975 	if (!page_size)
976 		return ERR_PTR(-EINVAL);
977 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
978 	if (!mr)
979 		return ERR_PTR(-ENOMEM);
980 
981 	mr->ibmr.pd = pd;
982 	mr->access_flags = access_flags;
983 	mr->page_shift = order_base_2(page_size);
984 
985 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
986 	if (populate)
987 		inlen += sizeof(*pas) *
988 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
989 	in = kvzalloc(inlen, GFP_KERNEL);
990 	if (!in) {
991 		err = -ENOMEM;
992 		goto err_1;
993 	}
994 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
995 	if (populate) {
996 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
997 			err = -EINVAL;
998 			goto err_2;
999 		}
1000 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1001 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1002 	}
1003 
1004 	/* The pg_access bit allows setting the access flags
1005 	 * in the page list submitted with the command. */
1006 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1007 
1008 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1009 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1010 				      populate ? pd : dev->umrc.pd);
1011 	MLX5_SET(mkc, mkc, free, !populate);
1012 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1013 	MLX5_SET(mkc, mkc, umr_en, 1);
1014 
1015 	MLX5_SET64(mkc, mkc, len, umem->length);
1016 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1017 	MLX5_SET(mkc, mkc, translations_octword_size,
1018 		 get_octo_len(iova, umem->length, mr->page_shift));
1019 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1020 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1021 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1022 	if (populate) {
1023 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1024 			 get_octo_len(iova, umem->length, mr->page_shift));
1025 	}
1026 
1027 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1028 	if (err) {
1029 		mlx5_ib_warn(dev, "create mkey failed\n");
1030 		goto err_2;
1031 	}
1032 	mr->mmkey.type = MLX5_MKEY_MR;
1033 	mr->umem = umem;
1034 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1035 	kvfree(in);
1036 
1037 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1038 
1039 	return mr;
1040 
1041 err_2:
1042 	kvfree(in);
1043 err_1:
1044 	kfree(mr);
1045 	return ERR_PTR(err);
1046 }
1047 
1048 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1049 				       u64 length, int acc, int mode)
1050 {
1051 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1052 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1053 	struct mlx5_ib_mr *mr;
1054 	void *mkc;
1055 	u32 *in;
1056 	int err;
1057 
1058 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1059 	if (!mr)
1060 		return ERR_PTR(-ENOMEM);
1061 
1062 	in = kzalloc(inlen, GFP_KERNEL);
1063 	if (!in) {
1064 		err = -ENOMEM;
1065 		goto err_free;
1066 	}
1067 
1068 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1069 
1070 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1071 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1072 	MLX5_SET64(mkc, mkc, len, length);
1073 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1074 
1075 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1076 	if (err)
1077 		goto err_in;
1078 
1079 	kfree(in);
1080 
1081 	set_mr_fields(dev, mr, length, acc, start_addr);
1082 
1083 	return &mr->ibmr;
1084 
1085 err_in:
1086 	kfree(in);
1087 
1088 err_free:
1089 	kfree(mr);
1090 
1091 	return ERR_PTR(err);
1092 }
1093 
1094 int mlx5_ib_advise_mr(struct ib_pd *pd,
1095 		      enum ib_uverbs_advise_mr_advice advice,
1096 		      u32 flags,
1097 		      struct ib_sge *sg_list,
1098 		      u32 num_sge,
1099 		      struct uverbs_attr_bundle *attrs)
1100 {
1101 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1102 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1103 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1104 		return -EOPNOTSUPP;
1105 
1106 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1107 					 sg_list, num_sge);
1108 }
1109 
1110 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1111 				struct ib_dm_mr_attr *attr,
1112 				struct uverbs_attr_bundle *attrs)
1113 {
1114 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1115 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1116 	u64 start_addr = mdm->dev_addr + attr->offset;
1117 	int mode;
1118 
1119 	switch (mdm->type) {
1120 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1121 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1122 			return ERR_PTR(-EINVAL);
1123 
1124 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1125 		start_addr -= pci_resource_start(dev->pdev, 0);
1126 		break;
1127 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1128 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1129 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1130 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1131 			return ERR_PTR(-EINVAL);
1132 
1133 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1134 		break;
1135 	default:
1136 		return ERR_PTR(-EINVAL);
1137 	}
1138 
1139 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1140 				 attr->access_flags, mode);
1141 }
1142 
1143 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1144 				    u64 iova, int access_flags)
1145 {
1146 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1147 	struct mlx5_ib_mr *mr = NULL;
1148 	bool xlt_with_umr;
1149 	int err;
1150 
1151 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1152 	if (xlt_with_umr) {
1153 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1154 	} else {
1155 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1156 			umem, mkc, log_page_size, 0, iova);
1157 
1158 		mutex_lock(&dev->slow_path_mutex);
1159 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1160 		mutex_unlock(&dev->slow_path_mutex);
1161 	}
1162 	if (IS_ERR(mr)) {
1163 		ib_umem_release(umem);
1164 		return ERR_CAST(mr);
1165 	}
1166 
1167 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1168 
1169 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1170 
1171 	if (xlt_with_umr) {
1172 		/*
1173 		 * If the MR was created with reg_create then it will be
1174 		 * configured properly but left disabled. It is safe to go ahead
1175 		 * and configure it again via UMR while enabling it.
1176 		 */
1177 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1178 		if (err) {
1179 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1180 			return ERR_PTR(err);
1181 		}
1182 	}
1183 	return &mr->ibmr;
1184 }
1185 
1186 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1187 					u64 iova, int access_flags,
1188 					struct ib_udata *udata)
1189 {
1190 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1191 	struct ib_umem_odp *odp;
1192 	struct mlx5_ib_mr *mr;
1193 	int err;
1194 
1195 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1196 		return ERR_PTR(-EOPNOTSUPP);
1197 
1198 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1199 	if (err)
1200 		return ERR_PTR(err);
1201 	if (!start && length == U64_MAX) {
1202 		if (iova != 0)
1203 			return ERR_PTR(-EINVAL);
1204 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1205 			return ERR_PTR(-EINVAL);
1206 
1207 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1208 		if (IS_ERR(mr))
1209 			return ERR_CAST(mr);
1210 		return &mr->ibmr;
1211 	}
1212 
1213 	/* ODP requires xlt update via umr to work. */
1214 	if (!mlx5r_umr_can_load_pas(dev, length))
1215 		return ERR_PTR(-EINVAL);
1216 
1217 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1218 			      &mlx5_mn_ops);
1219 	if (IS_ERR(odp))
1220 		return ERR_CAST(odp);
1221 
1222 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1223 	if (IS_ERR(mr)) {
1224 		ib_umem_release(&odp->umem);
1225 		return ERR_CAST(mr);
1226 	}
1227 	xa_init(&mr->implicit_children);
1228 
1229 	odp->private = mr;
1230 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1231 	if (err)
1232 		goto err_dereg_mr;
1233 
1234 	err = mlx5_ib_init_odp_mr(mr);
1235 	if (err)
1236 		goto err_dereg_mr;
1237 	return &mr->ibmr;
1238 
1239 err_dereg_mr:
1240 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1241 	return ERR_PTR(err);
1242 }
1243 
1244 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1245 				  u64 iova, int access_flags,
1246 				  struct ib_udata *udata)
1247 {
1248 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1249 	struct ib_umem *umem;
1250 
1251 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1252 		return ERR_PTR(-EOPNOTSUPP);
1253 
1254 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1255 		    start, iova, length, access_flags);
1256 
1257 	if (access_flags & IB_ACCESS_ON_DEMAND)
1258 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1259 					  udata);
1260 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1261 	if (IS_ERR(umem))
1262 		return ERR_CAST(umem);
1263 	return create_real_mr(pd, umem, iova, access_flags);
1264 }
1265 
1266 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1267 {
1268 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1269 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1270 
1271 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1272 
1273 	if (!umem_dmabuf->sgt)
1274 		return;
1275 
1276 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1277 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1278 }
1279 
1280 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1281 	.allow_peer2peer = 1,
1282 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1283 };
1284 
1285 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1286 					 u64 length, u64 virt_addr,
1287 					 int fd, int access_flags,
1288 					 struct ib_udata *udata)
1289 {
1290 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1291 	struct mlx5_ib_mr *mr = NULL;
1292 	struct ib_umem_dmabuf *umem_dmabuf;
1293 	int err;
1294 
1295 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1296 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1297 		return ERR_PTR(-EOPNOTSUPP);
1298 
1299 	mlx5_ib_dbg(dev,
1300 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1301 		    offset, virt_addr, length, fd, access_flags);
1302 
1303 	/* dmabuf requires xlt update via umr to work. */
1304 	if (!mlx5r_umr_can_load_pas(dev, length))
1305 		return ERR_PTR(-EINVAL);
1306 
1307 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1308 					 access_flags,
1309 					 &mlx5_ib_dmabuf_attach_ops);
1310 	if (IS_ERR(umem_dmabuf)) {
1311 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1312 			    PTR_ERR(umem_dmabuf));
1313 		return ERR_CAST(umem_dmabuf);
1314 	}
1315 
1316 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1317 				access_flags);
1318 	if (IS_ERR(mr)) {
1319 		ib_umem_release(&umem_dmabuf->umem);
1320 		return ERR_CAST(mr);
1321 	}
1322 
1323 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1324 
1325 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1326 	umem_dmabuf->private = mr;
1327 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1328 	if (err)
1329 		goto err_dereg_mr;
1330 
1331 	err = mlx5_ib_init_dmabuf_mr(mr);
1332 	if (err)
1333 		goto err_dereg_mr;
1334 	return &mr->ibmr;
1335 
1336 err_dereg_mr:
1337 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1338 	return ERR_PTR(err);
1339 }
1340 
1341 /*
1342  * True if the change in access flags can be done via UMR, only some access
1343  * flags can be updated.
1344  */
1345 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1346 				     unsigned int current_access_flags,
1347 				     unsigned int target_access_flags)
1348 {
1349 	unsigned int diffs = current_access_flags ^ target_access_flags;
1350 
1351 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1352 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1353 		return false;
1354 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1355 				      target_access_flags);
1356 }
1357 
1358 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1359 				  struct ib_umem *new_umem,
1360 				  int new_access_flags, u64 iova,
1361 				  unsigned long *page_size)
1362 {
1363 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1364 
1365 	/* We only track the allocated sizes of MRs from the cache */
1366 	if (!mr->mmkey.cache_ent)
1367 		return false;
1368 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1369 		return false;
1370 
1371 	*page_size =
1372 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1373 	if (WARN_ON(!*page_size))
1374 		return false;
1375 	return (1ULL << mr->mmkey.cache_ent->order) >=
1376 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1377 }
1378 
1379 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1380 			 int access_flags, int flags, struct ib_umem *new_umem,
1381 			 u64 iova, unsigned long page_size)
1382 {
1383 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1384 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1385 	struct ib_umem *old_umem = mr->umem;
1386 	int err;
1387 
1388 	/*
1389 	 * To keep everything simple the MR is revoked before we start to mess
1390 	 * with it. This ensure the change is atomic relative to any use of the
1391 	 * MR.
1392 	 */
1393 	err = mlx5r_umr_revoke_mr(mr);
1394 	if (err)
1395 		return err;
1396 
1397 	if (flags & IB_MR_REREG_PD) {
1398 		mr->ibmr.pd = pd;
1399 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1400 	}
1401 	if (flags & IB_MR_REREG_ACCESS) {
1402 		mr->access_flags = access_flags;
1403 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1404 	}
1405 
1406 	mr->ibmr.iova = iova;
1407 	mr->ibmr.length = new_umem->length;
1408 	mr->page_shift = order_base_2(page_size);
1409 	mr->umem = new_umem;
1410 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1411 	if (err) {
1412 		/*
1413 		 * The MR is revoked at this point so there is no issue to free
1414 		 * new_umem.
1415 		 */
1416 		mr->umem = old_umem;
1417 		return err;
1418 	}
1419 
1420 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1421 	ib_umem_release(old_umem);
1422 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1423 	return 0;
1424 }
1425 
1426 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1427 				    u64 length, u64 iova, int new_access_flags,
1428 				    struct ib_pd *new_pd,
1429 				    struct ib_udata *udata)
1430 {
1431 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1432 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1433 	int err;
1434 
1435 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1436 		return ERR_PTR(-EOPNOTSUPP);
1437 
1438 	mlx5_ib_dbg(
1439 		dev,
1440 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1441 		start, iova, length, new_access_flags);
1442 
1443 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1444 		return ERR_PTR(-EOPNOTSUPP);
1445 
1446 	if (!(flags & IB_MR_REREG_ACCESS))
1447 		new_access_flags = mr->access_flags;
1448 	if (!(flags & IB_MR_REREG_PD))
1449 		new_pd = ib_mr->pd;
1450 
1451 	if (!(flags & IB_MR_REREG_TRANS)) {
1452 		struct ib_umem *umem;
1453 
1454 		/* Fast path for PD/access change */
1455 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1456 					     new_access_flags)) {
1457 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1458 							new_access_flags);
1459 			if (err)
1460 				return ERR_PTR(err);
1461 			return NULL;
1462 		}
1463 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1464 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1465 			goto recreate;
1466 
1467 		/*
1468 		 * Only one active MR can refer to a umem at one time, revoke
1469 		 * the old MR before assigning the umem to the new one.
1470 		 */
1471 		err = mlx5r_umr_revoke_mr(mr);
1472 		if (err)
1473 			return ERR_PTR(err);
1474 		umem = mr->umem;
1475 		mr->umem = NULL;
1476 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1477 
1478 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1479 				      new_access_flags);
1480 	}
1481 
1482 	/*
1483 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1484 	 * but the logic around releasing the umem is different
1485 	 */
1486 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1487 		goto recreate;
1488 
1489 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1490 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1491 		struct ib_umem *new_umem;
1492 		unsigned long page_size;
1493 
1494 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1495 				       new_access_flags);
1496 		if (IS_ERR(new_umem))
1497 			return ERR_CAST(new_umem);
1498 
1499 		/* Fast path for PAS change */
1500 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1501 					  &page_size)) {
1502 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1503 					    new_umem, iova, page_size);
1504 			if (err) {
1505 				ib_umem_release(new_umem);
1506 				return ERR_PTR(err);
1507 			}
1508 			return NULL;
1509 		}
1510 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1511 	}
1512 
1513 	/*
1514 	 * Everything else has no state we can preserve, just create a new MR
1515 	 * from scratch
1516 	 */
1517 recreate:
1518 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1519 				   new_access_flags, udata);
1520 }
1521 
1522 static int
1523 mlx5_alloc_priv_descs(struct ib_device *device,
1524 		      struct mlx5_ib_mr *mr,
1525 		      int ndescs,
1526 		      int desc_size)
1527 {
1528 	struct mlx5_ib_dev *dev = to_mdev(device);
1529 	struct device *ddev = &dev->mdev->pdev->dev;
1530 	int size = ndescs * desc_size;
1531 	int add_size;
1532 	int ret;
1533 
1534 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1535 
1536 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1537 	if (!mr->descs_alloc)
1538 		return -ENOMEM;
1539 
1540 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1541 
1542 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1543 	if (dma_mapping_error(ddev, mr->desc_map)) {
1544 		ret = -ENOMEM;
1545 		goto err;
1546 	}
1547 
1548 	return 0;
1549 err:
1550 	kfree(mr->descs_alloc);
1551 
1552 	return ret;
1553 }
1554 
1555 static void
1556 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1557 {
1558 	if (!mr->umem && mr->descs) {
1559 		struct ib_device *device = mr->ibmr.device;
1560 		int size = mr->max_descs * mr->desc_size;
1561 		struct mlx5_ib_dev *dev = to_mdev(device);
1562 
1563 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1564 				 DMA_TO_DEVICE);
1565 		kfree(mr->descs_alloc);
1566 		mr->descs = NULL;
1567 	}
1568 }
1569 
1570 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1571 {
1572 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1573 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1574 	int rc;
1575 
1576 	/*
1577 	 * Any async use of the mr must hold the refcount, once the refcount
1578 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1579 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1580 	 */
1581 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1582 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1583 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1584 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1585 
1586 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1587 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1588 			   mr->sig, NULL, GFP_KERNEL);
1589 
1590 		if (mr->mtt_mr) {
1591 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1592 			if (rc)
1593 				return rc;
1594 			mr->mtt_mr = NULL;
1595 		}
1596 		if (mr->klm_mr) {
1597 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1598 			if (rc)
1599 				return rc;
1600 			mr->klm_mr = NULL;
1601 		}
1602 
1603 		if (mlx5_core_destroy_psv(dev->mdev,
1604 					  mr->sig->psv_memory.psv_idx))
1605 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1606 				     mr->sig->psv_memory.psv_idx);
1607 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1608 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1609 				     mr->sig->psv_wire.psv_idx);
1610 		kfree(mr->sig);
1611 		mr->sig = NULL;
1612 	}
1613 
1614 	/* Stop DMA */
1615 	if (mr->mmkey.cache_ent) {
1616 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1617 		mr->mmkey.cache_ent->in_use--;
1618 		xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1619 
1620 		if (mlx5r_umr_revoke_mr(mr) ||
1621 		    push_mkey(mr->mmkey.cache_ent, false,
1622 			      xa_mk_value(mr->mmkey.key)))
1623 			mr->mmkey.cache_ent = NULL;
1624 	}
1625 	if (!mr->mmkey.cache_ent) {
1626 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1627 		if (rc)
1628 			return rc;
1629 	}
1630 
1631 	if (mr->umem) {
1632 		bool is_odp = is_odp_mr(mr);
1633 
1634 		if (!is_odp)
1635 			atomic_sub(ib_umem_num_pages(mr->umem),
1636 				   &dev->mdev->priv.reg_pages);
1637 		ib_umem_release(mr->umem);
1638 		if (is_odp)
1639 			mlx5_ib_free_odp_mr(mr);
1640 	}
1641 
1642 	if (!mr->mmkey.cache_ent)
1643 		mlx5_free_priv_descs(mr);
1644 
1645 	kfree(mr);
1646 	return 0;
1647 }
1648 
1649 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1650 				   int access_mode, int page_shift)
1651 {
1652 	void *mkc;
1653 
1654 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1655 
1656 	/* This is only used from the kernel, so setting the PD is OK. */
1657 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1658 	MLX5_SET(mkc, mkc, free, 1);
1659 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1660 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1661 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1662 	MLX5_SET(mkc, mkc, umr_en, 1);
1663 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1664 }
1665 
1666 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1667 				  int ndescs, int desc_size, int page_shift,
1668 				  int access_mode, u32 *in, int inlen)
1669 {
1670 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1671 	int err;
1672 
1673 	mr->access_mode = access_mode;
1674 	mr->desc_size = desc_size;
1675 	mr->max_descs = ndescs;
1676 
1677 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1678 	if (err)
1679 		return err;
1680 
1681 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1682 
1683 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1684 	if (err)
1685 		goto err_free_descs;
1686 
1687 	mr->mmkey.type = MLX5_MKEY_MR;
1688 	mr->ibmr.lkey = mr->mmkey.key;
1689 	mr->ibmr.rkey = mr->mmkey.key;
1690 
1691 	return 0;
1692 
1693 err_free_descs:
1694 	mlx5_free_priv_descs(mr);
1695 	return err;
1696 }
1697 
1698 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1699 				u32 max_num_sg, u32 max_num_meta_sg,
1700 				int desc_size, int access_mode)
1701 {
1702 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1703 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1704 	int page_shift = 0;
1705 	struct mlx5_ib_mr *mr;
1706 	u32 *in;
1707 	int err;
1708 
1709 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1710 	if (!mr)
1711 		return ERR_PTR(-ENOMEM);
1712 
1713 	mr->ibmr.pd = pd;
1714 	mr->ibmr.device = pd->device;
1715 
1716 	in = kzalloc(inlen, GFP_KERNEL);
1717 	if (!in) {
1718 		err = -ENOMEM;
1719 		goto err_free;
1720 	}
1721 
1722 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1723 		page_shift = PAGE_SHIFT;
1724 
1725 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1726 				     access_mode, in, inlen);
1727 	if (err)
1728 		goto err_free_in;
1729 
1730 	mr->umem = NULL;
1731 	kfree(in);
1732 
1733 	return mr;
1734 
1735 err_free_in:
1736 	kfree(in);
1737 err_free:
1738 	kfree(mr);
1739 	return ERR_PTR(err);
1740 }
1741 
1742 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1743 				    int ndescs, u32 *in, int inlen)
1744 {
1745 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1746 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1747 				      inlen);
1748 }
1749 
1750 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1751 				    int ndescs, u32 *in, int inlen)
1752 {
1753 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1754 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1755 }
1756 
1757 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1758 				      int max_num_sg, int max_num_meta_sg,
1759 				      u32 *in, int inlen)
1760 {
1761 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1762 	u32 psv_index[2];
1763 	void *mkc;
1764 	int err;
1765 
1766 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1767 	if (!mr->sig)
1768 		return -ENOMEM;
1769 
1770 	/* create mem & wire PSVs */
1771 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1772 	if (err)
1773 		goto err_free_sig;
1774 
1775 	mr->sig->psv_memory.psv_idx = psv_index[0];
1776 	mr->sig->psv_wire.psv_idx = psv_index[1];
1777 
1778 	mr->sig->sig_status_checked = true;
1779 	mr->sig->sig_err_exists = false;
1780 	/* Next UMR, Arm SIGERR */
1781 	++mr->sig->sigerr_count;
1782 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1783 					 sizeof(struct mlx5_klm),
1784 					 MLX5_MKC_ACCESS_MODE_KLMS);
1785 	if (IS_ERR(mr->klm_mr)) {
1786 		err = PTR_ERR(mr->klm_mr);
1787 		goto err_destroy_psv;
1788 	}
1789 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1790 					 sizeof(struct mlx5_mtt),
1791 					 MLX5_MKC_ACCESS_MODE_MTT);
1792 	if (IS_ERR(mr->mtt_mr)) {
1793 		err = PTR_ERR(mr->mtt_mr);
1794 		goto err_free_klm_mr;
1795 	}
1796 
1797 	/* Set bsf descriptors for mkey */
1798 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1799 	MLX5_SET(mkc, mkc, bsf_en, 1);
1800 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1801 
1802 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1803 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1804 	if (err)
1805 		goto err_free_mtt_mr;
1806 
1807 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1808 			      mr->sig, GFP_KERNEL));
1809 	if (err)
1810 		goto err_free_descs;
1811 	return 0;
1812 
1813 err_free_descs:
1814 	destroy_mkey(dev, mr);
1815 	mlx5_free_priv_descs(mr);
1816 err_free_mtt_mr:
1817 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1818 	mr->mtt_mr = NULL;
1819 err_free_klm_mr:
1820 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1821 	mr->klm_mr = NULL;
1822 err_destroy_psv:
1823 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1824 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1825 			     mr->sig->psv_memory.psv_idx);
1826 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1827 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1828 			     mr->sig->psv_wire.psv_idx);
1829 err_free_sig:
1830 	kfree(mr->sig);
1831 
1832 	return err;
1833 }
1834 
1835 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1836 					enum ib_mr_type mr_type, u32 max_num_sg,
1837 					u32 max_num_meta_sg)
1838 {
1839 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1840 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1841 	int ndescs = ALIGN(max_num_sg, 4);
1842 	struct mlx5_ib_mr *mr;
1843 	u32 *in;
1844 	int err;
1845 
1846 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1847 	if (!mr)
1848 		return ERR_PTR(-ENOMEM);
1849 
1850 	in = kzalloc(inlen, GFP_KERNEL);
1851 	if (!in) {
1852 		err = -ENOMEM;
1853 		goto err_free;
1854 	}
1855 
1856 	mr->ibmr.device = pd->device;
1857 	mr->umem = NULL;
1858 
1859 	switch (mr_type) {
1860 	case IB_MR_TYPE_MEM_REG:
1861 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1862 		break;
1863 	case IB_MR_TYPE_SG_GAPS:
1864 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1865 		break;
1866 	case IB_MR_TYPE_INTEGRITY:
1867 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1868 						 max_num_meta_sg, in, inlen);
1869 		break;
1870 	default:
1871 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1872 		err = -EINVAL;
1873 	}
1874 
1875 	if (err)
1876 		goto err_free_in;
1877 
1878 	kfree(in);
1879 
1880 	return &mr->ibmr;
1881 
1882 err_free_in:
1883 	kfree(in);
1884 err_free:
1885 	kfree(mr);
1886 	return ERR_PTR(err);
1887 }
1888 
1889 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1890 			       u32 max_num_sg)
1891 {
1892 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1893 }
1894 
1895 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1896 					 u32 max_num_sg, u32 max_num_meta_sg)
1897 {
1898 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1899 				  max_num_meta_sg);
1900 }
1901 
1902 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1903 {
1904 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1905 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1906 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
1907 	unsigned int ndescs;
1908 	u32 *in = NULL;
1909 	void *mkc;
1910 	int err;
1911 	struct mlx5_ib_alloc_mw req = {};
1912 	struct {
1913 		__u32	comp_mask;
1914 		__u32	response_length;
1915 	} resp = {};
1916 
1917 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1918 	if (err)
1919 		return err;
1920 
1921 	if (req.comp_mask || req.reserved1 || req.reserved2)
1922 		return -EOPNOTSUPP;
1923 
1924 	if (udata->inlen > sizeof(req) &&
1925 	    !ib_is_udata_cleared(udata, sizeof(req),
1926 				 udata->inlen - sizeof(req)))
1927 		return -EOPNOTSUPP;
1928 
1929 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1930 
1931 	in = kzalloc(inlen, GFP_KERNEL);
1932 	if (!in)
1933 		return -ENOMEM;
1934 
1935 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1936 
1937 	MLX5_SET(mkc, mkc, free, 1);
1938 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1939 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
1940 	MLX5_SET(mkc, mkc, umr_en, 1);
1941 	MLX5_SET(mkc, mkc, lr, 1);
1942 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1943 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
1944 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1945 
1946 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
1947 	if (err)
1948 		goto free;
1949 
1950 	mw->mmkey.type = MLX5_MKEY_MW;
1951 	ibmw->rkey = mw->mmkey.key;
1952 	mw->mmkey.ndescs = ndescs;
1953 
1954 	resp.response_length =
1955 		min(offsetofend(typeof(resp), response_length), udata->outlen);
1956 	if (resp.response_length) {
1957 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1958 		if (err)
1959 			goto free_mkey;
1960 	}
1961 
1962 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1963 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
1964 		if (err)
1965 			goto free_mkey;
1966 	}
1967 
1968 	kfree(in);
1969 	return 0;
1970 
1971 free_mkey:
1972 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
1973 free:
1974 	kfree(in);
1975 	return err;
1976 }
1977 
1978 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1979 {
1980 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
1981 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1982 
1983 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1984 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
1985 		/*
1986 		 * pagefault_single_data_segment() may be accessing mmw
1987 		 * if the user bound an ODP MR to this MW.
1988 		 */
1989 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
1990 
1991 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
1992 }
1993 
1994 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1995 			    struct ib_mr_status *mr_status)
1996 {
1997 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1998 	int ret = 0;
1999 
2000 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2001 		pr_err("Invalid status check mask\n");
2002 		ret = -EINVAL;
2003 		goto done;
2004 	}
2005 
2006 	mr_status->fail_status = 0;
2007 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2008 		if (!mmr->sig) {
2009 			ret = -EINVAL;
2010 			pr_err("signature status check requested on a non-signature enabled MR\n");
2011 			goto done;
2012 		}
2013 
2014 		mmr->sig->sig_status_checked = true;
2015 		if (!mmr->sig->sig_err_exists)
2016 			goto done;
2017 
2018 		if (ibmr->lkey == mmr->sig->err_item.key)
2019 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2020 			       sizeof(mr_status->sig_err));
2021 		else {
2022 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2023 			mr_status->sig_err.sig_err_offset = 0;
2024 			mr_status->sig_err.key = mmr->sig->err_item.key;
2025 		}
2026 
2027 		mmr->sig->sig_err_exists = false;
2028 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2029 	}
2030 
2031 done:
2032 	return ret;
2033 }
2034 
2035 static int
2036 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2037 			int data_sg_nents, unsigned int *data_sg_offset,
2038 			struct scatterlist *meta_sg, int meta_sg_nents,
2039 			unsigned int *meta_sg_offset)
2040 {
2041 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2042 	unsigned int sg_offset = 0;
2043 	int n = 0;
2044 
2045 	mr->meta_length = 0;
2046 	if (data_sg_nents == 1) {
2047 		n++;
2048 		mr->mmkey.ndescs = 1;
2049 		if (data_sg_offset)
2050 			sg_offset = *data_sg_offset;
2051 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2052 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2053 		if (meta_sg_nents == 1) {
2054 			n++;
2055 			mr->meta_ndescs = 1;
2056 			if (meta_sg_offset)
2057 				sg_offset = *meta_sg_offset;
2058 			else
2059 				sg_offset = 0;
2060 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2061 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2062 		}
2063 		ibmr->length = mr->data_length + mr->meta_length;
2064 	}
2065 
2066 	return n;
2067 }
2068 
2069 static int
2070 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2071 		   struct scatterlist *sgl,
2072 		   unsigned short sg_nents,
2073 		   unsigned int *sg_offset_p,
2074 		   struct scatterlist *meta_sgl,
2075 		   unsigned short meta_sg_nents,
2076 		   unsigned int *meta_sg_offset_p)
2077 {
2078 	struct scatterlist *sg = sgl;
2079 	struct mlx5_klm *klms = mr->descs;
2080 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2081 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2082 	int i, j = 0;
2083 
2084 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2085 	mr->ibmr.length = 0;
2086 
2087 	for_each_sg(sgl, sg, sg_nents, i) {
2088 		if (unlikely(i >= mr->max_descs))
2089 			break;
2090 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2091 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2092 		klms[i].key = cpu_to_be32(lkey);
2093 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2094 
2095 		sg_offset = 0;
2096 	}
2097 
2098 	if (sg_offset_p)
2099 		*sg_offset_p = sg_offset;
2100 
2101 	mr->mmkey.ndescs = i;
2102 	mr->data_length = mr->ibmr.length;
2103 
2104 	if (meta_sg_nents) {
2105 		sg = meta_sgl;
2106 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2107 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2108 			if (unlikely(i + j >= mr->max_descs))
2109 				break;
2110 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2111 						     sg_offset);
2112 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2113 							 sg_offset);
2114 			klms[i + j].key = cpu_to_be32(lkey);
2115 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2116 
2117 			sg_offset = 0;
2118 		}
2119 		if (meta_sg_offset_p)
2120 			*meta_sg_offset_p = sg_offset;
2121 
2122 		mr->meta_ndescs = j;
2123 		mr->meta_length = mr->ibmr.length - mr->data_length;
2124 	}
2125 
2126 	return i + j;
2127 }
2128 
2129 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2130 {
2131 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2132 	__be64 *descs;
2133 
2134 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2135 		return -ENOMEM;
2136 
2137 	descs = mr->descs;
2138 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2139 
2140 	return 0;
2141 }
2142 
2143 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2144 {
2145 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2146 	__be64 *descs;
2147 
2148 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2149 		return -ENOMEM;
2150 
2151 	descs = mr->descs;
2152 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2153 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2154 
2155 	return 0;
2156 }
2157 
2158 static int
2159 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2160 			 int data_sg_nents, unsigned int *data_sg_offset,
2161 			 struct scatterlist *meta_sg, int meta_sg_nents,
2162 			 unsigned int *meta_sg_offset)
2163 {
2164 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2165 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2166 	int n;
2167 
2168 	pi_mr->mmkey.ndescs = 0;
2169 	pi_mr->meta_ndescs = 0;
2170 	pi_mr->meta_length = 0;
2171 
2172 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2173 				   pi_mr->desc_size * pi_mr->max_descs,
2174 				   DMA_TO_DEVICE);
2175 
2176 	pi_mr->ibmr.page_size = ibmr->page_size;
2177 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2178 			   mlx5_set_page);
2179 	if (n != data_sg_nents)
2180 		return n;
2181 
2182 	pi_mr->data_iova = pi_mr->ibmr.iova;
2183 	pi_mr->data_length = pi_mr->ibmr.length;
2184 	pi_mr->ibmr.length = pi_mr->data_length;
2185 	ibmr->length = pi_mr->data_length;
2186 
2187 	if (meta_sg_nents) {
2188 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2189 		u64 iova = pi_mr->data_iova;
2190 
2191 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2192 				    meta_sg_offset, mlx5_set_page_pi);
2193 
2194 		pi_mr->meta_length = pi_mr->ibmr.length;
2195 		/*
2196 		 * PI address for the HW is the offset of the metadata address
2197 		 * relative to the first data page address.
2198 		 * It equals to first data page address + size of data pages +
2199 		 * metadata offset at the first metadata page
2200 		 */
2201 		pi_mr->pi_iova = (iova & page_mask) +
2202 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2203 				 (pi_mr->ibmr.iova & ~page_mask);
2204 		/*
2205 		 * In order to use one MTT MR for data and metadata, we register
2206 		 * also the gaps between the end of the data and the start of
2207 		 * the metadata (the sig MR will verify that the HW will access
2208 		 * to right addresses). This mapping is safe because we use
2209 		 * internal mkey for the registration.
2210 		 */
2211 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2212 		pi_mr->ibmr.iova = iova;
2213 		ibmr->length += pi_mr->meta_length;
2214 	}
2215 
2216 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2217 				      pi_mr->desc_size * pi_mr->max_descs,
2218 				      DMA_TO_DEVICE);
2219 
2220 	return n;
2221 }
2222 
2223 static int
2224 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2225 			 int data_sg_nents, unsigned int *data_sg_offset,
2226 			 struct scatterlist *meta_sg, int meta_sg_nents,
2227 			 unsigned int *meta_sg_offset)
2228 {
2229 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2230 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2231 	int n;
2232 
2233 	pi_mr->mmkey.ndescs = 0;
2234 	pi_mr->meta_ndescs = 0;
2235 	pi_mr->meta_length = 0;
2236 
2237 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2238 				   pi_mr->desc_size * pi_mr->max_descs,
2239 				   DMA_TO_DEVICE);
2240 
2241 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2242 			       meta_sg, meta_sg_nents, meta_sg_offset);
2243 
2244 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2245 				      pi_mr->desc_size * pi_mr->max_descs,
2246 				      DMA_TO_DEVICE);
2247 
2248 	/* This is zero-based memory region */
2249 	pi_mr->data_iova = 0;
2250 	pi_mr->ibmr.iova = 0;
2251 	pi_mr->pi_iova = pi_mr->data_length;
2252 	ibmr->length = pi_mr->ibmr.length;
2253 
2254 	return n;
2255 }
2256 
2257 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2258 			 int data_sg_nents, unsigned int *data_sg_offset,
2259 			 struct scatterlist *meta_sg, int meta_sg_nents,
2260 			 unsigned int *meta_sg_offset)
2261 {
2262 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2263 	struct mlx5_ib_mr *pi_mr = NULL;
2264 	int n;
2265 
2266 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2267 
2268 	mr->mmkey.ndescs = 0;
2269 	mr->data_length = 0;
2270 	mr->data_iova = 0;
2271 	mr->meta_ndescs = 0;
2272 	mr->pi_iova = 0;
2273 	/*
2274 	 * As a performance optimization, if possible, there is no need to
2275 	 * perform UMR operation to register the data/metadata buffers.
2276 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2277 	 * Fallback to UMR only in case of a failure.
2278 	 */
2279 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2280 				    data_sg_offset, meta_sg, meta_sg_nents,
2281 				    meta_sg_offset);
2282 	if (n == data_sg_nents + meta_sg_nents)
2283 		goto out;
2284 	/*
2285 	 * As a performance optimization, if possible, there is no need to map
2286 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2287 	 * descriptors and fallback to KLM only in case of a failure.
2288 	 * It's more efficient for the HW to work with MTT descriptors
2289 	 * (especially in high load).
2290 	 * Use KLM (indirect access) only if it's mandatory.
2291 	 */
2292 	pi_mr = mr->mtt_mr;
2293 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2294 				     data_sg_offset, meta_sg, meta_sg_nents,
2295 				     meta_sg_offset);
2296 	if (n == data_sg_nents + meta_sg_nents)
2297 		goto out;
2298 
2299 	pi_mr = mr->klm_mr;
2300 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2301 				     data_sg_offset, meta_sg, meta_sg_nents,
2302 				     meta_sg_offset);
2303 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2304 		return -ENOMEM;
2305 
2306 out:
2307 	/* This is zero-based memory region */
2308 	ibmr->iova = 0;
2309 	mr->pi_mr = pi_mr;
2310 	if (pi_mr)
2311 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2312 	else
2313 		ibmr->sig_attrs->meta_length = mr->meta_length;
2314 
2315 	return 0;
2316 }
2317 
2318 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2319 		      unsigned int *sg_offset)
2320 {
2321 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2322 	int n;
2323 
2324 	mr->mmkey.ndescs = 0;
2325 
2326 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2327 				   mr->desc_size * mr->max_descs,
2328 				   DMA_TO_DEVICE);
2329 
2330 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2331 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2332 				       NULL);
2333 	else
2334 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2335 				mlx5_set_page);
2336 
2337 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2338 				      mr->desc_size * mr->max_descs,
2339 				      DMA_TO_DEVICE);
2340 
2341 	return n;
2342 }
2343