1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem.h> 43 #include <rdma/ib_umem_odp.h> 44 #include <rdma/ib_verbs.h> 45 #include "dm.h" 46 #include "mlx5_ib.h" 47 48 /* 49 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 50 * work on kernel modules memory 51 */ 52 void *xlt_emergency_page; 53 static DEFINE_MUTEX(xlt_emergency_page_mutex); 54 55 enum { 56 MAX_PENDING_REG_MR = 8, 57 }; 58 59 #define MLX5_UMR_ALIGN 2048 60 61 static void 62 create_mkey_callback(int status, struct mlx5_async_work *context); 63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 64 u64 iova, int access_flags, 65 unsigned int page_size, bool populate); 66 67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 68 struct ib_pd *pd) 69 { 70 struct mlx5_ib_dev *dev = to_mdev(pd->device); 71 bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev); 72 73 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 74 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 75 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 76 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 77 MLX5_SET(mkc, mkc, lr, 1); 78 79 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 80 MLX5_SET(mkc, mkc, relaxed_ordering_write, 81 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 82 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 83 MLX5_SET(mkc, mkc, relaxed_ordering_read, 84 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 85 86 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 87 MLX5_SET(mkc, mkc, qpn, 0xffffff); 88 MLX5_SET64(mkc, mkc, start_addr, start_addr); 89 } 90 91 static void 92 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 93 u32 *in) 94 { 95 u8 key = atomic_inc_return(&dev->mkey_var); 96 void *mkc; 97 98 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 99 MLX5_SET(mkc, mkc, mkey_7_0, key); 100 mkey->key = key; 101 } 102 103 static int 104 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 105 u32 *in, int inlen) 106 { 107 assign_mkey_variant(dev, mkey, in); 108 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 109 } 110 111 static int 112 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 113 struct mlx5_core_mkey *mkey, 114 struct mlx5_async_ctx *async_ctx, 115 u32 *in, int inlen, u32 *out, int outlen, 116 struct mlx5_async_work *context) 117 { 118 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 119 assign_mkey_variant(dev, mkey, in); 120 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 121 create_mkey_callback, context); 122 } 123 124 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 126 127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 128 { 129 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 130 } 131 132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 133 { 134 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 135 136 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 137 } 138 139 static void create_mkey_callback(int status, struct mlx5_async_work *context) 140 { 141 struct mlx5_ib_mr *mr = 142 container_of(context, struct mlx5_ib_mr, cb_work); 143 struct mlx5_cache_ent *ent = mr->cache_ent; 144 struct mlx5_ib_dev *dev = ent->dev; 145 unsigned long flags; 146 147 if (status) { 148 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 149 kfree(mr); 150 spin_lock_irqsave(&ent->lock, flags); 151 ent->pending--; 152 WRITE_ONCE(dev->fill_delay, 1); 153 spin_unlock_irqrestore(&ent->lock, flags); 154 mod_timer(&dev->delay_timer, jiffies + HZ); 155 return; 156 } 157 158 mr->mmkey.type = MLX5_MKEY_MR; 159 mr->mmkey.key |= mlx5_idx_to_mkey( 160 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 161 init_waitqueue_head(&mr->mmkey.wait); 162 163 WRITE_ONCE(dev->cache.last_add, jiffies); 164 165 spin_lock_irqsave(&ent->lock, flags); 166 list_add_tail(&mr->list, &ent->head); 167 ent->available_mrs++; 168 ent->total_mrs++; 169 /* If we are doing fill_to_high_water then keep going. */ 170 queue_adjust_cache_locked(ent); 171 ent->pending--; 172 spin_unlock_irqrestore(&ent->lock, flags); 173 } 174 175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 176 { 177 struct mlx5_ib_mr *mr; 178 179 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 180 if (!mr) 181 return NULL; 182 mr->cache_ent = ent; 183 184 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 185 MLX5_SET(mkc, mkc, free, 1); 186 MLX5_SET(mkc, mkc, umr_en, 1); 187 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 188 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 189 190 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 191 MLX5_SET(mkc, mkc, log_page_size, ent->page); 192 return mr; 193 } 194 195 /* Asynchronously schedule new MRs to be populated in the cache. */ 196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 197 { 198 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 199 struct mlx5_ib_mr *mr; 200 void *mkc; 201 u32 *in; 202 int err = 0; 203 int i; 204 205 in = kzalloc(inlen, GFP_KERNEL); 206 if (!in) 207 return -ENOMEM; 208 209 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 210 for (i = 0; i < num; i++) { 211 mr = alloc_cache_mr(ent, mkc); 212 if (!mr) { 213 err = -ENOMEM; 214 break; 215 } 216 spin_lock_irq(&ent->lock); 217 if (ent->pending >= MAX_PENDING_REG_MR) { 218 err = -EAGAIN; 219 spin_unlock_irq(&ent->lock); 220 kfree(mr); 221 break; 222 } 223 ent->pending++; 224 spin_unlock_irq(&ent->lock); 225 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 226 &ent->dev->async_ctx, in, inlen, 227 mr->out, sizeof(mr->out), 228 &mr->cb_work); 229 if (err) { 230 spin_lock_irq(&ent->lock); 231 ent->pending--; 232 spin_unlock_irq(&ent->lock); 233 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 234 kfree(mr); 235 break; 236 } 237 } 238 239 kfree(in); 240 return err; 241 } 242 243 /* Synchronously create a MR in the cache */ 244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 245 { 246 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 247 struct mlx5_ib_mr *mr; 248 void *mkc; 249 u32 *in; 250 int err; 251 252 in = kzalloc(inlen, GFP_KERNEL); 253 if (!in) 254 return ERR_PTR(-ENOMEM); 255 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 256 257 mr = alloc_cache_mr(ent, mkc); 258 if (!mr) { 259 err = -ENOMEM; 260 goto free_in; 261 } 262 263 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 264 if (err) 265 goto free_mr; 266 267 mr->mmkey.type = MLX5_MKEY_MR; 268 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 269 spin_lock_irq(&ent->lock); 270 ent->total_mrs++; 271 spin_unlock_irq(&ent->lock); 272 kfree(in); 273 return mr; 274 free_mr: 275 kfree(mr); 276 free_in: 277 kfree(in); 278 return ERR_PTR(err); 279 } 280 281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 282 { 283 struct mlx5_ib_mr *mr; 284 285 lockdep_assert_held(&ent->lock); 286 if (list_empty(&ent->head)) 287 return; 288 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 289 list_del(&mr->list); 290 ent->available_mrs--; 291 ent->total_mrs--; 292 spin_unlock_irq(&ent->lock); 293 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 294 kfree(mr); 295 spin_lock_irq(&ent->lock); 296 } 297 298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 299 bool limit_fill) 300 { 301 int err; 302 303 lockdep_assert_held(&ent->lock); 304 305 while (true) { 306 if (limit_fill) 307 target = ent->limit * 2; 308 if (target == ent->available_mrs + ent->pending) 309 return 0; 310 if (target > ent->available_mrs + ent->pending) { 311 u32 todo = target - (ent->available_mrs + ent->pending); 312 313 spin_unlock_irq(&ent->lock); 314 err = add_keys(ent, todo); 315 if (err == -EAGAIN) 316 usleep_range(3000, 5000); 317 spin_lock_irq(&ent->lock); 318 if (err) { 319 if (err != -EAGAIN) 320 return err; 321 } else 322 return 0; 323 } else { 324 remove_cache_mr_locked(ent); 325 } 326 } 327 } 328 329 static ssize_t size_write(struct file *filp, const char __user *buf, 330 size_t count, loff_t *pos) 331 { 332 struct mlx5_cache_ent *ent = filp->private_data; 333 u32 target; 334 int err; 335 336 err = kstrtou32_from_user(buf, count, 0, &target); 337 if (err) 338 return err; 339 340 /* 341 * Target is the new value of total_mrs the user requests, however we 342 * cannot free MRs that are in use. Compute the target value for 343 * available_mrs. 344 */ 345 spin_lock_irq(&ent->lock); 346 if (target < ent->total_mrs - ent->available_mrs) { 347 err = -EINVAL; 348 goto err_unlock; 349 } 350 target = target - (ent->total_mrs - ent->available_mrs); 351 if (target < ent->limit || target > ent->limit*2) { 352 err = -EINVAL; 353 goto err_unlock; 354 } 355 err = resize_available_mrs(ent, target, false); 356 if (err) 357 goto err_unlock; 358 spin_unlock_irq(&ent->lock); 359 360 return count; 361 362 err_unlock: 363 spin_unlock_irq(&ent->lock); 364 return err; 365 } 366 367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 368 loff_t *pos) 369 { 370 struct mlx5_cache_ent *ent = filp->private_data; 371 char lbuf[20]; 372 int err; 373 374 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 375 if (err < 0) 376 return err; 377 378 return simple_read_from_buffer(buf, count, pos, lbuf, err); 379 } 380 381 static const struct file_operations size_fops = { 382 .owner = THIS_MODULE, 383 .open = simple_open, 384 .write = size_write, 385 .read = size_read, 386 }; 387 388 static ssize_t limit_write(struct file *filp, const char __user *buf, 389 size_t count, loff_t *pos) 390 { 391 struct mlx5_cache_ent *ent = filp->private_data; 392 u32 var; 393 int err; 394 395 err = kstrtou32_from_user(buf, count, 0, &var); 396 if (err) 397 return err; 398 399 /* 400 * Upon set we immediately fill the cache to high water mark implied by 401 * the limit. 402 */ 403 spin_lock_irq(&ent->lock); 404 ent->limit = var; 405 err = resize_available_mrs(ent, 0, true); 406 spin_unlock_irq(&ent->lock); 407 if (err) 408 return err; 409 return count; 410 } 411 412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 413 loff_t *pos) 414 { 415 struct mlx5_cache_ent *ent = filp->private_data; 416 char lbuf[20]; 417 int err; 418 419 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 420 if (err < 0) 421 return err; 422 423 return simple_read_from_buffer(buf, count, pos, lbuf, err); 424 } 425 426 static const struct file_operations limit_fops = { 427 .owner = THIS_MODULE, 428 .open = simple_open, 429 .write = limit_write, 430 .read = limit_read, 431 }; 432 433 static bool someone_adding(struct mlx5_mr_cache *cache) 434 { 435 unsigned int i; 436 437 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 438 struct mlx5_cache_ent *ent = &cache->ent[i]; 439 bool ret; 440 441 spin_lock_irq(&ent->lock); 442 ret = ent->available_mrs < ent->limit; 443 spin_unlock_irq(&ent->lock); 444 if (ret) 445 return true; 446 } 447 return false; 448 } 449 450 /* 451 * Check if the bucket is outside the high/low water mark and schedule an async 452 * update. The cache refill has hysteresis, once the low water mark is hit it is 453 * refilled up to the high mark. 454 */ 455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 456 { 457 lockdep_assert_held(&ent->lock); 458 459 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 460 return; 461 if (ent->available_mrs < ent->limit) { 462 ent->fill_to_high_water = true; 463 queue_work(ent->dev->cache.wq, &ent->work); 464 } else if (ent->fill_to_high_water && 465 ent->available_mrs + ent->pending < 2 * ent->limit) { 466 /* 467 * Once we start populating due to hitting a low water mark 468 * continue until we pass the high water mark. 469 */ 470 queue_work(ent->dev->cache.wq, &ent->work); 471 } else if (ent->available_mrs == 2 * ent->limit) { 472 ent->fill_to_high_water = false; 473 } else if (ent->available_mrs > 2 * ent->limit) { 474 /* Queue deletion of excess entries */ 475 ent->fill_to_high_water = false; 476 if (ent->pending) 477 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 478 msecs_to_jiffies(1000)); 479 else 480 queue_work(ent->dev->cache.wq, &ent->work); 481 } 482 } 483 484 static void __cache_work_func(struct mlx5_cache_ent *ent) 485 { 486 struct mlx5_ib_dev *dev = ent->dev; 487 struct mlx5_mr_cache *cache = &dev->cache; 488 int err; 489 490 spin_lock_irq(&ent->lock); 491 if (ent->disabled) 492 goto out; 493 494 if (ent->fill_to_high_water && 495 ent->available_mrs + ent->pending < 2 * ent->limit && 496 !READ_ONCE(dev->fill_delay)) { 497 spin_unlock_irq(&ent->lock); 498 err = add_keys(ent, 1); 499 spin_lock_irq(&ent->lock); 500 if (ent->disabled) 501 goto out; 502 if (err) { 503 /* 504 * EAGAIN only happens if pending is positive, so we 505 * will be rescheduled from reg_mr_callback(). The only 506 * failure path here is ENOMEM. 507 */ 508 if (err != -EAGAIN) { 509 mlx5_ib_warn( 510 dev, 511 "command failed order %d, err %d\n", 512 ent->order, err); 513 queue_delayed_work(cache->wq, &ent->dwork, 514 msecs_to_jiffies(1000)); 515 } 516 } 517 } else if (ent->available_mrs > 2 * ent->limit) { 518 bool need_delay; 519 520 /* 521 * The remove_cache_mr() logic is performed as garbage 522 * collection task. Such task is intended to be run when no 523 * other active processes are running. 524 * 525 * The need_resched() will return TRUE if there are user tasks 526 * to be activated in near future. 527 * 528 * In such case, we don't execute remove_cache_mr() and postpone 529 * the garbage collection work to try to run in next cycle, in 530 * order to free CPU resources to other tasks. 531 */ 532 spin_unlock_irq(&ent->lock); 533 need_delay = need_resched() || someone_adding(cache) || 534 !time_after(jiffies, 535 READ_ONCE(cache->last_add) + 300 * HZ); 536 spin_lock_irq(&ent->lock); 537 if (ent->disabled) 538 goto out; 539 if (need_delay) 540 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 541 remove_cache_mr_locked(ent); 542 queue_adjust_cache_locked(ent); 543 } 544 out: 545 spin_unlock_irq(&ent->lock); 546 } 547 548 static void delayed_cache_work_func(struct work_struct *work) 549 { 550 struct mlx5_cache_ent *ent; 551 552 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 553 __cache_work_func(ent); 554 } 555 556 static void cache_work_func(struct work_struct *work) 557 { 558 struct mlx5_cache_ent *ent; 559 560 ent = container_of(work, struct mlx5_cache_ent, work); 561 __cache_work_func(ent); 562 } 563 564 /* Allocate a special entry from the cache */ 565 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 566 unsigned int entry, int access_flags) 567 { 568 struct mlx5_mr_cache *cache = &dev->cache; 569 struct mlx5_cache_ent *ent; 570 struct mlx5_ib_mr *mr; 571 572 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 573 entry >= ARRAY_SIZE(cache->ent))) 574 return ERR_PTR(-EINVAL); 575 576 /* Matches access in alloc_cache_mr() */ 577 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 578 return ERR_PTR(-EOPNOTSUPP); 579 580 ent = &cache->ent[entry]; 581 spin_lock_irq(&ent->lock); 582 if (list_empty(&ent->head)) { 583 spin_unlock_irq(&ent->lock); 584 mr = create_cache_mr(ent); 585 if (IS_ERR(mr)) 586 return mr; 587 } else { 588 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 589 list_del(&mr->list); 590 ent->available_mrs--; 591 queue_adjust_cache_locked(ent); 592 spin_unlock_irq(&ent->lock); 593 594 mlx5_clear_mr(mr); 595 } 596 mr->access_flags = access_flags; 597 return mr; 598 } 599 600 /* Return a MR already available in the cache */ 601 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 602 { 603 struct mlx5_ib_dev *dev = req_ent->dev; 604 struct mlx5_ib_mr *mr = NULL; 605 struct mlx5_cache_ent *ent = req_ent; 606 607 /* Try larger MR pools from the cache to satisfy the allocation */ 608 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 609 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 610 ent - dev->cache.ent); 611 612 spin_lock_irq(&ent->lock); 613 if (!list_empty(&ent->head)) { 614 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 615 list); 616 list_del(&mr->list); 617 ent->available_mrs--; 618 queue_adjust_cache_locked(ent); 619 spin_unlock_irq(&ent->lock); 620 mlx5_clear_mr(mr); 621 return mr; 622 } 623 queue_adjust_cache_locked(ent); 624 spin_unlock_irq(&ent->lock); 625 } 626 req_ent->miss++; 627 return NULL; 628 } 629 630 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 631 { 632 struct mlx5_cache_ent *ent = mr->cache_ent; 633 634 spin_lock_irq(&ent->lock); 635 list_add_tail(&mr->list, &ent->head); 636 ent->available_mrs++; 637 queue_adjust_cache_locked(ent); 638 spin_unlock_irq(&ent->lock); 639 } 640 641 static void clean_keys(struct mlx5_ib_dev *dev, int c) 642 { 643 struct mlx5_mr_cache *cache = &dev->cache; 644 struct mlx5_cache_ent *ent = &cache->ent[c]; 645 struct mlx5_ib_mr *tmp_mr; 646 struct mlx5_ib_mr *mr; 647 LIST_HEAD(del_list); 648 649 cancel_delayed_work(&ent->dwork); 650 while (1) { 651 spin_lock_irq(&ent->lock); 652 if (list_empty(&ent->head)) { 653 spin_unlock_irq(&ent->lock); 654 break; 655 } 656 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 657 list_move(&mr->list, &del_list); 658 ent->available_mrs--; 659 ent->total_mrs--; 660 spin_unlock_irq(&ent->lock); 661 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 662 } 663 664 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 665 list_del(&mr->list); 666 kfree(mr); 667 } 668 } 669 670 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 671 { 672 if (!mlx5_debugfs_root || dev->is_rep) 673 return; 674 675 debugfs_remove_recursive(dev->cache.root); 676 dev->cache.root = NULL; 677 } 678 679 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 680 { 681 struct mlx5_mr_cache *cache = &dev->cache; 682 struct mlx5_cache_ent *ent; 683 struct dentry *dir; 684 int i; 685 686 if (!mlx5_debugfs_root || dev->is_rep) 687 return; 688 689 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 690 691 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 692 ent = &cache->ent[i]; 693 sprintf(ent->name, "%d", ent->order); 694 dir = debugfs_create_dir(ent->name, cache->root); 695 debugfs_create_file("size", 0600, dir, ent, &size_fops); 696 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 697 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 698 debugfs_create_u32("miss", 0600, dir, &ent->miss); 699 } 700 } 701 702 static void delay_time_func(struct timer_list *t) 703 { 704 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 705 706 WRITE_ONCE(dev->fill_delay, 0); 707 } 708 709 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 710 { 711 struct mlx5_mr_cache *cache = &dev->cache; 712 struct mlx5_cache_ent *ent; 713 int i; 714 715 mutex_init(&dev->slow_path_mutex); 716 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 717 if (!cache->wq) { 718 mlx5_ib_warn(dev, "failed to create work queue\n"); 719 return -ENOMEM; 720 } 721 722 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 723 timer_setup(&dev->delay_timer, delay_time_func, 0); 724 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 725 ent = &cache->ent[i]; 726 INIT_LIST_HEAD(&ent->head); 727 spin_lock_init(&ent->lock); 728 ent->order = i + 2; 729 ent->dev = dev; 730 ent->limit = 0; 731 732 INIT_WORK(&ent->work, cache_work_func); 733 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 734 735 if (i > MR_CACHE_LAST_STD_ENTRY) { 736 mlx5_odp_init_mr_cache_entry(ent); 737 continue; 738 } 739 740 if (ent->order > mr_cache_max_order(dev)) 741 continue; 742 743 ent->page = PAGE_SHIFT; 744 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 745 MLX5_IB_UMR_OCTOWORD; 746 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 747 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && 748 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 749 mlx5_ib_can_load_pas_with_umr(dev, 0)) 750 ent->limit = dev->mdev->profile.mr_cache[i].limit; 751 else 752 ent->limit = 0; 753 spin_lock_irq(&ent->lock); 754 queue_adjust_cache_locked(ent); 755 spin_unlock_irq(&ent->lock); 756 } 757 758 mlx5_mr_cache_debugfs_init(dev); 759 760 return 0; 761 } 762 763 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 764 { 765 unsigned int i; 766 767 if (!dev->cache.wq) 768 return 0; 769 770 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 771 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 772 773 spin_lock_irq(&ent->lock); 774 ent->disabled = true; 775 spin_unlock_irq(&ent->lock); 776 cancel_work_sync(&ent->work); 777 cancel_delayed_work_sync(&ent->dwork); 778 } 779 780 mlx5_mr_cache_debugfs_cleanup(dev); 781 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 782 783 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 784 clean_keys(dev, i); 785 786 destroy_workqueue(dev->cache.wq); 787 del_timer_sync(&dev->delay_timer); 788 789 return 0; 790 } 791 792 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 793 { 794 struct mlx5_ib_dev *dev = to_mdev(pd->device); 795 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 796 struct mlx5_ib_mr *mr; 797 void *mkc; 798 u32 *in; 799 int err; 800 801 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 802 if (!mr) 803 return ERR_PTR(-ENOMEM); 804 805 in = kzalloc(inlen, GFP_KERNEL); 806 if (!in) { 807 err = -ENOMEM; 808 goto err_free; 809 } 810 811 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 812 813 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 814 MLX5_SET(mkc, mkc, length64, 1); 815 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, 816 pd); 817 818 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 819 if (err) 820 goto err_in; 821 822 kfree(in); 823 mr->mmkey.type = MLX5_MKEY_MR; 824 mr->ibmr.lkey = mr->mmkey.key; 825 mr->ibmr.rkey = mr->mmkey.key; 826 mr->umem = NULL; 827 828 return &mr->ibmr; 829 830 err_in: 831 kfree(in); 832 833 err_free: 834 kfree(mr); 835 836 return ERR_PTR(err); 837 } 838 839 static int get_octo_len(u64 addr, u64 len, int page_shift) 840 { 841 u64 page_size = 1ULL << page_shift; 842 u64 offset; 843 int npages; 844 845 offset = addr & (page_size - 1); 846 npages = ALIGN(len + offset, page_size) >> page_shift; 847 return (npages + 1) / 2; 848 } 849 850 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 851 { 852 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 853 return MR_CACHE_LAST_STD_ENTRY + 2; 854 return MLX5_MAX_UMR_SHIFT; 855 } 856 857 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 858 { 859 struct mlx5_ib_umr_context *context = 860 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 861 862 context->status = wc->status; 863 complete(&context->done); 864 } 865 866 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 867 { 868 context->cqe.done = mlx5_ib_umr_done; 869 context->status = -1; 870 init_completion(&context->done); 871 } 872 873 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 874 struct mlx5_umr_wr *umrwr) 875 { 876 struct umr_common *umrc = &dev->umrc; 877 const struct ib_send_wr *bad; 878 int err; 879 struct mlx5_ib_umr_context umr_context; 880 881 mlx5_ib_init_umr_context(&umr_context); 882 umrwr->wr.wr_cqe = &umr_context.cqe; 883 884 down(&umrc->sem); 885 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 886 if (err) { 887 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 888 } else { 889 wait_for_completion(&umr_context.done); 890 if (umr_context.status != IB_WC_SUCCESS) { 891 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 892 umr_context.status); 893 err = -EFAULT; 894 } 895 } 896 up(&umrc->sem); 897 return err; 898 } 899 900 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 901 unsigned int order) 902 { 903 struct mlx5_mr_cache *cache = &dev->cache; 904 905 if (order < cache->ent[0].order) 906 return &cache->ent[0]; 907 order = order - cache->ent[0].order; 908 if (order > MR_CACHE_LAST_STD_ENTRY) 909 return NULL; 910 return &cache->ent[order]; 911 } 912 913 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 914 u64 length, int access_flags) 915 { 916 mr->ibmr.lkey = mr->mmkey.key; 917 mr->ibmr.rkey = mr->mmkey.key; 918 mr->ibmr.length = length; 919 mr->ibmr.device = &dev->ib_dev; 920 mr->access_flags = access_flags; 921 } 922 923 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 924 u64 iova) 925 { 926 /* 927 * The alignment of iova has already been checked upon entering 928 * UVERBS_METHOD_REG_DMABUF_MR 929 */ 930 umem->iova = iova; 931 return PAGE_SIZE; 932 } 933 934 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 935 struct ib_umem *umem, u64 iova, 936 int access_flags) 937 { 938 struct mlx5_ib_dev *dev = to_mdev(pd->device); 939 struct mlx5_cache_ent *ent; 940 struct mlx5_ib_mr *mr; 941 unsigned int page_size; 942 943 if (umem->is_dmabuf) 944 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 945 else 946 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 947 0, iova); 948 if (WARN_ON(!page_size)) 949 return ERR_PTR(-EINVAL); 950 ent = mr_cache_ent_from_order( 951 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size))); 952 /* 953 * Matches access in alloc_cache_mr(). If the MR can't come from the 954 * cache then synchronously create an uncached one. 955 */ 956 if (!ent || ent->limit == 0 || 957 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) { 958 mutex_lock(&dev->slow_path_mutex); 959 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 960 mutex_unlock(&dev->slow_path_mutex); 961 return mr; 962 } 963 964 mr = get_cache_mr(ent); 965 if (!mr) { 966 mr = create_cache_mr(ent); 967 /* 968 * The above already tried to do the same stuff as reg_create(), 969 * no reason to try it again. 970 */ 971 if (IS_ERR(mr)) 972 return mr; 973 } 974 975 mr->ibmr.pd = pd; 976 mr->umem = umem; 977 mr->mmkey.iova = iova; 978 mr->mmkey.size = umem->length; 979 mr->mmkey.pd = to_mpd(pd)->pdn; 980 mr->page_shift = order_base_2(page_size); 981 set_mr_fields(dev, mr, umem->length, access_flags); 982 983 return mr; 984 } 985 986 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 987 MLX5_UMR_MTT_ALIGNMENT) 988 #define MLX5_SPARE_UMR_CHUNK 0x10000 989 990 /* 991 * Allocate a temporary buffer to hold the per-page information to transfer to 992 * HW. For efficiency this should be as large as it can be, but buffer 993 * allocation failure is not allowed, so try smaller sizes. 994 */ 995 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 996 { 997 const size_t xlt_chunk_align = 998 MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size); 999 size_t size; 1000 void *res = NULL; 1001 1002 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1003 1004 /* 1005 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1006 * allocation can't trigger any kind of reclaim. 1007 */ 1008 might_sleep(); 1009 1010 gfp_mask |= __GFP_ZERO | __GFP_NORETRY; 1011 1012 /* 1013 * If the system already has a suitable high order page then just use 1014 * that, but don't try hard to create one. This max is about 1M, so a 1015 * free x86 huge page will satisfy it. 1016 */ 1017 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1018 MLX5_MAX_UMR_CHUNK); 1019 *nents = size / ent_size; 1020 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1021 get_order(size)); 1022 if (res) 1023 return res; 1024 1025 if (size > MLX5_SPARE_UMR_CHUNK) { 1026 size = MLX5_SPARE_UMR_CHUNK; 1027 *nents = get_order(size) / ent_size; 1028 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1029 get_order(size)); 1030 if (res) 1031 return res; 1032 } 1033 1034 *nents = PAGE_SIZE / ent_size; 1035 res = (void *)__get_free_page(gfp_mask); 1036 if (res) 1037 return res; 1038 1039 mutex_lock(&xlt_emergency_page_mutex); 1040 memset(xlt_emergency_page, 0, PAGE_SIZE); 1041 return xlt_emergency_page; 1042 } 1043 1044 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1045 { 1046 if (xlt == xlt_emergency_page) { 1047 mutex_unlock(&xlt_emergency_page_mutex); 1048 return; 1049 } 1050 1051 free_pages((unsigned long)xlt, get_order(length)); 1052 } 1053 1054 /* 1055 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1056 * submission. 1057 */ 1058 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1059 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1060 size_t nents, size_t ent_size, 1061 unsigned int flags) 1062 { 1063 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1064 struct device *ddev = &dev->mdev->pdev->dev; 1065 dma_addr_t dma; 1066 void *xlt; 1067 1068 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1069 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1070 GFP_KERNEL); 1071 sg->length = nents * ent_size; 1072 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1073 if (dma_mapping_error(ddev, dma)) { 1074 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1075 mlx5_ib_free_xlt(xlt, sg->length); 1076 return NULL; 1077 } 1078 sg->addr = dma; 1079 sg->lkey = dev->umrc.pd->local_dma_lkey; 1080 1081 memset(wr, 0, sizeof(*wr)); 1082 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1083 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1084 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1085 wr->wr.sg_list = sg; 1086 wr->wr.num_sge = 1; 1087 wr->wr.opcode = MLX5_IB_WR_UMR; 1088 wr->pd = mr->ibmr.pd; 1089 wr->mkey = mr->mmkey.key; 1090 wr->length = mr->mmkey.size; 1091 wr->virt_addr = mr->mmkey.iova; 1092 wr->access_flags = mr->access_flags; 1093 wr->page_shift = mr->page_shift; 1094 wr->xlt_size = sg->length; 1095 return xlt; 1096 } 1097 1098 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1099 struct ib_sge *sg) 1100 { 1101 struct device *ddev = &dev->mdev->pdev->dev; 1102 1103 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1104 mlx5_ib_free_xlt(xlt, sg->length); 1105 } 1106 1107 static unsigned int xlt_wr_final_send_flags(unsigned int flags) 1108 { 1109 unsigned int res = 0; 1110 1111 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1112 res |= MLX5_IB_SEND_UMR_ENABLE_MR | 1113 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1114 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1115 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) 1116 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1117 if (flags & MLX5_IB_UPD_XLT_ADDR) 1118 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1119 return res; 1120 } 1121 1122 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1123 int page_shift, int flags) 1124 { 1125 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1126 struct device *ddev = &dev->mdev->pdev->dev; 1127 void *xlt; 1128 struct mlx5_umr_wr wr; 1129 struct ib_sge sg; 1130 int err = 0; 1131 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1132 ? sizeof(struct mlx5_klm) 1133 : sizeof(struct mlx5_mtt); 1134 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1135 const int page_mask = page_align - 1; 1136 size_t pages_mapped = 0; 1137 size_t pages_to_map = 0; 1138 size_t pages_iter; 1139 size_t size_to_map = 0; 1140 size_t orig_sg_length; 1141 1142 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1143 !umr_can_use_indirect_mkey(dev)) 1144 return -EPERM; 1145 1146 if (WARN_ON(!mr->umem->is_odp)) 1147 return -EINVAL; 1148 1149 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1150 * so we need to align the offset and length accordingly 1151 */ 1152 if (idx & page_mask) { 1153 npages += idx & page_mask; 1154 idx &= ~page_mask; 1155 } 1156 pages_to_map = ALIGN(npages, page_align); 1157 1158 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1159 if (!xlt) 1160 return -ENOMEM; 1161 pages_iter = sg.length / desc_size; 1162 orig_sg_length = sg.length; 1163 1164 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1165 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1166 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1167 1168 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1169 } 1170 1171 wr.page_shift = page_shift; 1172 1173 for (pages_mapped = 0; 1174 pages_mapped < pages_to_map && !err; 1175 pages_mapped += pages_iter, idx += pages_iter) { 1176 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1177 size_to_map = npages * desc_size; 1178 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1179 DMA_TO_DEVICE); 1180 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1181 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1182 DMA_TO_DEVICE); 1183 1184 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1185 1186 if (pages_mapped + pages_iter >= pages_to_map) 1187 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1188 1189 wr.offset = idx * desc_size; 1190 wr.xlt_size = sg.length; 1191 1192 err = mlx5_ib_post_send_wait(dev, &wr); 1193 } 1194 sg.length = orig_sg_length; 1195 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1196 return err; 1197 } 1198 1199 /* 1200 * Send the DMA list to the HW for a normal MR using UMR. 1201 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP 1202 * flag may be used. 1203 */ 1204 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags) 1205 { 1206 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1207 struct device *ddev = &dev->mdev->pdev->dev; 1208 struct ib_block_iter biter; 1209 struct mlx5_mtt *cur_mtt; 1210 struct mlx5_umr_wr wr; 1211 size_t orig_sg_length; 1212 struct mlx5_mtt *mtt; 1213 size_t final_size; 1214 struct ib_sge sg; 1215 int err = 0; 1216 1217 if (WARN_ON(mr->umem->is_odp)) 1218 return -EINVAL; 1219 1220 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, 1221 ib_umem_num_dma_blocks(mr->umem, 1222 1 << mr->page_shift), 1223 sizeof(*mtt), flags); 1224 if (!mtt) 1225 return -ENOMEM; 1226 orig_sg_length = sg.length; 1227 1228 cur_mtt = mtt; 1229 rdma_for_each_block (mr->umem->sg_head.sgl, &biter, mr->umem->nmap, 1230 BIT(mr->page_shift)) { 1231 if (cur_mtt == (void *)mtt + sg.length) { 1232 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1233 DMA_TO_DEVICE); 1234 err = mlx5_ib_post_send_wait(dev, &wr); 1235 if (err) 1236 goto err; 1237 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1238 DMA_TO_DEVICE); 1239 wr.offset += sg.length; 1240 cur_mtt = mtt; 1241 } 1242 1243 cur_mtt->ptag = 1244 cpu_to_be64(rdma_block_iter_dma_address(&biter) | 1245 MLX5_IB_MTT_PRESENT); 1246 1247 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP)) 1248 cur_mtt->ptag = 0; 1249 1250 cur_mtt++; 1251 } 1252 1253 final_size = (void *)cur_mtt - (void *)mtt; 1254 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT); 1255 memset(cur_mtt, 0, sg.length - final_size); 1256 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1257 wr.xlt_size = sg.length; 1258 1259 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE); 1260 err = mlx5_ib_post_send_wait(dev, &wr); 1261 1262 err: 1263 sg.length = orig_sg_length; 1264 mlx5_ib_unmap_free_xlt(dev, mtt, &sg); 1265 return err; 1266 } 1267 1268 /* 1269 * If ibmr is NULL it will be allocated by reg_create. 1270 * Else, the given ibmr will be used. 1271 */ 1272 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1273 u64 iova, int access_flags, 1274 unsigned int page_size, bool populate) 1275 { 1276 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1277 struct mlx5_ib_mr *mr; 1278 __be64 *pas; 1279 void *mkc; 1280 int inlen; 1281 u32 *in; 1282 int err; 1283 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1284 1285 if (!page_size) 1286 return ERR_PTR(-EINVAL); 1287 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1288 if (!mr) 1289 return ERR_PTR(-ENOMEM); 1290 1291 mr->ibmr.pd = pd; 1292 mr->access_flags = access_flags; 1293 mr->page_shift = order_base_2(page_size); 1294 1295 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1296 if (populate) 1297 inlen += sizeof(*pas) * 1298 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1299 in = kvzalloc(inlen, GFP_KERNEL); 1300 if (!in) { 1301 err = -ENOMEM; 1302 goto err_1; 1303 } 1304 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1305 if (populate) { 1306 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1307 err = -EINVAL; 1308 goto err_2; 1309 } 1310 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1311 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1312 } 1313 1314 /* The pg_access bit allows setting the access flags 1315 * in the page list submitted with the command. */ 1316 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1317 1318 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1319 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1320 populate ? pd : dev->umrc.pd); 1321 MLX5_SET(mkc, mkc, free, !populate); 1322 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1323 MLX5_SET(mkc, mkc, umr_en, 1); 1324 1325 MLX5_SET64(mkc, mkc, len, umem->length); 1326 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1327 MLX5_SET(mkc, mkc, translations_octword_size, 1328 get_octo_len(iova, umem->length, mr->page_shift)); 1329 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1330 if (populate) { 1331 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1332 get_octo_len(iova, umem->length, mr->page_shift)); 1333 } 1334 1335 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1336 if (err) { 1337 mlx5_ib_warn(dev, "create mkey failed\n"); 1338 goto err_2; 1339 } 1340 mr->mmkey.type = MLX5_MKEY_MR; 1341 mr->desc_size = sizeof(struct mlx5_mtt); 1342 mr->umem = umem; 1343 set_mr_fields(dev, mr, umem->length, access_flags); 1344 kvfree(in); 1345 1346 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1347 1348 return mr; 1349 1350 err_2: 1351 kvfree(in); 1352 err_1: 1353 kfree(mr); 1354 return ERR_PTR(err); 1355 } 1356 1357 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1358 u64 length, int acc, int mode) 1359 { 1360 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1361 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1362 struct mlx5_ib_mr *mr; 1363 void *mkc; 1364 u32 *in; 1365 int err; 1366 1367 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1368 if (!mr) 1369 return ERR_PTR(-ENOMEM); 1370 1371 in = kzalloc(inlen, GFP_KERNEL); 1372 if (!in) { 1373 err = -ENOMEM; 1374 goto err_free; 1375 } 1376 1377 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1378 1379 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1380 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1381 MLX5_SET64(mkc, mkc, len, length); 1382 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1383 1384 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1385 if (err) 1386 goto err_in; 1387 1388 kfree(in); 1389 1390 set_mr_fields(dev, mr, length, acc); 1391 1392 return &mr->ibmr; 1393 1394 err_in: 1395 kfree(in); 1396 1397 err_free: 1398 kfree(mr); 1399 1400 return ERR_PTR(err); 1401 } 1402 1403 int mlx5_ib_advise_mr(struct ib_pd *pd, 1404 enum ib_uverbs_advise_mr_advice advice, 1405 u32 flags, 1406 struct ib_sge *sg_list, 1407 u32 num_sge, 1408 struct uverbs_attr_bundle *attrs) 1409 { 1410 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1411 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1412 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1413 return -EOPNOTSUPP; 1414 1415 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1416 sg_list, num_sge); 1417 } 1418 1419 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1420 struct ib_dm_mr_attr *attr, 1421 struct uverbs_attr_bundle *attrs) 1422 { 1423 struct mlx5_ib_dm *mdm = to_mdm(dm); 1424 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1425 u64 start_addr = mdm->dev_addr + attr->offset; 1426 int mode; 1427 1428 switch (mdm->type) { 1429 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1430 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1431 return ERR_PTR(-EINVAL); 1432 1433 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1434 start_addr -= pci_resource_start(dev->pdev, 0); 1435 break; 1436 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1437 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1438 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1439 return ERR_PTR(-EINVAL); 1440 1441 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1442 break; 1443 default: 1444 return ERR_PTR(-EINVAL); 1445 } 1446 1447 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1448 attr->access_flags, mode); 1449 } 1450 1451 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1452 u64 iova, int access_flags) 1453 { 1454 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1455 struct mlx5_ib_mr *mr = NULL; 1456 bool xlt_with_umr; 1457 int err; 1458 1459 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length); 1460 if (xlt_with_umr) { 1461 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1462 } else { 1463 unsigned int page_size = mlx5_umem_find_best_pgsz( 1464 umem, mkc, log_page_size, 0, iova); 1465 1466 mutex_lock(&dev->slow_path_mutex); 1467 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1468 mutex_unlock(&dev->slow_path_mutex); 1469 } 1470 if (IS_ERR(mr)) { 1471 ib_umem_release(umem); 1472 return ERR_CAST(mr); 1473 } 1474 1475 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1476 1477 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1478 1479 if (xlt_with_umr) { 1480 /* 1481 * If the MR was created with reg_create then it will be 1482 * configured properly but left disabled. It is safe to go ahead 1483 * and configure it again via UMR while enabling it. 1484 */ 1485 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1486 if (err) { 1487 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1488 return ERR_PTR(err); 1489 } 1490 } 1491 return &mr->ibmr; 1492 } 1493 1494 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1495 u64 iova, int access_flags, 1496 struct ib_udata *udata) 1497 { 1498 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1499 struct ib_umem_odp *odp; 1500 struct mlx5_ib_mr *mr; 1501 int err; 1502 1503 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1504 return ERR_PTR(-EOPNOTSUPP); 1505 1506 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); 1507 if (err) 1508 return ERR_PTR(err); 1509 if (!start && length == U64_MAX) { 1510 if (iova != 0) 1511 return ERR_PTR(-EINVAL); 1512 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1513 return ERR_PTR(-EINVAL); 1514 1515 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); 1516 if (IS_ERR(mr)) 1517 return ERR_CAST(mr); 1518 return &mr->ibmr; 1519 } 1520 1521 /* ODP requires xlt update via umr to work. */ 1522 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1523 return ERR_PTR(-EINVAL); 1524 1525 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1526 &mlx5_mn_ops); 1527 if (IS_ERR(odp)) 1528 return ERR_CAST(odp); 1529 1530 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1531 if (IS_ERR(mr)) { 1532 ib_umem_release(&odp->umem); 1533 return ERR_CAST(mr); 1534 } 1535 1536 odp->private = mr; 1537 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1538 if (err) 1539 goto err_dereg_mr; 1540 1541 err = mlx5_ib_init_odp_mr(mr); 1542 if (err) 1543 goto err_dereg_mr; 1544 return &mr->ibmr; 1545 1546 err_dereg_mr: 1547 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1548 return ERR_PTR(err); 1549 } 1550 1551 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1552 u64 iova, int access_flags, 1553 struct ib_udata *udata) 1554 { 1555 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1556 struct ib_umem *umem; 1557 1558 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1559 return ERR_PTR(-EOPNOTSUPP); 1560 1561 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1562 start, iova, length, access_flags); 1563 1564 if (access_flags & IB_ACCESS_ON_DEMAND) 1565 return create_user_odp_mr(pd, start, length, iova, access_flags, 1566 udata); 1567 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1568 if (IS_ERR(umem)) 1569 return ERR_CAST(umem); 1570 return create_real_mr(pd, umem, iova, access_flags); 1571 } 1572 1573 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1574 { 1575 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1576 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1577 1578 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1579 1580 if (!umem_dmabuf->sgt) 1581 return; 1582 1583 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1584 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1585 } 1586 1587 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1588 .allow_peer2peer = 1, 1589 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1590 }; 1591 1592 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1593 u64 length, u64 virt_addr, 1594 int fd, int access_flags, 1595 struct ib_udata *udata) 1596 { 1597 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1598 struct mlx5_ib_mr *mr = NULL; 1599 struct ib_umem_dmabuf *umem_dmabuf; 1600 int err; 1601 1602 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1603 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1604 return ERR_PTR(-EOPNOTSUPP); 1605 1606 mlx5_ib_dbg(dev, 1607 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1608 offset, virt_addr, length, fd, access_flags); 1609 1610 /* dmabuf requires xlt update via umr to work. */ 1611 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1612 return ERR_PTR(-EINVAL); 1613 1614 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1615 access_flags, 1616 &mlx5_ib_dmabuf_attach_ops); 1617 if (IS_ERR(umem_dmabuf)) { 1618 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1619 PTR_ERR(umem_dmabuf)); 1620 return ERR_CAST(umem_dmabuf); 1621 } 1622 1623 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1624 access_flags); 1625 if (IS_ERR(mr)) { 1626 ib_umem_release(&umem_dmabuf->umem); 1627 return ERR_CAST(mr); 1628 } 1629 1630 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1631 1632 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1633 umem_dmabuf->private = mr; 1634 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1635 if (err) 1636 goto err_dereg_mr; 1637 1638 err = mlx5_ib_init_dmabuf_mr(mr); 1639 if (err) 1640 goto err_dereg_mr; 1641 return &mr->ibmr; 1642 1643 err_dereg_mr: 1644 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1645 return ERR_PTR(err); 1646 } 1647 1648 /** 1649 * revoke_mr - Fence all DMA on the MR 1650 * @mr: The MR to fence 1651 * 1652 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1653 * and any DMA in progress will be completed. Failure of this function 1654 * indicates the HW has failed catastrophically. 1655 */ 1656 static int revoke_mr(struct mlx5_ib_mr *mr) 1657 { 1658 struct mlx5_umr_wr umrwr = {}; 1659 1660 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1661 return 0; 1662 1663 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1664 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1665 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1666 umrwr.pd = mr_to_mdev(mr)->umrc.pd; 1667 umrwr.mkey = mr->mmkey.key; 1668 umrwr.ignore_free_state = 1; 1669 1670 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr); 1671 } 1672 1673 /* 1674 * True if the change in access flags can be done via UMR, only some access 1675 * flags can be updated. 1676 */ 1677 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1678 unsigned int current_access_flags, 1679 unsigned int target_access_flags) 1680 { 1681 unsigned int diffs = current_access_flags ^ target_access_flags; 1682 1683 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1684 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1685 return false; 1686 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags, 1687 target_access_flags); 1688 } 1689 1690 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1691 int access_flags) 1692 { 1693 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1694 struct mlx5_umr_wr umrwr = { 1695 .wr = { 1696 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | 1697 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS, 1698 .opcode = MLX5_IB_WR_UMR, 1699 }, 1700 .mkey = mr->mmkey.key, 1701 .pd = pd, 1702 .access_flags = access_flags, 1703 }; 1704 int err; 1705 1706 err = mlx5_ib_post_send_wait(dev, &umrwr); 1707 if (err) 1708 return err; 1709 1710 mr->access_flags = access_flags; 1711 mr->mmkey.pd = to_mpd(pd)->pdn; 1712 return 0; 1713 } 1714 1715 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1716 struct ib_umem *new_umem, 1717 int new_access_flags, u64 iova, 1718 unsigned long *page_size) 1719 { 1720 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1721 1722 /* We only track the allocated sizes of MRs from the cache */ 1723 if (!mr->cache_ent) 1724 return false; 1725 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length)) 1726 return false; 1727 1728 *page_size = 1729 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1730 if (WARN_ON(!*page_size)) 1731 return false; 1732 return (1ULL << mr->cache_ent->order) >= 1733 ib_umem_num_dma_blocks(new_umem, *page_size); 1734 } 1735 1736 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1737 int access_flags, int flags, struct ib_umem *new_umem, 1738 u64 iova, unsigned long page_size) 1739 { 1740 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1741 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1742 struct ib_umem *old_umem = mr->umem; 1743 int err; 1744 1745 /* 1746 * To keep everything simple the MR is revoked before we start to mess 1747 * with it. This ensure the change is atomic relative to any use of the 1748 * MR. 1749 */ 1750 err = revoke_mr(mr); 1751 if (err) 1752 return err; 1753 1754 if (flags & IB_MR_REREG_PD) { 1755 mr->ibmr.pd = pd; 1756 mr->mmkey.pd = to_mpd(pd)->pdn; 1757 upd_flags |= MLX5_IB_UPD_XLT_PD; 1758 } 1759 if (flags & IB_MR_REREG_ACCESS) { 1760 mr->access_flags = access_flags; 1761 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1762 } 1763 1764 mr->ibmr.length = new_umem->length; 1765 mr->mmkey.iova = iova; 1766 mr->mmkey.size = new_umem->length; 1767 mr->page_shift = order_base_2(page_size); 1768 mr->umem = new_umem; 1769 err = mlx5_ib_update_mr_pas(mr, upd_flags); 1770 if (err) { 1771 /* 1772 * The MR is revoked at this point so there is no issue to free 1773 * new_umem. 1774 */ 1775 mr->umem = old_umem; 1776 return err; 1777 } 1778 1779 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1780 ib_umem_release(old_umem); 1781 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1782 return 0; 1783 } 1784 1785 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1786 u64 length, u64 iova, int new_access_flags, 1787 struct ib_pd *new_pd, 1788 struct ib_udata *udata) 1789 { 1790 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1791 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1792 int err; 1793 1794 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1795 return ERR_PTR(-EOPNOTSUPP); 1796 1797 mlx5_ib_dbg( 1798 dev, 1799 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1800 start, iova, length, new_access_flags); 1801 1802 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1803 return ERR_PTR(-EOPNOTSUPP); 1804 1805 if (!(flags & IB_MR_REREG_ACCESS)) 1806 new_access_flags = mr->access_flags; 1807 if (!(flags & IB_MR_REREG_PD)) 1808 new_pd = ib_mr->pd; 1809 1810 if (!(flags & IB_MR_REREG_TRANS)) { 1811 struct ib_umem *umem; 1812 1813 /* Fast path for PD/access change */ 1814 if (can_use_umr_rereg_access(dev, mr->access_flags, 1815 new_access_flags)) { 1816 err = umr_rereg_pd_access(mr, new_pd, new_access_flags); 1817 if (err) 1818 return ERR_PTR(err); 1819 return NULL; 1820 } 1821 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1822 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1823 goto recreate; 1824 1825 /* 1826 * Only one active MR can refer to a umem at one time, revoke 1827 * the old MR before assigning the umem to the new one. 1828 */ 1829 err = revoke_mr(mr); 1830 if (err) 1831 return ERR_PTR(err); 1832 umem = mr->umem; 1833 mr->umem = NULL; 1834 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1835 1836 return create_real_mr(new_pd, umem, mr->mmkey.iova, 1837 new_access_flags); 1838 } 1839 1840 /* 1841 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1842 * but the logic around releasing the umem is different 1843 */ 1844 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1845 goto recreate; 1846 1847 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1848 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1849 struct ib_umem *new_umem; 1850 unsigned long page_size; 1851 1852 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1853 new_access_flags); 1854 if (IS_ERR(new_umem)) 1855 return ERR_CAST(new_umem); 1856 1857 /* Fast path for PAS change */ 1858 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1859 &page_size)) { 1860 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1861 new_umem, iova, page_size); 1862 if (err) { 1863 ib_umem_release(new_umem); 1864 return ERR_PTR(err); 1865 } 1866 return NULL; 1867 } 1868 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1869 } 1870 1871 /* 1872 * Everything else has no state we can preserve, just create a new MR 1873 * from scratch 1874 */ 1875 recreate: 1876 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1877 new_access_flags, udata); 1878 } 1879 1880 static int 1881 mlx5_alloc_priv_descs(struct ib_device *device, 1882 struct mlx5_ib_mr *mr, 1883 int ndescs, 1884 int desc_size) 1885 { 1886 struct mlx5_ib_dev *dev = to_mdev(device); 1887 struct device *ddev = &dev->mdev->pdev->dev; 1888 int size = ndescs * desc_size; 1889 int add_size; 1890 int ret; 1891 1892 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1893 1894 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1895 if (!mr->descs_alloc) 1896 return -ENOMEM; 1897 1898 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1899 1900 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1901 if (dma_mapping_error(ddev, mr->desc_map)) { 1902 ret = -ENOMEM; 1903 goto err; 1904 } 1905 1906 return 0; 1907 err: 1908 kfree(mr->descs_alloc); 1909 1910 return ret; 1911 } 1912 1913 static void 1914 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1915 { 1916 if (!mr->umem && mr->descs) { 1917 struct ib_device *device = mr->ibmr.device; 1918 int size = mr->max_descs * mr->desc_size; 1919 struct mlx5_ib_dev *dev = to_mdev(device); 1920 1921 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1922 DMA_TO_DEVICE); 1923 kfree(mr->descs_alloc); 1924 mr->descs = NULL; 1925 } 1926 } 1927 1928 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1929 { 1930 struct mlx5_ib_mr *mr = to_mmr(ibmr); 1931 struct mlx5_ib_dev *dev = to_mdev(ibmr->device); 1932 int rc; 1933 1934 /* 1935 * Any async use of the mr must hold the refcount, once the refcount 1936 * goes to zero no other thread, such as ODP page faults, prefetch, any 1937 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. 1938 */ 1939 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 1940 refcount_read(&mr->mmkey.usecount) != 0 && 1941 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) 1942 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 1943 1944 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1945 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1946 mr->sig, NULL, GFP_KERNEL); 1947 1948 if (mr->mtt_mr) { 1949 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 1950 if (rc) 1951 return rc; 1952 mr->mtt_mr = NULL; 1953 } 1954 if (mr->klm_mr) { 1955 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 1956 if (rc) 1957 return rc; 1958 mr->klm_mr = NULL; 1959 } 1960 1961 if (mlx5_core_destroy_psv(dev->mdev, 1962 mr->sig->psv_memory.psv_idx)) 1963 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1964 mr->sig->psv_memory.psv_idx); 1965 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1966 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1967 mr->sig->psv_wire.psv_idx); 1968 kfree(mr->sig); 1969 mr->sig = NULL; 1970 } 1971 1972 /* Stop DMA */ 1973 if (mr->cache_ent) { 1974 if (revoke_mr(mr)) { 1975 spin_lock_irq(&mr->cache_ent->lock); 1976 mr->cache_ent->total_mrs--; 1977 spin_unlock_irq(&mr->cache_ent->lock); 1978 mr->cache_ent = NULL; 1979 } 1980 } 1981 if (!mr->cache_ent) { 1982 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); 1983 if (rc) 1984 return rc; 1985 } 1986 1987 if (mr->umem) { 1988 bool is_odp = is_odp_mr(mr); 1989 1990 if (!is_odp) 1991 atomic_sub(ib_umem_num_pages(mr->umem), 1992 &dev->mdev->priv.reg_pages); 1993 ib_umem_release(mr->umem); 1994 if (is_odp) 1995 mlx5_ib_free_odp_mr(mr); 1996 } 1997 1998 if (mr->cache_ent) { 1999 mlx5_mr_cache_free(dev, mr); 2000 } else { 2001 mlx5_free_priv_descs(mr); 2002 kfree(mr); 2003 } 2004 return 0; 2005 } 2006 2007 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 2008 int access_mode, int page_shift) 2009 { 2010 void *mkc; 2011 2012 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2013 2014 /* This is only used from the kernel, so setting the PD is OK. */ 2015 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); 2016 MLX5_SET(mkc, mkc, free, 1); 2017 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2018 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 2019 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 2020 MLX5_SET(mkc, mkc, umr_en, 1); 2021 MLX5_SET(mkc, mkc, log_page_size, page_shift); 2022 } 2023 2024 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2025 int ndescs, int desc_size, int page_shift, 2026 int access_mode, u32 *in, int inlen) 2027 { 2028 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2029 int err; 2030 2031 mr->access_mode = access_mode; 2032 mr->desc_size = desc_size; 2033 mr->max_descs = ndescs; 2034 2035 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 2036 if (err) 2037 return err; 2038 2039 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 2040 2041 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 2042 if (err) 2043 goto err_free_descs; 2044 2045 mr->mmkey.type = MLX5_MKEY_MR; 2046 mr->ibmr.lkey = mr->mmkey.key; 2047 mr->ibmr.rkey = mr->mmkey.key; 2048 2049 return 0; 2050 2051 err_free_descs: 2052 mlx5_free_priv_descs(mr); 2053 return err; 2054 } 2055 2056 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 2057 u32 max_num_sg, u32 max_num_meta_sg, 2058 int desc_size, int access_mode) 2059 { 2060 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2061 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 2062 int page_shift = 0; 2063 struct mlx5_ib_mr *mr; 2064 u32 *in; 2065 int err; 2066 2067 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2068 if (!mr) 2069 return ERR_PTR(-ENOMEM); 2070 2071 mr->ibmr.pd = pd; 2072 mr->ibmr.device = pd->device; 2073 2074 in = kzalloc(inlen, GFP_KERNEL); 2075 if (!in) { 2076 err = -ENOMEM; 2077 goto err_free; 2078 } 2079 2080 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2081 page_shift = PAGE_SHIFT; 2082 2083 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2084 access_mode, in, inlen); 2085 if (err) 2086 goto err_free_in; 2087 2088 mr->umem = NULL; 2089 kfree(in); 2090 2091 return mr; 2092 2093 err_free_in: 2094 kfree(in); 2095 err_free: 2096 kfree(mr); 2097 return ERR_PTR(err); 2098 } 2099 2100 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2101 int ndescs, u32 *in, int inlen) 2102 { 2103 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2104 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2105 inlen); 2106 } 2107 2108 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2109 int ndescs, u32 *in, int inlen) 2110 { 2111 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2112 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2113 } 2114 2115 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2116 int max_num_sg, int max_num_meta_sg, 2117 u32 *in, int inlen) 2118 { 2119 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2120 u32 psv_index[2]; 2121 void *mkc; 2122 int err; 2123 2124 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2125 if (!mr->sig) 2126 return -ENOMEM; 2127 2128 /* create mem & wire PSVs */ 2129 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2130 if (err) 2131 goto err_free_sig; 2132 2133 mr->sig->psv_memory.psv_idx = psv_index[0]; 2134 mr->sig->psv_wire.psv_idx = psv_index[1]; 2135 2136 mr->sig->sig_status_checked = true; 2137 mr->sig->sig_err_exists = false; 2138 /* Next UMR, Arm SIGERR */ 2139 ++mr->sig->sigerr_count; 2140 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2141 sizeof(struct mlx5_klm), 2142 MLX5_MKC_ACCESS_MODE_KLMS); 2143 if (IS_ERR(mr->klm_mr)) { 2144 err = PTR_ERR(mr->klm_mr); 2145 goto err_destroy_psv; 2146 } 2147 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2148 sizeof(struct mlx5_mtt), 2149 MLX5_MKC_ACCESS_MODE_MTT); 2150 if (IS_ERR(mr->mtt_mr)) { 2151 err = PTR_ERR(mr->mtt_mr); 2152 goto err_free_klm_mr; 2153 } 2154 2155 /* Set bsf descriptors for mkey */ 2156 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2157 MLX5_SET(mkc, mkc, bsf_en, 1); 2158 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2159 2160 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2161 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2162 if (err) 2163 goto err_free_mtt_mr; 2164 2165 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2166 mr->sig, GFP_KERNEL)); 2167 if (err) 2168 goto err_free_descs; 2169 return 0; 2170 2171 err_free_descs: 2172 destroy_mkey(dev, mr); 2173 mlx5_free_priv_descs(mr); 2174 err_free_mtt_mr: 2175 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 2176 mr->mtt_mr = NULL; 2177 err_free_klm_mr: 2178 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 2179 mr->klm_mr = NULL; 2180 err_destroy_psv: 2181 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2182 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2183 mr->sig->psv_memory.psv_idx); 2184 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2185 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2186 mr->sig->psv_wire.psv_idx); 2187 err_free_sig: 2188 kfree(mr->sig); 2189 2190 return err; 2191 } 2192 2193 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2194 enum ib_mr_type mr_type, u32 max_num_sg, 2195 u32 max_num_meta_sg) 2196 { 2197 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2198 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2199 int ndescs = ALIGN(max_num_sg, 4); 2200 struct mlx5_ib_mr *mr; 2201 u32 *in; 2202 int err; 2203 2204 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2205 if (!mr) 2206 return ERR_PTR(-ENOMEM); 2207 2208 in = kzalloc(inlen, GFP_KERNEL); 2209 if (!in) { 2210 err = -ENOMEM; 2211 goto err_free; 2212 } 2213 2214 mr->ibmr.device = pd->device; 2215 mr->umem = NULL; 2216 2217 switch (mr_type) { 2218 case IB_MR_TYPE_MEM_REG: 2219 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2220 break; 2221 case IB_MR_TYPE_SG_GAPS: 2222 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2223 break; 2224 case IB_MR_TYPE_INTEGRITY: 2225 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2226 max_num_meta_sg, in, inlen); 2227 break; 2228 default: 2229 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2230 err = -EINVAL; 2231 } 2232 2233 if (err) 2234 goto err_free_in; 2235 2236 kfree(in); 2237 2238 return &mr->ibmr; 2239 2240 err_free_in: 2241 kfree(in); 2242 err_free: 2243 kfree(mr); 2244 return ERR_PTR(err); 2245 } 2246 2247 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2248 u32 max_num_sg) 2249 { 2250 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2251 } 2252 2253 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2254 u32 max_num_sg, u32 max_num_meta_sg) 2255 { 2256 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2257 max_num_meta_sg); 2258 } 2259 2260 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2261 { 2262 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2263 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2264 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2265 u32 *in = NULL; 2266 void *mkc; 2267 int ndescs; 2268 int err; 2269 struct mlx5_ib_alloc_mw req = {}; 2270 struct { 2271 __u32 comp_mask; 2272 __u32 response_length; 2273 } resp = {}; 2274 2275 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2276 if (err) 2277 return err; 2278 2279 if (req.comp_mask || req.reserved1 || req.reserved2) 2280 return -EOPNOTSUPP; 2281 2282 if (udata->inlen > sizeof(req) && 2283 !ib_is_udata_cleared(udata, sizeof(req), 2284 udata->inlen - sizeof(req))) 2285 return -EOPNOTSUPP; 2286 2287 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2288 2289 in = kzalloc(inlen, GFP_KERNEL); 2290 if (!in) { 2291 err = -ENOMEM; 2292 goto free; 2293 } 2294 2295 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2296 2297 MLX5_SET(mkc, mkc, free, 1); 2298 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2299 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2300 MLX5_SET(mkc, mkc, umr_en, 1); 2301 MLX5_SET(mkc, mkc, lr, 1); 2302 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2303 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2304 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2305 2306 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2307 if (err) 2308 goto free; 2309 2310 mw->mmkey.type = MLX5_MKEY_MW; 2311 ibmw->rkey = mw->mmkey.key; 2312 mw->ndescs = ndescs; 2313 2314 resp.response_length = 2315 min(offsetofend(typeof(resp), response_length), udata->outlen); 2316 if (resp.response_length) { 2317 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2318 if (err) 2319 goto free_mkey; 2320 } 2321 2322 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2323 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2324 if (err) 2325 goto free_mkey; 2326 } 2327 2328 kfree(in); 2329 return 0; 2330 2331 free_mkey: 2332 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2333 free: 2334 kfree(in); 2335 return err; 2336 } 2337 2338 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2339 { 2340 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2341 struct mlx5_ib_mw *mmw = to_mmw(mw); 2342 2343 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2344 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2345 /* 2346 * pagefault_single_data_segment() may be accessing mmw 2347 * if the user bound an ODP MR to this MW. 2348 */ 2349 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2350 2351 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2352 } 2353 2354 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2355 struct ib_mr_status *mr_status) 2356 { 2357 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2358 int ret = 0; 2359 2360 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2361 pr_err("Invalid status check mask\n"); 2362 ret = -EINVAL; 2363 goto done; 2364 } 2365 2366 mr_status->fail_status = 0; 2367 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2368 if (!mmr->sig) { 2369 ret = -EINVAL; 2370 pr_err("signature status check requested on a non-signature enabled MR\n"); 2371 goto done; 2372 } 2373 2374 mmr->sig->sig_status_checked = true; 2375 if (!mmr->sig->sig_err_exists) 2376 goto done; 2377 2378 if (ibmr->lkey == mmr->sig->err_item.key) 2379 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2380 sizeof(mr_status->sig_err)); 2381 else { 2382 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2383 mr_status->sig_err.sig_err_offset = 0; 2384 mr_status->sig_err.key = mmr->sig->err_item.key; 2385 } 2386 2387 mmr->sig->sig_err_exists = false; 2388 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2389 } 2390 2391 done: 2392 return ret; 2393 } 2394 2395 static int 2396 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2397 int data_sg_nents, unsigned int *data_sg_offset, 2398 struct scatterlist *meta_sg, int meta_sg_nents, 2399 unsigned int *meta_sg_offset) 2400 { 2401 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2402 unsigned int sg_offset = 0; 2403 int n = 0; 2404 2405 mr->meta_length = 0; 2406 if (data_sg_nents == 1) { 2407 n++; 2408 mr->ndescs = 1; 2409 if (data_sg_offset) 2410 sg_offset = *data_sg_offset; 2411 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2412 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2413 if (meta_sg_nents == 1) { 2414 n++; 2415 mr->meta_ndescs = 1; 2416 if (meta_sg_offset) 2417 sg_offset = *meta_sg_offset; 2418 else 2419 sg_offset = 0; 2420 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2421 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2422 } 2423 ibmr->length = mr->data_length + mr->meta_length; 2424 } 2425 2426 return n; 2427 } 2428 2429 static int 2430 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2431 struct scatterlist *sgl, 2432 unsigned short sg_nents, 2433 unsigned int *sg_offset_p, 2434 struct scatterlist *meta_sgl, 2435 unsigned short meta_sg_nents, 2436 unsigned int *meta_sg_offset_p) 2437 { 2438 struct scatterlist *sg = sgl; 2439 struct mlx5_klm *klms = mr->descs; 2440 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2441 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2442 int i, j = 0; 2443 2444 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2445 mr->ibmr.length = 0; 2446 2447 for_each_sg(sgl, sg, sg_nents, i) { 2448 if (unlikely(i >= mr->max_descs)) 2449 break; 2450 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2451 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2452 klms[i].key = cpu_to_be32(lkey); 2453 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2454 2455 sg_offset = 0; 2456 } 2457 2458 if (sg_offset_p) 2459 *sg_offset_p = sg_offset; 2460 2461 mr->ndescs = i; 2462 mr->data_length = mr->ibmr.length; 2463 2464 if (meta_sg_nents) { 2465 sg = meta_sgl; 2466 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2467 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2468 if (unlikely(i + j >= mr->max_descs)) 2469 break; 2470 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2471 sg_offset); 2472 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2473 sg_offset); 2474 klms[i + j].key = cpu_to_be32(lkey); 2475 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2476 2477 sg_offset = 0; 2478 } 2479 if (meta_sg_offset_p) 2480 *meta_sg_offset_p = sg_offset; 2481 2482 mr->meta_ndescs = j; 2483 mr->meta_length = mr->ibmr.length - mr->data_length; 2484 } 2485 2486 return i + j; 2487 } 2488 2489 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2490 { 2491 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2492 __be64 *descs; 2493 2494 if (unlikely(mr->ndescs == mr->max_descs)) 2495 return -ENOMEM; 2496 2497 descs = mr->descs; 2498 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2499 2500 return 0; 2501 } 2502 2503 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2504 { 2505 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2506 __be64 *descs; 2507 2508 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2509 return -ENOMEM; 2510 2511 descs = mr->descs; 2512 descs[mr->ndescs + mr->meta_ndescs++] = 2513 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2514 2515 return 0; 2516 } 2517 2518 static int 2519 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2520 int data_sg_nents, unsigned int *data_sg_offset, 2521 struct scatterlist *meta_sg, int meta_sg_nents, 2522 unsigned int *meta_sg_offset) 2523 { 2524 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2525 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2526 int n; 2527 2528 pi_mr->ndescs = 0; 2529 pi_mr->meta_ndescs = 0; 2530 pi_mr->meta_length = 0; 2531 2532 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2533 pi_mr->desc_size * pi_mr->max_descs, 2534 DMA_TO_DEVICE); 2535 2536 pi_mr->ibmr.page_size = ibmr->page_size; 2537 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2538 mlx5_set_page); 2539 if (n != data_sg_nents) 2540 return n; 2541 2542 pi_mr->data_iova = pi_mr->ibmr.iova; 2543 pi_mr->data_length = pi_mr->ibmr.length; 2544 pi_mr->ibmr.length = pi_mr->data_length; 2545 ibmr->length = pi_mr->data_length; 2546 2547 if (meta_sg_nents) { 2548 u64 page_mask = ~((u64)ibmr->page_size - 1); 2549 u64 iova = pi_mr->data_iova; 2550 2551 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2552 meta_sg_offset, mlx5_set_page_pi); 2553 2554 pi_mr->meta_length = pi_mr->ibmr.length; 2555 /* 2556 * PI address for the HW is the offset of the metadata address 2557 * relative to the first data page address. 2558 * It equals to first data page address + size of data pages + 2559 * metadata offset at the first metadata page 2560 */ 2561 pi_mr->pi_iova = (iova & page_mask) + 2562 pi_mr->ndescs * ibmr->page_size + 2563 (pi_mr->ibmr.iova & ~page_mask); 2564 /* 2565 * In order to use one MTT MR for data and metadata, we register 2566 * also the gaps between the end of the data and the start of 2567 * the metadata (the sig MR will verify that the HW will access 2568 * to right addresses). This mapping is safe because we use 2569 * internal mkey for the registration. 2570 */ 2571 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2572 pi_mr->ibmr.iova = iova; 2573 ibmr->length += pi_mr->meta_length; 2574 } 2575 2576 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2577 pi_mr->desc_size * pi_mr->max_descs, 2578 DMA_TO_DEVICE); 2579 2580 return n; 2581 } 2582 2583 static int 2584 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2585 int data_sg_nents, unsigned int *data_sg_offset, 2586 struct scatterlist *meta_sg, int meta_sg_nents, 2587 unsigned int *meta_sg_offset) 2588 { 2589 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2590 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2591 int n; 2592 2593 pi_mr->ndescs = 0; 2594 pi_mr->meta_ndescs = 0; 2595 pi_mr->meta_length = 0; 2596 2597 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2598 pi_mr->desc_size * pi_mr->max_descs, 2599 DMA_TO_DEVICE); 2600 2601 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2602 meta_sg, meta_sg_nents, meta_sg_offset); 2603 2604 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2605 pi_mr->desc_size * pi_mr->max_descs, 2606 DMA_TO_DEVICE); 2607 2608 /* This is zero-based memory region */ 2609 pi_mr->data_iova = 0; 2610 pi_mr->ibmr.iova = 0; 2611 pi_mr->pi_iova = pi_mr->data_length; 2612 ibmr->length = pi_mr->ibmr.length; 2613 2614 return n; 2615 } 2616 2617 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2618 int data_sg_nents, unsigned int *data_sg_offset, 2619 struct scatterlist *meta_sg, int meta_sg_nents, 2620 unsigned int *meta_sg_offset) 2621 { 2622 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2623 struct mlx5_ib_mr *pi_mr = NULL; 2624 int n; 2625 2626 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2627 2628 mr->ndescs = 0; 2629 mr->data_length = 0; 2630 mr->data_iova = 0; 2631 mr->meta_ndescs = 0; 2632 mr->pi_iova = 0; 2633 /* 2634 * As a performance optimization, if possible, there is no need to 2635 * perform UMR operation to register the data/metadata buffers. 2636 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2637 * Fallback to UMR only in case of a failure. 2638 */ 2639 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2640 data_sg_offset, meta_sg, meta_sg_nents, 2641 meta_sg_offset); 2642 if (n == data_sg_nents + meta_sg_nents) 2643 goto out; 2644 /* 2645 * As a performance optimization, if possible, there is no need to map 2646 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2647 * descriptors and fallback to KLM only in case of a failure. 2648 * It's more efficient for the HW to work with MTT descriptors 2649 * (especially in high load). 2650 * Use KLM (indirect access) only if it's mandatory. 2651 */ 2652 pi_mr = mr->mtt_mr; 2653 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2654 data_sg_offset, meta_sg, meta_sg_nents, 2655 meta_sg_offset); 2656 if (n == data_sg_nents + meta_sg_nents) 2657 goto out; 2658 2659 pi_mr = mr->klm_mr; 2660 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2661 data_sg_offset, meta_sg, meta_sg_nents, 2662 meta_sg_offset); 2663 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2664 return -ENOMEM; 2665 2666 out: 2667 /* This is zero-based memory region */ 2668 ibmr->iova = 0; 2669 mr->pi_mr = pi_mr; 2670 if (pi_mr) 2671 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2672 else 2673 ibmr->sig_attrs->meta_length = mr->meta_length; 2674 2675 return 0; 2676 } 2677 2678 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2679 unsigned int *sg_offset) 2680 { 2681 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2682 int n; 2683 2684 mr->ndescs = 0; 2685 2686 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2687 mr->desc_size * mr->max_descs, 2688 DMA_TO_DEVICE); 2689 2690 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2691 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2692 NULL); 2693 else 2694 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2695 mlx5_set_page); 2696 2697 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2698 mr->desc_size * mr->max_descs, 2699 DMA_TO_DEVICE); 2700 2701 return n; 2702 } 2703