xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS 4
52 #define MLX5_UMR_ALIGN 2048
53 
54 static void
55 create_mkey_callback(int status, struct mlx5_async_work *context);
56 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
57 				     u64 iova, int access_flags,
58 				     unsigned int page_size, bool populate);
59 
60 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
61 					  struct ib_pd *pd)
62 {
63 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
64 
65 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
66 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
67 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
68 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
69 	MLX5_SET(mkc, mkc, lr, 1);
70 
71 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
72 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
73 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 
75 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
76 		    (MLX5_CAP_GEN(dev->mdev,
77 				  relaxed_ordering_read_pci_enabled) &&
78 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
79 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
80 	}
81 
82 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
83 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
84 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
85 }
86 
87 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
88 {
89 	u8 key = atomic_inc_return(&dev->mkey_var);
90 	void *mkc;
91 
92 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
93 	MLX5_SET(mkc, mkc, mkey_7_0, key);
94 	*mkey = key;
95 }
96 
97 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
98 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
99 {
100 	int ret;
101 
102 	assign_mkey_variant(dev, &mkey->key, in);
103 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
104 	if (!ret)
105 		init_waitqueue_head(&mkey->wait);
106 
107 	return ret;
108 }
109 
110 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
111 {
112 	struct mlx5_ib_dev *dev = async_create->ent->dev;
113 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
114 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
115 
116 	MLX5_SET(create_mkey_in, async_create->in, opcode,
117 		 MLX5_CMD_OP_CREATE_MKEY);
118 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
119 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
120 				async_create->out, outlen, create_mkey_callback,
121 				&async_create->cb_work);
122 }
123 
124 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
126 
127 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
128 {
129 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
130 
131 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
132 }
133 
134 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
135 {
136 	if (status == -ENXIO) /* core driver is not available */
137 		return;
138 
139 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
140 	if (status != -EREMOTEIO) /* driver specific failure */
141 		return;
142 
143 	/* Failed in FW, print cmd out failure details */
144 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
145 }
146 
147 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
148 			    void *to_store)
149 {
150 	XA_STATE(xas, &ent->mkeys, 0);
151 	void *curr;
152 
153 	if (limit_pendings &&
154 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
155 		return -EAGAIN;
156 
157 	while (1) {
158 		/*
159 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
160 		 * doesn't transparently unlock. Instead we set the xas index to
161 		 * the current value of reserved every iteration.
162 		 */
163 		xas_set(&xas, ent->reserved);
164 		curr = xas_load(&xas);
165 		if (!curr) {
166 			if (to_store && ent->stored == ent->reserved)
167 				xas_store(&xas, to_store);
168 			else
169 				xas_store(&xas, XA_ZERO_ENTRY);
170 			if (xas_valid(&xas)) {
171 				ent->reserved++;
172 				if (to_store) {
173 					if (ent->stored != ent->reserved)
174 						__xa_store(&ent->mkeys,
175 							   ent->stored,
176 							   to_store,
177 							   GFP_KERNEL);
178 					ent->stored++;
179 					queue_adjust_cache_locked(ent);
180 					WRITE_ONCE(ent->dev->cache.last_add,
181 						   jiffies);
182 				}
183 			}
184 		}
185 		xa_unlock_irq(&ent->mkeys);
186 
187 		/*
188 		 * Notice xas_nomem() must always be called as it cleans
189 		 * up any cached allocation.
190 		 */
191 		if (!xas_nomem(&xas, GFP_KERNEL))
192 			break;
193 		xa_lock_irq(&ent->mkeys);
194 	}
195 	xa_lock_irq(&ent->mkeys);
196 	if (xas_error(&xas))
197 		return xas_error(&xas);
198 	if (WARN_ON(curr))
199 		return -EINVAL;
200 	return 0;
201 }
202 
203 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
204 		     void *to_store)
205 {
206 	int ret;
207 
208 	xa_lock_irq(&ent->mkeys);
209 	ret = push_mkey_locked(ent, limit_pendings, to_store);
210 	xa_unlock_irq(&ent->mkeys);
211 	return ret;
212 }
213 
214 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
215 {
216 	void *old;
217 
218 	ent->reserved--;
219 	old = __xa_erase(&ent->mkeys, ent->reserved);
220 	WARN_ON(old);
221 }
222 
223 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
224 {
225 	void *old;
226 
227 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
228 	WARN_ON(old);
229 	ent->stored++;
230 }
231 
232 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
233 {
234 	void *old, *xa_mkey;
235 
236 	ent->stored--;
237 	ent->reserved--;
238 
239 	if (ent->stored == ent->reserved) {
240 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
241 		WARN_ON(!xa_mkey);
242 		return (u32)xa_to_value(xa_mkey);
243 	}
244 
245 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
246 			     GFP_KERNEL);
247 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
248 	old = __xa_erase(&ent->mkeys, ent->reserved);
249 	WARN_ON(old);
250 	return (u32)xa_to_value(xa_mkey);
251 }
252 
253 static void create_mkey_callback(int status, struct mlx5_async_work *context)
254 {
255 	struct mlx5r_async_create_mkey *mkey_out =
256 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
257 	struct mlx5_cache_ent *ent = mkey_out->ent;
258 	struct mlx5_ib_dev *dev = ent->dev;
259 	unsigned long flags;
260 
261 	if (status) {
262 		create_mkey_warn(dev, status, mkey_out->out);
263 		kfree(mkey_out);
264 		xa_lock_irqsave(&ent->mkeys, flags);
265 		undo_push_reserve_mkey(ent);
266 		WRITE_ONCE(dev->fill_delay, 1);
267 		xa_unlock_irqrestore(&ent->mkeys, flags);
268 		mod_timer(&dev->delay_timer, jiffies + HZ);
269 		return;
270 	}
271 
272 	mkey_out->mkey |= mlx5_idx_to_mkey(
273 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
274 	WRITE_ONCE(dev->cache.last_add, jiffies);
275 
276 	xa_lock_irqsave(&ent->mkeys, flags);
277 	push_to_reserved(ent, mkey_out->mkey);
278 	/* If we are doing fill_to_high_water then keep going. */
279 	queue_adjust_cache_locked(ent);
280 	xa_unlock_irqrestore(&ent->mkeys, flags);
281 	kfree(mkey_out);
282 }
283 
284 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
285 {
286 	int ret = 0;
287 
288 	switch (access_mode) {
289 	case MLX5_MKC_ACCESS_MODE_MTT:
290 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
291 						   sizeof(struct mlx5_mtt));
292 		break;
293 	case MLX5_MKC_ACCESS_MODE_KSM:
294 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
295 						   sizeof(struct mlx5_klm));
296 		break;
297 	default:
298 		WARN_ON(1);
299 	}
300 	return ret;
301 }
302 
303 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
304 {
305 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
306 				      ent->dev->umrc.pd);
307 	MLX5_SET(mkc, mkc, free, 1);
308 	MLX5_SET(mkc, mkc, umr_en, 1);
309 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
310 	MLX5_SET(mkc, mkc, access_mode_4_2,
311 		(ent->rb_key.access_mode >> 2) & 0x7);
312 	MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
313 
314 	MLX5_SET(mkc, mkc, translations_octword_size,
315 		 get_mkc_octo_size(ent->rb_key.access_mode,
316 				   ent->rb_key.ndescs));
317 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
318 }
319 
320 /* Asynchronously schedule new MRs to be populated in the cache. */
321 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
322 {
323 	struct mlx5r_async_create_mkey *async_create;
324 	void *mkc;
325 	int err = 0;
326 	int i;
327 
328 	for (i = 0; i < num; i++) {
329 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
330 				       GFP_KERNEL);
331 		if (!async_create)
332 			return -ENOMEM;
333 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
334 				   memory_key_mkey_entry);
335 		set_cache_mkc(ent, mkc);
336 		async_create->ent = ent;
337 
338 		err = push_mkey(ent, true, NULL);
339 		if (err)
340 			goto free_async_create;
341 
342 		err = mlx5_ib_create_mkey_cb(async_create);
343 		if (err) {
344 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
345 			goto err_undo_reserve;
346 		}
347 	}
348 
349 	return 0;
350 
351 err_undo_reserve:
352 	xa_lock_irq(&ent->mkeys);
353 	undo_push_reserve_mkey(ent);
354 	xa_unlock_irq(&ent->mkeys);
355 free_async_create:
356 	kfree(async_create);
357 	return err;
358 }
359 
360 /* Synchronously create a MR in the cache */
361 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
362 {
363 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
364 	void *mkc;
365 	u32 *in;
366 	int err;
367 
368 	in = kzalloc(inlen, GFP_KERNEL);
369 	if (!in)
370 		return -ENOMEM;
371 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
372 	set_cache_mkc(ent, mkc);
373 
374 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
375 	if (err)
376 		goto free_in;
377 
378 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
379 free_in:
380 	kfree(in);
381 	return err;
382 }
383 
384 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
385 {
386 	u32 mkey;
387 
388 	lockdep_assert_held(&ent->mkeys.xa_lock);
389 	if (!ent->stored)
390 		return;
391 	mkey = pop_stored_mkey(ent);
392 	xa_unlock_irq(&ent->mkeys);
393 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
394 	xa_lock_irq(&ent->mkeys);
395 }
396 
397 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
398 				bool limit_fill)
399 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
400 {
401 	int err;
402 
403 	lockdep_assert_held(&ent->mkeys.xa_lock);
404 
405 	while (true) {
406 		if (limit_fill)
407 			target = ent->limit * 2;
408 		if (target == ent->reserved)
409 			return 0;
410 		if (target > ent->reserved) {
411 			u32 todo = target - ent->reserved;
412 
413 			xa_unlock_irq(&ent->mkeys);
414 			err = add_keys(ent, todo);
415 			if (err == -EAGAIN)
416 				usleep_range(3000, 5000);
417 			xa_lock_irq(&ent->mkeys);
418 			if (err) {
419 				if (err != -EAGAIN)
420 					return err;
421 			} else
422 				return 0;
423 		} else {
424 			remove_cache_mr_locked(ent);
425 		}
426 	}
427 }
428 
429 static ssize_t size_write(struct file *filp, const char __user *buf,
430 			  size_t count, loff_t *pos)
431 {
432 	struct mlx5_cache_ent *ent = filp->private_data;
433 	u32 target;
434 	int err;
435 
436 	err = kstrtou32_from_user(buf, count, 0, &target);
437 	if (err)
438 		return err;
439 
440 	/*
441 	 * Target is the new value of total_mrs the user requests, however we
442 	 * cannot free MRs that are in use. Compute the target value for stored
443 	 * mkeys.
444 	 */
445 	xa_lock_irq(&ent->mkeys);
446 	if (target < ent->in_use) {
447 		err = -EINVAL;
448 		goto err_unlock;
449 	}
450 	target = target - ent->in_use;
451 	if (target < ent->limit || target > ent->limit*2) {
452 		err = -EINVAL;
453 		goto err_unlock;
454 	}
455 	err = resize_available_mrs(ent, target, false);
456 	if (err)
457 		goto err_unlock;
458 	xa_unlock_irq(&ent->mkeys);
459 
460 	return count;
461 
462 err_unlock:
463 	xa_unlock_irq(&ent->mkeys);
464 	return err;
465 }
466 
467 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
468 			 loff_t *pos)
469 {
470 	struct mlx5_cache_ent *ent = filp->private_data;
471 	char lbuf[20];
472 	int err;
473 
474 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
475 	if (err < 0)
476 		return err;
477 
478 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
479 }
480 
481 static const struct file_operations size_fops = {
482 	.owner	= THIS_MODULE,
483 	.open	= simple_open,
484 	.write	= size_write,
485 	.read	= size_read,
486 };
487 
488 static ssize_t limit_write(struct file *filp, const char __user *buf,
489 			   size_t count, loff_t *pos)
490 {
491 	struct mlx5_cache_ent *ent = filp->private_data;
492 	u32 var;
493 	int err;
494 
495 	err = kstrtou32_from_user(buf, count, 0, &var);
496 	if (err)
497 		return err;
498 
499 	/*
500 	 * Upon set we immediately fill the cache to high water mark implied by
501 	 * the limit.
502 	 */
503 	xa_lock_irq(&ent->mkeys);
504 	ent->limit = var;
505 	err = resize_available_mrs(ent, 0, true);
506 	xa_unlock_irq(&ent->mkeys);
507 	if (err)
508 		return err;
509 	return count;
510 }
511 
512 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
513 			  loff_t *pos)
514 {
515 	struct mlx5_cache_ent *ent = filp->private_data;
516 	char lbuf[20];
517 	int err;
518 
519 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
520 	if (err < 0)
521 		return err;
522 
523 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
524 }
525 
526 static const struct file_operations limit_fops = {
527 	.owner	= THIS_MODULE,
528 	.open	= simple_open,
529 	.write	= limit_write,
530 	.read	= limit_read,
531 };
532 
533 static bool someone_adding(struct mlx5_mkey_cache *cache)
534 {
535 	struct mlx5_cache_ent *ent;
536 	struct rb_node *node;
537 	bool ret;
538 
539 	mutex_lock(&cache->rb_lock);
540 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
541 		ent = rb_entry(node, struct mlx5_cache_ent, node);
542 		xa_lock_irq(&ent->mkeys);
543 		ret = ent->stored < ent->limit;
544 		xa_unlock_irq(&ent->mkeys);
545 		if (ret) {
546 			mutex_unlock(&cache->rb_lock);
547 			return true;
548 		}
549 	}
550 	mutex_unlock(&cache->rb_lock);
551 	return false;
552 }
553 
554 /*
555  * Check if the bucket is outside the high/low water mark and schedule an async
556  * update. The cache refill has hysteresis, once the low water mark is hit it is
557  * refilled up to the high mark.
558  */
559 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
560 {
561 	lockdep_assert_held(&ent->mkeys.xa_lock);
562 
563 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
564 		return;
565 	if (ent->stored < ent->limit) {
566 		ent->fill_to_high_water = true;
567 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
568 	} else if (ent->fill_to_high_water &&
569 		   ent->reserved < 2 * ent->limit) {
570 		/*
571 		 * Once we start populating due to hitting a low water mark
572 		 * continue until we pass the high water mark.
573 		 */
574 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
575 	} else if (ent->stored == 2 * ent->limit) {
576 		ent->fill_to_high_water = false;
577 	} else if (ent->stored > 2 * ent->limit) {
578 		/* Queue deletion of excess entries */
579 		ent->fill_to_high_water = false;
580 		if (ent->stored != ent->reserved)
581 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
582 					   msecs_to_jiffies(1000));
583 		else
584 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
585 	}
586 }
587 
588 static void __cache_work_func(struct mlx5_cache_ent *ent)
589 {
590 	struct mlx5_ib_dev *dev = ent->dev;
591 	struct mlx5_mkey_cache *cache = &dev->cache;
592 	int err;
593 
594 	xa_lock_irq(&ent->mkeys);
595 	if (ent->disabled)
596 		goto out;
597 
598 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
599 	    !READ_ONCE(dev->fill_delay)) {
600 		xa_unlock_irq(&ent->mkeys);
601 		err = add_keys(ent, 1);
602 		xa_lock_irq(&ent->mkeys);
603 		if (ent->disabled)
604 			goto out;
605 		if (err) {
606 			/*
607 			 * EAGAIN only happens if there are pending MRs, so we
608 			 * will be rescheduled when storing them. The only
609 			 * failure path here is ENOMEM.
610 			 */
611 			if (err != -EAGAIN) {
612 				mlx5_ib_warn(
613 					dev,
614 					"add keys command failed, err %d\n",
615 					err);
616 				queue_delayed_work(cache->wq, &ent->dwork,
617 						   msecs_to_jiffies(1000));
618 			}
619 		}
620 	} else if (ent->stored > 2 * ent->limit) {
621 		bool need_delay;
622 
623 		/*
624 		 * The remove_cache_mr() logic is performed as garbage
625 		 * collection task. Such task is intended to be run when no
626 		 * other active processes are running.
627 		 *
628 		 * The need_resched() will return TRUE if there are user tasks
629 		 * to be activated in near future.
630 		 *
631 		 * In such case, we don't execute remove_cache_mr() and postpone
632 		 * the garbage collection work to try to run in next cycle, in
633 		 * order to free CPU resources to other tasks.
634 		 */
635 		xa_unlock_irq(&ent->mkeys);
636 		need_delay = need_resched() || someone_adding(cache) ||
637 			     !time_after(jiffies,
638 					 READ_ONCE(cache->last_add) + 300 * HZ);
639 		xa_lock_irq(&ent->mkeys);
640 		if (ent->disabled)
641 			goto out;
642 		if (need_delay) {
643 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
644 			goto out;
645 		}
646 		remove_cache_mr_locked(ent);
647 		queue_adjust_cache_locked(ent);
648 	}
649 out:
650 	xa_unlock_irq(&ent->mkeys);
651 }
652 
653 static void delayed_cache_work_func(struct work_struct *work)
654 {
655 	struct mlx5_cache_ent *ent;
656 
657 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
658 	__cache_work_func(ent);
659 }
660 
661 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
662 			     struct mlx5r_cache_rb_key key2)
663 {
664 	int res;
665 
666 	res = key1.ats - key2.ats;
667 	if (res)
668 		return res;
669 
670 	res = key1.access_mode - key2.access_mode;
671 	if (res)
672 		return res;
673 
674 	res = key1.access_flags - key2.access_flags;
675 	if (res)
676 		return res;
677 
678 	/*
679 	 * keep ndescs the last in the compare table since the find function
680 	 * searches for an exact match on all properties and only closest
681 	 * match in size.
682 	 */
683 	return key1.ndescs - key2.ndescs;
684 }
685 
686 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
687 				 struct mlx5_cache_ent *ent)
688 {
689 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
690 	struct mlx5_cache_ent *cur;
691 	int cmp;
692 
693 	/* Figure out where to put new node */
694 	while (*new) {
695 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
696 		parent = *new;
697 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
698 		if (cmp > 0)
699 			new = &((*new)->rb_left);
700 		if (cmp < 0)
701 			new = &((*new)->rb_right);
702 		if (cmp == 0)
703 			return -EEXIST;
704 	}
705 
706 	/* Add new node and rebalance tree. */
707 	rb_link_node(&ent->node, parent, new);
708 	rb_insert_color(&ent->node, &cache->rb_root);
709 
710 	return 0;
711 }
712 
713 static struct mlx5_cache_ent *
714 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
715 			   struct mlx5r_cache_rb_key rb_key)
716 {
717 	struct rb_node *node = dev->cache.rb_root.rb_node;
718 	struct mlx5_cache_ent *cur, *smallest = NULL;
719 	u64 ndescs_limit;
720 	int cmp;
721 
722 	/*
723 	 * Find the smallest ent with order >= requested_order.
724 	 */
725 	while (node) {
726 		cur = rb_entry(node, struct mlx5_cache_ent, node);
727 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
728 		if (cmp > 0) {
729 			smallest = cur;
730 			node = node->rb_left;
731 		}
732 		if (cmp < 0)
733 			node = node->rb_right;
734 		if (cmp == 0)
735 			return cur;
736 	}
737 
738 	/*
739 	 * Limit the usage of mkeys larger than twice the required size while
740 	 * also allowing the usage of smallest cache entry for small MRs.
741 	 */
742 	ndescs_limit = max_t(u64, rb_key.ndescs * 2,
743 			     MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS);
744 
745 	return (smallest &&
746 		smallest->rb_key.access_mode == rb_key.access_mode &&
747 		smallest->rb_key.access_flags == rb_key.access_flags &&
748 		smallest->rb_key.ats == rb_key.ats &&
749 		smallest->rb_key.ndescs <= ndescs_limit) ?
750 		       smallest :
751 		       NULL;
752 }
753 
754 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
755 					struct mlx5_cache_ent *ent,
756 					int access_flags)
757 {
758 	struct mlx5_ib_mr *mr;
759 	int err;
760 
761 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
762 	if (!mr)
763 		return ERR_PTR(-ENOMEM);
764 
765 	xa_lock_irq(&ent->mkeys);
766 	ent->in_use++;
767 
768 	if (!ent->stored) {
769 		queue_adjust_cache_locked(ent);
770 		ent->miss++;
771 		xa_unlock_irq(&ent->mkeys);
772 		err = create_cache_mkey(ent, &mr->mmkey.key);
773 		if (err) {
774 			xa_lock_irq(&ent->mkeys);
775 			ent->in_use--;
776 			xa_unlock_irq(&ent->mkeys);
777 			kfree(mr);
778 			return ERR_PTR(err);
779 		}
780 	} else {
781 		mr->mmkey.key = pop_stored_mkey(ent);
782 		queue_adjust_cache_locked(ent);
783 		xa_unlock_irq(&ent->mkeys);
784 	}
785 	mr->mmkey.cache_ent = ent;
786 	mr->mmkey.type = MLX5_MKEY_MR;
787 	init_waitqueue_head(&mr->mmkey.wait);
788 	return mr;
789 }
790 
791 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
792 					 int access_flags)
793 {
794 	int ret = 0;
795 
796 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
797 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
798 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
799 		ret |= IB_ACCESS_REMOTE_ATOMIC;
800 
801 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
802 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
803 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
804 		ret |= IB_ACCESS_RELAXED_ORDERING;
805 
806 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
807 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
808 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
809 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
810 		ret |= IB_ACCESS_RELAXED_ORDERING;
811 
812 	return ret;
813 }
814 
815 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
816 				       int access_flags, int access_mode,
817 				       int ndescs)
818 {
819 	struct mlx5r_cache_rb_key rb_key = {
820 		.ndescs = ndescs,
821 		.access_mode = access_mode,
822 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
823 	};
824 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
825 
826 	if (!ent)
827 		return ERR_PTR(-EOPNOTSUPP);
828 
829 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
830 }
831 
832 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
833 {
834 	u32 mkey;
835 
836 	cancel_delayed_work(&ent->dwork);
837 	xa_lock_irq(&ent->mkeys);
838 	while (ent->stored) {
839 		mkey = pop_stored_mkey(ent);
840 		xa_unlock_irq(&ent->mkeys);
841 		mlx5_core_destroy_mkey(dev->mdev, mkey);
842 		xa_lock_irq(&ent->mkeys);
843 	}
844 	xa_unlock_irq(&ent->mkeys);
845 }
846 
847 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
848 {
849 	if (!mlx5_debugfs_root || dev->is_rep)
850 		return;
851 
852 	debugfs_remove_recursive(dev->cache.fs_root);
853 	dev->cache.fs_root = NULL;
854 }
855 
856 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
857 					    struct mlx5_cache_ent *ent)
858 {
859 	int order = order_base_2(ent->rb_key.ndescs);
860 	struct dentry *dir;
861 
862 	if (!mlx5_debugfs_root || dev->is_rep)
863 		return;
864 
865 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
866 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
867 
868 	sprintf(ent->name, "%d", order);
869 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
870 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
871 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
872 	debugfs_create_ulong("cur", 0400, dir, &ent->stored);
873 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
874 }
875 
876 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
877 {
878 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
879 	struct mlx5_mkey_cache *cache = &dev->cache;
880 
881 	if (!mlx5_debugfs_root || dev->is_rep)
882 		return;
883 
884 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
885 }
886 
887 static void delay_time_func(struct timer_list *t)
888 {
889 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
890 
891 	WRITE_ONCE(dev->fill_delay, 0);
892 }
893 
894 struct mlx5_cache_ent *
895 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
896 			      struct mlx5r_cache_rb_key rb_key,
897 			      bool persistent_entry)
898 {
899 	struct mlx5_cache_ent *ent;
900 	int order;
901 	int ret;
902 
903 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
904 	if (!ent)
905 		return ERR_PTR(-ENOMEM);
906 
907 	xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
908 	ent->rb_key = rb_key;
909 	ent->dev = dev;
910 	ent->is_tmp = !persistent_entry;
911 
912 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
913 
914 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
915 	if (ret) {
916 		kfree(ent);
917 		return ERR_PTR(ret);
918 	}
919 
920 	if (persistent_entry) {
921 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
922 			order = MLX5_IMR_KSM_CACHE_ENTRY;
923 		else
924 			order = order_base_2(rb_key.ndescs) - 2;
925 
926 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
927 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
928 		    mlx5r_umr_can_load_pas(dev, 0))
929 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
930 		else
931 			ent->limit = 0;
932 
933 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
934 	} else {
935 		mod_delayed_work(ent->dev->cache.wq,
936 				 &ent->dev->cache.remove_ent_dwork,
937 				 msecs_to_jiffies(30 * 1000));
938 	}
939 
940 	return ent;
941 }
942 
943 static void remove_ent_work_func(struct work_struct *work)
944 {
945 	struct mlx5_mkey_cache *cache;
946 	struct mlx5_cache_ent *ent;
947 	struct rb_node *cur;
948 
949 	cache = container_of(work, struct mlx5_mkey_cache,
950 			     remove_ent_dwork.work);
951 	mutex_lock(&cache->rb_lock);
952 	cur = rb_last(&cache->rb_root);
953 	while (cur) {
954 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
955 		cur = rb_prev(cur);
956 		mutex_unlock(&cache->rb_lock);
957 
958 		xa_lock_irq(&ent->mkeys);
959 		if (!ent->is_tmp) {
960 			xa_unlock_irq(&ent->mkeys);
961 			mutex_lock(&cache->rb_lock);
962 			continue;
963 		}
964 		xa_unlock_irq(&ent->mkeys);
965 
966 		clean_keys(ent->dev, ent);
967 		mutex_lock(&cache->rb_lock);
968 	}
969 	mutex_unlock(&cache->rb_lock);
970 }
971 
972 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
973 {
974 	struct mlx5_mkey_cache *cache = &dev->cache;
975 	struct rb_root *root = &dev->cache.rb_root;
976 	struct mlx5r_cache_rb_key rb_key = {
977 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
978 	};
979 	struct mlx5_cache_ent *ent;
980 	struct rb_node *node;
981 	int ret;
982 	int i;
983 
984 	mutex_init(&dev->slow_path_mutex);
985 	mutex_init(&dev->cache.rb_lock);
986 	dev->cache.rb_root = RB_ROOT;
987 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
988 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
989 	if (!cache->wq) {
990 		mlx5_ib_warn(dev, "failed to create work queue\n");
991 		return -ENOMEM;
992 	}
993 
994 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
995 	timer_setup(&dev->delay_timer, delay_time_func, 0);
996 	mlx5_mkey_cache_debugfs_init(dev);
997 	mutex_lock(&cache->rb_lock);
998 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
999 		rb_key.ndescs = MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS << i;
1000 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1001 		if (IS_ERR(ent)) {
1002 			ret = PTR_ERR(ent);
1003 			goto err;
1004 		}
1005 	}
1006 
1007 	ret = mlx5_odp_init_mkey_cache(dev);
1008 	if (ret)
1009 		goto err;
1010 
1011 	mutex_unlock(&cache->rb_lock);
1012 	for (node = rb_first(root); node; node = rb_next(node)) {
1013 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1014 		xa_lock_irq(&ent->mkeys);
1015 		queue_adjust_cache_locked(ent);
1016 		xa_unlock_irq(&ent->mkeys);
1017 	}
1018 
1019 	return 0;
1020 
1021 err:
1022 	mutex_unlock(&cache->rb_lock);
1023 	mlx5_mkey_cache_debugfs_cleanup(dev);
1024 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1025 	return ret;
1026 }
1027 
1028 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1029 {
1030 	struct rb_root *root = &dev->cache.rb_root;
1031 	struct mlx5_cache_ent *ent;
1032 	struct rb_node *node;
1033 
1034 	if (!dev->cache.wq)
1035 		return;
1036 
1037 	mutex_lock(&dev->cache.rb_lock);
1038 	cancel_delayed_work(&dev->cache.remove_ent_dwork);
1039 	for (node = rb_first(root); node; node = rb_next(node)) {
1040 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1041 		xa_lock_irq(&ent->mkeys);
1042 		ent->disabled = true;
1043 		xa_unlock_irq(&ent->mkeys);
1044 		cancel_delayed_work(&ent->dwork);
1045 	}
1046 	mutex_unlock(&dev->cache.rb_lock);
1047 
1048 	/*
1049 	 * After all entries are disabled and will not reschedule on WQ,
1050 	 * flush it and all async commands.
1051 	 */
1052 	flush_workqueue(dev->cache.wq);
1053 
1054 	mlx5_mkey_cache_debugfs_cleanup(dev);
1055 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1056 
1057 	/* At this point all entries are disabled and have no concurrent work. */
1058 	mutex_lock(&dev->cache.rb_lock);
1059 	node = rb_first(root);
1060 	while (node) {
1061 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1062 		node = rb_next(node);
1063 		clean_keys(dev, ent);
1064 		rb_erase(&ent->node, root);
1065 		kfree(ent);
1066 	}
1067 	mutex_unlock(&dev->cache.rb_lock);
1068 
1069 	destroy_workqueue(dev->cache.wq);
1070 	del_timer_sync(&dev->delay_timer);
1071 }
1072 
1073 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1074 {
1075 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1076 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1077 	struct mlx5_ib_mr *mr;
1078 	void *mkc;
1079 	u32 *in;
1080 	int err;
1081 
1082 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1083 	if (!mr)
1084 		return ERR_PTR(-ENOMEM);
1085 
1086 	in = kzalloc(inlen, GFP_KERNEL);
1087 	if (!in) {
1088 		err = -ENOMEM;
1089 		goto err_free;
1090 	}
1091 
1092 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1093 
1094 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1095 	MLX5_SET(mkc, mkc, length64, 1);
1096 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1097 				      pd);
1098 
1099 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1100 	if (err)
1101 		goto err_in;
1102 
1103 	kfree(in);
1104 	mr->mmkey.type = MLX5_MKEY_MR;
1105 	mr->ibmr.lkey = mr->mmkey.key;
1106 	mr->ibmr.rkey = mr->mmkey.key;
1107 	mr->umem = NULL;
1108 
1109 	return &mr->ibmr;
1110 
1111 err_in:
1112 	kfree(in);
1113 
1114 err_free:
1115 	kfree(mr);
1116 
1117 	return ERR_PTR(err);
1118 }
1119 
1120 static int get_octo_len(u64 addr, u64 len, int page_shift)
1121 {
1122 	u64 page_size = 1ULL << page_shift;
1123 	u64 offset;
1124 	int npages;
1125 
1126 	offset = addr & (page_size - 1);
1127 	npages = ALIGN(len + offset, page_size) >> page_shift;
1128 	return (npages + 1) / 2;
1129 }
1130 
1131 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1132 {
1133 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1134 		return MKEY_CACHE_LAST_STD_ENTRY;
1135 	return MLX5_MAX_UMR_SHIFT;
1136 }
1137 
1138 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1139 			  u64 length, int access_flags, u64 iova)
1140 {
1141 	mr->ibmr.lkey = mr->mmkey.key;
1142 	mr->ibmr.rkey = mr->mmkey.key;
1143 	mr->ibmr.length = length;
1144 	mr->ibmr.device = &dev->ib_dev;
1145 	mr->ibmr.iova = iova;
1146 	mr->access_flags = access_flags;
1147 }
1148 
1149 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1150 						  u64 iova)
1151 {
1152 	/*
1153 	 * The alignment of iova has already been checked upon entering
1154 	 * UVERBS_METHOD_REG_DMABUF_MR
1155 	 */
1156 	umem->iova = iova;
1157 	return PAGE_SIZE;
1158 }
1159 
1160 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1161 					     struct ib_umem *umem, u64 iova,
1162 					     int access_flags)
1163 {
1164 	struct mlx5r_cache_rb_key rb_key = {
1165 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1166 	};
1167 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1168 	struct mlx5_cache_ent *ent;
1169 	struct mlx5_ib_mr *mr;
1170 	unsigned int page_size;
1171 
1172 	if (umem->is_dmabuf)
1173 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1174 	else
1175 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1176 						     0, iova);
1177 	if (WARN_ON(!page_size))
1178 		return ERR_PTR(-EINVAL);
1179 
1180 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1181 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1182 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1183 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1184 	/*
1185 	 * If the MR can't come from the cache then synchronously create an uncached
1186 	 * one.
1187 	 */
1188 	if (!ent) {
1189 		mutex_lock(&dev->slow_path_mutex);
1190 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1191 		mutex_unlock(&dev->slow_path_mutex);
1192 		if (IS_ERR(mr))
1193 			return mr;
1194 		mr->mmkey.rb_key = rb_key;
1195 		return mr;
1196 	}
1197 
1198 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1199 	if (IS_ERR(mr))
1200 		return mr;
1201 
1202 	mr->ibmr.pd = pd;
1203 	mr->umem = umem;
1204 	mr->page_shift = order_base_2(page_size);
1205 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1206 
1207 	return mr;
1208 }
1209 
1210 /*
1211  * If ibmr is NULL it will be allocated by reg_create.
1212  * Else, the given ibmr will be used.
1213  */
1214 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1215 				     u64 iova, int access_flags,
1216 				     unsigned int page_size, bool populate)
1217 {
1218 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1219 	struct mlx5_ib_mr *mr;
1220 	__be64 *pas;
1221 	void *mkc;
1222 	int inlen;
1223 	u32 *in;
1224 	int err;
1225 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1226 
1227 	if (!page_size)
1228 		return ERR_PTR(-EINVAL);
1229 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1230 	if (!mr)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	mr->ibmr.pd = pd;
1234 	mr->access_flags = access_flags;
1235 	mr->page_shift = order_base_2(page_size);
1236 
1237 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1238 	if (populate)
1239 		inlen += sizeof(*pas) *
1240 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1241 	in = kvzalloc(inlen, GFP_KERNEL);
1242 	if (!in) {
1243 		err = -ENOMEM;
1244 		goto err_1;
1245 	}
1246 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1247 	if (populate) {
1248 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1249 			err = -EINVAL;
1250 			goto err_2;
1251 		}
1252 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1253 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1254 	}
1255 
1256 	/* The pg_access bit allows setting the access flags
1257 	 * in the page list submitted with the command.
1258 	 */
1259 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1260 
1261 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1262 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1263 				      populate ? pd : dev->umrc.pd);
1264 	MLX5_SET(mkc, mkc, free, !populate);
1265 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1266 	MLX5_SET(mkc, mkc, umr_en, 1);
1267 
1268 	MLX5_SET64(mkc, mkc, len, umem->length);
1269 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1270 	MLX5_SET(mkc, mkc, translations_octword_size,
1271 		 get_octo_len(iova, umem->length, mr->page_shift));
1272 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1273 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1274 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1275 	if (populate) {
1276 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1277 			 get_octo_len(iova, umem->length, mr->page_shift));
1278 	}
1279 
1280 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1281 	if (err) {
1282 		mlx5_ib_warn(dev, "create mkey failed\n");
1283 		goto err_2;
1284 	}
1285 	mr->mmkey.type = MLX5_MKEY_MR;
1286 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1287 	mr->umem = umem;
1288 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1289 	kvfree(in);
1290 
1291 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1292 
1293 	return mr;
1294 
1295 err_2:
1296 	kvfree(in);
1297 err_1:
1298 	kfree(mr);
1299 	return ERR_PTR(err);
1300 }
1301 
1302 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1303 				       u64 length, int acc, int mode)
1304 {
1305 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1306 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1307 	struct mlx5_ib_mr *mr;
1308 	void *mkc;
1309 	u32 *in;
1310 	int err;
1311 
1312 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1313 	if (!mr)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	in = kzalloc(inlen, GFP_KERNEL);
1317 	if (!in) {
1318 		err = -ENOMEM;
1319 		goto err_free;
1320 	}
1321 
1322 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1323 
1324 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1325 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1326 	MLX5_SET64(mkc, mkc, len, length);
1327 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1328 
1329 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1330 	if (err)
1331 		goto err_in;
1332 
1333 	kfree(in);
1334 
1335 	set_mr_fields(dev, mr, length, acc, start_addr);
1336 
1337 	return &mr->ibmr;
1338 
1339 err_in:
1340 	kfree(in);
1341 
1342 err_free:
1343 	kfree(mr);
1344 
1345 	return ERR_PTR(err);
1346 }
1347 
1348 int mlx5_ib_advise_mr(struct ib_pd *pd,
1349 		      enum ib_uverbs_advise_mr_advice advice,
1350 		      u32 flags,
1351 		      struct ib_sge *sg_list,
1352 		      u32 num_sge,
1353 		      struct uverbs_attr_bundle *attrs)
1354 {
1355 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1356 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1357 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1358 		return -EOPNOTSUPP;
1359 
1360 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1361 					 sg_list, num_sge);
1362 }
1363 
1364 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1365 				struct ib_dm_mr_attr *attr,
1366 				struct uverbs_attr_bundle *attrs)
1367 {
1368 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1369 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1370 	u64 start_addr = mdm->dev_addr + attr->offset;
1371 	int mode;
1372 
1373 	switch (mdm->type) {
1374 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1375 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1376 			return ERR_PTR(-EINVAL);
1377 
1378 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1379 		start_addr -= pci_resource_start(dev->pdev, 0);
1380 		break;
1381 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1382 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1383 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1384 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1385 			return ERR_PTR(-EINVAL);
1386 
1387 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1388 		break;
1389 	default:
1390 		return ERR_PTR(-EINVAL);
1391 	}
1392 
1393 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1394 				 attr->access_flags, mode);
1395 }
1396 
1397 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1398 				    u64 iova, int access_flags)
1399 {
1400 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1401 	struct mlx5_ib_mr *mr = NULL;
1402 	bool xlt_with_umr;
1403 	int err;
1404 
1405 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1406 	if (xlt_with_umr) {
1407 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1408 	} else {
1409 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1410 			umem, mkc, log_page_size, 0, iova);
1411 
1412 		mutex_lock(&dev->slow_path_mutex);
1413 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1414 		mutex_unlock(&dev->slow_path_mutex);
1415 	}
1416 	if (IS_ERR(mr)) {
1417 		ib_umem_release(umem);
1418 		return ERR_CAST(mr);
1419 	}
1420 
1421 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1422 
1423 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1424 
1425 	if (xlt_with_umr) {
1426 		/*
1427 		 * If the MR was created with reg_create then it will be
1428 		 * configured properly but left disabled. It is safe to go ahead
1429 		 * and configure it again via UMR while enabling it.
1430 		 */
1431 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1432 		if (err) {
1433 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1434 			return ERR_PTR(err);
1435 		}
1436 	}
1437 	return &mr->ibmr;
1438 }
1439 
1440 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1441 					u64 iova, int access_flags,
1442 					struct ib_udata *udata)
1443 {
1444 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1445 	struct ib_umem_odp *odp;
1446 	struct mlx5_ib_mr *mr;
1447 	int err;
1448 
1449 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1450 		return ERR_PTR(-EOPNOTSUPP);
1451 
1452 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1453 	if (err)
1454 		return ERR_PTR(err);
1455 	if (!start && length == U64_MAX) {
1456 		if (iova != 0)
1457 			return ERR_PTR(-EINVAL);
1458 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1459 			return ERR_PTR(-EINVAL);
1460 
1461 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1462 		if (IS_ERR(mr))
1463 			return ERR_CAST(mr);
1464 		return &mr->ibmr;
1465 	}
1466 
1467 	/* ODP requires xlt update via umr to work. */
1468 	if (!mlx5r_umr_can_load_pas(dev, length))
1469 		return ERR_PTR(-EINVAL);
1470 
1471 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1472 			      &mlx5_mn_ops);
1473 	if (IS_ERR(odp))
1474 		return ERR_CAST(odp);
1475 
1476 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1477 	if (IS_ERR(mr)) {
1478 		ib_umem_release(&odp->umem);
1479 		return ERR_CAST(mr);
1480 	}
1481 	xa_init(&mr->implicit_children);
1482 
1483 	odp->private = mr;
1484 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1485 	if (err)
1486 		goto err_dereg_mr;
1487 
1488 	err = mlx5_ib_init_odp_mr(mr);
1489 	if (err)
1490 		goto err_dereg_mr;
1491 	return &mr->ibmr;
1492 
1493 err_dereg_mr:
1494 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1495 	return ERR_PTR(err);
1496 }
1497 
1498 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1499 				  u64 iova, int access_flags,
1500 				  struct ib_udata *udata)
1501 {
1502 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1503 	struct ib_umem *umem;
1504 
1505 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1506 		return ERR_PTR(-EOPNOTSUPP);
1507 
1508 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1509 		    start, iova, length, access_flags);
1510 
1511 	if (access_flags & IB_ACCESS_ON_DEMAND)
1512 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1513 					  udata);
1514 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1515 	if (IS_ERR(umem))
1516 		return ERR_CAST(umem);
1517 	return create_real_mr(pd, umem, iova, access_flags);
1518 }
1519 
1520 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1521 {
1522 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1523 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1524 
1525 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1526 
1527 	if (!umem_dmabuf->sgt)
1528 		return;
1529 
1530 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1531 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1532 }
1533 
1534 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1535 	.allow_peer2peer = 1,
1536 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1537 };
1538 
1539 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1540 					 u64 length, u64 virt_addr,
1541 					 int fd, int access_flags,
1542 					 struct ib_udata *udata)
1543 {
1544 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1545 	struct mlx5_ib_mr *mr = NULL;
1546 	struct ib_umem_dmabuf *umem_dmabuf;
1547 	int err;
1548 
1549 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1550 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1551 		return ERR_PTR(-EOPNOTSUPP);
1552 
1553 	mlx5_ib_dbg(dev,
1554 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1555 		    offset, virt_addr, length, fd, access_flags);
1556 
1557 	/* dmabuf requires xlt update via umr to work. */
1558 	if (!mlx5r_umr_can_load_pas(dev, length))
1559 		return ERR_PTR(-EINVAL);
1560 
1561 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1562 					 access_flags,
1563 					 &mlx5_ib_dmabuf_attach_ops);
1564 	if (IS_ERR(umem_dmabuf)) {
1565 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1566 			    PTR_ERR(umem_dmabuf));
1567 		return ERR_CAST(umem_dmabuf);
1568 	}
1569 
1570 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1571 				access_flags);
1572 	if (IS_ERR(mr)) {
1573 		ib_umem_release(&umem_dmabuf->umem);
1574 		return ERR_CAST(mr);
1575 	}
1576 
1577 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1578 
1579 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1580 	umem_dmabuf->private = mr;
1581 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1582 	if (err)
1583 		goto err_dereg_mr;
1584 
1585 	err = mlx5_ib_init_dmabuf_mr(mr);
1586 	if (err)
1587 		goto err_dereg_mr;
1588 	return &mr->ibmr;
1589 
1590 err_dereg_mr:
1591 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1592 	return ERR_PTR(err);
1593 }
1594 
1595 /*
1596  * True if the change in access flags can be done via UMR, only some access
1597  * flags can be updated.
1598  */
1599 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1600 				     unsigned int current_access_flags,
1601 				     unsigned int target_access_flags)
1602 {
1603 	unsigned int diffs = current_access_flags ^ target_access_flags;
1604 
1605 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1606 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1607 		      IB_ACCESS_REMOTE_ATOMIC))
1608 		return false;
1609 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1610 				      target_access_flags);
1611 }
1612 
1613 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1614 				  struct ib_umem *new_umem,
1615 				  int new_access_flags, u64 iova,
1616 				  unsigned long *page_size)
1617 {
1618 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1619 
1620 	/* We only track the allocated sizes of MRs from the cache */
1621 	if (!mr->mmkey.cache_ent)
1622 		return false;
1623 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1624 		return false;
1625 
1626 	*page_size =
1627 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1628 	if (WARN_ON(!*page_size))
1629 		return false;
1630 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1631 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1632 }
1633 
1634 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1635 			 int access_flags, int flags, struct ib_umem *new_umem,
1636 			 u64 iova, unsigned long page_size)
1637 {
1638 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1639 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1640 	struct ib_umem *old_umem = mr->umem;
1641 	int err;
1642 
1643 	/*
1644 	 * To keep everything simple the MR is revoked before we start to mess
1645 	 * with it. This ensure the change is atomic relative to any use of the
1646 	 * MR.
1647 	 */
1648 	err = mlx5r_umr_revoke_mr(mr);
1649 	if (err)
1650 		return err;
1651 
1652 	if (flags & IB_MR_REREG_PD) {
1653 		mr->ibmr.pd = pd;
1654 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1655 	}
1656 	if (flags & IB_MR_REREG_ACCESS) {
1657 		mr->access_flags = access_flags;
1658 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1659 	}
1660 
1661 	mr->ibmr.iova = iova;
1662 	mr->ibmr.length = new_umem->length;
1663 	mr->page_shift = order_base_2(page_size);
1664 	mr->umem = new_umem;
1665 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1666 	if (err) {
1667 		/*
1668 		 * The MR is revoked at this point so there is no issue to free
1669 		 * new_umem.
1670 		 */
1671 		mr->umem = old_umem;
1672 		return err;
1673 	}
1674 
1675 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1676 	ib_umem_release(old_umem);
1677 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1678 	return 0;
1679 }
1680 
1681 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1682 				    u64 length, u64 iova, int new_access_flags,
1683 				    struct ib_pd *new_pd,
1684 				    struct ib_udata *udata)
1685 {
1686 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1687 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1688 	int err;
1689 
1690 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1691 		return ERR_PTR(-EOPNOTSUPP);
1692 
1693 	mlx5_ib_dbg(
1694 		dev,
1695 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1696 		start, iova, length, new_access_flags);
1697 
1698 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1699 		return ERR_PTR(-EOPNOTSUPP);
1700 
1701 	if (!(flags & IB_MR_REREG_ACCESS))
1702 		new_access_flags = mr->access_flags;
1703 	if (!(flags & IB_MR_REREG_PD))
1704 		new_pd = ib_mr->pd;
1705 
1706 	if (!(flags & IB_MR_REREG_TRANS)) {
1707 		struct ib_umem *umem;
1708 
1709 		/* Fast path for PD/access change */
1710 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1711 					     new_access_flags)) {
1712 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1713 							new_access_flags);
1714 			if (err)
1715 				return ERR_PTR(err);
1716 			return NULL;
1717 		}
1718 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1719 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1720 			goto recreate;
1721 
1722 		/*
1723 		 * Only one active MR can refer to a umem at one time, revoke
1724 		 * the old MR before assigning the umem to the new one.
1725 		 */
1726 		err = mlx5r_umr_revoke_mr(mr);
1727 		if (err)
1728 			return ERR_PTR(err);
1729 		umem = mr->umem;
1730 		mr->umem = NULL;
1731 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1732 
1733 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1734 				      new_access_flags);
1735 	}
1736 
1737 	/*
1738 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1739 	 * but the logic around releasing the umem is different
1740 	 */
1741 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1742 		goto recreate;
1743 
1744 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1745 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1746 		struct ib_umem *new_umem;
1747 		unsigned long page_size;
1748 
1749 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1750 				       new_access_flags);
1751 		if (IS_ERR(new_umem))
1752 			return ERR_CAST(new_umem);
1753 
1754 		/* Fast path for PAS change */
1755 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1756 					  &page_size)) {
1757 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1758 					    new_umem, iova, page_size);
1759 			if (err) {
1760 				ib_umem_release(new_umem);
1761 				return ERR_PTR(err);
1762 			}
1763 			return NULL;
1764 		}
1765 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1766 	}
1767 
1768 	/*
1769 	 * Everything else has no state we can preserve, just create a new MR
1770 	 * from scratch
1771 	 */
1772 recreate:
1773 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1774 				   new_access_flags, udata);
1775 }
1776 
1777 static int
1778 mlx5_alloc_priv_descs(struct ib_device *device,
1779 		      struct mlx5_ib_mr *mr,
1780 		      int ndescs,
1781 		      int desc_size)
1782 {
1783 	struct mlx5_ib_dev *dev = to_mdev(device);
1784 	struct device *ddev = &dev->mdev->pdev->dev;
1785 	int size = ndescs * desc_size;
1786 	int add_size;
1787 	int ret;
1788 
1789 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1790 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1791 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1792 
1793 		add_size = min_t(int, end - size, add_size);
1794 	}
1795 
1796 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1797 	if (!mr->descs_alloc)
1798 		return -ENOMEM;
1799 
1800 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1801 
1802 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1803 	if (dma_mapping_error(ddev, mr->desc_map)) {
1804 		ret = -ENOMEM;
1805 		goto err;
1806 	}
1807 
1808 	return 0;
1809 err:
1810 	kfree(mr->descs_alloc);
1811 
1812 	return ret;
1813 }
1814 
1815 static void
1816 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1817 {
1818 	if (!mr->umem && mr->descs) {
1819 		struct ib_device *device = mr->ibmr.device;
1820 		int size = mr->max_descs * mr->desc_size;
1821 		struct mlx5_ib_dev *dev = to_mdev(device);
1822 
1823 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1824 				 DMA_TO_DEVICE);
1825 		kfree(mr->descs_alloc);
1826 		mr->descs = NULL;
1827 	}
1828 }
1829 
1830 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1831 				    struct mlx5_ib_mr *mr)
1832 {
1833 	struct mlx5_mkey_cache *cache = &dev->cache;
1834 	struct mlx5_cache_ent *ent;
1835 	int ret;
1836 
1837 	if (mr->mmkey.cache_ent) {
1838 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1839 		mr->mmkey.cache_ent->in_use--;
1840 		goto end;
1841 	}
1842 
1843 	mutex_lock(&cache->rb_lock);
1844 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1845 	if (ent) {
1846 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1847 			if (ent->disabled) {
1848 				mutex_unlock(&cache->rb_lock);
1849 				return -EOPNOTSUPP;
1850 			}
1851 			mr->mmkey.cache_ent = ent;
1852 			xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1853 			mutex_unlock(&cache->rb_lock);
1854 			goto end;
1855 		}
1856 	}
1857 
1858 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1859 	mutex_unlock(&cache->rb_lock);
1860 	if (IS_ERR(ent))
1861 		return PTR_ERR(ent);
1862 
1863 	mr->mmkey.cache_ent = ent;
1864 	xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1865 
1866 end:
1867 	ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1868 			       xa_mk_value(mr->mmkey.key));
1869 	xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1870 	return ret;
1871 }
1872 
1873 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1874 {
1875 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1876 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1877 	int rc;
1878 
1879 	/*
1880 	 * Any async use of the mr must hold the refcount, once the refcount
1881 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1882 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1883 	 */
1884 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1885 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1886 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1887 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1888 
1889 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1890 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1891 			   mr->sig, NULL, GFP_KERNEL);
1892 
1893 		if (mr->mtt_mr) {
1894 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1895 			if (rc)
1896 				return rc;
1897 			mr->mtt_mr = NULL;
1898 		}
1899 		if (mr->klm_mr) {
1900 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1901 			if (rc)
1902 				return rc;
1903 			mr->klm_mr = NULL;
1904 		}
1905 
1906 		if (mlx5_core_destroy_psv(dev->mdev,
1907 					  mr->sig->psv_memory.psv_idx))
1908 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1909 				     mr->sig->psv_memory.psv_idx);
1910 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1911 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1912 				     mr->sig->psv_wire.psv_idx);
1913 		kfree(mr->sig);
1914 		mr->sig = NULL;
1915 	}
1916 
1917 	/* Stop DMA */
1918 	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1919 		if (mlx5r_umr_revoke_mr(mr) ||
1920 		    cache_ent_find_and_store(dev, mr))
1921 			mr->mmkey.cache_ent = NULL;
1922 
1923 	if (!mr->mmkey.cache_ent) {
1924 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1925 		if (rc)
1926 			return rc;
1927 	}
1928 
1929 	if (mr->umem) {
1930 		bool is_odp = is_odp_mr(mr);
1931 
1932 		if (!is_odp)
1933 			atomic_sub(ib_umem_num_pages(mr->umem),
1934 				   &dev->mdev->priv.reg_pages);
1935 		ib_umem_release(mr->umem);
1936 		if (is_odp)
1937 			mlx5_ib_free_odp_mr(mr);
1938 	}
1939 
1940 	if (!mr->mmkey.cache_ent)
1941 		mlx5_free_priv_descs(mr);
1942 
1943 	kfree(mr);
1944 	return 0;
1945 }
1946 
1947 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1948 				   int access_mode, int page_shift)
1949 {
1950 	void *mkc;
1951 
1952 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1953 
1954 	/* This is only used from the kernel, so setting the PD is OK. */
1955 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1956 	MLX5_SET(mkc, mkc, free, 1);
1957 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1958 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1959 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1960 	MLX5_SET(mkc, mkc, umr_en, 1);
1961 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1962 }
1963 
1964 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1965 				  int ndescs, int desc_size, int page_shift,
1966 				  int access_mode, u32 *in, int inlen)
1967 {
1968 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1969 	int err;
1970 
1971 	mr->access_mode = access_mode;
1972 	mr->desc_size = desc_size;
1973 	mr->max_descs = ndescs;
1974 
1975 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1976 	if (err)
1977 		return err;
1978 
1979 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1980 
1981 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1982 	if (err)
1983 		goto err_free_descs;
1984 
1985 	mr->mmkey.type = MLX5_MKEY_MR;
1986 	mr->ibmr.lkey = mr->mmkey.key;
1987 	mr->ibmr.rkey = mr->mmkey.key;
1988 
1989 	return 0;
1990 
1991 err_free_descs:
1992 	mlx5_free_priv_descs(mr);
1993 	return err;
1994 }
1995 
1996 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1997 				u32 max_num_sg, u32 max_num_meta_sg,
1998 				int desc_size, int access_mode)
1999 {
2000 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2001 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2002 	int page_shift = 0;
2003 	struct mlx5_ib_mr *mr;
2004 	u32 *in;
2005 	int err;
2006 
2007 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2008 	if (!mr)
2009 		return ERR_PTR(-ENOMEM);
2010 
2011 	mr->ibmr.pd = pd;
2012 	mr->ibmr.device = pd->device;
2013 
2014 	in = kzalloc(inlen, GFP_KERNEL);
2015 	if (!in) {
2016 		err = -ENOMEM;
2017 		goto err_free;
2018 	}
2019 
2020 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2021 		page_shift = PAGE_SHIFT;
2022 
2023 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2024 				     access_mode, in, inlen);
2025 	if (err)
2026 		goto err_free_in;
2027 
2028 	mr->umem = NULL;
2029 	kfree(in);
2030 
2031 	return mr;
2032 
2033 err_free_in:
2034 	kfree(in);
2035 err_free:
2036 	kfree(mr);
2037 	return ERR_PTR(err);
2038 }
2039 
2040 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2041 				    int ndescs, u32 *in, int inlen)
2042 {
2043 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2044 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2045 				      inlen);
2046 }
2047 
2048 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2049 				    int ndescs, u32 *in, int inlen)
2050 {
2051 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2052 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2053 }
2054 
2055 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2056 				      int max_num_sg, int max_num_meta_sg,
2057 				      u32 *in, int inlen)
2058 {
2059 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2060 	u32 psv_index[2];
2061 	void *mkc;
2062 	int err;
2063 
2064 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2065 	if (!mr->sig)
2066 		return -ENOMEM;
2067 
2068 	/* create mem & wire PSVs */
2069 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2070 	if (err)
2071 		goto err_free_sig;
2072 
2073 	mr->sig->psv_memory.psv_idx = psv_index[0];
2074 	mr->sig->psv_wire.psv_idx = psv_index[1];
2075 
2076 	mr->sig->sig_status_checked = true;
2077 	mr->sig->sig_err_exists = false;
2078 	/* Next UMR, Arm SIGERR */
2079 	++mr->sig->sigerr_count;
2080 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2081 					 sizeof(struct mlx5_klm),
2082 					 MLX5_MKC_ACCESS_MODE_KLMS);
2083 	if (IS_ERR(mr->klm_mr)) {
2084 		err = PTR_ERR(mr->klm_mr);
2085 		goto err_destroy_psv;
2086 	}
2087 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2088 					 sizeof(struct mlx5_mtt),
2089 					 MLX5_MKC_ACCESS_MODE_MTT);
2090 	if (IS_ERR(mr->mtt_mr)) {
2091 		err = PTR_ERR(mr->mtt_mr);
2092 		goto err_free_klm_mr;
2093 	}
2094 
2095 	/* Set bsf descriptors for mkey */
2096 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2097 	MLX5_SET(mkc, mkc, bsf_en, 1);
2098 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2099 
2100 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2101 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2102 	if (err)
2103 		goto err_free_mtt_mr;
2104 
2105 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2106 			      mr->sig, GFP_KERNEL));
2107 	if (err)
2108 		goto err_free_descs;
2109 	return 0;
2110 
2111 err_free_descs:
2112 	destroy_mkey(dev, mr);
2113 	mlx5_free_priv_descs(mr);
2114 err_free_mtt_mr:
2115 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2116 	mr->mtt_mr = NULL;
2117 err_free_klm_mr:
2118 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2119 	mr->klm_mr = NULL;
2120 err_destroy_psv:
2121 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2122 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2123 			     mr->sig->psv_memory.psv_idx);
2124 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2125 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2126 			     mr->sig->psv_wire.psv_idx);
2127 err_free_sig:
2128 	kfree(mr->sig);
2129 
2130 	return err;
2131 }
2132 
2133 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2134 					enum ib_mr_type mr_type, u32 max_num_sg,
2135 					u32 max_num_meta_sg)
2136 {
2137 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2138 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2139 	int ndescs = ALIGN(max_num_sg, 4);
2140 	struct mlx5_ib_mr *mr;
2141 	u32 *in;
2142 	int err;
2143 
2144 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2145 	if (!mr)
2146 		return ERR_PTR(-ENOMEM);
2147 
2148 	in = kzalloc(inlen, GFP_KERNEL);
2149 	if (!in) {
2150 		err = -ENOMEM;
2151 		goto err_free;
2152 	}
2153 
2154 	mr->ibmr.device = pd->device;
2155 	mr->umem = NULL;
2156 
2157 	switch (mr_type) {
2158 	case IB_MR_TYPE_MEM_REG:
2159 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2160 		break;
2161 	case IB_MR_TYPE_SG_GAPS:
2162 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2163 		break;
2164 	case IB_MR_TYPE_INTEGRITY:
2165 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2166 						 max_num_meta_sg, in, inlen);
2167 		break;
2168 	default:
2169 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2170 		err = -EINVAL;
2171 	}
2172 
2173 	if (err)
2174 		goto err_free_in;
2175 
2176 	kfree(in);
2177 
2178 	return &mr->ibmr;
2179 
2180 err_free_in:
2181 	kfree(in);
2182 err_free:
2183 	kfree(mr);
2184 	return ERR_PTR(err);
2185 }
2186 
2187 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2188 			       u32 max_num_sg)
2189 {
2190 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2191 }
2192 
2193 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2194 					 u32 max_num_sg, u32 max_num_meta_sg)
2195 {
2196 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2197 				  max_num_meta_sg);
2198 }
2199 
2200 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2201 {
2202 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2203 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2204 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2205 	unsigned int ndescs;
2206 	u32 *in = NULL;
2207 	void *mkc;
2208 	int err;
2209 	struct mlx5_ib_alloc_mw req = {};
2210 	struct {
2211 		__u32	comp_mask;
2212 		__u32	response_length;
2213 	} resp = {};
2214 
2215 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2216 	if (err)
2217 		return err;
2218 
2219 	if (req.comp_mask || req.reserved1 || req.reserved2)
2220 		return -EOPNOTSUPP;
2221 
2222 	if (udata->inlen > sizeof(req) &&
2223 	    !ib_is_udata_cleared(udata, sizeof(req),
2224 				 udata->inlen - sizeof(req)))
2225 		return -EOPNOTSUPP;
2226 
2227 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2228 
2229 	in = kzalloc(inlen, GFP_KERNEL);
2230 	if (!in)
2231 		return -ENOMEM;
2232 
2233 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2234 
2235 	MLX5_SET(mkc, mkc, free, 1);
2236 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2237 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2238 	MLX5_SET(mkc, mkc, umr_en, 1);
2239 	MLX5_SET(mkc, mkc, lr, 1);
2240 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2241 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2242 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2243 
2244 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2245 	if (err)
2246 		goto free;
2247 
2248 	mw->mmkey.type = MLX5_MKEY_MW;
2249 	ibmw->rkey = mw->mmkey.key;
2250 	mw->mmkey.ndescs = ndescs;
2251 
2252 	resp.response_length =
2253 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2254 	if (resp.response_length) {
2255 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2256 		if (err)
2257 			goto free_mkey;
2258 	}
2259 
2260 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2261 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2262 		if (err)
2263 			goto free_mkey;
2264 	}
2265 
2266 	kfree(in);
2267 	return 0;
2268 
2269 free_mkey:
2270 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2271 free:
2272 	kfree(in);
2273 	return err;
2274 }
2275 
2276 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2277 {
2278 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2279 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2280 
2281 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2282 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2283 		/*
2284 		 * pagefault_single_data_segment() may be accessing mmw
2285 		 * if the user bound an ODP MR to this MW.
2286 		 */
2287 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2288 
2289 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2290 }
2291 
2292 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2293 			    struct ib_mr_status *mr_status)
2294 {
2295 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2296 	int ret = 0;
2297 
2298 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2299 		pr_err("Invalid status check mask\n");
2300 		ret = -EINVAL;
2301 		goto done;
2302 	}
2303 
2304 	mr_status->fail_status = 0;
2305 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2306 		if (!mmr->sig) {
2307 			ret = -EINVAL;
2308 			pr_err("signature status check requested on a non-signature enabled MR\n");
2309 			goto done;
2310 		}
2311 
2312 		mmr->sig->sig_status_checked = true;
2313 		if (!mmr->sig->sig_err_exists)
2314 			goto done;
2315 
2316 		if (ibmr->lkey == mmr->sig->err_item.key)
2317 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2318 			       sizeof(mr_status->sig_err));
2319 		else {
2320 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2321 			mr_status->sig_err.sig_err_offset = 0;
2322 			mr_status->sig_err.key = mmr->sig->err_item.key;
2323 		}
2324 
2325 		mmr->sig->sig_err_exists = false;
2326 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2327 	}
2328 
2329 done:
2330 	return ret;
2331 }
2332 
2333 static int
2334 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2335 			int data_sg_nents, unsigned int *data_sg_offset,
2336 			struct scatterlist *meta_sg, int meta_sg_nents,
2337 			unsigned int *meta_sg_offset)
2338 {
2339 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2340 	unsigned int sg_offset = 0;
2341 	int n = 0;
2342 
2343 	mr->meta_length = 0;
2344 	if (data_sg_nents == 1) {
2345 		n++;
2346 		mr->mmkey.ndescs = 1;
2347 		if (data_sg_offset)
2348 			sg_offset = *data_sg_offset;
2349 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2350 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2351 		if (meta_sg_nents == 1) {
2352 			n++;
2353 			mr->meta_ndescs = 1;
2354 			if (meta_sg_offset)
2355 				sg_offset = *meta_sg_offset;
2356 			else
2357 				sg_offset = 0;
2358 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2359 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2360 		}
2361 		ibmr->length = mr->data_length + mr->meta_length;
2362 	}
2363 
2364 	return n;
2365 }
2366 
2367 static int
2368 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2369 		   struct scatterlist *sgl,
2370 		   unsigned short sg_nents,
2371 		   unsigned int *sg_offset_p,
2372 		   struct scatterlist *meta_sgl,
2373 		   unsigned short meta_sg_nents,
2374 		   unsigned int *meta_sg_offset_p)
2375 {
2376 	struct scatterlist *sg = sgl;
2377 	struct mlx5_klm *klms = mr->descs;
2378 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2379 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2380 	int i, j = 0;
2381 
2382 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2383 	mr->ibmr.length = 0;
2384 
2385 	for_each_sg(sgl, sg, sg_nents, i) {
2386 		if (unlikely(i >= mr->max_descs))
2387 			break;
2388 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2389 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2390 		klms[i].key = cpu_to_be32(lkey);
2391 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2392 
2393 		sg_offset = 0;
2394 	}
2395 
2396 	if (sg_offset_p)
2397 		*sg_offset_p = sg_offset;
2398 
2399 	mr->mmkey.ndescs = i;
2400 	mr->data_length = mr->ibmr.length;
2401 
2402 	if (meta_sg_nents) {
2403 		sg = meta_sgl;
2404 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2405 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2406 			if (unlikely(i + j >= mr->max_descs))
2407 				break;
2408 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2409 						     sg_offset);
2410 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2411 							 sg_offset);
2412 			klms[i + j].key = cpu_to_be32(lkey);
2413 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2414 
2415 			sg_offset = 0;
2416 		}
2417 		if (meta_sg_offset_p)
2418 			*meta_sg_offset_p = sg_offset;
2419 
2420 		mr->meta_ndescs = j;
2421 		mr->meta_length = mr->ibmr.length - mr->data_length;
2422 	}
2423 
2424 	return i + j;
2425 }
2426 
2427 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2428 {
2429 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2430 	__be64 *descs;
2431 
2432 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2433 		return -ENOMEM;
2434 
2435 	descs = mr->descs;
2436 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2437 
2438 	return 0;
2439 }
2440 
2441 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2442 {
2443 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2444 	__be64 *descs;
2445 
2446 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2447 		return -ENOMEM;
2448 
2449 	descs = mr->descs;
2450 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2451 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2452 
2453 	return 0;
2454 }
2455 
2456 static int
2457 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2458 			 int data_sg_nents, unsigned int *data_sg_offset,
2459 			 struct scatterlist *meta_sg, int meta_sg_nents,
2460 			 unsigned int *meta_sg_offset)
2461 {
2462 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2463 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2464 	int n;
2465 
2466 	pi_mr->mmkey.ndescs = 0;
2467 	pi_mr->meta_ndescs = 0;
2468 	pi_mr->meta_length = 0;
2469 
2470 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2471 				   pi_mr->desc_size * pi_mr->max_descs,
2472 				   DMA_TO_DEVICE);
2473 
2474 	pi_mr->ibmr.page_size = ibmr->page_size;
2475 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2476 			   mlx5_set_page);
2477 	if (n != data_sg_nents)
2478 		return n;
2479 
2480 	pi_mr->data_iova = pi_mr->ibmr.iova;
2481 	pi_mr->data_length = pi_mr->ibmr.length;
2482 	pi_mr->ibmr.length = pi_mr->data_length;
2483 	ibmr->length = pi_mr->data_length;
2484 
2485 	if (meta_sg_nents) {
2486 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2487 		u64 iova = pi_mr->data_iova;
2488 
2489 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2490 				    meta_sg_offset, mlx5_set_page_pi);
2491 
2492 		pi_mr->meta_length = pi_mr->ibmr.length;
2493 		/*
2494 		 * PI address for the HW is the offset of the metadata address
2495 		 * relative to the first data page address.
2496 		 * It equals to first data page address + size of data pages +
2497 		 * metadata offset at the first metadata page
2498 		 */
2499 		pi_mr->pi_iova = (iova & page_mask) +
2500 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2501 				 (pi_mr->ibmr.iova & ~page_mask);
2502 		/*
2503 		 * In order to use one MTT MR for data and metadata, we register
2504 		 * also the gaps between the end of the data and the start of
2505 		 * the metadata (the sig MR will verify that the HW will access
2506 		 * to right addresses). This mapping is safe because we use
2507 		 * internal mkey for the registration.
2508 		 */
2509 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2510 		pi_mr->ibmr.iova = iova;
2511 		ibmr->length += pi_mr->meta_length;
2512 	}
2513 
2514 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2515 				      pi_mr->desc_size * pi_mr->max_descs,
2516 				      DMA_TO_DEVICE);
2517 
2518 	return n;
2519 }
2520 
2521 static int
2522 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2523 			 int data_sg_nents, unsigned int *data_sg_offset,
2524 			 struct scatterlist *meta_sg, int meta_sg_nents,
2525 			 unsigned int *meta_sg_offset)
2526 {
2527 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2528 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2529 	int n;
2530 
2531 	pi_mr->mmkey.ndescs = 0;
2532 	pi_mr->meta_ndescs = 0;
2533 	pi_mr->meta_length = 0;
2534 
2535 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2536 				   pi_mr->desc_size * pi_mr->max_descs,
2537 				   DMA_TO_DEVICE);
2538 
2539 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2540 			       meta_sg, meta_sg_nents, meta_sg_offset);
2541 
2542 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2543 				      pi_mr->desc_size * pi_mr->max_descs,
2544 				      DMA_TO_DEVICE);
2545 
2546 	/* This is zero-based memory region */
2547 	pi_mr->data_iova = 0;
2548 	pi_mr->ibmr.iova = 0;
2549 	pi_mr->pi_iova = pi_mr->data_length;
2550 	ibmr->length = pi_mr->ibmr.length;
2551 
2552 	return n;
2553 }
2554 
2555 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2556 			 int data_sg_nents, unsigned int *data_sg_offset,
2557 			 struct scatterlist *meta_sg, int meta_sg_nents,
2558 			 unsigned int *meta_sg_offset)
2559 {
2560 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2561 	struct mlx5_ib_mr *pi_mr = NULL;
2562 	int n;
2563 
2564 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2565 
2566 	mr->mmkey.ndescs = 0;
2567 	mr->data_length = 0;
2568 	mr->data_iova = 0;
2569 	mr->meta_ndescs = 0;
2570 	mr->pi_iova = 0;
2571 	/*
2572 	 * As a performance optimization, if possible, there is no need to
2573 	 * perform UMR operation to register the data/metadata buffers.
2574 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2575 	 * Fallback to UMR only in case of a failure.
2576 	 */
2577 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2578 				    data_sg_offset, meta_sg, meta_sg_nents,
2579 				    meta_sg_offset);
2580 	if (n == data_sg_nents + meta_sg_nents)
2581 		goto out;
2582 	/*
2583 	 * As a performance optimization, if possible, there is no need to map
2584 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2585 	 * descriptors and fallback to KLM only in case of a failure.
2586 	 * It's more efficient for the HW to work with MTT descriptors
2587 	 * (especially in high load).
2588 	 * Use KLM (indirect access) only if it's mandatory.
2589 	 */
2590 	pi_mr = mr->mtt_mr;
2591 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2592 				     data_sg_offset, meta_sg, meta_sg_nents,
2593 				     meta_sg_offset);
2594 	if (n == data_sg_nents + meta_sg_nents)
2595 		goto out;
2596 
2597 	pi_mr = mr->klm_mr;
2598 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2599 				     data_sg_offset, meta_sg, meta_sg_nents,
2600 				     meta_sg_offset);
2601 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2602 		return -ENOMEM;
2603 
2604 out:
2605 	/* This is zero-based memory region */
2606 	ibmr->iova = 0;
2607 	mr->pi_mr = pi_mr;
2608 	if (pi_mr)
2609 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2610 	else
2611 		ibmr->sig_attrs->meta_length = mr->meta_length;
2612 
2613 	return 0;
2614 }
2615 
2616 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2617 		      unsigned int *sg_offset)
2618 {
2619 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2620 	int n;
2621 
2622 	mr->mmkey.ndescs = 0;
2623 
2624 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2625 				   mr->desc_size * mr->max_descs,
2626 				   DMA_TO_DEVICE);
2627 
2628 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2629 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2630 				       NULL);
2631 	else
2632 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2633 				mlx5_set_page);
2634 
2635 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2636 				      mr->desc_size * mr->max_descs,
2637 				      DMA_TO_DEVICE);
2638 
2639 	return n;
2640 }
2641