xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 87e9585b)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 
48 /*
49  * We can't use an array for xlt_emergency_page because dma_map_single doesn't
50  * work on kernel modules memory
51  */
52 void *xlt_emergency_page;
53 static DEFINE_MUTEX(xlt_emergency_page_mutex);
54 
55 enum {
56 	MAX_PENDING_REG_MR = 8,
57 };
58 
59 #define MLX5_UMR_ALIGN 2048
60 
61 static void
62 create_mkey_callback(int status, struct mlx5_async_work *context);
63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
64 				     u64 iova, int access_flags,
65 				     unsigned int page_size, bool populate);
66 
67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
68 					  struct ib_pd *pd)
69 {
70 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
71 	bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev);
72 
73 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
74 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
75 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
76 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
77 	MLX5_SET(mkc, mkc, lr, 1);
78 
79 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
80 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
81 			 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
82 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
83 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
84 			 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
85 
86 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
87 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
88 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
89 }
90 
91 static void
92 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
93 		    u32 *in)
94 {
95 	u8 key = atomic_inc_return(&dev->mkey_var);
96 	void *mkc;
97 
98 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
99 	MLX5_SET(mkc, mkc, mkey_7_0, key);
100 	mkey->key = key;
101 }
102 
103 static int
104 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
105 		    u32 *in, int inlen)
106 {
107 	assign_mkey_variant(dev, mkey, in);
108 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
109 }
110 
111 static int
112 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
113 		       struct mlx5_core_mkey *mkey,
114 		       struct mlx5_async_ctx *async_ctx,
115 		       u32 *in, int inlen, u32 *out, int outlen,
116 		       struct mlx5_async_work *context)
117 {
118 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
119 	assign_mkey_variant(dev, mkey, in);
120 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
121 				create_mkey_callback, context);
122 }
123 
124 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
126 
127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
128 {
129 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
130 }
131 
132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
133 {
134 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
135 
136 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
137 }
138 
139 static void create_mkey_callback(int status, struct mlx5_async_work *context)
140 {
141 	struct mlx5_ib_mr *mr =
142 		container_of(context, struct mlx5_ib_mr, cb_work);
143 	struct mlx5_cache_ent *ent = mr->cache_ent;
144 	struct mlx5_ib_dev *dev = ent->dev;
145 	unsigned long flags;
146 
147 	if (status) {
148 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
149 		kfree(mr);
150 		spin_lock_irqsave(&ent->lock, flags);
151 		ent->pending--;
152 		WRITE_ONCE(dev->fill_delay, 1);
153 		spin_unlock_irqrestore(&ent->lock, flags);
154 		mod_timer(&dev->delay_timer, jiffies + HZ);
155 		return;
156 	}
157 
158 	mr->mmkey.type = MLX5_MKEY_MR;
159 	mr->mmkey.key |= mlx5_idx_to_mkey(
160 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
161 	init_waitqueue_head(&mr->mmkey.wait);
162 
163 	WRITE_ONCE(dev->cache.last_add, jiffies);
164 
165 	spin_lock_irqsave(&ent->lock, flags);
166 	list_add_tail(&mr->list, &ent->head);
167 	ent->available_mrs++;
168 	ent->total_mrs++;
169 	/* If we are doing fill_to_high_water then keep going. */
170 	queue_adjust_cache_locked(ent);
171 	ent->pending--;
172 	spin_unlock_irqrestore(&ent->lock, flags);
173 }
174 
175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
176 {
177 	struct mlx5_ib_mr *mr;
178 
179 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
180 	if (!mr)
181 		return NULL;
182 	mr->cache_ent = ent;
183 
184 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
185 	MLX5_SET(mkc, mkc, free, 1);
186 	MLX5_SET(mkc, mkc, umr_en, 1);
187 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
188 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
189 
190 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
191 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
192 	return mr;
193 }
194 
195 /* Asynchronously schedule new MRs to be populated in the cache. */
196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
197 {
198 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
199 	struct mlx5_ib_mr *mr;
200 	void *mkc;
201 	u32 *in;
202 	int err = 0;
203 	int i;
204 
205 	in = kzalloc(inlen, GFP_KERNEL);
206 	if (!in)
207 		return -ENOMEM;
208 
209 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
210 	for (i = 0; i < num; i++) {
211 		mr = alloc_cache_mr(ent, mkc);
212 		if (!mr) {
213 			err = -ENOMEM;
214 			break;
215 		}
216 		spin_lock_irq(&ent->lock);
217 		if (ent->pending >= MAX_PENDING_REG_MR) {
218 			err = -EAGAIN;
219 			spin_unlock_irq(&ent->lock);
220 			kfree(mr);
221 			break;
222 		}
223 		ent->pending++;
224 		spin_unlock_irq(&ent->lock);
225 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
226 					     &ent->dev->async_ctx, in, inlen,
227 					     mr->out, sizeof(mr->out),
228 					     &mr->cb_work);
229 		if (err) {
230 			spin_lock_irq(&ent->lock);
231 			ent->pending--;
232 			spin_unlock_irq(&ent->lock);
233 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
234 			kfree(mr);
235 			break;
236 		}
237 	}
238 
239 	kfree(in);
240 	return err;
241 }
242 
243 /* Synchronously create a MR in the cache */
244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
245 {
246 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
247 	struct mlx5_ib_mr *mr;
248 	void *mkc;
249 	u32 *in;
250 	int err;
251 
252 	in = kzalloc(inlen, GFP_KERNEL);
253 	if (!in)
254 		return ERR_PTR(-ENOMEM);
255 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
256 
257 	mr = alloc_cache_mr(ent, mkc);
258 	if (!mr) {
259 		err = -ENOMEM;
260 		goto free_in;
261 	}
262 
263 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
264 	if (err)
265 		goto free_mr;
266 
267 	mr->mmkey.type = MLX5_MKEY_MR;
268 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
269 	spin_lock_irq(&ent->lock);
270 	ent->total_mrs++;
271 	spin_unlock_irq(&ent->lock);
272 	kfree(in);
273 	return mr;
274 free_mr:
275 	kfree(mr);
276 free_in:
277 	kfree(in);
278 	return ERR_PTR(err);
279 }
280 
281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
282 {
283 	struct mlx5_ib_mr *mr;
284 
285 	lockdep_assert_held(&ent->lock);
286 	if (list_empty(&ent->head))
287 		return;
288 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
289 	list_del(&mr->list);
290 	ent->available_mrs--;
291 	ent->total_mrs--;
292 	spin_unlock_irq(&ent->lock);
293 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
294 	kfree(mr);
295 	spin_lock_irq(&ent->lock);
296 }
297 
298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
299 				bool limit_fill)
300 {
301 	int err;
302 
303 	lockdep_assert_held(&ent->lock);
304 
305 	while (true) {
306 		if (limit_fill)
307 			target = ent->limit * 2;
308 		if (target == ent->available_mrs + ent->pending)
309 			return 0;
310 		if (target > ent->available_mrs + ent->pending) {
311 			u32 todo = target - (ent->available_mrs + ent->pending);
312 
313 			spin_unlock_irq(&ent->lock);
314 			err = add_keys(ent, todo);
315 			if (err == -EAGAIN)
316 				usleep_range(3000, 5000);
317 			spin_lock_irq(&ent->lock);
318 			if (err) {
319 				if (err != -EAGAIN)
320 					return err;
321 			} else
322 				return 0;
323 		} else {
324 			remove_cache_mr_locked(ent);
325 		}
326 	}
327 }
328 
329 static ssize_t size_write(struct file *filp, const char __user *buf,
330 			  size_t count, loff_t *pos)
331 {
332 	struct mlx5_cache_ent *ent = filp->private_data;
333 	u32 target;
334 	int err;
335 
336 	err = kstrtou32_from_user(buf, count, 0, &target);
337 	if (err)
338 		return err;
339 
340 	/*
341 	 * Target is the new value of total_mrs the user requests, however we
342 	 * cannot free MRs that are in use. Compute the target value for
343 	 * available_mrs.
344 	 */
345 	spin_lock_irq(&ent->lock);
346 	if (target < ent->total_mrs - ent->available_mrs) {
347 		err = -EINVAL;
348 		goto err_unlock;
349 	}
350 	target = target - (ent->total_mrs - ent->available_mrs);
351 	if (target < ent->limit || target > ent->limit*2) {
352 		err = -EINVAL;
353 		goto err_unlock;
354 	}
355 	err = resize_available_mrs(ent, target, false);
356 	if (err)
357 		goto err_unlock;
358 	spin_unlock_irq(&ent->lock);
359 
360 	return count;
361 
362 err_unlock:
363 	spin_unlock_irq(&ent->lock);
364 	return err;
365 }
366 
367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
368 			 loff_t *pos)
369 {
370 	struct mlx5_cache_ent *ent = filp->private_data;
371 	char lbuf[20];
372 	int err;
373 
374 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
375 	if (err < 0)
376 		return err;
377 
378 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
379 }
380 
381 static const struct file_operations size_fops = {
382 	.owner	= THIS_MODULE,
383 	.open	= simple_open,
384 	.write	= size_write,
385 	.read	= size_read,
386 };
387 
388 static ssize_t limit_write(struct file *filp, const char __user *buf,
389 			   size_t count, loff_t *pos)
390 {
391 	struct mlx5_cache_ent *ent = filp->private_data;
392 	u32 var;
393 	int err;
394 
395 	err = kstrtou32_from_user(buf, count, 0, &var);
396 	if (err)
397 		return err;
398 
399 	/*
400 	 * Upon set we immediately fill the cache to high water mark implied by
401 	 * the limit.
402 	 */
403 	spin_lock_irq(&ent->lock);
404 	ent->limit = var;
405 	err = resize_available_mrs(ent, 0, true);
406 	spin_unlock_irq(&ent->lock);
407 	if (err)
408 		return err;
409 	return count;
410 }
411 
412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
413 			  loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	char lbuf[20];
417 	int err;
418 
419 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
420 	if (err < 0)
421 		return err;
422 
423 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
424 }
425 
426 static const struct file_operations limit_fops = {
427 	.owner	= THIS_MODULE,
428 	.open	= simple_open,
429 	.write	= limit_write,
430 	.read	= limit_read,
431 };
432 
433 static bool someone_adding(struct mlx5_mr_cache *cache)
434 {
435 	unsigned int i;
436 
437 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
438 		struct mlx5_cache_ent *ent = &cache->ent[i];
439 		bool ret;
440 
441 		spin_lock_irq(&ent->lock);
442 		ret = ent->available_mrs < ent->limit;
443 		spin_unlock_irq(&ent->lock);
444 		if (ret)
445 			return true;
446 	}
447 	return false;
448 }
449 
450 /*
451  * Check if the bucket is outside the high/low water mark and schedule an async
452  * update. The cache refill has hysteresis, once the low water mark is hit it is
453  * refilled up to the high mark.
454  */
455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
456 {
457 	lockdep_assert_held(&ent->lock);
458 
459 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
460 		return;
461 	if (ent->available_mrs < ent->limit) {
462 		ent->fill_to_high_water = true;
463 		queue_work(ent->dev->cache.wq, &ent->work);
464 	} else if (ent->fill_to_high_water &&
465 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
466 		/*
467 		 * Once we start populating due to hitting a low water mark
468 		 * continue until we pass the high water mark.
469 		 */
470 		queue_work(ent->dev->cache.wq, &ent->work);
471 	} else if (ent->available_mrs == 2 * ent->limit) {
472 		ent->fill_to_high_water = false;
473 	} else if (ent->available_mrs > 2 * ent->limit) {
474 		/* Queue deletion of excess entries */
475 		ent->fill_to_high_water = false;
476 		if (ent->pending)
477 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
478 					   msecs_to_jiffies(1000));
479 		else
480 			queue_work(ent->dev->cache.wq, &ent->work);
481 	}
482 }
483 
484 static void __cache_work_func(struct mlx5_cache_ent *ent)
485 {
486 	struct mlx5_ib_dev *dev = ent->dev;
487 	struct mlx5_mr_cache *cache = &dev->cache;
488 	int err;
489 
490 	spin_lock_irq(&ent->lock);
491 	if (ent->disabled)
492 		goto out;
493 
494 	if (ent->fill_to_high_water &&
495 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
496 	    !READ_ONCE(dev->fill_delay)) {
497 		spin_unlock_irq(&ent->lock);
498 		err = add_keys(ent, 1);
499 		spin_lock_irq(&ent->lock);
500 		if (ent->disabled)
501 			goto out;
502 		if (err) {
503 			/*
504 			 * EAGAIN only happens if pending is positive, so we
505 			 * will be rescheduled from reg_mr_callback(). The only
506 			 * failure path here is ENOMEM.
507 			 */
508 			if (err != -EAGAIN) {
509 				mlx5_ib_warn(
510 					dev,
511 					"command failed order %d, err %d\n",
512 					ent->order, err);
513 				queue_delayed_work(cache->wq, &ent->dwork,
514 						   msecs_to_jiffies(1000));
515 			}
516 		}
517 	} else if (ent->available_mrs > 2 * ent->limit) {
518 		bool need_delay;
519 
520 		/*
521 		 * The remove_cache_mr() logic is performed as garbage
522 		 * collection task. Such task is intended to be run when no
523 		 * other active processes are running.
524 		 *
525 		 * The need_resched() will return TRUE if there are user tasks
526 		 * to be activated in near future.
527 		 *
528 		 * In such case, we don't execute remove_cache_mr() and postpone
529 		 * the garbage collection work to try to run in next cycle, in
530 		 * order to free CPU resources to other tasks.
531 		 */
532 		spin_unlock_irq(&ent->lock);
533 		need_delay = need_resched() || someone_adding(cache) ||
534 			     !time_after(jiffies,
535 					 READ_ONCE(cache->last_add) + 300 * HZ);
536 		spin_lock_irq(&ent->lock);
537 		if (ent->disabled)
538 			goto out;
539 		if (need_delay)
540 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
541 		remove_cache_mr_locked(ent);
542 		queue_adjust_cache_locked(ent);
543 	}
544 out:
545 	spin_unlock_irq(&ent->lock);
546 }
547 
548 static void delayed_cache_work_func(struct work_struct *work)
549 {
550 	struct mlx5_cache_ent *ent;
551 
552 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
553 	__cache_work_func(ent);
554 }
555 
556 static void cache_work_func(struct work_struct *work)
557 {
558 	struct mlx5_cache_ent *ent;
559 
560 	ent = container_of(work, struct mlx5_cache_ent, work);
561 	__cache_work_func(ent);
562 }
563 
564 /* Allocate a special entry from the cache */
565 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
566 				       unsigned int entry, int access_flags)
567 {
568 	struct mlx5_mr_cache *cache = &dev->cache;
569 	struct mlx5_cache_ent *ent;
570 	struct mlx5_ib_mr *mr;
571 
572 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
573 		    entry >= ARRAY_SIZE(cache->ent)))
574 		return ERR_PTR(-EINVAL);
575 
576 	/* Matches access in alloc_cache_mr() */
577 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
578 		return ERR_PTR(-EOPNOTSUPP);
579 
580 	ent = &cache->ent[entry];
581 	spin_lock_irq(&ent->lock);
582 	if (list_empty(&ent->head)) {
583 		spin_unlock_irq(&ent->lock);
584 		mr = create_cache_mr(ent);
585 		if (IS_ERR(mr))
586 			return mr;
587 	} else {
588 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
589 		list_del(&mr->list);
590 		ent->available_mrs--;
591 		queue_adjust_cache_locked(ent);
592 		spin_unlock_irq(&ent->lock);
593 
594 		mlx5_clear_mr(mr);
595 	}
596 	mr->access_flags = access_flags;
597 	return mr;
598 }
599 
600 /* Return a MR already available in the cache */
601 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
602 {
603 	struct mlx5_ib_dev *dev = req_ent->dev;
604 	struct mlx5_ib_mr *mr = NULL;
605 	struct mlx5_cache_ent *ent = req_ent;
606 
607 	/* Try larger MR pools from the cache to satisfy the allocation */
608 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
609 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
610 			    ent - dev->cache.ent);
611 
612 		spin_lock_irq(&ent->lock);
613 		if (!list_empty(&ent->head)) {
614 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
615 					      list);
616 			list_del(&mr->list);
617 			ent->available_mrs--;
618 			queue_adjust_cache_locked(ent);
619 			spin_unlock_irq(&ent->lock);
620 			mlx5_clear_mr(mr);
621 			return mr;
622 		}
623 		queue_adjust_cache_locked(ent);
624 		spin_unlock_irq(&ent->lock);
625 	}
626 	req_ent->miss++;
627 	return NULL;
628 }
629 
630 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
631 {
632 	struct mlx5_cache_ent *ent = mr->cache_ent;
633 
634 	spin_lock_irq(&ent->lock);
635 	list_add_tail(&mr->list, &ent->head);
636 	ent->available_mrs++;
637 	queue_adjust_cache_locked(ent);
638 	spin_unlock_irq(&ent->lock);
639 }
640 
641 static void clean_keys(struct mlx5_ib_dev *dev, int c)
642 {
643 	struct mlx5_mr_cache *cache = &dev->cache;
644 	struct mlx5_cache_ent *ent = &cache->ent[c];
645 	struct mlx5_ib_mr *tmp_mr;
646 	struct mlx5_ib_mr *mr;
647 	LIST_HEAD(del_list);
648 
649 	cancel_delayed_work(&ent->dwork);
650 	while (1) {
651 		spin_lock_irq(&ent->lock);
652 		if (list_empty(&ent->head)) {
653 			spin_unlock_irq(&ent->lock);
654 			break;
655 		}
656 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
657 		list_move(&mr->list, &del_list);
658 		ent->available_mrs--;
659 		ent->total_mrs--;
660 		spin_unlock_irq(&ent->lock);
661 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
662 	}
663 
664 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
665 		list_del(&mr->list);
666 		kfree(mr);
667 	}
668 }
669 
670 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
671 {
672 	if (!mlx5_debugfs_root || dev->is_rep)
673 		return;
674 
675 	debugfs_remove_recursive(dev->cache.root);
676 	dev->cache.root = NULL;
677 }
678 
679 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
680 {
681 	struct mlx5_mr_cache *cache = &dev->cache;
682 	struct mlx5_cache_ent *ent;
683 	struct dentry *dir;
684 	int i;
685 
686 	if (!mlx5_debugfs_root || dev->is_rep)
687 		return;
688 
689 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
690 
691 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
692 		ent = &cache->ent[i];
693 		sprintf(ent->name, "%d", ent->order);
694 		dir = debugfs_create_dir(ent->name, cache->root);
695 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
696 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
697 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
698 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
699 	}
700 }
701 
702 static void delay_time_func(struct timer_list *t)
703 {
704 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
705 
706 	WRITE_ONCE(dev->fill_delay, 0);
707 }
708 
709 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
710 {
711 	struct mlx5_mr_cache *cache = &dev->cache;
712 	struct mlx5_cache_ent *ent;
713 	int i;
714 
715 	mutex_init(&dev->slow_path_mutex);
716 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
717 	if (!cache->wq) {
718 		mlx5_ib_warn(dev, "failed to create work queue\n");
719 		return -ENOMEM;
720 	}
721 
722 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
723 	timer_setup(&dev->delay_timer, delay_time_func, 0);
724 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
725 		ent = &cache->ent[i];
726 		INIT_LIST_HEAD(&ent->head);
727 		spin_lock_init(&ent->lock);
728 		ent->order = i + 2;
729 		ent->dev = dev;
730 		ent->limit = 0;
731 
732 		INIT_WORK(&ent->work, cache_work_func);
733 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
734 
735 		if (i > MR_CACHE_LAST_STD_ENTRY) {
736 			mlx5_odp_init_mr_cache_entry(ent);
737 			continue;
738 		}
739 
740 		if (ent->order > mr_cache_max_order(dev))
741 			continue;
742 
743 		ent->page = PAGE_SHIFT;
744 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
745 			   MLX5_IB_UMR_OCTOWORD;
746 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
747 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
748 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
749 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
750 			ent->limit = dev->mdev->profile.mr_cache[i].limit;
751 		else
752 			ent->limit = 0;
753 		spin_lock_irq(&ent->lock);
754 		queue_adjust_cache_locked(ent);
755 		spin_unlock_irq(&ent->lock);
756 	}
757 
758 	mlx5_mr_cache_debugfs_init(dev);
759 
760 	return 0;
761 }
762 
763 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
764 {
765 	unsigned int i;
766 
767 	if (!dev->cache.wq)
768 		return 0;
769 
770 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
771 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
772 
773 		spin_lock_irq(&ent->lock);
774 		ent->disabled = true;
775 		spin_unlock_irq(&ent->lock);
776 		cancel_work_sync(&ent->work);
777 		cancel_delayed_work_sync(&ent->dwork);
778 	}
779 
780 	mlx5_mr_cache_debugfs_cleanup(dev);
781 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
782 
783 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
784 		clean_keys(dev, i);
785 
786 	destroy_workqueue(dev->cache.wq);
787 	del_timer_sync(&dev->delay_timer);
788 
789 	return 0;
790 }
791 
792 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
793 {
794 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
795 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
796 	struct mlx5_ib_mr *mr;
797 	void *mkc;
798 	u32 *in;
799 	int err;
800 
801 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
802 	if (!mr)
803 		return ERR_PTR(-ENOMEM);
804 
805 	in = kzalloc(inlen, GFP_KERNEL);
806 	if (!in) {
807 		err = -ENOMEM;
808 		goto err_free;
809 	}
810 
811 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
812 
813 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
814 	MLX5_SET(mkc, mkc, length64, 1);
815 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
816 				      pd);
817 
818 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
819 	if (err)
820 		goto err_in;
821 
822 	kfree(in);
823 	mr->mmkey.type = MLX5_MKEY_MR;
824 	mr->ibmr.lkey = mr->mmkey.key;
825 	mr->ibmr.rkey = mr->mmkey.key;
826 	mr->umem = NULL;
827 
828 	return &mr->ibmr;
829 
830 err_in:
831 	kfree(in);
832 
833 err_free:
834 	kfree(mr);
835 
836 	return ERR_PTR(err);
837 }
838 
839 static int get_octo_len(u64 addr, u64 len, int page_shift)
840 {
841 	u64 page_size = 1ULL << page_shift;
842 	u64 offset;
843 	int npages;
844 
845 	offset = addr & (page_size - 1);
846 	npages = ALIGN(len + offset, page_size) >> page_shift;
847 	return (npages + 1) / 2;
848 }
849 
850 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
851 {
852 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
853 		return MR_CACHE_LAST_STD_ENTRY + 2;
854 	return MLX5_MAX_UMR_SHIFT;
855 }
856 
857 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
858 {
859 	struct mlx5_ib_umr_context *context =
860 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
861 
862 	context->status = wc->status;
863 	complete(&context->done);
864 }
865 
866 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
867 {
868 	context->cqe.done = mlx5_ib_umr_done;
869 	context->status = -1;
870 	init_completion(&context->done);
871 }
872 
873 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
874 				  struct mlx5_umr_wr *umrwr)
875 {
876 	struct umr_common *umrc = &dev->umrc;
877 	const struct ib_send_wr *bad;
878 	int err;
879 	struct mlx5_ib_umr_context umr_context;
880 
881 	mlx5_ib_init_umr_context(&umr_context);
882 	umrwr->wr.wr_cqe = &umr_context.cqe;
883 
884 	down(&umrc->sem);
885 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
886 	if (err) {
887 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
888 	} else {
889 		wait_for_completion(&umr_context.done);
890 		if (umr_context.status != IB_WC_SUCCESS) {
891 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
892 				     umr_context.status);
893 			err = -EFAULT;
894 		}
895 	}
896 	up(&umrc->sem);
897 	return err;
898 }
899 
900 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
901 						      unsigned int order)
902 {
903 	struct mlx5_mr_cache *cache = &dev->cache;
904 
905 	if (order < cache->ent[0].order)
906 		return &cache->ent[0];
907 	order = order - cache->ent[0].order;
908 	if (order > MR_CACHE_LAST_STD_ENTRY)
909 		return NULL;
910 	return &cache->ent[order];
911 }
912 
913 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
914 			  u64 length, int access_flags)
915 {
916 	mr->ibmr.lkey = mr->mmkey.key;
917 	mr->ibmr.rkey = mr->mmkey.key;
918 	mr->ibmr.length = length;
919 	mr->ibmr.device = &dev->ib_dev;
920 	mr->access_flags = access_flags;
921 }
922 
923 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
924 						  u64 iova)
925 {
926 	/*
927 	 * The alignment of iova has already been checked upon entering
928 	 * UVERBS_METHOD_REG_DMABUF_MR
929 	 */
930 	umem->iova = iova;
931 	return PAGE_SIZE;
932 }
933 
934 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
935 					     struct ib_umem *umem, u64 iova,
936 					     int access_flags)
937 {
938 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
939 	struct mlx5_cache_ent *ent;
940 	struct mlx5_ib_mr *mr;
941 	unsigned int page_size;
942 
943 	if (umem->is_dmabuf)
944 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
945 	else
946 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
947 						     0, iova);
948 	if (WARN_ON(!page_size))
949 		return ERR_PTR(-EINVAL);
950 	ent = mr_cache_ent_from_order(
951 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
952 	/*
953 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
954 	 * cache then synchronously create an uncached one.
955 	 */
956 	if (!ent || ent->limit == 0 ||
957 	    !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) {
958 		mutex_lock(&dev->slow_path_mutex);
959 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
960 		mutex_unlock(&dev->slow_path_mutex);
961 		return mr;
962 	}
963 
964 	mr = get_cache_mr(ent);
965 	if (!mr) {
966 		mr = create_cache_mr(ent);
967 		/*
968 		 * The above already tried to do the same stuff as reg_create(),
969 		 * no reason to try it again.
970 		 */
971 		if (IS_ERR(mr))
972 			return mr;
973 	}
974 
975 	mr->ibmr.pd = pd;
976 	mr->umem = umem;
977 	mr->mmkey.iova = iova;
978 	mr->mmkey.size = umem->length;
979 	mr->mmkey.pd = to_mpd(pd)->pdn;
980 	mr->page_shift = order_base_2(page_size);
981 	set_mr_fields(dev, mr, umem->length, access_flags);
982 
983 	return mr;
984 }
985 
986 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
987 			    MLX5_UMR_MTT_ALIGNMENT)
988 #define MLX5_SPARE_UMR_CHUNK 0x10000
989 
990 /*
991  * Allocate a temporary buffer to hold the per-page information to transfer to
992  * HW. For efficiency this should be as large as it can be, but buffer
993  * allocation failure is not allowed, so try smaller sizes.
994  */
995 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask)
996 {
997 	const size_t xlt_chunk_align =
998 		MLX5_UMR_MTT_ALIGNMENT / ent_size;
999 	size_t size;
1000 	void *res = NULL;
1001 
1002 	static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0);
1003 
1004 	/*
1005 	 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the
1006 	 * allocation can't trigger any kind of reclaim.
1007 	 */
1008 	might_sleep();
1009 
1010 	gfp_mask |= __GFP_ZERO | __GFP_NORETRY;
1011 
1012 	/*
1013 	 * If the system already has a suitable high order page then just use
1014 	 * that, but don't try hard to create one. This max is about 1M, so a
1015 	 * free x86 huge page will satisfy it.
1016 	 */
1017 	size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align),
1018 		     MLX5_MAX_UMR_CHUNK);
1019 	*nents = size / ent_size;
1020 	res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1021 				       get_order(size));
1022 	if (res)
1023 		return res;
1024 
1025 	if (size > MLX5_SPARE_UMR_CHUNK) {
1026 		size = MLX5_SPARE_UMR_CHUNK;
1027 		*nents = size / ent_size;
1028 		res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1029 					       get_order(size));
1030 		if (res)
1031 			return res;
1032 	}
1033 
1034 	*nents = PAGE_SIZE / ent_size;
1035 	res = (void *)__get_free_page(gfp_mask);
1036 	if (res)
1037 		return res;
1038 
1039 	mutex_lock(&xlt_emergency_page_mutex);
1040 	memset(xlt_emergency_page, 0, PAGE_SIZE);
1041 	return xlt_emergency_page;
1042 }
1043 
1044 static void mlx5_ib_free_xlt(void *xlt, size_t length)
1045 {
1046 	if (xlt == xlt_emergency_page) {
1047 		mutex_unlock(&xlt_emergency_page_mutex);
1048 		return;
1049 	}
1050 
1051 	free_pages((unsigned long)xlt, get_order(length));
1052 }
1053 
1054 /*
1055  * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for
1056  * submission.
1057  */
1058 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr,
1059 				   struct mlx5_umr_wr *wr, struct ib_sge *sg,
1060 				   size_t nents, size_t ent_size,
1061 				   unsigned int flags)
1062 {
1063 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1064 	struct device *ddev = &dev->mdev->pdev->dev;
1065 	dma_addr_t dma;
1066 	void *xlt;
1067 
1068 	xlt = mlx5_ib_alloc_xlt(&nents, ent_size,
1069 				flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC :
1070 								 GFP_KERNEL);
1071 	sg->length = nents * ent_size;
1072 	dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE);
1073 	if (dma_mapping_error(ddev, dma)) {
1074 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1075 		mlx5_ib_free_xlt(xlt, sg->length);
1076 		return NULL;
1077 	}
1078 	sg->addr = dma;
1079 	sg->lkey = dev->umrc.pd->local_dma_lkey;
1080 
1081 	memset(wr, 0, sizeof(*wr));
1082 	wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1083 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1084 		wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1085 	wr->wr.sg_list = sg;
1086 	wr->wr.num_sge = 1;
1087 	wr->wr.opcode = MLX5_IB_WR_UMR;
1088 	wr->pd = mr->ibmr.pd;
1089 	wr->mkey = mr->mmkey.key;
1090 	wr->length = mr->mmkey.size;
1091 	wr->virt_addr = mr->mmkey.iova;
1092 	wr->access_flags = mr->access_flags;
1093 	wr->page_shift = mr->page_shift;
1094 	wr->xlt_size = sg->length;
1095 	return xlt;
1096 }
1097 
1098 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt,
1099 				   struct ib_sge *sg)
1100 {
1101 	struct device *ddev = &dev->mdev->pdev->dev;
1102 
1103 	dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE);
1104 	mlx5_ib_free_xlt(xlt, sg->length);
1105 }
1106 
1107 static unsigned int xlt_wr_final_send_flags(unsigned int flags)
1108 {
1109 	unsigned int res = 0;
1110 
1111 	if (flags & MLX5_IB_UPD_XLT_ENABLE)
1112 		res |= MLX5_IB_SEND_UMR_ENABLE_MR |
1113 		       MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1114 		       MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1115 	if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS)
1116 		res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1117 	if (flags & MLX5_IB_UPD_XLT_ADDR)
1118 		res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1119 	return res;
1120 }
1121 
1122 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1123 		       int page_shift, int flags)
1124 {
1125 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1126 	struct device *ddev = &dev->mdev->pdev->dev;
1127 	void *xlt;
1128 	struct mlx5_umr_wr wr;
1129 	struct ib_sge sg;
1130 	int err = 0;
1131 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1132 			       ? sizeof(struct mlx5_klm)
1133 			       : sizeof(struct mlx5_mtt);
1134 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1135 	const int page_mask = page_align - 1;
1136 	size_t pages_mapped = 0;
1137 	size_t pages_to_map = 0;
1138 	size_t pages_iter;
1139 	size_t size_to_map = 0;
1140 	size_t orig_sg_length;
1141 
1142 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1143 	    !umr_can_use_indirect_mkey(dev))
1144 		return -EPERM;
1145 
1146 	if (WARN_ON(!mr->umem->is_odp))
1147 		return -EINVAL;
1148 
1149 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1150 	 * so we need to align the offset and length accordingly
1151 	 */
1152 	if (idx & page_mask) {
1153 		npages += idx & page_mask;
1154 		idx &= ~page_mask;
1155 	}
1156 	pages_to_map = ALIGN(npages, page_align);
1157 
1158 	xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags);
1159 	if (!xlt)
1160 		return -ENOMEM;
1161 	pages_iter = sg.length / desc_size;
1162 	orig_sg_length = sg.length;
1163 
1164 	if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1165 		struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1166 		size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1167 
1168 		pages_to_map = min_t(size_t, pages_to_map, max_pages);
1169 	}
1170 
1171 	wr.page_shift = page_shift;
1172 
1173 	for (pages_mapped = 0;
1174 	     pages_mapped < pages_to_map && !err;
1175 	     pages_mapped += pages_iter, idx += pages_iter) {
1176 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1177 		size_to_map = npages * desc_size;
1178 		dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1179 					DMA_TO_DEVICE);
1180 		mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1181 		dma_sync_single_for_device(ddev, sg.addr, sg.length,
1182 					   DMA_TO_DEVICE);
1183 
1184 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1185 
1186 		if (pages_mapped + pages_iter >= pages_to_map)
1187 			wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1188 
1189 		wr.offset = idx * desc_size;
1190 		wr.xlt_size = sg.length;
1191 
1192 		err = mlx5_ib_post_send_wait(dev, &wr);
1193 	}
1194 	sg.length = orig_sg_length;
1195 	mlx5_ib_unmap_free_xlt(dev, xlt, &sg);
1196 	return err;
1197 }
1198 
1199 /*
1200  * Send the DMA list to the HW for a normal MR using UMR.
1201  * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP
1202  * flag may be used.
1203  */
1204 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags)
1205 {
1206 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1207 	struct device *ddev = &dev->mdev->pdev->dev;
1208 	struct ib_block_iter biter;
1209 	struct mlx5_mtt *cur_mtt;
1210 	struct mlx5_umr_wr wr;
1211 	size_t orig_sg_length;
1212 	struct mlx5_mtt *mtt;
1213 	size_t final_size;
1214 	struct ib_sge sg;
1215 	int err = 0;
1216 
1217 	if (WARN_ON(mr->umem->is_odp))
1218 		return -EINVAL;
1219 
1220 	mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg,
1221 				    ib_umem_num_dma_blocks(mr->umem,
1222 							   1 << mr->page_shift),
1223 				    sizeof(*mtt), flags);
1224 	if (!mtt)
1225 		return -ENOMEM;
1226 	orig_sg_length = sg.length;
1227 
1228 	cur_mtt = mtt;
1229 	rdma_for_each_block (mr->umem->sgt_append.sgt.sgl, &biter,
1230 			     mr->umem->sgt_append.sgt.nents,
1231 			     BIT(mr->page_shift)) {
1232 		if (cur_mtt == (void *)mtt + sg.length) {
1233 			dma_sync_single_for_device(ddev, sg.addr, sg.length,
1234 						   DMA_TO_DEVICE);
1235 			err = mlx5_ib_post_send_wait(dev, &wr);
1236 			if (err)
1237 				goto err;
1238 			dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1239 						DMA_TO_DEVICE);
1240 			wr.offset += sg.length;
1241 			cur_mtt = mtt;
1242 		}
1243 
1244 		cur_mtt->ptag =
1245 			cpu_to_be64(rdma_block_iter_dma_address(&biter) |
1246 				    MLX5_IB_MTT_PRESENT);
1247 
1248 		if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP))
1249 			cur_mtt->ptag = 0;
1250 
1251 		cur_mtt++;
1252 	}
1253 
1254 	final_size = (void *)cur_mtt - (void *)mtt;
1255 	sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT);
1256 	memset(cur_mtt, 0, sg.length - final_size);
1257 	wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1258 	wr.xlt_size = sg.length;
1259 
1260 	dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE);
1261 	err = mlx5_ib_post_send_wait(dev, &wr);
1262 
1263 err:
1264 	sg.length = orig_sg_length;
1265 	mlx5_ib_unmap_free_xlt(dev, mtt, &sg);
1266 	return err;
1267 }
1268 
1269 /*
1270  * If ibmr is NULL it will be allocated by reg_create.
1271  * Else, the given ibmr will be used.
1272  */
1273 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1274 				     u64 iova, int access_flags,
1275 				     unsigned int page_size, bool populate)
1276 {
1277 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1278 	struct mlx5_ib_mr *mr;
1279 	__be64 *pas;
1280 	void *mkc;
1281 	int inlen;
1282 	u32 *in;
1283 	int err;
1284 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1285 
1286 	if (!page_size)
1287 		return ERR_PTR(-EINVAL);
1288 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1289 	if (!mr)
1290 		return ERR_PTR(-ENOMEM);
1291 
1292 	mr->ibmr.pd = pd;
1293 	mr->access_flags = access_flags;
1294 	mr->page_shift = order_base_2(page_size);
1295 
1296 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1297 	if (populate)
1298 		inlen += sizeof(*pas) *
1299 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1300 	in = kvzalloc(inlen, GFP_KERNEL);
1301 	if (!in) {
1302 		err = -ENOMEM;
1303 		goto err_1;
1304 	}
1305 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1306 	if (populate) {
1307 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1308 			err = -EINVAL;
1309 			goto err_2;
1310 		}
1311 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1312 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1313 	}
1314 
1315 	/* The pg_access bit allows setting the access flags
1316 	 * in the page list submitted with the command. */
1317 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1318 
1319 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1320 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1321 				      populate ? pd : dev->umrc.pd);
1322 	MLX5_SET(mkc, mkc, free, !populate);
1323 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1324 	MLX5_SET(mkc, mkc, umr_en, 1);
1325 
1326 	MLX5_SET64(mkc, mkc, len, umem->length);
1327 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1328 	MLX5_SET(mkc, mkc, translations_octword_size,
1329 		 get_octo_len(iova, umem->length, mr->page_shift));
1330 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1331 	if (populate) {
1332 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1333 			 get_octo_len(iova, umem->length, mr->page_shift));
1334 	}
1335 
1336 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1337 	if (err) {
1338 		mlx5_ib_warn(dev, "create mkey failed\n");
1339 		goto err_2;
1340 	}
1341 	mr->mmkey.type = MLX5_MKEY_MR;
1342 	mr->desc_size = sizeof(struct mlx5_mtt);
1343 	mr->umem = umem;
1344 	set_mr_fields(dev, mr, umem->length, access_flags);
1345 	kvfree(in);
1346 
1347 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1348 
1349 	return mr;
1350 
1351 err_2:
1352 	kvfree(in);
1353 err_1:
1354 	kfree(mr);
1355 	return ERR_PTR(err);
1356 }
1357 
1358 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1359 				       u64 length, int acc, int mode)
1360 {
1361 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1362 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1363 	struct mlx5_ib_mr *mr;
1364 	void *mkc;
1365 	u32 *in;
1366 	int err;
1367 
1368 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1369 	if (!mr)
1370 		return ERR_PTR(-ENOMEM);
1371 
1372 	in = kzalloc(inlen, GFP_KERNEL);
1373 	if (!in) {
1374 		err = -ENOMEM;
1375 		goto err_free;
1376 	}
1377 
1378 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1379 
1380 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1381 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1382 	MLX5_SET64(mkc, mkc, len, length);
1383 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1384 
1385 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1386 	if (err)
1387 		goto err_in;
1388 
1389 	kfree(in);
1390 
1391 	set_mr_fields(dev, mr, length, acc);
1392 
1393 	return &mr->ibmr;
1394 
1395 err_in:
1396 	kfree(in);
1397 
1398 err_free:
1399 	kfree(mr);
1400 
1401 	return ERR_PTR(err);
1402 }
1403 
1404 int mlx5_ib_advise_mr(struct ib_pd *pd,
1405 		      enum ib_uverbs_advise_mr_advice advice,
1406 		      u32 flags,
1407 		      struct ib_sge *sg_list,
1408 		      u32 num_sge,
1409 		      struct uverbs_attr_bundle *attrs)
1410 {
1411 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1412 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1413 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1414 		return -EOPNOTSUPP;
1415 
1416 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1417 					 sg_list, num_sge);
1418 }
1419 
1420 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1421 				struct ib_dm_mr_attr *attr,
1422 				struct uverbs_attr_bundle *attrs)
1423 {
1424 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1425 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1426 	u64 start_addr = mdm->dev_addr + attr->offset;
1427 	int mode;
1428 
1429 	switch (mdm->type) {
1430 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1431 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1432 			return ERR_PTR(-EINVAL);
1433 
1434 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1435 		start_addr -= pci_resource_start(dev->pdev, 0);
1436 		break;
1437 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1438 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1439 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1440 			return ERR_PTR(-EINVAL);
1441 
1442 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1443 		break;
1444 	default:
1445 		return ERR_PTR(-EINVAL);
1446 	}
1447 
1448 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1449 				 attr->access_flags, mode);
1450 }
1451 
1452 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1453 				    u64 iova, int access_flags)
1454 {
1455 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1456 	struct mlx5_ib_mr *mr = NULL;
1457 	bool xlt_with_umr;
1458 	int err;
1459 
1460 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length);
1461 	if (xlt_with_umr) {
1462 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1463 	} else {
1464 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1465 			umem, mkc, log_page_size, 0, iova);
1466 
1467 		mutex_lock(&dev->slow_path_mutex);
1468 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1469 		mutex_unlock(&dev->slow_path_mutex);
1470 	}
1471 	if (IS_ERR(mr)) {
1472 		ib_umem_release(umem);
1473 		return ERR_CAST(mr);
1474 	}
1475 
1476 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1477 
1478 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1479 
1480 	if (xlt_with_umr) {
1481 		/*
1482 		 * If the MR was created with reg_create then it will be
1483 		 * configured properly but left disabled. It is safe to go ahead
1484 		 * and configure it again via UMR while enabling it.
1485 		 */
1486 		err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1487 		if (err) {
1488 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1489 			return ERR_PTR(err);
1490 		}
1491 	}
1492 	return &mr->ibmr;
1493 }
1494 
1495 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1496 					u64 iova, int access_flags,
1497 					struct ib_udata *udata)
1498 {
1499 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1500 	struct ib_umem_odp *odp;
1501 	struct mlx5_ib_mr *mr;
1502 	int err;
1503 
1504 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1505 		return ERR_PTR(-EOPNOTSUPP);
1506 
1507 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1508 	if (err)
1509 		return ERR_PTR(err);
1510 	if (!start && length == U64_MAX) {
1511 		if (iova != 0)
1512 			return ERR_PTR(-EINVAL);
1513 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1514 			return ERR_PTR(-EINVAL);
1515 
1516 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1517 		if (IS_ERR(mr))
1518 			return ERR_CAST(mr);
1519 		return &mr->ibmr;
1520 	}
1521 
1522 	/* ODP requires xlt update via umr to work. */
1523 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1524 		return ERR_PTR(-EINVAL);
1525 
1526 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1527 			      &mlx5_mn_ops);
1528 	if (IS_ERR(odp))
1529 		return ERR_CAST(odp);
1530 
1531 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1532 	if (IS_ERR(mr)) {
1533 		ib_umem_release(&odp->umem);
1534 		return ERR_CAST(mr);
1535 	}
1536 
1537 	odp->private = mr;
1538 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1539 	if (err)
1540 		goto err_dereg_mr;
1541 
1542 	err = mlx5_ib_init_odp_mr(mr);
1543 	if (err)
1544 		goto err_dereg_mr;
1545 	return &mr->ibmr;
1546 
1547 err_dereg_mr:
1548 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1549 	return ERR_PTR(err);
1550 }
1551 
1552 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1553 				  u64 iova, int access_flags,
1554 				  struct ib_udata *udata)
1555 {
1556 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1557 	struct ib_umem *umem;
1558 
1559 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1560 		return ERR_PTR(-EOPNOTSUPP);
1561 
1562 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1563 		    start, iova, length, access_flags);
1564 
1565 	if (access_flags & IB_ACCESS_ON_DEMAND)
1566 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1567 					  udata);
1568 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1569 	if (IS_ERR(umem))
1570 		return ERR_CAST(umem);
1571 	return create_real_mr(pd, umem, iova, access_flags);
1572 }
1573 
1574 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1575 {
1576 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1577 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1578 
1579 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1580 
1581 	if (!umem_dmabuf->sgt)
1582 		return;
1583 
1584 	mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1585 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1586 }
1587 
1588 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1589 	.allow_peer2peer = 1,
1590 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1591 };
1592 
1593 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1594 					 u64 length, u64 virt_addr,
1595 					 int fd, int access_flags,
1596 					 struct ib_udata *udata)
1597 {
1598 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1599 	struct mlx5_ib_mr *mr = NULL;
1600 	struct ib_umem_dmabuf *umem_dmabuf;
1601 	int err;
1602 
1603 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1604 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1605 		return ERR_PTR(-EOPNOTSUPP);
1606 
1607 	mlx5_ib_dbg(dev,
1608 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1609 		    offset, virt_addr, length, fd, access_flags);
1610 
1611 	/* dmabuf requires xlt update via umr to work. */
1612 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1613 		return ERR_PTR(-EINVAL);
1614 
1615 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1616 					 access_flags,
1617 					 &mlx5_ib_dmabuf_attach_ops);
1618 	if (IS_ERR(umem_dmabuf)) {
1619 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1620 			    PTR_ERR(umem_dmabuf));
1621 		return ERR_CAST(umem_dmabuf);
1622 	}
1623 
1624 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1625 				access_flags);
1626 	if (IS_ERR(mr)) {
1627 		ib_umem_release(&umem_dmabuf->umem);
1628 		return ERR_CAST(mr);
1629 	}
1630 
1631 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1632 
1633 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1634 	umem_dmabuf->private = mr;
1635 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1636 	if (err)
1637 		goto err_dereg_mr;
1638 
1639 	err = mlx5_ib_init_dmabuf_mr(mr);
1640 	if (err)
1641 		goto err_dereg_mr;
1642 	return &mr->ibmr;
1643 
1644 err_dereg_mr:
1645 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1646 	return ERR_PTR(err);
1647 }
1648 
1649 /**
1650  * revoke_mr - Fence all DMA on the MR
1651  * @mr: The MR to fence
1652  *
1653  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1654  * and any DMA in progress will be completed. Failure of this function
1655  * indicates the HW has failed catastrophically.
1656  */
1657 static int revoke_mr(struct mlx5_ib_mr *mr)
1658 {
1659 	struct mlx5_umr_wr umrwr = {};
1660 
1661 	if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1662 		return 0;
1663 
1664 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1665 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1666 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1667 	umrwr.pd = mr_to_mdev(mr)->umrc.pd;
1668 	umrwr.mkey = mr->mmkey.key;
1669 	umrwr.ignore_free_state = 1;
1670 
1671 	return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr);
1672 }
1673 
1674 /*
1675  * True if the change in access flags can be done via UMR, only some access
1676  * flags can be updated.
1677  */
1678 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1679 				     unsigned int current_access_flags,
1680 				     unsigned int target_access_flags)
1681 {
1682 	unsigned int diffs = current_access_flags ^ target_access_flags;
1683 
1684 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1685 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1686 		return false;
1687 	return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags,
1688 					     target_access_flags);
1689 }
1690 
1691 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1692 			       int access_flags)
1693 {
1694 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1695 	struct mlx5_umr_wr umrwr = {
1696 		.wr = {
1697 			.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1698 				      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS,
1699 			.opcode = MLX5_IB_WR_UMR,
1700 		},
1701 		.mkey = mr->mmkey.key,
1702 		.pd = pd,
1703 		.access_flags = access_flags,
1704 	};
1705 	int err;
1706 
1707 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1708 	if (err)
1709 		return err;
1710 
1711 	mr->access_flags = access_flags;
1712 	mr->mmkey.pd = to_mpd(pd)->pdn;
1713 	return 0;
1714 }
1715 
1716 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1717 				  struct ib_umem *new_umem,
1718 				  int new_access_flags, u64 iova,
1719 				  unsigned long *page_size)
1720 {
1721 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1722 
1723 	/* We only track the allocated sizes of MRs from the cache */
1724 	if (!mr->cache_ent)
1725 		return false;
1726 	if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length))
1727 		return false;
1728 
1729 	*page_size =
1730 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1731 	if (WARN_ON(!*page_size))
1732 		return false;
1733 	return (1ULL << mr->cache_ent->order) >=
1734 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1735 }
1736 
1737 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1738 			 int access_flags, int flags, struct ib_umem *new_umem,
1739 			 u64 iova, unsigned long page_size)
1740 {
1741 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1742 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1743 	struct ib_umem *old_umem = mr->umem;
1744 	int err;
1745 
1746 	/*
1747 	 * To keep everything simple the MR is revoked before we start to mess
1748 	 * with it. This ensure the change is atomic relative to any use of the
1749 	 * MR.
1750 	 */
1751 	err = revoke_mr(mr);
1752 	if (err)
1753 		return err;
1754 
1755 	if (flags & IB_MR_REREG_PD) {
1756 		mr->ibmr.pd = pd;
1757 		mr->mmkey.pd = to_mpd(pd)->pdn;
1758 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1759 	}
1760 	if (flags & IB_MR_REREG_ACCESS) {
1761 		mr->access_flags = access_flags;
1762 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1763 	}
1764 
1765 	mr->ibmr.length = new_umem->length;
1766 	mr->mmkey.iova = iova;
1767 	mr->mmkey.size = new_umem->length;
1768 	mr->page_shift = order_base_2(page_size);
1769 	mr->umem = new_umem;
1770 	err = mlx5_ib_update_mr_pas(mr, upd_flags);
1771 	if (err) {
1772 		/*
1773 		 * The MR is revoked at this point so there is no issue to free
1774 		 * new_umem.
1775 		 */
1776 		mr->umem = old_umem;
1777 		return err;
1778 	}
1779 
1780 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1781 	ib_umem_release(old_umem);
1782 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1783 	return 0;
1784 }
1785 
1786 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1787 				    u64 length, u64 iova, int new_access_flags,
1788 				    struct ib_pd *new_pd,
1789 				    struct ib_udata *udata)
1790 {
1791 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1792 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1793 	int err;
1794 
1795 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1796 		return ERR_PTR(-EOPNOTSUPP);
1797 
1798 	mlx5_ib_dbg(
1799 		dev,
1800 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1801 		start, iova, length, new_access_flags);
1802 
1803 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1804 		return ERR_PTR(-EOPNOTSUPP);
1805 
1806 	if (!(flags & IB_MR_REREG_ACCESS))
1807 		new_access_flags = mr->access_flags;
1808 	if (!(flags & IB_MR_REREG_PD))
1809 		new_pd = ib_mr->pd;
1810 
1811 	if (!(flags & IB_MR_REREG_TRANS)) {
1812 		struct ib_umem *umem;
1813 
1814 		/* Fast path for PD/access change */
1815 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1816 					     new_access_flags)) {
1817 			err = umr_rereg_pd_access(mr, new_pd, new_access_flags);
1818 			if (err)
1819 				return ERR_PTR(err);
1820 			return NULL;
1821 		}
1822 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1823 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1824 			goto recreate;
1825 
1826 		/*
1827 		 * Only one active MR can refer to a umem at one time, revoke
1828 		 * the old MR before assigning the umem to the new one.
1829 		 */
1830 		err = revoke_mr(mr);
1831 		if (err)
1832 			return ERR_PTR(err);
1833 		umem = mr->umem;
1834 		mr->umem = NULL;
1835 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1836 
1837 		return create_real_mr(new_pd, umem, mr->mmkey.iova,
1838 				      new_access_flags);
1839 	}
1840 
1841 	/*
1842 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1843 	 * but the logic around releasing the umem is different
1844 	 */
1845 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1846 		goto recreate;
1847 
1848 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1849 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1850 		struct ib_umem *new_umem;
1851 		unsigned long page_size;
1852 
1853 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1854 				       new_access_flags);
1855 		if (IS_ERR(new_umem))
1856 			return ERR_CAST(new_umem);
1857 
1858 		/* Fast path for PAS change */
1859 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1860 					  &page_size)) {
1861 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1862 					    new_umem, iova, page_size);
1863 			if (err) {
1864 				ib_umem_release(new_umem);
1865 				return ERR_PTR(err);
1866 			}
1867 			return NULL;
1868 		}
1869 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1870 	}
1871 
1872 	/*
1873 	 * Everything else has no state we can preserve, just create a new MR
1874 	 * from scratch
1875 	 */
1876 recreate:
1877 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1878 				   new_access_flags, udata);
1879 }
1880 
1881 static int
1882 mlx5_alloc_priv_descs(struct ib_device *device,
1883 		      struct mlx5_ib_mr *mr,
1884 		      int ndescs,
1885 		      int desc_size)
1886 {
1887 	struct mlx5_ib_dev *dev = to_mdev(device);
1888 	struct device *ddev = &dev->mdev->pdev->dev;
1889 	int size = ndescs * desc_size;
1890 	int add_size;
1891 	int ret;
1892 
1893 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1894 
1895 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1896 	if (!mr->descs_alloc)
1897 		return -ENOMEM;
1898 
1899 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1900 
1901 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1902 	if (dma_mapping_error(ddev, mr->desc_map)) {
1903 		ret = -ENOMEM;
1904 		goto err;
1905 	}
1906 
1907 	return 0;
1908 err:
1909 	kfree(mr->descs_alloc);
1910 
1911 	return ret;
1912 }
1913 
1914 static void
1915 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1916 {
1917 	if (!mr->umem && mr->descs) {
1918 		struct ib_device *device = mr->ibmr.device;
1919 		int size = mr->max_descs * mr->desc_size;
1920 		struct mlx5_ib_dev *dev = to_mdev(device);
1921 
1922 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1923 				 DMA_TO_DEVICE);
1924 		kfree(mr->descs_alloc);
1925 		mr->descs = NULL;
1926 	}
1927 }
1928 
1929 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1930 {
1931 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1932 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1933 	int rc;
1934 
1935 	/*
1936 	 * Any async use of the mr must hold the refcount, once the refcount
1937 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1938 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1939 	 */
1940 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1941 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1942 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1943 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1944 
1945 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1946 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1947 			   mr->sig, NULL, GFP_KERNEL);
1948 
1949 		if (mr->mtt_mr) {
1950 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1951 			if (rc)
1952 				return rc;
1953 			mr->mtt_mr = NULL;
1954 		}
1955 		if (mr->klm_mr) {
1956 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1957 			if (rc)
1958 				return rc;
1959 			mr->klm_mr = NULL;
1960 		}
1961 
1962 		if (mlx5_core_destroy_psv(dev->mdev,
1963 					  mr->sig->psv_memory.psv_idx))
1964 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1965 				     mr->sig->psv_memory.psv_idx);
1966 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1967 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1968 				     mr->sig->psv_wire.psv_idx);
1969 		kfree(mr->sig);
1970 		mr->sig = NULL;
1971 	}
1972 
1973 	/* Stop DMA */
1974 	if (mr->cache_ent) {
1975 		if (revoke_mr(mr)) {
1976 			spin_lock_irq(&mr->cache_ent->lock);
1977 			mr->cache_ent->total_mrs--;
1978 			spin_unlock_irq(&mr->cache_ent->lock);
1979 			mr->cache_ent = NULL;
1980 		}
1981 	}
1982 	if (!mr->cache_ent) {
1983 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1984 		if (rc)
1985 			return rc;
1986 	}
1987 
1988 	if (mr->umem) {
1989 		bool is_odp = is_odp_mr(mr);
1990 
1991 		if (!is_odp)
1992 			atomic_sub(ib_umem_num_pages(mr->umem),
1993 				   &dev->mdev->priv.reg_pages);
1994 		ib_umem_release(mr->umem);
1995 		if (is_odp)
1996 			mlx5_ib_free_odp_mr(mr);
1997 	}
1998 
1999 	if (mr->cache_ent) {
2000 		mlx5_mr_cache_free(dev, mr);
2001 	} else {
2002 		mlx5_free_priv_descs(mr);
2003 		kfree(mr);
2004 	}
2005 	return 0;
2006 }
2007 
2008 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2009 				   int access_mode, int page_shift)
2010 {
2011 	void *mkc;
2012 
2013 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2014 
2015 	/* This is only used from the kernel, so setting the PD is OK. */
2016 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2017 	MLX5_SET(mkc, mkc, free, 1);
2018 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2019 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2020 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2021 	MLX5_SET(mkc, mkc, umr_en, 1);
2022 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2023 }
2024 
2025 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2026 				  int ndescs, int desc_size, int page_shift,
2027 				  int access_mode, u32 *in, int inlen)
2028 {
2029 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2030 	int err;
2031 
2032 	mr->access_mode = access_mode;
2033 	mr->desc_size = desc_size;
2034 	mr->max_descs = ndescs;
2035 
2036 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2037 	if (err)
2038 		return err;
2039 
2040 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2041 
2042 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2043 	if (err)
2044 		goto err_free_descs;
2045 
2046 	mr->mmkey.type = MLX5_MKEY_MR;
2047 	mr->ibmr.lkey = mr->mmkey.key;
2048 	mr->ibmr.rkey = mr->mmkey.key;
2049 
2050 	return 0;
2051 
2052 err_free_descs:
2053 	mlx5_free_priv_descs(mr);
2054 	return err;
2055 }
2056 
2057 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2058 				u32 max_num_sg, u32 max_num_meta_sg,
2059 				int desc_size, int access_mode)
2060 {
2061 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2062 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2063 	int page_shift = 0;
2064 	struct mlx5_ib_mr *mr;
2065 	u32 *in;
2066 	int err;
2067 
2068 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2069 	if (!mr)
2070 		return ERR_PTR(-ENOMEM);
2071 
2072 	mr->ibmr.pd = pd;
2073 	mr->ibmr.device = pd->device;
2074 
2075 	in = kzalloc(inlen, GFP_KERNEL);
2076 	if (!in) {
2077 		err = -ENOMEM;
2078 		goto err_free;
2079 	}
2080 
2081 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2082 		page_shift = PAGE_SHIFT;
2083 
2084 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2085 				     access_mode, in, inlen);
2086 	if (err)
2087 		goto err_free_in;
2088 
2089 	mr->umem = NULL;
2090 	kfree(in);
2091 
2092 	return mr;
2093 
2094 err_free_in:
2095 	kfree(in);
2096 err_free:
2097 	kfree(mr);
2098 	return ERR_PTR(err);
2099 }
2100 
2101 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2102 				    int ndescs, u32 *in, int inlen)
2103 {
2104 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2105 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2106 				      inlen);
2107 }
2108 
2109 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2110 				    int ndescs, u32 *in, int inlen)
2111 {
2112 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2113 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2114 }
2115 
2116 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2117 				      int max_num_sg, int max_num_meta_sg,
2118 				      u32 *in, int inlen)
2119 {
2120 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2121 	u32 psv_index[2];
2122 	void *mkc;
2123 	int err;
2124 
2125 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2126 	if (!mr->sig)
2127 		return -ENOMEM;
2128 
2129 	/* create mem & wire PSVs */
2130 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2131 	if (err)
2132 		goto err_free_sig;
2133 
2134 	mr->sig->psv_memory.psv_idx = psv_index[0];
2135 	mr->sig->psv_wire.psv_idx = psv_index[1];
2136 
2137 	mr->sig->sig_status_checked = true;
2138 	mr->sig->sig_err_exists = false;
2139 	/* Next UMR, Arm SIGERR */
2140 	++mr->sig->sigerr_count;
2141 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2142 					 sizeof(struct mlx5_klm),
2143 					 MLX5_MKC_ACCESS_MODE_KLMS);
2144 	if (IS_ERR(mr->klm_mr)) {
2145 		err = PTR_ERR(mr->klm_mr);
2146 		goto err_destroy_psv;
2147 	}
2148 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2149 					 sizeof(struct mlx5_mtt),
2150 					 MLX5_MKC_ACCESS_MODE_MTT);
2151 	if (IS_ERR(mr->mtt_mr)) {
2152 		err = PTR_ERR(mr->mtt_mr);
2153 		goto err_free_klm_mr;
2154 	}
2155 
2156 	/* Set bsf descriptors for mkey */
2157 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2158 	MLX5_SET(mkc, mkc, bsf_en, 1);
2159 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2160 
2161 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2162 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2163 	if (err)
2164 		goto err_free_mtt_mr;
2165 
2166 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2167 			      mr->sig, GFP_KERNEL));
2168 	if (err)
2169 		goto err_free_descs;
2170 	return 0;
2171 
2172 err_free_descs:
2173 	destroy_mkey(dev, mr);
2174 	mlx5_free_priv_descs(mr);
2175 err_free_mtt_mr:
2176 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2177 	mr->mtt_mr = NULL;
2178 err_free_klm_mr:
2179 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2180 	mr->klm_mr = NULL;
2181 err_destroy_psv:
2182 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2183 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2184 			     mr->sig->psv_memory.psv_idx);
2185 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2186 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2187 			     mr->sig->psv_wire.psv_idx);
2188 err_free_sig:
2189 	kfree(mr->sig);
2190 
2191 	return err;
2192 }
2193 
2194 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2195 					enum ib_mr_type mr_type, u32 max_num_sg,
2196 					u32 max_num_meta_sg)
2197 {
2198 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2199 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2200 	int ndescs = ALIGN(max_num_sg, 4);
2201 	struct mlx5_ib_mr *mr;
2202 	u32 *in;
2203 	int err;
2204 
2205 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2206 	if (!mr)
2207 		return ERR_PTR(-ENOMEM);
2208 
2209 	in = kzalloc(inlen, GFP_KERNEL);
2210 	if (!in) {
2211 		err = -ENOMEM;
2212 		goto err_free;
2213 	}
2214 
2215 	mr->ibmr.device = pd->device;
2216 	mr->umem = NULL;
2217 
2218 	switch (mr_type) {
2219 	case IB_MR_TYPE_MEM_REG:
2220 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2221 		break;
2222 	case IB_MR_TYPE_SG_GAPS:
2223 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2224 		break;
2225 	case IB_MR_TYPE_INTEGRITY:
2226 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2227 						 max_num_meta_sg, in, inlen);
2228 		break;
2229 	default:
2230 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2231 		err = -EINVAL;
2232 	}
2233 
2234 	if (err)
2235 		goto err_free_in;
2236 
2237 	kfree(in);
2238 
2239 	return &mr->ibmr;
2240 
2241 err_free_in:
2242 	kfree(in);
2243 err_free:
2244 	kfree(mr);
2245 	return ERR_PTR(err);
2246 }
2247 
2248 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2249 			       u32 max_num_sg)
2250 {
2251 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2252 }
2253 
2254 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2255 					 u32 max_num_sg, u32 max_num_meta_sg)
2256 {
2257 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2258 				  max_num_meta_sg);
2259 }
2260 
2261 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2262 {
2263 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2264 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2265 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2266 	u32 *in = NULL;
2267 	void *mkc;
2268 	int ndescs;
2269 	int err;
2270 	struct mlx5_ib_alloc_mw req = {};
2271 	struct {
2272 		__u32	comp_mask;
2273 		__u32	response_length;
2274 	} resp = {};
2275 
2276 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2277 	if (err)
2278 		return err;
2279 
2280 	if (req.comp_mask || req.reserved1 || req.reserved2)
2281 		return -EOPNOTSUPP;
2282 
2283 	if (udata->inlen > sizeof(req) &&
2284 	    !ib_is_udata_cleared(udata, sizeof(req),
2285 				 udata->inlen - sizeof(req)))
2286 		return -EOPNOTSUPP;
2287 
2288 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2289 
2290 	in = kzalloc(inlen, GFP_KERNEL);
2291 	if (!in) {
2292 		err = -ENOMEM;
2293 		goto free;
2294 	}
2295 
2296 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2297 
2298 	MLX5_SET(mkc, mkc, free, 1);
2299 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2300 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2301 	MLX5_SET(mkc, mkc, umr_en, 1);
2302 	MLX5_SET(mkc, mkc, lr, 1);
2303 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2304 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2305 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2306 
2307 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2308 	if (err)
2309 		goto free;
2310 
2311 	mw->mmkey.type = MLX5_MKEY_MW;
2312 	ibmw->rkey = mw->mmkey.key;
2313 	mw->ndescs = ndescs;
2314 
2315 	resp.response_length =
2316 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2317 	if (resp.response_length) {
2318 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2319 		if (err)
2320 			goto free_mkey;
2321 	}
2322 
2323 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2324 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2325 		if (err)
2326 			goto free_mkey;
2327 	}
2328 
2329 	kfree(in);
2330 	return 0;
2331 
2332 free_mkey:
2333 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2334 free:
2335 	kfree(in);
2336 	return err;
2337 }
2338 
2339 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2340 {
2341 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2342 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2343 
2344 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2345 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2346 		/*
2347 		 * pagefault_single_data_segment() may be accessing mmw
2348 		 * if the user bound an ODP MR to this MW.
2349 		 */
2350 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2351 
2352 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2353 }
2354 
2355 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2356 			    struct ib_mr_status *mr_status)
2357 {
2358 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2359 	int ret = 0;
2360 
2361 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2362 		pr_err("Invalid status check mask\n");
2363 		ret = -EINVAL;
2364 		goto done;
2365 	}
2366 
2367 	mr_status->fail_status = 0;
2368 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2369 		if (!mmr->sig) {
2370 			ret = -EINVAL;
2371 			pr_err("signature status check requested on a non-signature enabled MR\n");
2372 			goto done;
2373 		}
2374 
2375 		mmr->sig->sig_status_checked = true;
2376 		if (!mmr->sig->sig_err_exists)
2377 			goto done;
2378 
2379 		if (ibmr->lkey == mmr->sig->err_item.key)
2380 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2381 			       sizeof(mr_status->sig_err));
2382 		else {
2383 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2384 			mr_status->sig_err.sig_err_offset = 0;
2385 			mr_status->sig_err.key = mmr->sig->err_item.key;
2386 		}
2387 
2388 		mmr->sig->sig_err_exists = false;
2389 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2390 	}
2391 
2392 done:
2393 	return ret;
2394 }
2395 
2396 static int
2397 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2398 			int data_sg_nents, unsigned int *data_sg_offset,
2399 			struct scatterlist *meta_sg, int meta_sg_nents,
2400 			unsigned int *meta_sg_offset)
2401 {
2402 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2403 	unsigned int sg_offset = 0;
2404 	int n = 0;
2405 
2406 	mr->meta_length = 0;
2407 	if (data_sg_nents == 1) {
2408 		n++;
2409 		mr->ndescs = 1;
2410 		if (data_sg_offset)
2411 			sg_offset = *data_sg_offset;
2412 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2413 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2414 		if (meta_sg_nents == 1) {
2415 			n++;
2416 			mr->meta_ndescs = 1;
2417 			if (meta_sg_offset)
2418 				sg_offset = *meta_sg_offset;
2419 			else
2420 				sg_offset = 0;
2421 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2422 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2423 		}
2424 		ibmr->length = mr->data_length + mr->meta_length;
2425 	}
2426 
2427 	return n;
2428 }
2429 
2430 static int
2431 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2432 		   struct scatterlist *sgl,
2433 		   unsigned short sg_nents,
2434 		   unsigned int *sg_offset_p,
2435 		   struct scatterlist *meta_sgl,
2436 		   unsigned short meta_sg_nents,
2437 		   unsigned int *meta_sg_offset_p)
2438 {
2439 	struct scatterlist *sg = sgl;
2440 	struct mlx5_klm *klms = mr->descs;
2441 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2442 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2443 	int i, j = 0;
2444 
2445 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2446 	mr->ibmr.length = 0;
2447 
2448 	for_each_sg(sgl, sg, sg_nents, i) {
2449 		if (unlikely(i >= mr->max_descs))
2450 			break;
2451 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2452 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2453 		klms[i].key = cpu_to_be32(lkey);
2454 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2455 
2456 		sg_offset = 0;
2457 	}
2458 
2459 	if (sg_offset_p)
2460 		*sg_offset_p = sg_offset;
2461 
2462 	mr->ndescs = i;
2463 	mr->data_length = mr->ibmr.length;
2464 
2465 	if (meta_sg_nents) {
2466 		sg = meta_sgl;
2467 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2468 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2469 			if (unlikely(i + j >= mr->max_descs))
2470 				break;
2471 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2472 						     sg_offset);
2473 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2474 							 sg_offset);
2475 			klms[i + j].key = cpu_to_be32(lkey);
2476 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2477 
2478 			sg_offset = 0;
2479 		}
2480 		if (meta_sg_offset_p)
2481 			*meta_sg_offset_p = sg_offset;
2482 
2483 		mr->meta_ndescs = j;
2484 		mr->meta_length = mr->ibmr.length - mr->data_length;
2485 	}
2486 
2487 	return i + j;
2488 }
2489 
2490 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2491 {
2492 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493 	__be64 *descs;
2494 
2495 	if (unlikely(mr->ndescs == mr->max_descs))
2496 		return -ENOMEM;
2497 
2498 	descs = mr->descs;
2499 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2500 
2501 	return 0;
2502 }
2503 
2504 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2505 {
2506 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2507 	__be64 *descs;
2508 
2509 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2510 		return -ENOMEM;
2511 
2512 	descs = mr->descs;
2513 	descs[mr->ndescs + mr->meta_ndescs++] =
2514 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2515 
2516 	return 0;
2517 }
2518 
2519 static int
2520 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521 			 int data_sg_nents, unsigned int *data_sg_offset,
2522 			 struct scatterlist *meta_sg, int meta_sg_nents,
2523 			 unsigned int *meta_sg_offset)
2524 {
2525 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2527 	int n;
2528 
2529 	pi_mr->ndescs = 0;
2530 	pi_mr->meta_ndescs = 0;
2531 	pi_mr->meta_length = 0;
2532 
2533 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2534 				   pi_mr->desc_size * pi_mr->max_descs,
2535 				   DMA_TO_DEVICE);
2536 
2537 	pi_mr->ibmr.page_size = ibmr->page_size;
2538 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2539 			   mlx5_set_page);
2540 	if (n != data_sg_nents)
2541 		return n;
2542 
2543 	pi_mr->data_iova = pi_mr->ibmr.iova;
2544 	pi_mr->data_length = pi_mr->ibmr.length;
2545 	pi_mr->ibmr.length = pi_mr->data_length;
2546 	ibmr->length = pi_mr->data_length;
2547 
2548 	if (meta_sg_nents) {
2549 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2550 		u64 iova = pi_mr->data_iova;
2551 
2552 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2553 				    meta_sg_offset, mlx5_set_page_pi);
2554 
2555 		pi_mr->meta_length = pi_mr->ibmr.length;
2556 		/*
2557 		 * PI address for the HW is the offset of the metadata address
2558 		 * relative to the first data page address.
2559 		 * It equals to first data page address + size of data pages +
2560 		 * metadata offset at the first metadata page
2561 		 */
2562 		pi_mr->pi_iova = (iova & page_mask) +
2563 				 pi_mr->ndescs * ibmr->page_size +
2564 				 (pi_mr->ibmr.iova & ~page_mask);
2565 		/*
2566 		 * In order to use one MTT MR for data and metadata, we register
2567 		 * also the gaps between the end of the data and the start of
2568 		 * the metadata (the sig MR will verify that the HW will access
2569 		 * to right addresses). This mapping is safe because we use
2570 		 * internal mkey for the registration.
2571 		 */
2572 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2573 		pi_mr->ibmr.iova = iova;
2574 		ibmr->length += pi_mr->meta_length;
2575 	}
2576 
2577 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2578 				      pi_mr->desc_size * pi_mr->max_descs,
2579 				      DMA_TO_DEVICE);
2580 
2581 	return n;
2582 }
2583 
2584 static int
2585 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2586 			 int data_sg_nents, unsigned int *data_sg_offset,
2587 			 struct scatterlist *meta_sg, int meta_sg_nents,
2588 			 unsigned int *meta_sg_offset)
2589 {
2590 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2591 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2592 	int n;
2593 
2594 	pi_mr->ndescs = 0;
2595 	pi_mr->meta_ndescs = 0;
2596 	pi_mr->meta_length = 0;
2597 
2598 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2599 				   pi_mr->desc_size * pi_mr->max_descs,
2600 				   DMA_TO_DEVICE);
2601 
2602 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2603 			       meta_sg, meta_sg_nents, meta_sg_offset);
2604 
2605 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2606 				      pi_mr->desc_size * pi_mr->max_descs,
2607 				      DMA_TO_DEVICE);
2608 
2609 	/* This is zero-based memory region */
2610 	pi_mr->data_iova = 0;
2611 	pi_mr->ibmr.iova = 0;
2612 	pi_mr->pi_iova = pi_mr->data_length;
2613 	ibmr->length = pi_mr->ibmr.length;
2614 
2615 	return n;
2616 }
2617 
2618 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2619 			 int data_sg_nents, unsigned int *data_sg_offset,
2620 			 struct scatterlist *meta_sg, int meta_sg_nents,
2621 			 unsigned int *meta_sg_offset)
2622 {
2623 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2624 	struct mlx5_ib_mr *pi_mr = NULL;
2625 	int n;
2626 
2627 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2628 
2629 	mr->ndescs = 0;
2630 	mr->data_length = 0;
2631 	mr->data_iova = 0;
2632 	mr->meta_ndescs = 0;
2633 	mr->pi_iova = 0;
2634 	/*
2635 	 * As a performance optimization, if possible, there is no need to
2636 	 * perform UMR operation to register the data/metadata buffers.
2637 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2638 	 * Fallback to UMR only in case of a failure.
2639 	 */
2640 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2641 				    data_sg_offset, meta_sg, meta_sg_nents,
2642 				    meta_sg_offset);
2643 	if (n == data_sg_nents + meta_sg_nents)
2644 		goto out;
2645 	/*
2646 	 * As a performance optimization, if possible, there is no need to map
2647 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2648 	 * descriptors and fallback to KLM only in case of a failure.
2649 	 * It's more efficient for the HW to work with MTT descriptors
2650 	 * (especially in high load).
2651 	 * Use KLM (indirect access) only if it's mandatory.
2652 	 */
2653 	pi_mr = mr->mtt_mr;
2654 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2655 				     data_sg_offset, meta_sg, meta_sg_nents,
2656 				     meta_sg_offset);
2657 	if (n == data_sg_nents + meta_sg_nents)
2658 		goto out;
2659 
2660 	pi_mr = mr->klm_mr;
2661 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2662 				     data_sg_offset, meta_sg, meta_sg_nents,
2663 				     meta_sg_offset);
2664 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2665 		return -ENOMEM;
2666 
2667 out:
2668 	/* This is zero-based memory region */
2669 	ibmr->iova = 0;
2670 	mr->pi_mr = pi_mr;
2671 	if (pi_mr)
2672 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2673 	else
2674 		ibmr->sig_attrs->meta_length = mr->meta_length;
2675 
2676 	return 0;
2677 }
2678 
2679 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2680 		      unsigned int *sg_offset)
2681 {
2682 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2683 	int n;
2684 
2685 	mr->ndescs = 0;
2686 
2687 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2688 				   mr->desc_size * mr->max_descs,
2689 				   DMA_TO_DEVICE);
2690 
2691 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2692 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2693 				       NULL);
2694 	else
2695 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2696 				mlx5_set_page);
2697 
2698 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2699 				      mr->desc_size * mr->max_descs,
2700 				      DMA_TO_DEVICE);
2701 
2702 	return n;
2703 }
2704