xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 867e6d38)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 
48 /*
49  * We can't use an array for xlt_emergency_page because dma_map_single doesn't
50  * work on kernel modules memory
51  */
52 void *xlt_emergency_page;
53 static DEFINE_MUTEX(xlt_emergency_page_mutex);
54 
55 enum {
56 	MAX_PENDING_REG_MR = 8,
57 };
58 
59 #define MLX5_UMR_ALIGN 2048
60 
61 static void
62 create_mkey_callback(int status, struct mlx5_async_work *context);
63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
64 				     u64 iova, int access_flags,
65 				     unsigned int page_size, bool populate);
66 
67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
68 					  struct ib_pd *pd)
69 {
70 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
71 
72 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
73 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
74 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
75 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
76 	MLX5_SET(mkc, mkc, lr, 1);
77 
78 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
79 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
80 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
81 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
82 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
83 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
84 
85 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
86 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
87 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
88 }
89 
90 static void
91 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
92 		    u32 *in)
93 {
94 	u8 key = atomic_inc_return(&dev->mkey_var);
95 	void *mkc;
96 
97 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
98 	MLX5_SET(mkc, mkc, mkey_7_0, key);
99 	mkey->key = key;
100 }
101 
102 static int
103 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
104 		    u32 *in, int inlen)
105 {
106 	assign_mkey_variant(dev, mkey, in);
107 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
108 }
109 
110 static int
111 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
112 		       struct mlx5_core_mkey *mkey,
113 		       struct mlx5_async_ctx *async_ctx,
114 		       u32 *in, int inlen, u32 *out, int outlen,
115 		       struct mlx5_async_work *context)
116 {
117 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
118 	assign_mkey_variant(dev, mkey, in);
119 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
120 				create_mkey_callback, context);
121 }
122 
123 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125 
126 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
127 {
128 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
129 }
130 
131 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
132 {
133 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
134 
135 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
136 }
137 
138 static void create_mkey_callback(int status, struct mlx5_async_work *context)
139 {
140 	struct mlx5_ib_mr *mr =
141 		container_of(context, struct mlx5_ib_mr, cb_work);
142 	struct mlx5_cache_ent *ent = mr->cache_ent;
143 	struct mlx5_ib_dev *dev = ent->dev;
144 	unsigned long flags;
145 
146 	if (status) {
147 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
148 		kfree(mr);
149 		spin_lock_irqsave(&ent->lock, flags);
150 		ent->pending--;
151 		WRITE_ONCE(dev->fill_delay, 1);
152 		spin_unlock_irqrestore(&ent->lock, flags);
153 		mod_timer(&dev->delay_timer, jiffies + HZ);
154 		return;
155 	}
156 
157 	mr->mmkey.type = MLX5_MKEY_MR;
158 	mr->mmkey.key |= mlx5_idx_to_mkey(
159 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
160 	init_waitqueue_head(&mr->mmkey.wait);
161 
162 	WRITE_ONCE(dev->cache.last_add, jiffies);
163 
164 	spin_lock_irqsave(&ent->lock, flags);
165 	list_add_tail(&mr->list, &ent->head);
166 	ent->available_mrs++;
167 	ent->total_mrs++;
168 	/* If we are doing fill_to_high_water then keep going. */
169 	queue_adjust_cache_locked(ent);
170 	ent->pending--;
171 	spin_unlock_irqrestore(&ent->lock, flags);
172 }
173 
174 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
175 {
176 	struct mlx5_ib_mr *mr;
177 
178 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
179 	if (!mr)
180 		return NULL;
181 	mr->cache_ent = ent;
182 
183 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
184 	MLX5_SET(mkc, mkc, free, 1);
185 	MLX5_SET(mkc, mkc, umr_en, 1);
186 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
187 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
188 
189 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
190 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
191 	return mr;
192 }
193 
194 /* Asynchronously schedule new MRs to be populated in the cache. */
195 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
196 {
197 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
198 	struct mlx5_ib_mr *mr;
199 	void *mkc;
200 	u32 *in;
201 	int err = 0;
202 	int i;
203 
204 	in = kzalloc(inlen, GFP_KERNEL);
205 	if (!in)
206 		return -ENOMEM;
207 
208 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
209 	for (i = 0; i < num; i++) {
210 		mr = alloc_cache_mr(ent, mkc);
211 		if (!mr) {
212 			err = -ENOMEM;
213 			break;
214 		}
215 		spin_lock_irq(&ent->lock);
216 		if (ent->pending >= MAX_PENDING_REG_MR) {
217 			err = -EAGAIN;
218 			spin_unlock_irq(&ent->lock);
219 			kfree(mr);
220 			break;
221 		}
222 		ent->pending++;
223 		spin_unlock_irq(&ent->lock);
224 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
225 					     &ent->dev->async_ctx, in, inlen,
226 					     mr->out, sizeof(mr->out),
227 					     &mr->cb_work);
228 		if (err) {
229 			spin_lock_irq(&ent->lock);
230 			ent->pending--;
231 			spin_unlock_irq(&ent->lock);
232 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
233 			kfree(mr);
234 			break;
235 		}
236 	}
237 
238 	kfree(in);
239 	return err;
240 }
241 
242 /* Synchronously create a MR in the cache */
243 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
244 {
245 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
246 	struct mlx5_ib_mr *mr;
247 	void *mkc;
248 	u32 *in;
249 	int err;
250 
251 	in = kzalloc(inlen, GFP_KERNEL);
252 	if (!in)
253 		return ERR_PTR(-ENOMEM);
254 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
255 
256 	mr = alloc_cache_mr(ent, mkc);
257 	if (!mr) {
258 		err = -ENOMEM;
259 		goto free_in;
260 	}
261 
262 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
263 	if (err)
264 		goto free_mr;
265 
266 	mr->mmkey.type = MLX5_MKEY_MR;
267 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
268 	spin_lock_irq(&ent->lock);
269 	ent->total_mrs++;
270 	spin_unlock_irq(&ent->lock);
271 	kfree(in);
272 	return mr;
273 free_mr:
274 	kfree(mr);
275 free_in:
276 	kfree(in);
277 	return ERR_PTR(err);
278 }
279 
280 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
281 {
282 	struct mlx5_ib_mr *mr;
283 
284 	lockdep_assert_held(&ent->lock);
285 	if (list_empty(&ent->head))
286 		return;
287 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
288 	list_del(&mr->list);
289 	ent->available_mrs--;
290 	ent->total_mrs--;
291 	spin_unlock_irq(&ent->lock);
292 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
293 	kfree(mr);
294 	spin_lock_irq(&ent->lock);
295 }
296 
297 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
298 				bool limit_fill)
299 {
300 	int err;
301 
302 	lockdep_assert_held(&ent->lock);
303 
304 	while (true) {
305 		if (limit_fill)
306 			target = ent->limit * 2;
307 		if (target == ent->available_mrs + ent->pending)
308 			return 0;
309 		if (target > ent->available_mrs + ent->pending) {
310 			u32 todo = target - (ent->available_mrs + ent->pending);
311 
312 			spin_unlock_irq(&ent->lock);
313 			err = add_keys(ent, todo);
314 			if (err == -EAGAIN)
315 				usleep_range(3000, 5000);
316 			spin_lock_irq(&ent->lock);
317 			if (err) {
318 				if (err != -EAGAIN)
319 					return err;
320 			} else
321 				return 0;
322 		} else {
323 			remove_cache_mr_locked(ent);
324 		}
325 	}
326 }
327 
328 static ssize_t size_write(struct file *filp, const char __user *buf,
329 			  size_t count, loff_t *pos)
330 {
331 	struct mlx5_cache_ent *ent = filp->private_data;
332 	u32 target;
333 	int err;
334 
335 	err = kstrtou32_from_user(buf, count, 0, &target);
336 	if (err)
337 		return err;
338 
339 	/*
340 	 * Target is the new value of total_mrs the user requests, however we
341 	 * cannot free MRs that are in use. Compute the target value for
342 	 * available_mrs.
343 	 */
344 	spin_lock_irq(&ent->lock);
345 	if (target < ent->total_mrs - ent->available_mrs) {
346 		err = -EINVAL;
347 		goto err_unlock;
348 	}
349 	target = target - (ent->total_mrs - ent->available_mrs);
350 	if (target < ent->limit || target > ent->limit*2) {
351 		err = -EINVAL;
352 		goto err_unlock;
353 	}
354 	err = resize_available_mrs(ent, target, false);
355 	if (err)
356 		goto err_unlock;
357 	spin_unlock_irq(&ent->lock);
358 
359 	return count;
360 
361 err_unlock:
362 	spin_unlock_irq(&ent->lock);
363 	return err;
364 }
365 
366 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
367 			 loff_t *pos)
368 {
369 	struct mlx5_cache_ent *ent = filp->private_data;
370 	char lbuf[20];
371 	int err;
372 
373 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
374 	if (err < 0)
375 		return err;
376 
377 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
378 }
379 
380 static const struct file_operations size_fops = {
381 	.owner	= THIS_MODULE,
382 	.open	= simple_open,
383 	.write	= size_write,
384 	.read	= size_read,
385 };
386 
387 static ssize_t limit_write(struct file *filp, const char __user *buf,
388 			   size_t count, loff_t *pos)
389 {
390 	struct mlx5_cache_ent *ent = filp->private_data;
391 	u32 var;
392 	int err;
393 
394 	err = kstrtou32_from_user(buf, count, 0, &var);
395 	if (err)
396 		return err;
397 
398 	/*
399 	 * Upon set we immediately fill the cache to high water mark implied by
400 	 * the limit.
401 	 */
402 	spin_lock_irq(&ent->lock);
403 	ent->limit = var;
404 	err = resize_available_mrs(ent, 0, true);
405 	spin_unlock_irq(&ent->lock);
406 	if (err)
407 		return err;
408 	return count;
409 }
410 
411 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
412 			  loff_t *pos)
413 {
414 	struct mlx5_cache_ent *ent = filp->private_data;
415 	char lbuf[20];
416 	int err;
417 
418 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
419 	if (err < 0)
420 		return err;
421 
422 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
423 }
424 
425 static const struct file_operations limit_fops = {
426 	.owner	= THIS_MODULE,
427 	.open	= simple_open,
428 	.write	= limit_write,
429 	.read	= limit_read,
430 };
431 
432 static bool someone_adding(struct mlx5_mr_cache *cache)
433 {
434 	unsigned int i;
435 
436 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
437 		struct mlx5_cache_ent *ent = &cache->ent[i];
438 		bool ret;
439 
440 		spin_lock_irq(&ent->lock);
441 		ret = ent->available_mrs < ent->limit;
442 		spin_unlock_irq(&ent->lock);
443 		if (ret)
444 			return true;
445 	}
446 	return false;
447 }
448 
449 /*
450  * Check if the bucket is outside the high/low water mark and schedule an async
451  * update. The cache refill has hysteresis, once the low water mark is hit it is
452  * refilled up to the high mark.
453  */
454 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
455 {
456 	lockdep_assert_held(&ent->lock);
457 
458 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
459 		return;
460 	if (ent->available_mrs < ent->limit) {
461 		ent->fill_to_high_water = true;
462 		queue_work(ent->dev->cache.wq, &ent->work);
463 	} else if (ent->fill_to_high_water &&
464 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
465 		/*
466 		 * Once we start populating due to hitting a low water mark
467 		 * continue until we pass the high water mark.
468 		 */
469 		queue_work(ent->dev->cache.wq, &ent->work);
470 	} else if (ent->available_mrs == 2 * ent->limit) {
471 		ent->fill_to_high_water = false;
472 	} else if (ent->available_mrs > 2 * ent->limit) {
473 		/* Queue deletion of excess entries */
474 		ent->fill_to_high_water = false;
475 		if (ent->pending)
476 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
477 					   msecs_to_jiffies(1000));
478 		else
479 			queue_work(ent->dev->cache.wq, &ent->work);
480 	}
481 }
482 
483 static void __cache_work_func(struct mlx5_cache_ent *ent)
484 {
485 	struct mlx5_ib_dev *dev = ent->dev;
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	int err;
488 
489 	spin_lock_irq(&ent->lock);
490 	if (ent->disabled)
491 		goto out;
492 
493 	if (ent->fill_to_high_water &&
494 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
495 	    !READ_ONCE(dev->fill_delay)) {
496 		spin_unlock_irq(&ent->lock);
497 		err = add_keys(ent, 1);
498 		spin_lock_irq(&ent->lock);
499 		if (ent->disabled)
500 			goto out;
501 		if (err) {
502 			/*
503 			 * EAGAIN only happens if pending is positive, so we
504 			 * will be rescheduled from reg_mr_callback(). The only
505 			 * failure path here is ENOMEM.
506 			 */
507 			if (err != -EAGAIN) {
508 				mlx5_ib_warn(
509 					dev,
510 					"command failed order %d, err %d\n",
511 					ent->order, err);
512 				queue_delayed_work(cache->wq, &ent->dwork,
513 						   msecs_to_jiffies(1000));
514 			}
515 		}
516 	} else if (ent->available_mrs > 2 * ent->limit) {
517 		bool need_delay;
518 
519 		/*
520 		 * The remove_cache_mr() logic is performed as garbage
521 		 * collection task. Such task is intended to be run when no
522 		 * other active processes are running.
523 		 *
524 		 * The need_resched() will return TRUE if there are user tasks
525 		 * to be activated in near future.
526 		 *
527 		 * In such case, we don't execute remove_cache_mr() and postpone
528 		 * the garbage collection work to try to run in next cycle, in
529 		 * order to free CPU resources to other tasks.
530 		 */
531 		spin_unlock_irq(&ent->lock);
532 		need_delay = need_resched() || someone_adding(cache) ||
533 			     time_after(jiffies,
534 					READ_ONCE(cache->last_add) + 300 * HZ);
535 		spin_lock_irq(&ent->lock);
536 		if (ent->disabled)
537 			goto out;
538 		if (need_delay)
539 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
540 		remove_cache_mr_locked(ent);
541 		queue_adjust_cache_locked(ent);
542 	}
543 out:
544 	spin_unlock_irq(&ent->lock);
545 }
546 
547 static void delayed_cache_work_func(struct work_struct *work)
548 {
549 	struct mlx5_cache_ent *ent;
550 
551 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
552 	__cache_work_func(ent);
553 }
554 
555 static void cache_work_func(struct work_struct *work)
556 {
557 	struct mlx5_cache_ent *ent;
558 
559 	ent = container_of(work, struct mlx5_cache_ent, work);
560 	__cache_work_func(ent);
561 }
562 
563 /* Allocate a special entry from the cache */
564 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
565 				       unsigned int entry, int access_flags)
566 {
567 	struct mlx5_mr_cache *cache = &dev->cache;
568 	struct mlx5_cache_ent *ent;
569 	struct mlx5_ib_mr *mr;
570 
571 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
572 		    entry >= ARRAY_SIZE(cache->ent)))
573 		return ERR_PTR(-EINVAL);
574 
575 	/* Matches access in alloc_cache_mr() */
576 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
577 		return ERR_PTR(-EOPNOTSUPP);
578 
579 	ent = &cache->ent[entry];
580 	spin_lock_irq(&ent->lock);
581 	if (list_empty(&ent->head)) {
582 		spin_unlock_irq(&ent->lock);
583 		mr = create_cache_mr(ent);
584 		if (IS_ERR(mr))
585 			return mr;
586 	} else {
587 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
588 		list_del(&mr->list);
589 		ent->available_mrs--;
590 		queue_adjust_cache_locked(ent);
591 		spin_unlock_irq(&ent->lock);
592 
593 		mlx5_clear_mr(mr);
594 	}
595 	mr->access_flags = access_flags;
596 	return mr;
597 }
598 
599 /* Return a MR already available in the cache */
600 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
601 {
602 	struct mlx5_ib_dev *dev = req_ent->dev;
603 	struct mlx5_ib_mr *mr = NULL;
604 	struct mlx5_cache_ent *ent = req_ent;
605 
606 	/* Try larger MR pools from the cache to satisfy the allocation */
607 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
608 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
609 			    ent - dev->cache.ent);
610 
611 		spin_lock_irq(&ent->lock);
612 		if (!list_empty(&ent->head)) {
613 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
614 					      list);
615 			list_del(&mr->list);
616 			ent->available_mrs--;
617 			queue_adjust_cache_locked(ent);
618 			spin_unlock_irq(&ent->lock);
619 			mlx5_clear_mr(mr);
620 			return mr;
621 		}
622 		queue_adjust_cache_locked(ent);
623 		spin_unlock_irq(&ent->lock);
624 	}
625 	req_ent->miss++;
626 	return NULL;
627 }
628 
629 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
630 {
631 	struct mlx5_cache_ent *ent = mr->cache_ent;
632 
633 	spin_lock_irq(&ent->lock);
634 	list_add_tail(&mr->list, &ent->head);
635 	ent->available_mrs++;
636 	queue_adjust_cache_locked(ent);
637 	spin_unlock_irq(&ent->lock);
638 }
639 
640 static void clean_keys(struct mlx5_ib_dev *dev, int c)
641 {
642 	struct mlx5_mr_cache *cache = &dev->cache;
643 	struct mlx5_cache_ent *ent = &cache->ent[c];
644 	struct mlx5_ib_mr *tmp_mr;
645 	struct mlx5_ib_mr *mr;
646 	LIST_HEAD(del_list);
647 
648 	cancel_delayed_work(&ent->dwork);
649 	while (1) {
650 		spin_lock_irq(&ent->lock);
651 		if (list_empty(&ent->head)) {
652 			spin_unlock_irq(&ent->lock);
653 			break;
654 		}
655 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
656 		list_move(&mr->list, &del_list);
657 		ent->available_mrs--;
658 		ent->total_mrs--;
659 		spin_unlock_irq(&ent->lock);
660 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
661 	}
662 
663 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
664 		list_del(&mr->list);
665 		kfree(mr);
666 	}
667 }
668 
669 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
670 {
671 	if (!mlx5_debugfs_root || dev->is_rep)
672 		return;
673 
674 	debugfs_remove_recursive(dev->cache.root);
675 	dev->cache.root = NULL;
676 }
677 
678 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
679 {
680 	struct mlx5_mr_cache *cache = &dev->cache;
681 	struct mlx5_cache_ent *ent;
682 	struct dentry *dir;
683 	int i;
684 
685 	if (!mlx5_debugfs_root || dev->is_rep)
686 		return;
687 
688 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
689 
690 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
691 		ent = &cache->ent[i];
692 		sprintf(ent->name, "%d", ent->order);
693 		dir = debugfs_create_dir(ent->name, cache->root);
694 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
695 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
696 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
697 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
698 	}
699 }
700 
701 static void delay_time_func(struct timer_list *t)
702 {
703 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
704 
705 	WRITE_ONCE(dev->fill_delay, 0);
706 }
707 
708 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
709 {
710 	struct mlx5_mr_cache *cache = &dev->cache;
711 	struct mlx5_cache_ent *ent;
712 	int i;
713 
714 	mutex_init(&dev->slow_path_mutex);
715 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
716 	if (!cache->wq) {
717 		mlx5_ib_warn(dev, "failed to create work queue\n");
718 		return -ENOMEM;
719 	}
720 
721 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
722 	timer_setup(&dev->delay_timer, delay_time_func, 0);
723 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
724 		ent = &cache->ent[i];
725 		INIT_LIST_HEAD(&ent->head);
726 		spin_lock_init(&ent->lock);
727 		ent->order = i + 2;
728 		ent->dev = dev;
729 		ent->limit = 0;
730 
731 		INIT_WORK(&ent->work, cache_work_func);
732 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
733 
734 		if (i > MR_CACHE_LAST_STD_ENTRY) {
735 			mlx5_odp_init_mr_cache_entry(ent);
736 			continue;
737 		}
738 
739 		if (ent->order > mr_cache_max_order(dev))
740 			continue;
741 
742 		ent->page = PAGE_SHIFT;
743 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
744 			   MLX5_IB_UMR_OCTOWORD;
745 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
746 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
747 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
748 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
749 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
750 		else
751 			ent->limit = 0;
752 		spin_lock_irq(&ent->lock);
753 		queue_adjust_cache_locked(ent);
754 		spin_unlock_irq(&ent->lock);
755 	}
756 
757 	mlx5_mr_cache_debugfs_init(dev);
758 
759 	return 0;
760 }
761 
762 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
763 {
764 	unsigned int i;
765 
766 	if (!dev->cache.wq)
767 		return 0;
768 
769 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
770 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
771 
772 		spin_lock_irq(&ent->lock);
773 		ent->disabled = true;
774 		spin_unlock_irq(&ent->lock);
775 		cancel_work_sync(&ent->work);
776 		cancel_delayed_work_sync(&ent->dwork);
777 	}
778 
779 	mlx5_mr_cache_debugfs_cleanup(dev);
780 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
781 
782 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
783 		clean_keys(dev, i);
784 
785 	destroy_workqueue(dev->cache.wq);
786 	del_timer_sync(&dev->delay_timer);
787 
788 	return 0;
789 }
790 
791 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
792 {
793 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
794 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
795 	struct mlx5_ib_mr *mr;
796 	void *mkc;
797 	u32 *in;
798 	int err;
799 
800 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
801 	if (!mr)
802 		return ERR_PTR(-ENOMEM);
803 
804 	in = kzalloc(inlen, GFP_KERNEL);
805 	if (!in) {
806 		err = -ENOMEM;
807 		goto err_free;
808 	}
809 
810 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
811 
812 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
813 	MLX5_SET(mkc, mkc, length64, 1);
814 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
815 
816 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
817 	if (err)
818 		goto err_in;
819 
820 	kfree(in);
821 	mr->mmkey.type = MLX5_MKEY_MR;
822 	mr->ibmr.lkey = mr->mmkey.key;
823 	mr->ibmr.rkey = mr->mmkey.key;
824 	mr->umem = NULL;
825 
826 	return &mr->ibmr;
827 
828 err_in:
829 	kfree(in);
830 
831 err_free:
832 	kfree(mr);
833 
834 	return ERR_PTR(err);
835 }
836 
837 static int get_octo_len(u64 addr, u64 len, int page_shift)
838 {
839 	u64 page_size = 1ULL << page_shift;
840 	u64 offset;
841 	int npages;
842 
843 	offset = addr & (page_size - 1);
844 	npages = ALIGN(len + offset, page_size) >> page_shift;
845 	return (npages + 1) / 2;
846 }
847 
848 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
849 {
850 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
851 		return MR_CACHE_LAST_STD_ENTRY + 2;
852 	return MLX5_MAX_UMR_SHIFT;
853 }
854 
855 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
856 {
857 	struct mlx5_ib_umr_context *context =
858 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
859 
860 	context->status = wc->status;
861 	complete(&context->done);
862 }
863 
864 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
865 {
866 	context->cqe.done = mlx5_ib_umr_done;
867 	context->status = -1;
868 	init_completion(&context->done);
869 }
870 
871 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
872 				  struct mlx5_umr_wr *umrwr)
873 {
874 	struct umr_common *umrc = &dev->umrc;
875 	const struct ib_send_wr *bad;
876 	int err;
877 	struct mlx5_ib_umr_context umr_context;
878 
879 	mlx5_ib_init_umr_context(&umr_context);
880 	umrwr->wr.wr_cqe = &umr_context.cqe;
881 
882 	down(&umrc->sem);
883 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
884 	if (err) {
885 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
886 	} else {
887 		wait_for_completion(&umr_context.done);
888 		if (umr_context.status != IB_WC_SUCCESS) {
889 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
890 				     umr_context.status);
891 			err = -EFAULT;
892 		}
893 	}
894 	up(&umrc->sem);
895 	return err;
896 }
897 
898 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
899 						      unsigned int order)
900 {
901 	struct mlx5_mr_cache *cache = &dev->cache;
902 
903 	if (order < cache->ent[0].order)
904 		return &cache->ent[0];
905 	order = order - cache->ent[0].order;
906 	if (order > MR_CACHE_LAST_STD_ENTRY)
907 		return NULL;
908 	return &cache->ent[order];
909 }
910 
911 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
912 			  u64 length, int access_flags)
913 {
914 	mr->ibmr.lkey = mr->mmkey.key;
915 	mr->ibmr.rkey = mr->mmkey.key;
916 	mr->ibmr.length = length;
917 	mr->ibmr.device = &dev->ib_dev;
918 	mr->access_flags = access_flags;
919 }
920 
921 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
922 						  u64 iova)
923 {
924 	/*
925 	 * The alignment of iova has already been checked upon entering
926 	 * UVERBS_METHOD_REG_DMABUF_MR
927 	 */
928 	umem->iova = iova;
929 	return PAGE_SIZE;
930 }
931 
932 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
933 					     struct ib_umem *umem, u64 iova,
934 					     int access_flags)
935 {
936 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
937 	struct mlx5_cache_ent *ent;
938 	struct mlx5_ib_mr *mr;
939 	unsigned int page_size;
940 
941 	if (umem->is_dmabuf)
942 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
943 	else
944 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
945 						     0, iova);
946 	if (WARN_ON(!page_size))
947 		return ERR_PTR(-EINVAL);
948 	ent = mr_cache_ent_from_order(
949 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
950 	/*
951 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
952 	 * cache then synchronously create an uncached one.
953 	 */
954 	if (!ent || ent->limit == 0 ||
955 	    !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) {
956 		mutex_lock(&dev->slow_path_mutex);
957 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
958 		mutex_unlock(&dev->slow_path_mutex);
959 		return mr;
960 	}
961 
962 	mr = get_cache_mr(ent);
963 	if (!mr) {
964 		mr = create_cache_mr(ent);
965 		/*
966 		 * The above already tried to do the same stuff as reg_create(),
967 		 * no reason to try it again.
968 		 */
969 		if (IS_ERR(mr))
970 			return mr;
971 	}
972 
973 	mr->ibmr.pd = pd;
974 	mr->umem = umem;
975 	mr->mmkey.iova = iova;
976 	mr->mmkey.size = umem->length;
977 	mr->mmkey.pd = to_mpd(pd)->pdn;
978 	mr->page_shift = order_base_2(page_size);
979 	set_mr_fields(dev, mr, umem->length, access_flags);
980 
981 	return mr;
982 }
983 
984 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
985 			    MLX5_UMR_MTT_ALIGNMENT)
986 #define MLX5_SPARE_UMR_CHUNK 0x10000
987 
988 /*
989  * Allocate a temporary buffer to hold the per-page information to transfer to
990  * HW. For efficiency this should be as large as it can be, but buffer
991  * allocation failure is not allowed, so try smaller sizes.
992  */
993 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask)
994 {
995 	const size_t xlt_chunk_align =
996 		MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size);
997 	size_t size;
998 	void *res = NULL;
999 
1000 	static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0);
1001 
1002 	/*
1003 	 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the
1004 	 * allocation can't trigger any kind of reclaim.
1005 	 */
1006 	might_sleep();
1007 
1008 	gfp_mask |= __GFP_ZERO | __GFP_NORETRY;
1009 
1010 	/*
1011 	 * If the system already has a suitable high order page then just use
1012 	 * that, but don't try hard to create one. This max is about 1M, so a
1013 	 * free x86 huge page will satisfy it.
1014 	 */
1015 	size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align),
1016 		     MLX5_MAX_UMR_CHUNK);
1017 	*nents = size / ent_size;
1018 	res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1019 				       get_order(size));
1020 	if (res)
1021 		return res;
1022 
1023 	if (size > MLX5_SPARE_UMR_CHUNK) {
1024 		size = MLX5_SPARE_UMR_CHUNK;
1025 		*nents = get_order(size) / ent_size;
1026 		res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1027 					       get_order(size));
1028 		if (res)
1029 			return res;
1030 	}
1031 
1032 	*nents = PAGE_SIZE / ent_size;
1033 	res = (void *)__get_free_page(gfp_mask);
1034 	if (res)
1035 		return res;
1036 
1037 	mutex_lock(&xlt_emergency_page_mutex);
1038 	memset(xlt_emergency_page, 0, PAGE_SIZE);
1039 	return xlt_emergency_page;
1040 }
1041 
1042 static void mlx5_ib_free_xlt(void *xlt, size_t length)
1043 {
1044 	if (xlt == xlt_emergency_page) {
1045 		mutex_unlock(&xlt_emergency_page_mutex);
1046 		return;
1047 	}
1048 
1049 	free_pages((unsigned long)xlt, get_order(length));
1050 }
1051 
1052 /*
1053  * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for
1054  * submission.
1055  */
1056 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr,
1057 				   struct mlx5_umr_wr *wr, struct ib_sge *sg,
1058 				   size_t nents, size_t ent_size,
1059 				   unsigned int flags)
1060 {
1061 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1062 	struct device *ddev = &dev->mdev->pdev->dev;
1063 	dma_addr_t dma;
1064 	void *xlt;
1065 
1066 	xlt = mlx5_ib_alloc_xlt(&nents, ent_size,
1067 				flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC :
1068 								 GFP_KERNEL);
1069 	sg->length = nents * ent_size;
1070 	dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE);
1071 	if (dma_mapping_error(ddev, dma)) {
1072 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1073 		mlx5_ib_free_xlt(xlt, sg->length);
1074 		return NULL;
1075 	}
1076 	sg->addr = dma;
1077 	sg->lkey = dev->umrc.pd->local_dma_lkey;
1078 
1079 	memset(wr, 0, sizeof(*wr));
1080 	wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1081 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1082 		wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1083 	wr->wr.sg_list = sg;
1084 	wr->wr.num_sge = 1;
1085 	wr->wr.opcode = MLX5_IB_WR_UMR;
1086 	wr->pd = mr->ibmr.pd;
1087 	wr->mkey = mr->mmkey.key;
1088 	wr->length = mr->mmkey.size;
1089 	wr->virt_addr = mr->mmkey.iova;
1090 	wr->access_flags = mr->access_flags;
1091 	wr->page_shift = mr->page_shift;
1092 	wr->xlt_size = sg->length;
1093 	return xlt;
1094 }
1095 
1096 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt,
1097 				   struct ib_sge *sg)
1098 {
1099 	struct device *ddev = &dev->mdev->pdev->dev;
1100 
1101 	dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE);
1102 	mlx5_ib_free_xlt(xlt, sg->length);
1103 }
1104 
1105 static unsigned int xlt_wr_final_send_flags(unsigned int flags)
1106 {
1107 	unsigned int res = 0;
1108 
1109 	if (flags & MLX5_IB_UPD_XLT_ENABLE)
1110 		res |= MLX5_IB_SEND_UMR_ENABLE_MR |
1111 		       MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1112 		       MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1113 	if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS)
1114 		res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1115 	if (flags & MLX5_IB_UPD_XLT_ADDR)
1116 		res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1117 	return res;
1118 }
1119 
1120 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1121 		       int page_shift, int flags)
1122 {
1123 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1124 	struct device *ddev = &dev->mdev->pdev->dev;
1125 	void *xlt;
1126 	struct mlx5_umr_wr wr;
1127 	struct ib_sge sg;
1128 	int err = 0;
1129 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1130 			       ? sizeof(struct mlx5_klm)
1131 			       : sizeof(struct mlx5_mtt);
1132 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1133 	const int page_mask = page_align - 1;
1134 	size_t pages_mapped = 0;
1135 	size_t pages_to_map = 0;
1136 	size_t pages_iter;
1137 	size_t size_to_map = 0;
1138 	size_t orig_sg_length;
1139 
1140 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1141 	    !umr_can_use_indirect_mkey(dev))
1142 		return -EPERM;
1143 
1144 	if (WARN_ON(!mr->umem->is_odp))
1145 		return -EINVAL;
1146 
1147 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1148 	 * so we need to align the offset and length accordingly
1149 	 */
1150 	if (idx & page_mask) {
1151 		npages += idx & page_mask;
1152 		idx &= ~page_mask;
1153 	}
1154 	pages_to_map = ALIGN(npages, page_align);
1155 
1156 	xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags);
1157 	if (!xlt)
1158 		return -ENOMEM;
1159 	pages_iter = sg.length / desc_size;
1160 	orig_sg_length = sg.length;
1161 
1162 	if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1163 		struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1164 		size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1165 
1166 		pages_to_map = min_t(size_t, pages_to_map, max_pages);
1167 	}
1168 
1169 	wr.page_shift = page_shift;
1170 
1171 	for (pages_mapped = 0;
1172 	     pages_mapped < pages_to_map && !err;
1173 	     pages_mapped += pages_iter, idx += pages_iter) {
1174 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1175 		size_to_map = npages * desc_size;
1176 		dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1177 					DMA_TO_DEVICE);
1178 		mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1179 		dma_sync_single_for_device(ddev, sg.addr, sg.length,
1180 					   DMA_TO_DEVICE);
1181 
1182 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1183 
1184 		if (pages_mapped + pages_iter >= pages_to_map)
1185 			wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1186 
1187 		wr.offset = idx * desc_size;
1188 		wr.xlt_size = sg.length;
1189 
1190 		err = mlx5_ib_post_send_wait(dev, &wr);
1191 	}
1192 	sg.length = orig_sg_length;
1193 	mlx5_ib_unmap_free_xlt(dev, xlt, &sg);
1194 	return err;
1195 }
1196 
1197 /*
1198  * Send the DMA list to the HW for a normal MR using UMR.
1199  * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP
1200  * flag may be used.
1201  */
1202 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags)
1203 {
1204 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1205 	struct device *ddev = &dev->mdev->pdev->dev;
1206 	struct ib_block_iter biter;
1207 	struct mlx5_mtt *cur_mtt;
1208 	struct mlx5_umr_wr wr;
1209 	size_t orig_sg_length;
1210 	struct mlx5_mtt *mtt;
1211 	size_t final_size;
1212 	struct ib_sge sg;
1213 	int err = 0;
1214 
1215 	if (WARN_ON(mr->umem->is_odp))
1216 		return -EINVAL;
1217 
1218 	mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg,
1219 				    ib_umem_num_dma_blocks(mr->umem,
1220 							   1 << mr->page_shift),
1221 				    sizeof(*mtt), flags);
1222 	if (!mtt)
1223 		return -ENOMEM;
1224 	orig_sg_length = sg.length;
1225 
1226 	cur_mtt = mtt;
1227 	rdma_for_each_block (mr->umem->sg_head.sgl, &biter, mr->umem->nmap,
1228 			     BIT(mr->page_shift)) {
1229 		if (cur_mtt == (void *)mtt + sg.length) {
1230 			dma_sync_single_for_device(ddev, sg.addr, sg.length,
1231 						   DMA_TO_DEVICE);
1232 			err = mlx5_ib_post_send_wait(dev, &wr);
1233 			if (err)
1234 				goto err;
1235 			dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1236 						DMA_TO_DEVICE);
1237 			wr.offset += sg.length;
1238 			cur_mtt = mtt;
1239 		}
1240 
1241 		cur_mtt->ptag =
1242 			cpu_to_be64(rdma_block_iter_dma_address(&biter) |
1243 				    MLX5_IB_MTT_PRESENT);
1244 
1245 		if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP))
1246 			cur_mtt->ptag = 0;
1247 
1248 		cur_mtt++;
1249 	}
1250 
1251 	final_size = (void *)cur_mtt - (void *)mtt;
1252 	sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT);
1253 	memset(cur_mtt, 0, sg.length - final_size);
1254 	wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1255 	wr.xlt_size = sg.length;
1256 
1257 	dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE);
1258 	err = mlx5_ib_post_send_wait(dev, &wr);
1259 
1260 err:
1261 	sg.length = orig_sg_length;
1262 	mlx5_ib_unmap_free_xlt(dev, mtt, &sg);
1263 	return err;
1264 }
1265 
1266 /*
1267  * If ibmr is NULL it will be allocated by reg_create.
1268  * Else, the given ibmr will be used.
1269  */
1270 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1271 				     u64 iova, int access_flags,
1272 				     unsigned int page_size, bool populate)
1273 {
1274 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1275 	struct mlx5_ib_mr *mr;
1276 	__be64 *pas;
1277 	void *mkc;
1278 	int inlen;
1279 	u32 *in;
1280 	int err;
1281 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1282 
1283 	if (!page_size)
1284 		return ERR_PTR(-EINVAL);
1285 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1286 	if (!mr)
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	mr->ibmr.pd = pd;
1290 	mr->access_flags = access_flags;
1291 	mr->page_shift = order_base_2(page_size);
1292 
1293 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1294 	if (populate)
1295 		inlen += sizeof(*pas) *
1296 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1297 	in = kvzalloc(inlen, GFP_KERNEL);
1298 	if (!in) {
1299 		err = -ENOMEM;
1300 		goto err_1;
1301 	}
1302 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1303 	if (populate) {
1304 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1305 			err = -EINVAL;
1306 			goto err_2;
1307 		}
1308 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1309 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1310 	}
1311 
1312 	/* The pg_access bit allows setting the access flags
1313 	 * in the page list submitted with the command. */
1314 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1315 
1316 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1317 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1318 				      populate ? pd : dev->umrc.pd);
1319 	MLX5_SET(mkc, mkc, free, !populate);
1320 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1321 	MLX5_SET(mkc, mkc, umr_en, 1);
1322 
1323 	MLX5_SET64(mkc, mkc, len, umem->length);
1324 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1325 	MLX5_SET(mkc, mkc, translations_octword_size,
1326 		 get_octo_len(iova, umem->length, mr->page_shift));
1327 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1328 	if (populate) {
1329 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1330 			 get_octo_len(iova, umem->length, mr->page_shift));
1331 	}
1332 
1333 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1334 	if (err) {
1335 		mlx5_ib_warn(dev, "create mkey failed\n");
1336 		goto err_2;
1337 	}
1338 	mr->mmkey.type = MLX5_MKEY_MR;
1339 	mr->desc_size = sizeof(struct mlx5_mtt);
1340 	mr->umem = umem;
1341 	set_mr_fields(dev, mr, umem->length, access_flags);
1342 	kvfree(in);
1343 
1344 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1345 
1346 	return mr;
1347 
1348 err_2:
1349 	kvfree(in);
1350 err_1:
1351 	kfree(mr);
1352 	return ERR_PTR(err);
1353 }
1354 
1355 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1356 				       u64 length, int acc, int mode)
1357 {
1358 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1359 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1360 	struct mlx5_ib_mr *mr;
1361 	void *mkc;
1362 	u32 *in;
1363 	int err;
1364 
1365 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1366 	if (!mr)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	in = kzalloc(inlen, GFP_KERNEL);
1370 	if (!in) {
1371 		err = -ENOMEM;
1372 		goto err_free;
1373 	}
1374 
1375 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1376 
1377 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1378 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1379 	MLX5_SET64(mkc, mkc, len, length);
1380 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1381 
1382 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1383 	if (err)
1384 		goto err_in;
1385 
1386 	kfree(in);
1387 
1388 	set_mr_fields(dev, mr, length, acc);
1389 
1390 	return &mr->ibmr;
1391 
1392 err_in:
1393 	kfree(in);
1394 
1395 err_free:
1396 	kfree(mr);
1397 
1398 	return ERR_PTR(err);
1399 }
1400 
1401 int mlx5_ib_advise_mr(struct ib_pd *pd,
1402 		      enum ib_uverbs_advise_mr_advice advice,
1403 		      u32 flags,
1404 		      struct ib_sge *sg_list,
1405 		      u32 num_sge,
1406 		      struct uverbs_attr_bundle *attrs)
1407 {
1408 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1409 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1410 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1411 		return -EOPNOTSUPP;
1412 
1413 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1414 					 sg_list, num_sge);
1415 }
1416 
1417 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1418 				struct ib_dm_mr_attr *attr,
1419 				struct uverbs_attr_bundle *attrs)
1420 {
1421 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1422 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1423 	u64 start_addr = mdm->dev_addr + attr->offset;
1424 	int mode;
1425 
1426 	switch (mdm->type) {
1427 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1428 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1429 			return ERR_PTR(-EINVAL);
1430 
1431 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1432 		start_addr -= pci_resource_start(dev->pdev, 0);
1433 		break;
1434 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1435 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1436 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1437 			return ERR_PTR(-EINVAL);
1438 
1439 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1440 		break;
1441 	default:
1442 		return ERR_PTR(-EINVAL);
1443 	}
1444 
1445 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1446 				 attr->access_flags, mode);
1447 }
1448 
1449 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1450 				    u64 iova, int access_flags)
1451 {
1452 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1453 	struct mlx5_ib_mr *mr = NULL;
1454 	bool xlt_with_umr;
1455 	int err;
1456 
1457 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length);
1458 	if (xlt_with_umr) {
1459 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1460 	} else {
1461 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1462 			umem, mkc, log_page_size, 0, iova);
1463 
1464 		mutex_lock(&dev->slow_path_mutex);
1465 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1466 		mutex_unlock(&dev->slow_path_mutex);
1467 	}
1468 	if (IS_ERR(mr)) {
1469 		ib_umem_release(umem);
1470 		return ERR_CAST(mr);
1471 	}
1472 
1473 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1474 
1475 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1476 
1477 	if (xlt_with_umr) {
1478 		/*
1479 		 * If the MR was created with reg_create then it will be
1480 		 * configured properly but left disabled. It is safe to go ahead
1481 		 * and configure it again via UMR while enabling it.
1482 		 */
1483 		err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1484 		if (err) {
1485 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1486 			return ERR_PTR(err);
1487 		}
1488 	}
1489 	return &mr->ibmr;
1490 }
1491 
1492 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1493 					u64 iova, int access_flags,
1494 					struct ib_udata *udata)
1495 {
1496 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1497 	struct ib_umem_odp *odp;
1498 	struct mlx5_ib_mr *mr;
1499 	int err;
1500 
1501 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1502 		return ERR_PTR(-EOPNOTSUPP);
1503 
1504 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1505 	if (err)
1506 		return ERR_PTR(err);
1507 	if (!start && length == U64_MAX) {
1508 		if (iova != 0)
1509 			return ERR_PTR(-EINVAL);
1510 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1511 			return ERR_PTR(-EINVAL);
1512 
1513 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1514 		if (IS_ERR(mr))
1515 			return ERR_CAST(mr);
1516 		return &mr->ibmr;
1517 	}
1518 
1519 	/* ODP requires xlt update via umr to work. */
1520 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1521 		return ERR_PTR(-EINVAL);
1522 
1523 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1524 			      &mlx5_mn_ops);
1525 	if (IS_ERR(odp))
1526 		return ERR_CAST(odp);
1527 
1528 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1529 	if (IS_ERR(mr)) {
1530 		ib_umem_release(&odp->umem);
1531 		return ERR_CAST(mr);
1532 	}
1533 
1534 	odp->private = mr;
1535 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1536 	if (err)
1537 		goto err_dereg_mr;
1538 
1539 	err = mlx5_ib_init_odp_mr(mr);
1540 	if (err)
1541 		goto err_dereg_mr;
1542 	return &mr->ibmr;
1543 
1544 err_dereg_mr:
1545 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1546 	return ERR_PTR(err);
1547 }
1548 
1549 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1550 				  u64 iova, int access_flags,
1551 				  struct ib_udata *udata)
1552 {
1553 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1554 	struct ib_umem *umem;
1555 
1556 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1557 		return ERR_PTR(-EOPNOTSUPP);
1558 
1559 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1560 		    start, iova, length, access_flags);
1561 
1562 	if (access_flags & IB_ACCESS_ON_DEMAND)
1563 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1564 					  udata);
1565 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1566 	if (IS_ERR(umem))
1567 		return ERR_CAST(umem);
1568 	return create_real_mr(pd, umem, iova, access_flags);
1569 }
1570 
1571 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1572 {
1573 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1574 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1575 
1576 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1577 
1578 	if (!umem_dmabuf->sgt)
1579 		return;
1580 
1581 	mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1582 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1583 }
1584 
1585 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1586 	.allow_peer2peer = 1,
1587 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1588 };
1589 
1590 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1591 					 u64 length, u64 virt_addr,
1592 					 int fd, int access_flags,
1593 					 struct ib_udata *udata)
1594 {
1595 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1596 	struct mlx5_ib_mr *mr = NULL;
1597 	struct ib_umem_dmabuf *umem_dmabuf;
1598 	int err;
1599 
1600 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1601 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1602 		return ERR_PTR(-EOPNOTSUPP);
1603 
1604 	mlx5_ib_dbg(dev,
1605 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1606 		    offset, virt_addr, length, fd, access_flags);
1607 
1608 	/* dmabuf requires xlt update via umr to work. */
1609 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1610 		return ERR_PTR(-EINVAL);
1611 
1612 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1613 					 access_flags,
1614 					 &mlx5_ib_dmabuf_attach_ops);
1615 	if (IS_ERR(umem_dmabuf)) {
1616 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1617 			    PTR_ERR(umem_dmabuf));
1618 		return ERR_CAST(umem_dmabuf);
1619 	}
1620 
1621 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1622 				access_flags);
1623 	if (IS_ERR(mr)) {
1624 		ib_umem_release(&umem_dmabuf->umem);
1625 		return ERR_CAST(mr);
1626 	}
1627 
1628 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1629 
1630 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1631 	umem_dmabuf->private = mr;
1632 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1633 	if (err)
1634 		goto err_dereg_mr;
1635 
1636 	err = mlx5_ib_init_dmabuf_mr(mr);
1637 	if (err)
1638 		goto err_dereg_mr;
1639 	return &mr->ibmr;
1640 
1641 err_dereg_mr:
1642 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1643 	return ERR_PTR(err);
1644 }
1645 
1646 /**
1647  * revoke_mr - Fence all DMA on the MR
1648  * @mr: The MR to fence
1649  *
1650  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1651  * and any DMA in progress will be completed. Failure of this function
1652  * indicates the HW has failed catastrophically.
1653  */
1654 static int revoke_mr(struct mlx5_ib_mr *mr)
1655 {
1656 	struct mlx5_umr_wr umrwr = {};
1657 
1658 	if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1659 		return 0;
1660 
1661 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1662 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1663 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1664 	umrwr.pd = mr_to_mdev(mr)->umrc.pd;
1665 	umrwr.mkey = mr->mmkey.key;
1666 	umrwr.ignore_free_state = 1;
1667 
1668 	return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr);
1669 }
1670 
1671 /*
1672  * True if the change in access flags can be done via UMR, only some access
1673  * flags can be updated.
1674  */
1675 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1676 				     unsigned int current_access_flags,
1677 				     unsigned int target_access_flags)
1678 {
1679 	unsigned int diffs = current_access_flags ^ target_access_flags;
1680 
1681 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1682 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1683 		return false;
1684 	return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags,
1685 					     target_access_flags);
1686 }
1687 
1688 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1689 			       int access_flags)
1690 {
1691 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1692 	struct mlx5_umr_wr umrwr = {
1693 		.wr = {
1694 			.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1695 				      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS,
1696 			.opcode = MLX5_IB_WR_UMR,
1697 		},
1698 		.mkey = mr->mmkey.key,
1699 		.pd = pd,
1700 		.access_flags = access_flags,
1701 	};
1702 	int err;
1703 
1704 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1705 	if (err)
1706 		return err;
1707 
1708 	mr->access_flags = access_flags;
1709 	mr->mmkey.pd = to_mpd(pd)->pdn;
1710 	return 0;
1711 }
1712 
1713 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1714 				  struct ib_umem *new_umem,
1715 				  int new_access_flags, u64 iova,
1716 				  unsigned long *page_size)
1717 {
1718 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1719 
1720 	/* We only track the allocated sizes of MRs from the cache */
1721 	if (!mr->cache_ent)
1722 		return false;
1723 	if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length))
1724 		return false;
1725 
1726 	*page_size =
1727 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1728 	if (WARN_ON(!*page_size))
1729 		return false;
1730 	return (1ULL << mr->cache_ent->order) >=
1731 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1732 }
1733 
1734 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1735 			 int access_flags, int flags, struct ib_umem *new_umem,
1736 			 u64 iova, unsigned long page_size)
1737 {
1738 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1739 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1740 	struct ib_umem *old_umem = mr->umem;
1741 	int err;
1742 
1743 	/*
1744 	 * To keep everything simple the MR is revoked before we start to mess
1745 	 * with it. This ensure the change is atomic relative to any use of the
1746 	 * MR.
1747 	 */
1748 	err = revoke_mr(mr);
1749 	if (err)
1750 		return err;
1751 
1752 	if (flags & IB_MR_REREG_PD) {
1753 		mr->ibmr.pd = pd;
1754 		mr->mmkey.pd = to_mpd(pd)->pdn;
1755 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1756 	}
1757 	if (flags & IB_MR_REREG_ACCESS) {
1758 		mr->access_flags = access_flags;
1759 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1760 	}
1761 
1762 	mr->ibmr.length = new_umem->length;
1763 	mr->mmkey.iova = iova;
1764 	mr->mmkey.size = new_umem->length;
1765 	mr->page_shift = order_base_2(page_size);
1766 	mr->umem = new_umem;
1767 	err = mlx5_ib_update_mr_pas(mr, upd_flags);
1768 	if (err) {
1769 		/*
1770 		 * The MR is revoked at this point so there is no issue to free
1771 		 * new_umem.
1772 		 */
1773 		mr->umem = old_umem;
1774 		return err;
1775 	}
1776 
1777 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1778 	ib_umem_release(old_umem);
1779 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1780 	return 0;
1781 }
1782 
1783 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1784 				    u64 length, u64 iova, int new_access_flags,
1785 				    struct ib_pd *new_pd,
1786 				    struct ib_udata *udata)
1787 {
1788 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1789 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1790 	int err;
1791 
1792 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1793 		return ERR_PTR(-EOPNOTSUPP);
1794 
1795 	mlx5_ib_dbg(
1796 		dev,
1797 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1798 		start, iova, length, new_access_flags);
1799 
1800 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1801 		return ERR_PTR(-EOPNOTSUPP);
1802 
1803 	if (!(flags & IB_MR_REREG_ACCESS))
1804 		new_access_flags = mr->access_flags;
1805 	if (!(flags & IB_MR_REREG_PD))
1806 		new_pd = ib_mr->pd;
1807 
1808 	if (!(flags & IB_MR_REREG_TRANS)) {
1809 		struct ib_umem *umem;
1810 
1811 		/* Fast path for PD/access change */
1812 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1813 					     new_access_flags)) {
1814 			err = umr_rereg_pd_access(mr, new_pd, new_access_flags);
1815 			if (err)
1816 				return ERR_PTR(err);
1817 			return NULL;
1818 		}
1819 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1820 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1821 			goto recreate;
1822 
1823 		/*
1824 		 * Only one active MR can refer to a umem at one time, revoke
1825 		 * the old MR before assigning the umem to the new one.
1826 		 */
1827 		err = revoke_mr(mr);
1828 		if (err)
1829 			return ERR_PTR(err);
1830 		umem = mr->umem;
1831 		mr->umem = NULL;
1832 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1833 
1834 		return create_real_mr(new_pd, umem, mr->mmkey.iova,
1835 				      new_access_flags);
1836 	}
1837 
1838 	/*
1839 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1840 	 * but the logic around releasing the umem is different
1841 	 */
1842 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1843 		goto recreate;
1844 
1845 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1846 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1847 		struct ib_umem *new_umem;
1848 		unsigned long page_size;
1849 
1850 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1851 				       new_access_flags);
1852 		if (IS_ERR(new_umem))
1853 			return ERR_CAST(new_umem);
1854 
1855 		/* Fast path for PAS change */
1856 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1857 					  &page_size)) {
1858 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1859 					    new_umem, iova, page_size);
1860 			if (err) {
1861 				ib_umem_release(new_umem);
1862 				return ERR_PTR(err);
1863 			}
1864 			return NULL;
1865 		}
1866 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1867 	}
1868 
1869 	/*
1870 	 * Everything else has no state we can preserve, just create a new MR
1871 	 * from scratch
1872 	 */
1873 recreate:
1874 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1875 				   new_access_flags, udata);
1876 }
1877 
1878 static int
1879 mlx5_alloc_priv_descs(struct ib_device *device,
1880 		      struct mlx5_ib_mr *mr,
1881 		      int ndescs,
1882 		      int desc_size)
1883 {
1884 	struct mlx5_ib_dev *dev = to_mdev(device);
1885 	struct device *ddev = &dev->mdev->pdev->dev;
1886 	int size = ndescs * desc_size;
1887 	int add_size;
1888 	int ret;
1889 
1890 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1891 
1892 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1893 	if (!mr->descs_alloc)
1894 		return -ENOMEM;
1895 
1896 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1897 
1898 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1899 	if (dma_mapping_error(ddev, mr->desc_map)) {
1900 		ret = -ENOMEM;
1901 		goto err;
1902 	}
1903 
1904 	return 0;
1905 err:
1906 	kfree(mr->descs_alloc);
1907 
1908 	return ret;
1909 }
1910 
1911 static void
1912 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1913 {
1914 	if (!mr->umem && mr->descs) {
1915 		struct ib_device *device = mr->ibmr.device;
1916 		int size = mr->max_descs * mr->desc_size;
1917 		struct mlx5_ib_dev *dev = to_mdev(device);
1918 
1919 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1920 				 DMA_TO_DEVICE);
1921 		kfree(mr->descs_alloc);
1922 		mr->descs = NULL;
1923 	}
1924 }
1925 
1926 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1927 {
1928 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1929 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1930 	int rc;
1931 
1932 	/*
1933 	 * Any async use of the mr must hold the refcount, once the refcount
1934 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1935 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1936 	 */
1937 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1938 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1939 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1940 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1941 
1942 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1943 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), ibmr,
1944 			   NULL, GFP_KERNEL);
1945 
1946 		if (mr->mtt_mr) {
1947 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1948 			if (rc)
1949 				return rc;
1950 			mr->mtt_mr = NULL;
1951 		}
1952 		if (mr->klm_mr) {
1953 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1954 			if (rc)
1955 				return rc;
1956 			mr->klm_mr = NULL;
1957 		}
1958 
1959 		if (mlx5_core_destroy_psv(dev->mdev,
1960 					  mr->sig->psv_memory.psv_idx))
1961 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1962 				     mr->sig->psv_memory.psv_idx);
1963 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1964 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1965 				     mr->sig->psv_wire.psv_idx);
1966 		kfree(mr->sig);
1967 		mr->sig = NULL;
1968 	}
1969 
1970 	/* Stop DMA */
1971 	if (mr->cache_ent) {
1972 		if (revoke_mr(mr)) {
1973 			spin_lock_irq(&mr->cache_ent->lock);
1974 			mr->cache_ent->total_mrs--;
1975 			spin_unlock_irq(&mr->cache_ent->lock);
1976 			mr->cache_ent = NULL;
1977 		}
1978 	}
1979 	if (!mr->cache_ent) {
1980 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1981 		if (rc)
1982 			return rc;
1983 	}
1984 
1985 	if (mr->umem) {
1986 		bool is_odp = is_odp_mr(mr);
1987 
1988 		if (!is_odp)
1989 			atomic_sub(ib_umem_num_pages(mr->umem),
1990 				   &dev->mdev->priv.reg_pages);
1991 		ib_umem_release(mr->umem);
1992 		if (is_odp)
1993 			mlx5_ib_free_odp_mr(mr);
1994 	}
1995 
1996 	if (mr->cache_ent) {
1997 		mlx5_mr_cache_free(dev, mr);
1998 	} else {
1999 		mlx5_free_priv_descs(mr);
2000 		kfree(mr);
2001 	}
2002 	return 0;
2003 }
2004 
2005 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2006 				   int access_mode, int page_shift)
2007 {
2008 	void *mkc;
2009 
2010 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2011 
2012 	/* This is only used from the kernel, so setting the PD is OK. */
2013 	set_mkc_access_pd_addr_fields(mkc, 0, 0, pd);
2014 	MLX5_SET(mkc, mkc, free, 1);
2015 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2016 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2017 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2018 	MLX5_SET(mkc, mkc, umr_en, 1);
2019 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2020 }
2021 
2022 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2023 				  int ndescs, int desc_size, int page_shift,
2024 				  int access_mode, u32 *in, int inlen)
2025 {
2026 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2027 	int err;
2028 
2029 	mr->access_mode = access_mode;
2030 	mr->desc_size = desc_size;
2031 	mr->max_descs = ndescs;
2032 
2033 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2034 	if (err)
2035 		return err;
2036 
2037 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2038 
2039 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2040 	if (err)
2041 		goto err_free_descs;
2042 
2043 	mr->mmkey.type = MLX5_MKEY_MR;
2044 	mr->ibmr.lkey = mr->mmkey.key;
2045 	mr->ibmr.rkey = mr->mmkey.key;
2046 
2047 	return 0;
2048 
2049 err_free_descs:
2050 	mlx5_free_priv_descs(mr);
2051 	return err;
2052 }
2053 
2054 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2055 				u32 max_num_sg, u32 max_num_meta_sg,
2056 				int desc_size, int access_mode)
2057 {
2058 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2059 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2060 	int page_shift = 0;
2061 	struct mlx5_ib_mr *mr;
2062 	u32 *in;
2063 	int err;
2064 
2065 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2066 	if (!mr)
2067 		return ERR_PTR(-ENOMEM);
2068 
2069 	mr->ibmr.pd = pd;
2070 	mr->ibmr.device = pd->device;
2071 
2072 	in = kzalloc(inlen, GFP_KERNEL);
2073 	if (!in) {
2074 		err = -ENOMEM;
2075 		goto err_free;
2076 	}
2077 
2078 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2079 		page_shift = PAGE_SHIFT;
2080 
2081 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2082 				     access_mode, in, inlen);
2083 	if (err)
2084 		goto err_free_in;
2085 
2086 	mr->umem = NULL;
2087 	kfree(in);
2088 
2089 	return mr;
2090 
2091 err_free_in:
2092 	kfree(in);
2093 err_free:
2094 	kfree(mr);
2095 	return ERR_PTR(err);
2096 }
2097 
2098 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2099 				    int ndescs, u32 *in, int inlen)
2100 {
2101 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2102 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2103 				      inlen);
2104 }
2105 
2106 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2107 				    int ndescs, u32 *in, int inlen)
2108 {
2109 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2110 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2111 }
2112 
2113 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2114 				      int max_num_sg, int max_num_meta_sg,
2115 				      u32 *in, int inlen)
2116 {
2117 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2118 	u32 psv_index[2];
2119 	void *mkc;
2120 	int err;
2121 
2122 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2123 	if (!mr->sig)
2124 		return -ENOMEM;
2125 
2126 	/* create mem & wire PSVs */
2127 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2128 	if (err)
2129 		goto err_free_sig;
2130 
2131 	mr->sig->psv_memory.psv_idx = psv_index[0];
2132 	mr->sig->psv_wire.psv_idx = psv_index[1];
2133 
2134 	mr->sig->sig_status_checked = true;
2135 	mr->sig->sig_err_exists = false;
2136 	/* Next UMR, Arm SIGERR */
2137 	++mr->sig->sigerr_count;
2138 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2139 					 sizeof(struct mlx5_klm),
2140 					 MLX5_MKC_ACCESS_MODE_KLMS);
2141 	if (IS_ERR(mr->klm_mr)) {
2142 		err = PTR_ERR(mr->klm_mr);
2143 		goto err_destroy_psv;
2144 	}
2145 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2146 					 sizeof(struct mlx5_mtt),
2147 					 MLX5_MKC_ACCESS_MODE_MTT);
2148 	if (IS_ERR(mr->mtt_mr)) {
2149 		err = PTR_ERR(mr->mtt_mr);
2150 		goto err_free_klm_mr;
2151 	}
2152 
2153 	/* Set bsf descriptors for mkey */
2154 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2155 	MLX5_SET(mkc, mkc, bsf_en, 1);
2156 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2157 
2158 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2159 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2160 	if (err)
2161 		goto err_free_mtt_mr;
2162 
2163 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2164 			      mr->sig, GFP_KERNEL));
2165 	if (err)
2166 		goto err_free_descs;
2167 	return 0;
2168 
2169 err_free_descs:
2170 	destroy_mkey(dev, mr);
2171 	mlx5_free_priv_descs(mr);
2172 err_free_mtt_mr:
2173 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2174 	mr->mtt_mr = NULL;
2175 err_free_klm_mr:
2176 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2177 	mr->klm_mr = NULL;
2178 err_destroy_psv:
2179 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2180 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2181 			     mr->sig->psv_memory.psv_idx);
2182 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2183 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2184 			     mr->sig->psv_wire.psv_idx);
2185 err_free_sig:
2186 	kfree(mr->sig);
2187 
2188 	return err;
2189 }
2190 
2191 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2192 					enum ib_mr_type mr_type, u32 max_num_sg,
2193 					u32 max_num_meta_sg)
2194 {
2195 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2196 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2197 	int ndescs = ALIGN(max_num_sg, 4);
2198 	struct mlx5_ib_mr *mr;
2199 	u32 *in;
2200 	int err;
2201 
2202 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2203 	if (!mr)
2204 		return ERR_PTR(-ENOMEM);
2205 
2206 	in = kzalloc(inlen, GFP_KERNEL);
2207 	if (!in) {
2208 		err = -ENOMEM;
2209 		goto err_free;
2210 	}
2211 
2212 	mr->ibmr.device = pd->device;
2213 	mr->umem = NULL;
2214 
2215 	switch (mr_type) {
2216 	case IB_MR_TYPE_MEM_REG:
2217 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2218 		break;
2219 	case IB_MR_TYPE_SG_GAPS:
2220 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2221 		break;
2222 	case IB_MR_TYPE_INTEGRITY:
2223 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2224 						 max_num_meta_sg, in, inlen);
2225 		break;
2226 	default:
2227 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2228 		err = -EINVAL;
2229 	}
2230 
2231 	if (err)
2232 		goto err_free_in;
2233 
2234 	kfree(in);
2235 
2236 	return &mr->ibmr;
2237 
2238 err_free_in:
2239 	kfree(in);
2240 err_free:
2241 	kfree(mr);
2242 	return ERR_PTR(err);
2243 }
2244 
2245 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2246 			       u32 max_num_sg)
2247 {
2248 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2249 }
2250 
2251 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2252 					 u32 max_num_sg, u32 max_num_meta_sg)
2253 {
2254 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2255 				  max_num_meta_sg);
2256 }
2257 
2258 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2259 {
2260 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2261 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2262 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2263 	u32 *in = NULL;
2264 	void *mkc;
2265 	int ndescs;
2266 	int err;
2267 	struct mlx5_ib_alloc_mw req = {};
2268 	struct {
2269 		__u32	comp_mask;
2270 		__u32	response_length;
2271 	} resp = {};
2272 
2273 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2274 	if (err)
2275 		return err;
2276 
2277 	if (req.comp_mask || req.reserved1 || req.reserved2)
2278 		return -EOPNOTSUPP;
2279 
2280 	if (udata->inlen > sizeof(req) &&
2281 	    !ib_is_udata_cleared(udata, sizeof(req),
2282 				 udata->inlen - sizeof(req)))
2283 		return -EOPNOTSUPP;
2284 
2285 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2286 
2287 	in = kzalloc(inlen, GFP_KERNEL);
2288 	if (!in) {
2289 		err = -ENOMEM;
2290 		goto free;
2291 	}
2292 
2293 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2294 
2295 	MLX5_SET(mkc, mkc, free, 1);
2296 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2297 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2298 	MLX5_SET(mkc, mkc, umr_en, 1);
2299 	MLX5_SET(mkc, mkc, lr, 1);
2300 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2301 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2302 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2303 
2304 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2305 	if (err)
2306 		goto free;
2307 
2308 	mw->mmkey.type = MLX5_MKEY_MW;
2309 	ibmw->rkey = mw->mmkey.key;
2310 	mw->ndescs = ndescs;
2311 
2312 	resp.response_length =
2313 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2314 	if (resp.response_length) {
2315 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2316 		if (err)
2317 			goto free_mkey;
2318 	}
2319 
2320 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2321 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2322 		if (err)
2323 			goto free_mkey;
2324 	}
2325 
2326 	kfree(in);
2327 	return 0;
2328 
2329 free_mkey:
2330 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2331 free:
2332 	kfree(in);
2333 	return err;
2334 }
2335 
2336 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2337 {
2338 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2339 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2340 
2341 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2342 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2343 		/*
2344 		 * pagefault_single_data_segment() may be accessing mmw
2345 		 * if the user bound an ODP MR to this MW.
2346 		 */
2347 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2348 
2349 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2350 }
2351 
2352 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2353 			    struct ib_mr_status *mr_status)
2354 {
2355 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2356 	int ret = 0;
2357 
2358 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2359 		pr_err("Invalid status check mask\n");
2360 		ret = -EINVAL;
2361 		goto done;
2362 	}
2363 
2364 	mr_status->fail_status = 0;
2365 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2366 		if (!mmr->sig) {
2367 			ret = -EINVAL;
2368 			pr_err("signature status check requested on a non-signature enabled MR\n");
2369 			goto done;
2370 		}
2371 
2372 		mmr->sig->sig_status_checked = true;
2373 		if (!mmr->sig->sig_err_exists)
2374 			goto done;
2375 
2376 		if (ibmr->lkey == mmr->sig->err_item.key)
2377 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2378 			       sizeof(mr_status->sig_err));
2379 		else {
2380 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2381 			mr_status->sig_err.sig_err_offset = 0;
2382 			mr_status->sig_err.key = mmr->sig->err_item.key;
2383 		}
2384 
2385 		mmr->sig->sig_err_exists = false;
2386 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2387 	}
2388 
2389 done:
2390 	return ret;
2391 }
2392 
2393 static int
2394 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2395 			int data_sg_nents, unsigned int *data_sg_offset,
2396 			struct scatterlist *meta_sg, int meta_sg_nents,
2397 			unsigned int *meta_sg_offset)
2398 {
2399 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2400 	unsigned int sg_offset = 0;
2401 	int n = 0;
2402 
2403 	mr->meta_length = 0;
2404 	if (data_sg_nents == 1) {
2405 		n++;
2406 		mr->ndescs = 1;
2407 		if (data_sg_offset)
2408 			sg_offset = *data_sg_offset;
2409 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2410 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2411 		if (meta_sg_nents == 1) {
2412 			n++;
2413 			mr->meta_ndescs = 1;
2414 			if (meta_sg_offset)
2415 				sg_offset = *meta_sg_offset;
2416 			else
2417 				sg_offset = 0;
2418 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2419 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2420 		}
2421 		ibmr->length = mr->data_length + mr->meta_length;
2422 	}
2423 
2424 	return n;
2425 }
2426 
2427 static int
2428 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2429 		   struct scatterlist *sgl,
2430 		   unsigned short sg_nents,
2431 		   unsigned int *sg_offset_p,
2432 		   struct scatterlist *meta_sgl,
2433 		   unsigned short meta_sg_nents,
2434 		   unsigned int *meta_sg_offset_p)
2435 {
2436 	struct scatterlist *sg = sgl;
2437 	struct mlx5_klm *klms = mr->descs;
2438 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2439 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2440 	int i, j = 0;
2441 
2442 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2443 	mr->ibmr.length = 0;
2444 
2445 	for_each_sg(sgl, sg, sg_nents, i) {
2446 		if (unlikely(i >= mr->max_descs))
2447 			break;
2448 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2449 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2450 		klms[i].key = cpu_to_be32(lkey);
2451 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2452 
2453 		sg_offset = 0;
2454 	}
2455 
2456 	if (sg_offset_p)
2457 		*sg_offset_p = sg_offset;
2458 
2459 	mr->ndescs = i;
2460 	mr->data_length = mr->ibmr.length;
2461 
2462 	if (meta_sg_nents) {
2463 		sg = meta_sgl;
2464 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2465 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2466 			if (unlikely(i + j >= mr->max_descs))
2467 				break;
2468 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2469 						     sg_offset);
2470 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2471 							 sg_offset);
2472 			klms[i + j].key = cpu_to_be32(lkey);
2473 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2474 
2475 			sg_offset = 0;
2476 		}
2477 		if (meta_sg_offset_p)
2478 			*meta_sg_offset_p = sg_offset;
2479 
2480 		mr->meta_ndescs = j;
2481 		mr->meta_length = mr->ibmr.length - mr->data_length;
2482 	}
2483 
2484 	return i + j;
2485 }
2486 
2487 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2488 {
2489 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2490 	__be64 *descs;
2491 
2492 	if (unlikely(mr->ndescs == mr->max_descs))
2493 		return -ENOMEM;
2494 
2495 	descs = mr->descs;
2496 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2497 
2498 	return 0;
2499 }
2500 
2501 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2502 {
2503 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2504 	__be64 *descs;
2505 
2506 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2507 		return -ENOMEM;
2508 
2509 	descs = mr->descs;
2510 	descs[mr->ndescs + mr->meta_ndescs++] =
2511 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2512 
2513 	return 0;
2514 }
2515 
2516 static int
2517 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2518 			 int data_sg_nents, unsigned int *data_sg_offset,
2519 			 struct scatterlist *meta_sg, int meta_sg_nents,
2520 			 unsigned int *meta_sg_offset)
2521 {
2522 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2523 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2524 	int n;
2525 
2526 	pi_mr->ndescs = 0;
2527 	pi_mr->meta_ndescs = 0;
2528 	pi_mr->meta_length = 0;
2529 
2530 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2531 				   pi_mr->desc_size * pi_mr->max_descs,
2532 				   DMA_TO_DEVICE);
2533 
2534 	pi_mr->ibmr.page_size = ibmr->page_size;
2535 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2536 			   mlx5_set_page);
2537 	if (n != data_sg_nents)
2538 		return n;
2539 
2540 	pi_mr->data_iova = pi_mr->ibmr.iova;
2541 	pi_mr->data_length = pi_mr->ibmr.length;
2542 	pi_mr->ibmr.length = pi_mr->data_length;
2543 	ibmr->length = pi_mr->data_length;
2544 
2545 	if (meta_sg_nents) {
2546 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2547 		u64 iova = pi_mr->data_iova;
2548 
2549 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2550 				    meta_sg_offset, mlx5_set_page_pi);
2551 
2552 		pi_mr->meta_length = pi_mr->ibmr.length;
2553 		/*
2554 		 * PI address for the HW is the offset of the metadata address
2555 		 * relative to the first data page address.
2556 		 * It equals to first data page address + size of data pages +
2557 		 * metadata offset at the first metadata page
2558 		 */
2559 		pi_mr->pi_iova = (iova & page_mask) +
2560 				 pi_mr->ndescs * ibmr->page_size +
2561 				 (pi_mr->ibmr.iova & ~page_mask);
2562 		/*
2563 		 * In order to use one MTT MR for data and metadata, we register
2564 		 * also the gaps between the end of the data and the start of
2565 		 * the metadata (the sig MR will verify that the HW will access
2566 		 * to right addresses). This mapping is safe because we use
2567 		 * internal mkey for the registration.
2568 		 */
2569 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2570 		pi_mr->ibmr.iova = iova;
2571 		ibmr->length += pi_mr->meta_length;
2572 	}
2573 
2574 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2575 				      pi_mr->desc_size * pi_mr->max_descs,
2576 				      DMA_TO_DEVICE);
2577 
2578 	return n;
2579 }
2580 
2581 static int
2582 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2583 			 int data_sg_nents, unsigned int *data_sg_offset,
2584 			 struct scatterlist *meta_sg, int meta_sg_nents,
2585 			 unsigned int *meta_sg_offset)
2586 {
2587 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2588 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2589 	int n;
2590 
2591 	pi_mr->ndescs = 0;
2592 	pi_mr->meta_ndescs = 0;
2593 	pi_mr->meta_length = 0;
2594 
2595 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2596 				   pi_mr->desc_size * pi_mr->max_descs,
2597 				   DMA_TO_DEVICE);
2598 
2599 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2600 			       meta_sg, meta_sg_nents, meta_sg_offset);
2601 
2602 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2603 				      pi_mr->desc_size * pi_mr->max_descs,
2604 				      DMA_TO_DEVICE);
2605 
2606 	/* This is zero-based memory region */
2607 	pi_mr->data_iova = 0;
2608 	pi_mr->ibmr.iova = 0;
2609 	pi_mr->pi_iova = pi_mr->data_length;
2610 	ibmr->length = pi_mr->ibmr.length;
2611 
2612 	return n;
2613 }
2614 
2615 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2616 			 int data_sg_nents, unsigned int *data_sg_offset,
2617 			 struct scatterlist *meta_sg, int meta_sg_nents,
2618 			 unsigned int *meta_sg_offset)
2619 {
2620 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2621 	struct mlx5_ib_mr *pi_mr = NULL;
2622 	int n;
2623 
2624 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2625 
2626 	mr->ndescs = 0;
2627 	mr->data_length = 0;
2628 	mr->data_iova = 0;
2629 	mr->meta_ndescs = 0;
2630 	mr->pi_iova = 0;
2631 	/*
2632 	 * As a performance optimization, if possible, there is no need to
2633 	 * perform UMR operation to register the data/metadata buffers.
2634 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2635 	 * Fallback to UMR only in case of a failure.
2636 	 */
2637 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2638 				    data_sg_offset, meta_sg, meta_sg_nents,
2639 				    meta_sg_offset);
2640 	if (n == data_sg_nents + meta_sg_nents)
2641 		goto out;
2642 	/*
2643 	 * As a performance optimization, if possible, there is no need to map
2644 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2645 	 * descriptors and fallback to KLM only in case of a failure.
2646 	 * It's more efficient for the HW to work with MTT descriptors
2647 	 * (especially in high load).
2648 	 * Use KLM (indirect access) only if it's mandatory.
2649 	 */
2650 	pi_mr = mr->mtt_mr;
2651 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2652 				     data_sg_offset, meta_sg, meta_sg_nents,
2653 				     meta_sg_offset);
2654 	if (n == data_sg_nents + meta_sg_nents)
2655 		goto out;
2656 
2657 	pi_mr = mr->klm_mr;
2658 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2659 				     data_sg_offset, meta_sg, meta_sg_nents,
2660 				     meta_sg_offset);
2661 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2662 		return -ENOMEM;
2663 
2664 out:
2665 	/* This is zero-based memory region */
2666 	ibmr->iova = 0;
2667 	mr->pi_mr = pi_mr;
2668 	if (pi_mr)
2669 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2670 	else
2671 		ibmr->sig_attrs->meta_length = mr->meta_length;
2672 
2673 	return 0;
2674 }
2675 
2676 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2677 		      unsigned int *sg_offset)
2678 {
2679 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2680 	int n;
2681 
2682 	mr->ndescs = 0;
2683 
2684 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2685 				   mr->desc_size * mr->max_descs,
2686 				   DMA_TO_DEVICE);
2687 
2688 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2689 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2690 				       NULL);
2691 	else
2692 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2693 				mlx5_set_page);
2694 
2695 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2696 				      mr->desc_size * mr->max_descs,
2697 				      DMA_TO_DEVICE);
2698 
2699 	return n;
2700 }
2701