1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem.h> 43 #include <rdma/ib_umem_odp.h> 44 #include <rdma/ib_verbs.h> 45 #include "dm.h" 46 #include "mlx5_ib.h" 47 48 /* 49 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 50 * work on kernel modules memory 51 */ 52 void *xlt_emergency_page; 53 static DEFINE_MUTEX(xlt_emergency_page_mutex); 54 55 enum { 56 MAX_PENDING_REG_MR = 8, 57 }; 58 59 #define MLX5_UMR_ALIGN 2048 60 61 static void 62 create_mkey_callback(int status, struct mlx5_async_work *context); 63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 64 u64 iova, int access_flags, 65 unsigned int page_size, bool populate); 66 67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 68 struct ib_pd *pd) 69 { 70 struct mlx5_ib_dev *dev = to_mdev(pd->device); 71 72 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 73 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 74 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 75 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 76 MLX5_SET(mkc, mkc, lr, 1); 77 78 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 79 MLX5_SET(mkc, mkc, relaxed_ordering_write, 80 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 81 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 82 MLX5_SET(mkc, mkc, relaxed_ordering_read, 83 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 84 85 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 86 MLX5_SET(mkc, mkc, qpn, 0xffffff); 87 MLX5_SET64(mkc, mkc, start_addr, start_addr); 88 } 89 90 static void 91 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 92 u32 *in) 93 { 94 u8 key = atomic_inc_return(&dev->mkey_var); 95 void *mkc; 96 97 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 98 MLX5_SET(mkc, mkc, mkey_7_0, key); 99 mkey->key = key; 100 } 101 102 static int 103 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 104 u32 *in, int inlen) 105 { 106 assign_mkey_variant(dev, mkey, in); 107 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 108 } 109 110 static int 111 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 112 struct mlx5_core_mkey *mkey, 113 struct mlx5_async_ctx *async_ctx, 114 u32 *in, int inlen, u32 *out, int outlen, 115 struct mlx5_async_work *context) 116 { 117 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 118 assign_mkey_variant(dev, mkey, in); 119 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 120 create_mkey_callback, context); 121 } 122 123 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 125 126 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 127 { 128 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 129 } 130 131 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 132 { 133 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 134 135 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 136 } 137 138 static void create_mkey_callback(int status, struct mlx5_async_work *context) 139 { 140 struct mlx5_ib_mr *mr = 141 container_of(context, struct mlx5_ib_mr, cb_work); 142 struct mlx5_cache_ent *ent = mr->cache_ent; 143 struct mlx5_ib_dev *dev = ent->dev; 144 unsigned long flags; 145 146 if (status) { 147 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 148 kfree(mr); 149 spin_lock_irqsave(&ent->lock, flags); 150 ent->pending--; 151 WRITE_ONCE(dev->fill_delay, 1); 152 spin_unlock_irqrestore(&ent->lock, flags); 153 mod_timer(&dev->delay_timer, jiffies + HZ); 154 return; 155 } 156 157 mr->mmkey.type = MLX5_MKEY_MR; 158 mr->mmkey.key |= mlx5_idx_to_mkey( 159 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 160 init_waitqueue_head(&mr->mmkey.wait); 161 162 WRITE_ONCE(dev->cache.last_add, jiffies); 163 164 spin_lock_irqsave(&ent->lock, flags); 165 list_add_tail(&mr->list, &ent->head); 166 ent->available_mrs++; 167 ent->total_mrs++; 168 /* If we are doing fill_to_high_water then keep going. */ 169 queue_adjust_cache_locked(ent); 170 ent->pending--; 171 spin_unlock_irqrestore(&ent->lock, flags); 172 } 173 174 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 175 { 176 struct mlx5_ib_mr *mr; 177 178 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 179 if (!mr) 180 return NULL; 181 mr->cache_ent = ent; 182 183 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 184 MLX5_SET(mkc, mkc, free, 1); 185 MLX5_SET(mkc, mkc, umr_en, 1); 186 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 187 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 188 189 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 190 MLX5_SET(mkc, mkc, log_page_size, ent->page); 191 return mr; 192 } 193 194 /* Asynchronously schedule new MRs to be populated in the cache. */ 195 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 196 { 197 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 198 struct mlx5_ib_mr *mr; 199 void *mkc; 200 u32 *in; 201 int err = 0; 202 int i; 203 204 in = kzalloc(inlen, GFP_KERNEL); 205 if (!in) 206 return -ENOMEM; 207 208 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 209 for (i = 0; i < num; i++) { 210 mr = alloc_cache_mr(ent, mkc); 211 if (!mr) { 212 err = -ENOMEM; 213 break; 214 } 215 spin_lock_irq(&ent->lock); 216 if (ent->pending >= MAX_PENDING_REG_MR) { 217 err = -EAGAIN; 218 spin_unlock_irq(&ent->lock); 219 kfree(mr); 220 break; 221 } 222 ent->pending++; 223 spin_unlock_irq(&ent->lock); 224 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 225 &ent->dev->async_ctx, in, inlen, 226 mr->out, sizeof(mr->out), 227 &mr->cb_work); 228 if (err) { 229 spin_lock_irq(&ent->lock); 230 ent->pending--; 231 spin_unlock_irq(&ent->lock); 232 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 233 kfree(mr); 234 break; 235 } 236 } 237 238 kfree(in); 239 return err; 240 } 241 242 /* Synchronously create a MR in the cache */ 243 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 244 { 245 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 246 struct mlx5_ib_mr *mr; 247 void *mkc; 248 u32 *in; 249 int err; 250 251 in = kzalloc(inlen, GFP_KERNEL); 252 if (!in) 253 return ERR_PTR(-ENOMEM); 254 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 255 256 mr = alloc_cache_mr(ent, mkc); 257 if (!mr) { 258 err = -ENOMEM; 259 goto free_in; 260 } 261 262 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 263 if (err) 264 goto free_mr; 265 266 mr->mmkey.type = MLX5_MKEY_MR; 267 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 268 spin_lock_irq(&ent->lock); 269 ent->total_mrs++; 270 spin_unlock_irq(&ent->lock); 271 kfree(in); 272 return mr; 273 free_mr: 274 kfree(mr); 275 free_in: 276 kfree(in); 277 return ERR_PTR(err); 278 } 279 280 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 281 { 282 struct mlx5_ib_mr *mr; 283 284 lockdep_assert_held(&ent->lock); 285 if (list_empty(&ent->head)) 286 return; 287 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 288 list_del(&mr->list); 289 ent->available_mrs--; 290 ent->total_mrs--; 291 spin_unlock_irq(&ent->lock); 292 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 293 kfree(mr); 294 spin_lock_irq(&ent->lock); 295 } 296 297 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 298 bool limit_fill) 299 { 300 int err; 301 302 lockdep_assert_held(&ent->lock); 303 304 while (true) { 305 if (limit_fill) 306 target = ent->limit * 2; 307 if (target == ent->available_mrs + ent->pending) 308 return 0; 309 if (target > ent->available_mrs + ent->pending) { 310 u32 todo = target - (ent->available_mrs + ent->pending); 311 312 spin_unlock_irq(&ent->lock); 313 err = add_keys(ent, todo); 314 if (err == -EAGAIN) 315 usleep_range(3000, 5000); 316 spin_lock_irq(&ent->lock); 317 if (err) { 318 if (err != -EAGAIN) 319 return err; 320 } else 321 return 0; 322 } else { 323 remove_cache_mr_locked(ent); 324 } 325 } 326 } 327 328 static ssize_t size_write(struct file *filp, const char __user *buf, 329 size_t count, loff_t *pos) 330 { 331 struct mlx5_cache_ent *ent = filp->private_data; 332 u32 target; 333 int err; 334 335 err = kstrtou32_from_user(buf, count, 0, &target); 336 if (err) 337 return err; 338 339 /* 340 * Target is the new value of total_mrs the user requests, however we 341 * cannot free MRs that are in use. Compute the target value for 342 * available_mrs. 343 */ 344 spin_lock_irq(&ent->lock); 345 if (target < ent->total_mrs - ent->available_mrs) { 346 err = -EINVAL; 347 goto err_unlock; 348 } 349 target = target - (ent->total_mrs - ent->available_mrs); 350 if (target < ent->limit || target > ent->limit*2) { 351 err = -EINVAL; 352 goto err_unlock; 353 } 354 err = resize_available_mrs(ent, target, false); 355 if (err) 356 goto err_unlock; 357 spin_unlock_irq(&ent->lock); 358 359 return count; 360 361 err_unlock: 362 spin_unlock_irq(&ent->lock); 363 return err; 364 } 365 366 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 367 loff_t *pos) 368 { 369 struct mlx5_cache_ent *ent = filp->private_data; 370 char lbuf[20]; 371 int err; 372 373 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 374 if (err < 0) 375 return err; 376 377 return simple_read_from_buffer(buf, count, pos, lbuf, err); 378 } 379 380 static const struct file_operations size_fops = { 381 .owner = THIS_MODULE, 382 .open = simple_open, 383 .write = size_write, 384 .read = size_read, 385 }; 386 387 static ssize_t limit_write(struct file *filp, const char __user *buf, 388 size_t count, loff_t *pos) 389 { 390 struct mlx5_cache_ent *ent = filp->private_data; 391 u32 var; 392 int err; 393 394 err = kstrtou32_from_user(buf, count, 0, &var); 395 if (err) 396 return err; 397 398 /* 399 * Upon set we immediately fill the cache to high water mark implied by 400 * the limit. 401 */ 402 spin_lock_irq(&ent->lock); 403 ent->limit = var; 404 err = resize_available_mrs(ent, 0, true); 405 spin_unlock_irq(&ent->lock); 406 if (err) 407 return err; 408 return count; 409 } 410 411 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 412 loff_t *pos) 413 { 414 struct mlx5_cache_ent *ent = filp->private_data; 415 char lbuf[20]; 416 int err; 417 418 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 419 if (err < 0) 420 return err; 421 422 return simple_read_from_buffer(buf, count, pos, lbuf, err); 423 } 424 425 static const struct file_operations limit_fops = { 426 .owner = THIS_MODULE, 427 .open = simple_open, 428 .write = limit_write, 429 .read = limit_read, 430 }; 431 432 static bool someone_adding(struct mlx5_mr_cache *cache) 433 { 434 unsigned int i; 435 436 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 437 struct mlx5_cache_ent *ent = &cache->ent[i]; 438 bool ret; 439 440 spin_lock_irq(&ent->lock); 441 ret = ent->available_mrs < ent->limit; 442 spin_unlock_irq(&ent->lock); 443 if (ret) 444 return true; 445 } 446 return false; 447 } 448 449 /* 450 * Check if the bucket is outside the high/low water mark and schedule an async 451 * update. The cache refill has hysteresis, once the low water mark is hit it is 452 * refilled up to the high mark. 453 */ 454 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 455 { 456 lockdep_assert_held(&ent->lock); 457 458 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 459 return; 460 if (ent->available_mrs < ent->limit) { 461 ent->fill_to_high_water = true; 462 queue_work(ent->dev->cache.wq, &ent->work); 463 } else if (ent->fill_to_high_water && 464 ent->available_mrs + ent->pending < 2 * ent->limit) { 465 /* 466 * Once we start populating due to hitting a low water mark 467 * continue until we pass the high water mark. 468 */ 469 queue_work(ent->dev->cache.wq, &ent->work); 470 } else if (ent->available_mrs == 2 * ent->limit) { 471 ent->fill_to_high_water = false; 472 } else if (ent->available_mrs > 2 * ent->limit) { 473 /* Queue deletion of excess entries */ 474 ent->fill_to_high_water = false; 475 if (ent->pending) 476 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 477 msecs_to_jiffies(1000)); 478 else 479 queue_work(ent->dev->cache.wq, &ent->work); 480 } 481 } 482 483 static void __cache_work_func(struct mlx5_cache_ent *ent) 484 { 485 struct mlx5_ib_dev *dev = ent->dev; 486 struct mlx5_mr_cache *cache = &dev->cache; 487 int err; 488 489 spin_lock_irq(&ent->lock); 490 if (ent->disabled) 491 goto out; 492 493 if (ent->fill_to_high_water && 494 ent->available_mrs + ent->pending < 2 * ent->limit && 495 !READ_ONCE(dev->fill_delay)) { 496 spin_unlock_irq(&ent->lock); 497 err = add_keys(ent, 1); 498 spin_lock_irq(&ent->lock); 499 if (ent->disabled) 500 goto out; 501 if (err) { 502 /* 503 * EAGAIN only happens if pending is positive, so we 504 * will be rescheduled from reg_mr_callback(). The only 505 * failure path here is ENOMEM. 506 */ 507 if (err != -EAGAIN) { 508 mlx5_ib_warn( 509 dev, 510 "command failed order %d, err %d\n", 511 ent->order, err); 512 queue_delayed_work(cache->wq, &ent->dwork, 513 msecs_to_jiffies(1000)); 514 } 515 } 516 } else if (ent->available_mrs > 2 * ent->limit) { 517 bool need_delay; 518 519 /* 520 * The remove_cache_mr() logic is performed as garbage 521 * collection task. Such task is intended to be run when no 522 * other active processes are running. 523 * 524 * The need_resched() will return TRUE if there are user tasks 525 * to be activated in near future. 526 * 527 * In such case, we don't execute remove_cache_mr() and postpone 528 * the garbage collection work to try to run in next cycle, in 529 * order to free CPU resources to other tasks. 530 */ 531 spin_unlock_irq(&ent->lock); 532 need_delay = need_resched() || someone_adding(cache) || 533 time_after(jiffies, 534 READ_ONCE(cache->last_add) + 300 * HZ); 535 spin_lock_irq(&ent->lock); 536 if (ent->disabled) 537 goto out; 538 if (need_delay) 539 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 540 remove_cache_mr_locked(ent); 541 queue_adjust_cache_locked(ent); 542 } 543 out: 544 spin_unlock_irq(&ent->lock); 545 } 546 547 static void delayed_cache_work_func(struct work_struct *work) 548 { 549 struct mlx5_cache_ent *ent; 550 551 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 552 __cache_work_func(ent); 553 } 554 555 static void cache_work_func(struct work_struct *work) 556 { 557 struct mlx5_cache_ent *ent; 558 559 ent = container_of(work, struct mlx5_cache_ent, work); 560 __cache_work_func(ent); 561 } 562 563 /* Allocate a special entry from the cache */ 564 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 565 unsigned int entry, int access_flags) 566 { 567 struct mlx5_mr_cache *cache = &dev->cache; 568 struct mlx5_cache_ent *ent; 569 struct mlx5_ib_mr *mr; 570 571 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 572 entry >= ARRAY_SIZE(cache->ent))) 573 return ERR_PTR(-EINVAL); 574 575 /* Matches access in alloc_cache_mr() */ 576 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 577 return ERR_PTR(-EOPNOTSUPP); 578 579 ent = &cache->ent[entry]; 580 spin_lock_irq(&ent->lock); 581 if (list_empty(&ent->head)) { 582 spin_unlock_irq(&ent->lock); 583 mr = create_cache_mr(ent); 584 if (IS_ERR(mr)) 585 return mr; 586 } else { 587 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 588 list_del(&mr->list); 589 ent->available_mrs--; 590 queue_adjust_cache_locked(ent); 591 spin_unlock_irq(&ent->lock); 592 593 mlx5_clear_mr(mr); 594 } 595 mr->access_flags = access_flags; 596 return mr; 597 } 598 599 /* Return a MR already available in the cache */ 600 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 601 { 602 struct mlx5_ib_dev *dev = req_ent->dev; 603 struct mlx5_ib_mr *mr = NULL; 604 struct mlx5_cache_ent *ent = req_ent; 605 606 /* Try larger MR pools from the cache to satisfy the allocation */ 607 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 608 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 609 ent - dev->cache.ent); 610 611 spin_lock_irq(&ent->lock); 612 if (!list_empty(&ent->head)) { 613 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 614 list); 615 list_del(&mr->list); 616 ent->available_mrs--; 617 queue_adjust_cache_locked(ent); 618 spin_unlock_irq(&ent->lock); 619 mlx5_clear_mr(mr); 620 return mr; 621 } 622 queue_adjust_cache_locked(ent); 623 spin_unlock_irq(&ent->lock); 624 } 625 req_ent->miss++; 626 return NULL; 627 } 628 629 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 630 { 631 struct mlx5_cache_ent *ent = mr->cache_ent; 632 633 spin_lock_irq(&ent->lock); 634 list_add_tail(&mr->list, &ent->head); 635 ent->available_mrs++; 636 queue_adjust_cache_locked(ent); 637 spin_unlock_irq(&ent->lock); 638 } 639 640 static void clean_keys(struct mlx5_ib_dev *dev, int c) 641 { 642 struct mlx5_mr_cache *cache = &dev->cache; 643 struct mlx5_cache_ent *ent = &cache->ent[c]; 644 struct mlx5_ib_mr *tmp_mr; 645 struct mlx5_ib_mr *mr; 646 LIST_HEAD(del_list); 647 648 cancel_delayed_work(&ent->dwork); 649 while (1) { 650 spin_lock_irq(&ent->lock); 651 if (list_empty(&ent->head)) { 652 spin_unlock_irq(&ent->lock); 653 break; 654 } 655 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 656 list_move(&mr->list, &del_list); 657 ent->available_mrs--; 658 ent->total_mrs--; 659 spin_unlock_irq(&ent->lock); 660 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 661 } 662 663 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 664 list_del(&mr->list); 665 kfree(mr); 666 } 667 } 668 669 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 670 { 671 if (!mlx5_debugfs_root || dev->is_rep) 672 return; 673 674 debugfs_remove_recursive(dev->cache.root); 675 dev->cache.root = NULL; 676 } 677 678 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 679 { 680 struct mlx5_mr_cache *cache = &dev->cache; 681 struct mlx5_cache_ent *ent; 682 struct dentry *dir; 683 int i; 684 685 if (!mlx5_debugfs_root || dev->is_rep) 686 return; 687 688 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 689 690 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 691 ent = &cache->ent[i]; 692 sprintf(ent->name, "%d", ent->order); 693 dir = debugfs_create_dir(ent->name, cache->root); 694 debugfs_create_file("size", 0600, dir, ent, &size_fops); 695 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 696 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 697 debugfs_create_u32("miss", 0600, dir, &ent->miss); 698 } 699 } 700 701 static void delay_time_func(struct timer_list *t) 702 { 703 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 704 705 WRITE_ONCE(dev->fill_delay, 0); 706 } 707 708 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 709 { 710 struct mlx5_mr_cache *cache = &dev->cache; 711 struct mlx5_cache_ent *ent; 712 int i; 713 714 mutex_init(&dev->slow_path_mutex); 715 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 716 if (!cache->wq) { 717 mlx5_ib_warn(dev, "failed to create work queue\n"); 718 return -ENOMEM; 719 } 720 721 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 722 timer_setup(&dev->delay_timer, delay_time_func, 0); 723 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 724 ent = &cache->ent[i]; 725 INIT_LIST_HEAD(&ent->head); 726 spin_lock_init(&ent->lock); 727 ent->order = i + 2; 728 ent->dev = dev; 729 ent->limit = 0; 730 731 INIT_WORK(&ent->work, cache_work_func); 732 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 733 734 if (i > MR_CACHE_LAST_STD_ENTRY) { 735 mlx5_odp_init_mr_cache_entry(ent); 736 continue; 737 } 738 739 if (ent->order > mr_cache_max_order(dev)) 740 continue; 741 742 ent->page = PAGE_SHIFT; 743 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 744 MLX5_IB_UMR_OCTOWORD; 745 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 746 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && 747 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 748 mlx5_ib_can_load_pas_with_umr(dev, 0)) 749 ent->limit = dev->mdev->profile.mr_cache[i].limit; 750 else 751 ent->limit = 0; 752 spin_lock_irq(&ent->lock); 753 queue_adjust_cache_locked(ent); 754 spin_unlock_irq(&ent->lock); 755 } 756 757 mlx5_mr_cache_debugfs_init(dev); 758 759 return 0; 760 } 761 762 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 763 { 764 unsigned int i; 765 766 if (!dev->cache.wq) 767 return 0; 768 769 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 770 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 771 772 spin_lock_irq(&ent->lock); 773 ent->disabled = true; 774 spin_unlock_irq(&ent->lock); 775 cancel_work_sync(&ent->work); 776 cancel_delayed_work_sync(&ent->dwork); 777 } 778 779 mlx5_mr_cache_debugfs_cleanup(dev); 780 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 781 782 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 783 clean_keys(dev, i); 784 785 destroy_workqueue(dev->cache.wq); 786 del_timer_sync(&dev->delay_timer); 787 788 return 0; 789 } 790 791 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 792 { 793 struct mlx5_ib_dev *dev = to_mdev(pd->device); 794 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 795 struct mlx5_ib_mr *mr; 796 void *mkc; 797 u32 *in; 798 int err; 799 800 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 801 if (!mr) 802 return ERR_PTR(-ENOMEM); 803 804 in = kzalloc(inlen, GFP_KERNEL); 805 if (!in) { 806 err = -ENOMEM; 807 goto err_free; 808 } 809 810 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 811 812 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 813 MLX5_SET(mkc, mkc, length64, 1); 814 set_mkc_access_pd_addr_fields(mkc, acc, 0, pd); 815 816 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 817 if (err) 818 goto err_in; 819 820 kfree(in); 821 mr->mmkey.type = MLX5_MKEY_MR; 822 mr->ibmr.lkey = mr->mmkey.key; 823 mr->ibmr.rkey = mr->mmkey.key; 824 mr->umem = NULL; 825 826 return &mr->ibmr; 827 828 err_in: 829 kfree(in); 830 831 err_free: 832 kfree(mr); 833 834 return ERR_PTR(err); 835 } 836 837 static int get_octo_len(u64 addr, u64 len, int page_shift) 838 { 839 u64 page_size = 1ULL << page_shift; 840 u64 offset; 841 int npages; 842 843 offset = addr & (page_size - 1); 844 npages = ALIGN(len + offset, page_size) >> page_shift; 845 return (npages + 1) / 2; 846 } 847 848 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 849 { 850 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 851 return MR_CACHE_LAST_STD_ENTRY + 2; 852 return MLX5_MAX_UMR_SHIFT; 853 } 854 855 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 856 { 857 struct mlx5_ib_umr_context *context = 858 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 859 860 context->status = wc->status; 861 complete(&context->done); 862 } 863 864 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 865 { 866 context->cqe.done = mlx5_ib_umr_done; 867 context->status = -1; 868 init_completion(&context->done); 869 } 870 871 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 872 struct mlx5_umr_wr *umrwr) 873 { 874 struct umr_common *umrc = &dev->umrc; 875 const struct ib_send_wr *bad; 876 int err; 877 struct mlx5_ib_umr_context umr_context; 878 879 mlx5_ib_init_umr_context(&umr_context); 880 umrwr->wr.wr_cqe = &umr_context.cqe; 881 882 down(&umrc->sem); 883 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 884 if (err) { 885 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 886 } else { 887 wait_for_completion(&umr_context.done); 888 if (umr_context.status != IB_WC_SUCCESS) { 889 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 890 umr_context.status); 891 err = -EFAULT; 892 } 893 } 894 up(&umrc->sem); 895 return err; 896 } 897 898 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 899 unsigned int order) 900 { 901 struct mlx5_mr_cache *cache = &dev->cache; 902 903 if (order < cache->ent[0].order) 904 return &cache->ent[0]; 905 order = order - cache->ent[0].order; 906 if (order > MR_CACHE_LAST_STD_ENTRY) 907 return NULL; 908 return &cache->ent[order]; 909 } 910 911 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 912 u64 length, int access_flags) 913 { 914 mr->ibmr.lkey = mr->mmkey.key; 915 mr->ibmr.rkey = mr->mmkey.key; 916 mr->ibmr.length = length; 917 mr->ibmr.device = &dev->ib_dev; 918 mr->access_flags = access_flags; 919 } 920 921 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 922 u64 iova) 923 { 924 /* 925 * The alignment of iova has already been checked upon entering 926 * UVERBS_METHOD_REG_DMABUF_MR 927 */ 928 umem->iova = iova; 929 return PAGE_SIZE; 930 } 931 932 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 933 struct ib_umem *umem, u64 iova, 934 int access_flags) 935 { 936 struct mlx5_ib_dev *dev = to_mdev(pd->device); 937 struct mlx5_cache_ent *ent; 938 struct mlx5_ib_mr *mr; 939 unsigned int page_size; 940 941 if (umem->is_dmabuf) 942 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 943 else 944 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 945 0, iova); 946 if (WARN_ON(!page_size)) 947 return ERR_PTR(-EINVAL); 948 ent = mr_cache_ent_from_order( 949 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size))); 950 /* 951 * Matches access in alloc_cache_mr(). If the MR can't come from the 952 * cache then synchronously create an uncached one. 953 */ 954 if (!ent || ent->limit == 0 || 955 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) { 956 mutex_lock(&dev->slow_path_mutex); 957 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 958 mutex_unlock(&dev->slow_path_mutex); 959 return mr; 960 } 961 962 mr = get_cache_mr(ent); 963 if (!mr) { 964 mr = create_cache_mr(ent); 965 /* 966 * The above already tried to do the same stuff as reg_create(), 967 * no reason to try it again. 968 */ 969 if (IS_ERR(mr)) 970 return mr; 971 } 972 973 mr->ibmr.pd = pd; 974 mr->umem = umem; 975 mr->mmkey.iova = iova; 976 mr->mmkey.size = umem->length; 977 mr->mmkey.pd = to_mpd(pd)->pdn; 978 mr->page_shift = order_base_2(page_size); 979 set_mr_fields(dev, mr, umem->length, access_flags); 980 981 return mr; 982 } 983 984 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 985 MLX5_UMR_MTT_ALIGNMENT) 986 #define MLX5_SPARE_UMR_CHUNK 0x10000 987 988 /* 989 * Allocate a temporary buffer to hold the per-page information to transfer to 990 * HW. For efficiency this should be as large as it can be, but buffer 991 * allocation failure is not allowed, so try smaller sizes. 992 */ 993 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 994 { 995 const size_t xlt_chunk_align = 996 MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size); 997 size_t size; 998 void *res = NULL; 999 1000 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1001 1002 /* 1003 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1004 * allocation can't trigger any kind of reclaim. 1005 */ 1006 might_sleep(); 1007 1008 gfp_mask |= __GFP_ZERO | __GFP_NORETRY; 1009 1010 /* 1011 * If the system already has a suitable high order page then just use 1012 * that, but don't try hard to create one. This max is about 1M, so a 1013 * free x86 huge page will satisfy it. 1014 */ 1015 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1016 MLX5_MAX_UMR_CHUNK); 1017 *nents = size / ent_size; 1018 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1019 get_order(size)); 1020 if (res) 1021 return res; 1022 1023 if (size > MLX5_SPARE_UMR_CHUNK) { 1024 size = MLX5_SPARE_UMR_CHUNK; 1025 *nents = get_order(size) / ent_size; 1026 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1027 get_order(size)); 1028 if (res) 1029 return res; 1030 } 1031 1032 *nents = PAGE_SIZE / ent_size; 1033 res = (void *)__get_free_page(gfp_mask); 1034 if (res) 1035 return res; 1036 1037 mutex_lock(&xlt_emergency_page_mutex); 1038 memset(xlt_emergency_page, 0, PAGE_SIZE); 1039 return xlt_emergency_page; 1040 } 1041 1042 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1043 { 1044 if (xlt == xlt_emergency_page) { 1045 mutex_unlock(&xlt_emergency_page_mutex); 1046 return; 1047 } 1048 1049 free_pages((unsigned long)xlt, get_order(length)); 1050 } 1051 1052 /* 1053 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1054 * submission. 1055 */ 1056 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1057 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1058 size_t nents, size_t ent_size, 1059 unsigned int flags) 1060 { 1061 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1062 struct device *ddev = &dev->mdev->pdev->dev; 1063 dma_addr_t dma; 1064 void *xlt; 1065 1066 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1067 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1068 GFP_KERNEL); 1069 sg->length = nents * ent_size; 1070 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1071 if (dma_mapping_error(ddev, dma)) { 1072 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1073 mlx5_ib_free_xlt(xlt, sg->length); 1074 return NULL; 1075 } 1076 sg->addr = dma; 1077 sg->lkey = dev->umrc.pd->local_dma_lkey; 1078 1079 memset(wr, 0, sizeof(*wr)); 1080 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1081 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1082 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1083 wr->wr.sg_list = sg; 1084 wr->wr.num_sge = 1; 1085 wr->wr.opcode = MLX5_IB_WR_UMR; 1086 wr->pd = mr->ibmr.pd; 1087 wr->mkey = mr->mmkey.key; 1088 wr->length = mr->mmkey.size; 1089 wr->virt_addr = mr->mmkey.iova; 1090 wr->access_flags = mr->access_flags; 1091 wr->page_shift = mr->page_shift; 1092 wr->xlt_size = sg->length; 1093 return xlt; 1094 } 1095 1096 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1097 struct ib_sge *sg) 1098 { 1099 struct device *ddev = &dev->mdev->pdev->dev; 1100 1101 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1102 mlx5_ib_free_xlt(xlt, sg->length); 1103 } 1104 1105 static unsigned int xlt_wr_final_send_flags(unsigned int flags) 1106 { 1107 unsigned int res = 0; 1108 1109 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1110 res |= MLX5_IB_SEND_UMR_ENABLE_MR | 1111 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1112 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1113 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) 1114 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1115 if (flags & MLX5_IB_UPD_XLT_ADDR) 1116 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1117 return res; 1118 } 1119 1120 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1121 int page_shift, int flags) 1122 { 1123 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1124 struct device *ddev = &dev->mdev->pdev->dev; 1125 void *xlt; 1126 struct mlx5_umr_wr wr; 1127 struct ib_sge sg; 1128 int err = 0; 1129 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1130 ? sizeof(struct mlx5_klm) 1131 : sizeof(struct mlx5_mtt); 1132 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1133 const int page_mask = page_align - 1; 1134 size_t pages_mapped = 0; 1135 size_t pages_to_map = 0; 1136 size_t pages_iter; 1137 size_t size_to_map = 0; 1138 size_t orig_sg_length; 1139 1140 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1141 !umr_can_use_indirect_mkey(dev)) 1142 return -EPERM; 1143 1144 if (WARN_ON(!mr->umem->is_odp)) 1145 return -EINVAL; 1146 1147 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1148 * so we need to align the offset and length accordingly 1149 */ 1150 if (idx & page_mask) { 1151 npages += idx & page_mask; 1152 idx &= ~page_mask; 1153 } 1154 pages_to_map = ALIGN(npages, page_align); 1155 1156 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1157 if (!xlt) 1158 return -ENOMEM; 1159 pages_iter = sg.length / desc_size; 1160 orig_sg_length = sg.length; 1161 1162 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1163 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1164 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1165 1166 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1167 } 1168 1169 wr.page_shift = page_shift; 1170 1171 for (pages_mapped = 0; 1172 pages_mapped < pages_to_map && !err; 1173 pages_mapped += pages_iter, idx += pages_iter) { 1174 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1175 size_to_map = npages * desc_size; 1176 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1177 DMA_TO_DEVICE); 1178 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1179 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1180 DMA_TO_DEVICE); 1181 1182 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1183 1184 if (pages_mapped + pages_iter >= pages_to_map) 1185 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1186 1187 wr.offset = idx * desc_size; 1188 wr.xlt_size = sg.length; 1189 1190 err = mlx5_ib_post_send_wait(dev, &wr); 1191 } 1192 sg.length = orig_sg_length; 1193 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1194 return err; 1195 } 1196 1197 /* 1198 * Send the DMA list to the HW for a normal MR using UMR. 1199 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP 1200 * flag may be used. 1201 */ 1202 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags) 1203 { 1204 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1205 struct device *ddev = &dev->mdev->pdev->dev; 1206 struct ib_block_iter biter; 1207 struct mlx5_mtt *cur_mtt; 1208 struct mlx5_umr_wr wr; 1209 size_t orig_sg_length; 1210 struct mlx5_mtt *mtt; 1211 size_t final_size; 1212 struct ib_sge sg; 1213 int err = 0; 1214 1215 if (WARN_ON(mr->umem->is_odp)) 1216 return -EINVAL; 1217 1218 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, 1219 ib_umem_num_dma_blocks(mr->umem, 1220 1 << mr->page_shift), 1221 sizeof(*mtt), flags); 1222 if (!mtt) 1223 return -ENOMEM; 1224 orig_sg_length = sg.length; 1225 1226 cur_mtt = mtt; 1227 rdma_for_each_block (mr->umem->sg_head.sgl, &biter, mr->umem->nmap, 1228 BIT(mr->page_shift)) { 1229 if (cur_mtt == (void *)mtt + sg.length) { 1230 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1231 DMA_TO_DEVICE); 1232 err = mlx5_ib_post_send_wait(dev, &wr); 1233 if (err) 1234 goto err; 1235 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1236 DMA_TO_DEVICE); 1237 wr.offset += sg.length; 1238 cur_mtt = mtt; 1239 } 1240 1241 cur_mtt->ptag = 1242 cpu_to_be64(rdma_block_iter_dma_address(&biter) | 1243 MLX5_IB_MTT_PRESENT); 1244 1245 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP)) 1246 cur_mtt->ptag = 0; 1247 1248 cur_mtt++; 1249 } 1250 1251 final_size = (void *)cur_mtt - (void *)mtt; 1252 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT); 1253 memset(cur_mtt, 0, sg.length - final_size); 1254 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1255 wr.xlt_size = sg.length; 1256 1257 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE); 1258 err = mlx5_ib_post_send_wait(dev, &wr); 1259 1260 err: 1261 sg.length = orig_sg_length; 1262 mlx5_ib_unmap_free_xlt(dev, mtt, &sg); 1263 return err; 1264 } 1265 1266 /* 1267 * If ibmr is NULL it will be allocated by reg_create. 1268 * Else, the given ibmr will be used. 1269 */ 1270 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1271 u64 iova, int access_flags, 1272 unsigned int page_size, bool populate) 1273 { 1274 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1275 struct mlx5_ib_mr *mr; 1276 __be64 *pas; 1277 void *mkc; 1278 int inlen; 1279 u32 *in; 1280 int err; 1281 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1282 1283 if (!page_size) 1284 return ERR_PTR(-EINVAL); 1285 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1286 if (!mr) 1287 return ERR_PTR(-ENOMEM); 1288 1289 mr->ibmr.pd = pd; 1290 mr->access_flags = access_flags; 1291 mr->page_shift = order_base_2(page_size); 1292 1293 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1294 if (populate) 1295 inlen += sizeof(*pas) * 1296 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1297 in = kvzalloc(inlen, GFP_KERNEL); 1298 if (!in) { 1299 err = -ENOMEM; 1300 goto err_1; 1301 } 1302 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1303 if (populate) { 1304 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1305 err = -EINVAL; 1306 goto err_2; 1307 } 1308 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1309 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1310 } 1311 1312 /* The pg_access bit allows setting the access flags 1313 * in the page list submitted with the command. */ 1314 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1315 1316 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1317 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1318 populate ? pd : dev->umrc.pd); 1319 MLX5_SET(mkc, mkc, free, !populate); 1320 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1321 MLX5_SET(mkc, mkc, umr_en, 1); 1322 1323 MLX5_SET64(mkc, mkc, len, umem->length); 1324 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1325 MLX5_SET(mkc, mkc, translations_octword_size, 1326 get_octo_len(iova, umem->length, mr->page_shift)); 1327 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1328 if (populate) { 1329 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1330 get_octo_len(iova, umem->length, mr->page_shift)); 1331 } 1332 1333 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1334 if (err) { 1335 mlx5_ib_warn(dev, "create mkey failed\n"); 1336 goto err_2; 1337 } 1338 mr->mmkey.type = MLX5_MKEY_MR; 1339 mr->desc_size = sizeof(struct mlx5_mtt); 1340 mr->umem = umem; 1341 set_mr_fields(dev, mr, umem->length, access_flags); 1342 kvfree(in); 1343 1344 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1345 1346 return mr; 1347 1348 err_2: 1349 kvfree(in); 1350 err_1: 1351 kfree(mr); 1352 return ERR_PTR(err); 1353 } 1354 1355 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1356 u64 length, int acc, int mode) 1357 { 1358 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1359 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1360 struct mlx5_ib_mr *mr; 1361 void *mkc; 1362 u32 *in; 1363 int err; 1364 1365 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1366 if (!mr) 1367 return ERR_PTR(-ENOMEM); 1368 1369 in = kzalloc(inlen, GFP_KERNEL); 1370 if (!in) { 1371 err = -ENOMEM; 1372 goto err_free; 1373 } 1374 1375 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1376 1377 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1378 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1379 MLX5_SET64(mkc, mkc, len, length); 1380 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1381 1382 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1383 if (err) 1384 goto err_in; 1385 1386 kfree(in); 1387 1388 set_mr_fields(dev, mr, length, acc); 1389 1390 return &mr->ibmr; 1391 1392 err_in: 1393 kfree(in); 1394 1395 err_free: 1396 kfree(mr); 1397 1398 return ERR_PTR(err); 1399 } 1400 1401 int mlx5_ib_advise_mr(struct ib_pd *pd, 1402 enum ib_uverbs_advise_mr_advice advice, 1403 u32 flags, 1404 struct ib_sge *sg_list, 1405 u32 num_sge, 1406 struct uverbs_attr_bundle *attrs) 1407 { 1408 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1409 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1410 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1411 return -EOPNOTSUPP; 1412 1413 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1414 sg_list, num_sge); 1415 } 1416 1417 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1418 struct ib_dm_mr_attr *attr, 1419 struct uverbs_attr_bundle *attrs) 1420 { 1421 struct mlx5_ib_dm *mdm = to_mdm(dm); 1422 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1423 u64 start_addr = mdm->dev_addr + attr->offset; 1424 int mode; 1425 1426 switch (mdm->type) { 1427 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1428 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1429 return ERR_PTR(-EINVAL); 1430 1431 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1432 start_addr -= pci_resource_start(dev->pdev, 0); 1433 break; 1434 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1435 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1436 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1437 return ERR_PTR(-EINVAL); 1438 1439 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1440 break; 1441 default: 1442 return ERR_PTR(-EINVAL); 1443 } 1444 1445 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1446 attr->access_flags, mode); 1447 } 1448 1449 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1450 u64 iova, int access_flags) 1451 { 1452 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1453 struct mlx5_ib_mr *mr = NULL; 1454 bool xlt_with_umr; 1455 int err; 1456 1457 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length); 1458 if (xlt_with_umr) { 1459 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1460 } else { 1461 unsigned int page_size = mlx5_umem_find_best_pgsz( 1462 umem, mkc, log_page_size, 0, iova); 1463 1464 mutex_lock(&dev->slow_path_mutex); 1465 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1466 mutex_unlock(&dev->slow_path_mutex); 1467 } 1468 if (IS_ERR(mr)) { 1469 ib_umem_release(umem); 1470 return ERR_CAST(mr); 1471 } 1472 1473 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1474 1475 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1476 1477 if (xlt_with_umr) { 1478 /* 1479 * If the MR was created with reg_create then it will be 1480 * configured properly but left disabled. It is safe to go ahead 1481 * and configure it again via UMR while enabling it. 1482 */ 1483 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1484 if (err) { 1485 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1486 return ERR_PTR(err); 1487 } 1488 } 1489 return &mr->ibmr; 1490 } 1491 1492 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1493 u64 iova, int access_flags, 1494 struct ib_udata *udata) 1495 { 1496 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1497 struct ib_umem_odp *odp; 1498 struct mlx5_ib_mr *mr; 1499 int err; 1500 1501 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1502 return ERR_PTR(-EOPNOTSUPP); 1503 1504 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); 1505 if (err) 1506 return ERR_PTR(err); 1507 if (!start && length == U64_MAX) { 1508 if (iova != 0) 1509 return ERR_PTR(-EINVAL); 1510 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1511 return ERR_PTR(-EINVAL); 1512 1513 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1514 if (IS_ERR(mr)) 1515 return ERR_CAST(mr); 1516 return &mr->ibmr; 1517 } 1518 1519 /* ODP requires xlt update via umr to work. */ 1520 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1521 return ERR_PTR(-EINVAL); 1522 1523 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1524 &mlx5_mn_ops); 1525 if (IS_ERR(odp)) 1526 return ERR_CAST(odp); 1527 1528 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1529 if (IS_ERR(mr)) { 1530 ib_umem_release(&odp->umem); 1531 return ERR_CAST(mr); 1532 } 1533 1534 odp->private = mr; 1535 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1536 if (err) 1537 goto err_dereg_mr; 1538 1539 err = mlx5_ib_init_odp_mr(mr); 1540 if (err) 1541 goto err_dereg_mr; 1542 return &mr->ibmr; 1543 1544 err_dereg_mr: 1545 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1546 return ERR_PTR(err); 1547 } 1548 1549 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1550 u64 iova, int access_flags, 1551 struct ib_udata *udata) 1552 { 1553 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1554 struct ib_umem *umem; 1555 1556 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1557 return ERR_PTR(-EOPNOTSUPP); 1558 1559 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1560 start, iova, length, access_flags); 1561 1562 if (access_flags & IB_ACCESS_ON_DEMAND) 1563 return create_user_odp_mr(pd, start, length, iova, access_flags, 1564 udata); 1565 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1566 if (IS_ERR(umem)) 1567 return ERR_CAST(umem); 1568 return create_real_mr(pd, umem, iova, access_flags); 1569 } 1570 1571 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1572 { 1573 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1574 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1575 1576 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1577 1578 if (!umem_dmabuf->sgt) 1579 return; 1580 1581 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1582 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1583 } 1584 1585 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1586 .allow_peer2peer = 1, 1587 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1588 }; 1589 1590 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1591 u64 length, u64 virt_addr, 1592 int fd, int access_flags, 1593 struct ib_udata *udata) 1594 { 1595 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1596 struct mlx5_ib_mr *mr = NULL; 1597 struct ib_umem_dmabuf *umem_dmabuf; 1598 int err; 1599 1600 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1601 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1602 return ERR_PTR(-EOPNOTSUPP); 1603 1604 mlx5_ib_dbg(dev, 1605 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1606 offset, virt_addr, length, fd, access_flags); 1607 1608 /* dmabuf requires xlt update via umr to work. */ 1609 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1610 return ERR_PTR(-EINVAL); 1611 1612 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1613 access_flags, 1614 &mlx5_ib_dmabuf_attach_ops); 1615 if (IS_ERR(umem_dmabuf)) { 1616 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1617 PTR_ERR(umem_dmabuf)); 1618 return ERR_CAST(umem_dmabuf); 1619 } 1620 1621 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1622 access_flags); 1623 if (IS_ERR(mr)) { 1624 ib_umem_release(&umem_dmabuf->umem); 1625 return ERR_CAST(mr); 1626 } 1627 1628 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1629 1630 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1631 umem_dmabuf->private = mr; 1632 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1633 if (err) 1634 goto err_dereg_mr; 1635 1636 err = mlx5_ib_init_dmabuf_mr(mr); 1637 if (err) 1638 goto err_dereg_mr; 1639 return &mr->ibmr; 1640 1641 err_dereg_mr: 1642 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1643 return ERR_PTR(err); 1644 } 1645 1646 /** 1647 * revoke_mr - Fence all DMA on the MR 1648 * @mr: The MR to fence 1649 * 1650 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1651 * and any DMA in progress will be completed. Failure of this function 1652 * indicates the HW has failed catastrophically. 1653 */ 1654 static int revoke_mr(struct mlx5_ib_mr *mr) 1655 { 1656 struct mlx5_umr_wr umrwr = {}; 1657 1658 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1659 return 0; 1660 1661 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1662 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1663 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1664 umrwr.pd = mr_to_mdev(mr)->umrc.pd; 1665 umrwr.mkey = mr->mmkey.key; 1666 umrwr.ignore_free_state = 1; 1667 1668 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr); 1669 } 1670 1671 /* 1672 * True if the change in access flags can be done via UMR, only some access 1673 * flags can be updated. 1674 */ 1675 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1676 unsigned int current_access_flags, 1677 unsigned int target_access_flags) 1678 { 1679 unsigned int diffs = current_access_flags ^ target_access_flags; 1680 1681 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1682 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1683 return false; 1684 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags, 1685 target_access_flags); 1686 } 1687 1688 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1689 int access_flags) 1690 { 1691 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1692 struct mlx5_umr_wr umrwr = { 1693 .wr = { 1694 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | 1695 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS, 1696 .opcode = MLX5_IB_WR_UMR, 1697 }, 1698 .mkey = mr->mmkey.key, 1699 .pd = pd, 1700 .access_flags = access_flags, 1701 }; 1702 int err; 1703 1704 err = mlx5_ib_post_send_wait(dev, &umrwr); 1705 if (err) 1706 return err; 1707 1708 mr->access_flags = access_flags; 1709 mr->mmkey.pd = to_mpd(pd)->pdn; 1710 return 0; 1711 } 1712 1713 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1714 struct ib_umem *new_umem, 1715 int new_access_flags, u64 iova, 1716 unsigned long *page_size) 1717 { 1718 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1719 1720 /* We only track the allocated sizes of MRs from the cache */ 1721 if (!mr->cache_ent) 1722 return false; 1723 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length)) 1724 return false; 1725 1726 *page_size = 1727 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1728 if (WARN_ON(!*page_size)) 1729 return false; 1730 return (1ULL << mr->cache_ent->order) >= 1731 ib_umem_num_dma_blocks(new_umem, *page_size); 1732 } 1733 1734 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1735 int access_flags, int flags, struct ib_umem *new_umem, 1736 u64 iova, unsigned long page_size) 1737 { 1738 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1739 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1740 struct ib_umem *old_umem = mr->umem; 1741 int err; 1742 1743 /* 1744 * To keep everything simple the MR is revoked before we start to mess 1745 * with it. This ensure the change is atomic relative to any use of the 1746 * MR. 1747 */ 1748 err = revoke_mr(mr); 1749 if (err) 1750 return err; 1751 1752 if (flags & IB_MR_REREG_PD) { 1753 mr->ibmr.pd = pd; 1754 mr->mmkey.pd = to_mpd(pd)->pdn; 1755 upd_flags |= MLX5_IB_UPD_XLT_PD; 1756 } 1757 if (flags & IB_MR_REREG_ACCESS) { 1758 mr->access_flags = access_flags; 1759 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1760 } 1761 1762 mr->ibmr.length = new_umem->length; 1763 mr->mmkey.iova = iova; 1764 mr->mmkey.size = new_umem->length; 1765 mr->page_shift = order_base_2(page_size); 1766 mr->umem = new_umem; 1767 err = mlx5_ib_update_mr_pas(mr, upd_flags); 1768 if (err) { 1769 /* 1770 * The MR is revoked at this point so there is no issue to free 1771 * new_umem. 1772 */ 1773 mr->umem = old_umem; 1774 return err; 1775 } 1776 1777 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1778 ib_umem_release(old_umem); 1779 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1780 return 0; 1781 } 1782 1783 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1784 u64 length, u64 iova, int new_access_flags, 1785 struct ib_pd *new_pd, 1786 struct ib_udata *udata) 1787 { 1788 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1789 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1790 int err; 1791 1792 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1793 return ERR_PTR(-EOPNOTSUPP); 1794 1795 mlx5_ib_dbg( 1796 dev, 1797 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1798 start, iova, length, new_access_flags); 1799 1800 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1801 return ERR_PTR(-EOPNOTSUPP); 1802 1803 if (!(flags & IB_MR_REREG_ACCESS)) 1804 new_access_flags = mr->access_flags; 1805 if (!(flags & IB_MR_REREG_PD)) 1806 new_pd = ib_mr->pd; 1807 1808 if (!(flags & IB_MR_REREG_TRANS)) { 1809 struct ib_umem *umem; 1810 1811 /* Fast path for PD/access change */ 1812 if (can_use_umr_rereg_access(dev, mr->access_flags, 1813 new_access_flags)) { 1814 err = umr_rereg_pd_access(mr, new_pd, new_access_flags); 1815 if (err) 1816 return ERR_PTR(err); 1817 return NULL; 1818 } 1819 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1820 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1821 goto recreate; 1822 1823 /* 1824 * Only one active MR can refer to a umem at one time, revoke 1825 * the old MR before assigning the umem to the new one. 1826 */ 1827 err = revoke_mr(mr); 1828 if (err) 1829 return ERR_PTR(err); 1830 umem = mr->umem; 1831 mr->umem = NULL; 1832 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1833 1834 return create_real_mr(new_pd, umem, mr->mmkey.iova, 1835 new_access_flags); 1836 } 1837 1838 /* 1839 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1840 * but the logic around releasing the umem is different 1841 */ 1842 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1843 goto recreate; 1844 1845 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1846 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1847 struct ib_umem *new_umem; 1848 unsigned long page_size; 1849 1850 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1851 new_access_flags); 1852 if (IS_ERR(new_umem)) 1853 return ERR_CAST(new_umem); 1854 1855 /* Fast path for PAS change */ 1856 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1857 &page_size)) { 1858 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1859 new_umem, iova, page_size); 1860 if (err) { 1861 ib_umem_release(new_umem); 1862 return ERR_PTR(err); 1863 } 1864 return NULL; 1865 } 1866 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1867 } 1868 1869 /* 1870 * Everything else has no state we can preserve, just create a new MR 1871 * from scratch 1872 */ 1873 recreate: 1874 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1875 new_access_flags, udata); 1876 } 1877 1878 static int 1879 mlx5_alloc_priv_descs(struct ib_device *device, 1880 struct mlx5_ib_mr *mr, 1881 int ndescs, 1882 int desc_size) 1883 { 1884 struct mlx5_ib_dev *dev = to_mdev(device); 1885 struct device *ddev = &dev->mdev->pdev->dev; 1886 int size = ndescs * desc_size; 1887 int add_size; 1888 int ret; 1889 1890 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1891 1892 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1893 if (!mr->descs_alloc) 1894 return -ENOMEM; 1895 1896 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1897 1898 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1899 if (dma_mapping_error(ddev, mr->desc_map)) { 1900 ret = -ENOMEM; 1901 goto err; 1902 } 1903 1904 return 0; 1905 err: 1906 kfree(mr->descs_alloc); 1907 1908 return ret; 1909 } 1910 1911 static void 1912 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1913 { 1914 if (!mr->umem && mr->descs) { 1915 struct ib_device *device = mr->ibmr.device; 1916 int size = mr->max_descs * mr->desc_size; 1917 struct mlx5_ib_dev *dev = to_mdev(device); 1918 1919 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1920 DMA_TO_DEVICE); 1921 kfree(mr->descs_alloc); 1922 mr->descs = NULL; 1923 } 1924 } 1925 1926 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1927 { 1928 struct mlx5_ib_mr *mr = to_mmr(ibmr); 1929 struct mlx5_ib_dev *dev = to_mdev(ibmr->device); 1930 int rc; 1931 1932 /* 1933 * Any async use of the mr must hold the refcount, once the refcount 1934 * goes to zero no other thread, such as ODP page faults, prefetch, any 1935 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. 1936 */ 1937 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 1938 refcount_read(&mr->mmkey.usecount) != 0 && 1939 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) 1940 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 1941 1942 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1943 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), ibmr, 1944 NULL, GFP_KERNEL); 1945 1946 if (mr->mtt_mr) { 1947 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 1948 if (rc) 1949 return rc; 1950 mr->mtt_mr = NULL; 1951 } 1952 if (mr->klm_mr) { 1953 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 1954 if (rc) 1955 return rc; 1956 mr->klm_mr = NULL; 1957 } 1958 1959 if (mlx5_core_destroy_psv(dev->mdev, 1960 mr->sig->psv_memory.psv_idx)) 1961 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1962 mr->sig->psv_memory.psv_idx); 1963 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1964 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1965 mr->sig->psv_wire.psv_idx); 1966 kfree(mr->sig); 1967 mr->sig = NULL; 1968 } 1969 1970 /* Stop DMA */ 1971 if (mr->cache_ent) { 1972 if (revoke_mr(mr)) { 1973 spin_lock_irq(&mr->cache_ent->lock); 1974 mr->cache_ent->total_mrs--; 1975 spin_unlock_irq(&mr->cache_ent->lock); 1976 mr->cache_ent = NULL; 1977 } 1978 } 1979 if (!mr->cache_ent) { 1980 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); 1981 if (rc) 1982 return rc; 1983 } 1984 1985 if (mr->umem) { 1986 bool is_odp = is_odp_mr(mr); 1987 1988 if (!is_odp) 1989 atomic_sub(ib_umem_num_pages(mr->umem), 1990 &dev->mdev->priv.reg_pages); 1991 ib_umem_release(mr->umem); 1992 if (is_odp) 1993 mlx5_ib_free_odp_mr(mr); 1994 } 1995 1996 if (mr->cache_ent) { 1997 mlx5_mr_cache_free(dev, mr); 1998 } else { 1999 mlx5_free_priv_descs(mr); 2000 kfree(mr); 2001 } 2002 return 0; 2003 } 2004 2005 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 2006 int access_mode, int page_shift) 2007 { 2008 void *mkc; 2009 2010 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2011 2012 /* This is only used from the kernel, so setting the PD is OK. */ 2013 set_mkc_access_pd_addr_fields(mkc, 0, 0, pd); 2014 MLX5_SET(mkc, mkc, free, 1); 2015 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2016 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 2017 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 2018 MLX5_SET(mkc, mkc, umr_en, 1); 2019 MLX5_SET(mkc, mkc, log_page_size, page_shift); 2020 } 2021 2022 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2023 int ndescs, int desc_size, int page_shift, 2024 int access_mode, u32 *in, int inlen) 2025 { 2026 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2027 int err; 2028 2029 mr->access_mode = access_mode; 2030 mr->desc_size = desc_size; 2031 mr->max_descs = ndescs; 2032 2033 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 2034 if (err) 2035 return err; 2036 2037 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 2038 2039 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 2040 if (err) 2041 goto err_free_descs; 2042 2043 mr->mmkey.type = MLX5_MKEY_MR; 2044 mr->ibmr.lkey = mr->mmkey.key; 2045 mr->ibmr.rkey = mr->mmkey.key; 2046 2047 return 0; 2048 2049 err_free_descs: 2050 mlx5_free_priv_descs(mr); 2051 return err; 2052 } 2053 2054 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 2055 u32 max_num_sg, u32 max_num_meta_sg, 2056 int desc_size, int access_mode) 2057 { 2058 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2059 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 2060 int page_shift = 0; 2061 struct mlx5_ib_mr *mr; 2062 u32 *in; 2063 int err; 2064 2065 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2066 if (!mr) 2067 return ERR_PTR(-ENOMEM); 2068 2069 mr->ibmr.pd = pd; 2070 mr->ibmr.device = pd->device; 2071 2072 in = kzalloc(inlen, GFP_KERNEL); 2073 if (!in) { 2074 err = -ENOMEM; 2075 goto err_free; 2076 } 2077 2078 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2079 page_shift = PAGE_SHIFT; 2080 2081 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2082 access_mode, in, inlen); 2083 if (err) 2084 goto err_free_in; 2085 2086 mr->umem = NULL; 2087 kfree(in); 2088 2089 return mr; 2090 2091 err_free_in: 2092 kfree(in); 2093 err_free: 2094 kfree(mr); 2095 return ERR_PTR(err); 2096 } 2097 2098 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2099 int ndescs, u32 *in, int inlen) 2100 { 2101 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2102 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2103 inlen); 2104 } 2105 2106 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2107 int ndescs, u32 *in, int inlen) 2108 { 2109 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2110 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2111 } 2112 2113 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2114 int max_num_sg, int max_num_meta_sg, 2115 u32 *in, int inlen) 2116 { 2117 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2118 u32 psv_index[2]; 2119 void *mkc; 2120 int err; 2121 2122 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2123 if (!mr->sig) 2124 return -ENOMEM; 2125 2126 /* create mem & wire PSVs */ 2127 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2128 if (err) 2129 goto err_free_sig; 2130 2131 mr->sig->psv_memory.psv_idx = psv_index[0]; 2132 mr->sig->psv_wire.psv_idx = psv_index[1]; 2133 2134 mr->sig->sig_status_checked = true; 2135 mr->sig->sig_err_exists = false; 2136 /* Next UMR, Arm SIGERR */ 2137 ++mr->sig->sigerr_count; 2138 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2139 sizeof(struct mlx5_klm), 2140 MLX5_MKC_ACCESS_MODE_KLMS); 2141 if (IS_ERR(mr->klm_mr)) { 2142 err = PTR_ERR(mr->klm_mr); 2143 goto err_destroy_psv; 2144 } 2145 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2146 sizeof(struct mlx5_mtt), 2147 MLX5_MKC_ACCESS_MODE_MTT); 2148 if (IS_ERR(mr->mtt_mr)) { 2149 err = PTR_ERR(mr->mtt_mr); 2150 goto err_free_klm_mr; 2151 } 2152 2153 /* Set bsf descriptors for mkey */ 2154 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2155 MLX5_SET(mkc, mkc, bsf_en, 1); 2156 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2157 2158 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2159 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2160 if (err) 2161 goto err_free_mtt_mr; 2162 2163 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2164 mr->sig, GFP_KERNEL)); 2165 if (err) 2166 goto err_free_descs; 2167 return 0; 2168 2169 err_free_descs: 2170 destroy_mkey(dev, mr); 2171 mlx5_free_priv_descs(mr); 2172 err_free_mtt_mr: 2173 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 2174 mr->mtt_mr = NULL; 2175 err_free_klm_mr: 2176 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 2177 mr->klm_mr = NULL; 2178 err_destroy_psv: 2179 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2180 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2181 mr->sig->psv_memory.psv_idx); 2182 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2183 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2184 mr->sig->psv_wire.psv_idx); 2185 err_free_sig: 2186 kfree(mr->sig); 2187 2188 return err; 2189 } 2190 2191 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2192 enum ib_mr_type mr_type, u32 max_num_sg, 2193 u32 max_num_meta_sg) 2194 { 2195 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2196 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2197 int ndescs = ALIGN(max_num_sg, 4); 2198 struct mlx5_ib_mr *mr; 2199 u32 *in; 2200 int err; 2201 2202 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2203 if (!mr) 2204 return ERR_PTR(-ENOMEM); 2205 2206 in = kzalloc(inlen, GFP_KERNEL); 2207 if (!in) { 2208 err = -ENOMEM; 2209 goto err_free; 2210 } 2211 2212 mr->ibmr.device = pd->device; 2213 mr->umem = NULL; 2214 2215 switch (mr_type) { 2216 case IB_MR_TYPE_MEM_REG: 2217 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2218 break; 2219 case IB_MR_TYPE_SG_GAPS: 2220 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2221 break; 2222 case IB_MR_TYPE_INTEGRITY: 2223 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2224 max_num_meta_sg, in, inlen); 2225 break; 2226 default: 2227 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2228 err = -EINVAL; 2229 } 2230 2231 if (err) 2232 goto err_free_in; 2233 2234 kfree(in); 2235 2236 return &mr->ibmr; 2237 2238 err_free_in: 2239 kfree(in); 2240 err_free: 2241 kfree(mr); 2242 return ERR_PTR(err); 2243 } 2244 2245 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2246 u32 max_num_sg) 2247 { 2248 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2249 } 2250 2251 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2252 u32 max_num_sg, u32 max_num_meta_sg) 2253 { 2254 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2255 max_num_meta_sg); 2256 } 2257 2258 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2259 { 2260 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2261 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2262 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2263 u32 *in = NULL; 2264 void *mkc; 2265 int ndescs; 2266 int err; 2267 struct mlx5_ib_alloc_mw req = {}; 2268 struct { 2269 __u32 comp_mask; 2270 __u32 response_length; 2271 } resp = {}; 2272 2273 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2274 if (err) 2275 return err; 2276 2277 if (req.comp_mask || req.reserved1 || req.reserved2) 2278 return -EOPNOTSUPP; 2279 2280 if (udata->inlen > sizeof(req) && 2281 !ib_is_udata_cleared(udata, sizeof(req), 2282 udata->inlen - sizeof(req))) 2283 return -EOPNOTSUPP; 2284 2285 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2286 2287 in = kzalloc(inlen, GFP_KERNEL); 2288 if (!in) { 2289 err = -ENOMEM; 2290 goto free; 2291 } 2292 2293 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2294 2295 MLX5_SET(mkc, mkc, free, 1); 2296 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2297 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2298 MLX5_SET(mkc, mkc, umr_en, 1); 2299 MLX5_SET(mkc, mkc, lr, 1); 2300 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2301 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2302 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2303 2304 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2305 if (err) 2306 goto free; 2307 2308 mw->mmkey.type = MLX5_MKEY_MW; 2309 ibmw->rkey = mw->mmkey.key; 2310 mw->ndescs = ndescs; 2311 2312 resp.response_length = 2313 min(offsetofend(typeof(resp), response_length), udata->outlen); 2314 if (resp.response_length) { 2315 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2316 if (err) 2317 goto free_mkey; 2318 } 2319 2320 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2321 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2322 if (err) 2323 goto free_mkey; 2324 } 2325 2326 kfree(in); 2327 return 0; 2328 2329 free_mkey: 2330 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2331 free: 2332 kfree(in); 2333 return err; 2334 } 2335 2336 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2337 { 2338 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2339 struct mlx5_ib_mw *mmw = to_mmw(mw); 2340 2341 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2342 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2343 /* 2344 * pagefault_single_data_segment() may be accessing mmw 2345 * if the user bound an ODP MR to this MW. 2346 */ 2347 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2348 2349 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2350 } 2351 2352 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2353 struct ib_mr_status *mr_status) 2354 { 2355 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2356 int ret = 0; 2357 2358 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2359 pr_err("Invalid status check mask\n"); 2360 ret = -EINVAL; 2361 goto done; 2362 } 2363 2364 mr_status->fail_status = 0; 2365 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2366 if (!mmr->sig) { 2367 ret = -EINVAL; 2368 pr_err("signature status check requested on a non-signature enabled MR\n"); 2369 goto done; 2370 } 2371 2372 mmr->sig->sig_status_checked = true; 2373 if (!mmr->sig->sig_err_exists) 2374 goto done; 2375 2376 if (ibmr->lkey == mmr->sig->err_item.key) 2377 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2378 sizeof(mr_status->sig_err)); 2379 else { 2380 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2381 mr_status->sig_err.sig_err_offset = 0; 2382 mr_status->sig_err.key = mmr->sig->err_item.key; 2383 } 2384 2385 mmr->sig->sig_err_exists = false; 2386 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2387 } 2388 2389 done: 2390 return ret; 2391 } 2392 2393 static int 2394 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2395 int data_sg_nents, unsigned int *data_sg_offset, 2396 struct scatterlist *meta_sg, int meta_sg_nents, 2397 unsigned int *meta_sg_offset) 2398 { 2399 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2400 unsigned int sg_offset = 0; 2401 int n = 0; 2402 2403 mr->meta_length = 0; 2404 if (data_sg_nents == 1) { 2405 n++; 2406 mr->ndescs = 1; 2407 if (data_sg_offset) 2408 sg_offset = *data_sg_offset; 2409 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2410 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2411 if (meta_sg_nents == 1) { 2412 n++; 2413 mr->meta_ndescs = 1; 2414 if (meta_sg_offset) 2415 sg_offset = *meta_sg_offset; 2416 else 2417 sg_offset = 0; 2418 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2419 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2420 } 2421 ibmr->length = mr->data_length + mr->meta_length; 2422 } 2423 2424 return n; 2425 } 2426 2427 static int 2428 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2429 struct scatterlist *sgl, 2430 unsigned short sg_nents, 2431 unsigned int *sg_offset_p, 2432 struct scatterlist *meta_sgl, 2433 unsigned short meta_sg_nents, 2434 unsigned int *meta_sg_offset_p) 2435 { 2436 struct scatterlist *sg = sgl; 2437 struct mlx5_klm *klms = mr->descs; 2438 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2439 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2440 int i, j = 0; 2441 2442 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2443 mr->ibmr.length = 0; 2444 2445 for_each_sg(sgl, sg, sg_nents, i) { 2446 if (unlikely(i >= mr->max_descs)) 2447 break; 2448 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2449 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2450 klms[i].key = cpu_to_be32(lkey); 2451 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2452 2453 sg_offset = 0; 2454 } 2455 2456 if (sg_offset_p) 2457 *sg_offset_p = sg_offset; 2458 2459 mr->ndescs = i; 2460 mr->data_length = mr->ibmr.length; 2461 2462 if (meta_sg_nents) { 2463 sg = meta_sgl; 2464 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2465 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2466 if (unlikely(i + j >= mr->max_descs)) 2467 break; 2468 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2469 sg_offset); 2470 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2471 sg_offset); 2472 klms[i + j].key = cpu_to_be32(lkey); 2473 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2474 2475 sg_offset = 0; 2476 } 2477 if (meta_sg_offset_p) 2478 *meta_sg_offset_p = sg_offset; 2479 2480 mr->meta_ndescs = j; 2481 mr->meta_length = mr->ibmr.length - mr->data_length; 2482 } 2483 2484 return i + j; 2485 } 2486 2487 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2488 { 2489 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2490 __be64 *descs; 2491 2492 if (unlikely(mr->ndescs == mr->max_descs)) 2493 return -ENOMEM; 2494 2495 descs = mr->descs; 2496 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2497 2498 return 0; 2499 } 2500 2501 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2502 { 2503 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2504 __be64 *descs; 2505 2506 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2507 return -ENOMEM; 2508 2509 descs = mr->descs; 2510 descs[mr->ndescs + mr->meta_ndescs++] = 2511 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2512 2513 return 0; 2514 } 2515 2516 static int 2517 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2518 int data_sg_nents, unsigned int *data_sg_offset, 2519 struct scatterlist *meta_sg, int meta_sg_nents, 2520 unsigned int *meta_sg_offset) 2521 { 2522 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2523 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2524 int n; 2525 2526 pi_mr->ndescs = 0; 2527 pi_mr->meta_ndescs = 0; 2528 pi_mr->meta_length = 0; 2529 2530 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2531 pi_mr->desc_size * pi_mr->max_descs, 2532 DMA_TO_DEVICE); 2533 2534 pi_mr->ibmr.page_size = ibmr->page_size; 2535 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2536 mlx5_set_page); 2537 if (n != data_sg_nents) 2538 return n; 2539 2540 pi_mr->data_iova = pi_mr->ibmr.iova; 2541 pi_mr->data_length = pi_mr->ibmr.length; 2542 pi_mr->ibmr.length = pi_mr->data_length; 2543 ibmr->length = pi_mr->data_length; 2544 2545 if (meta_sg_nents) { 2546 u64 page_mask = ~((u64)ibmr->page_size - 1); 2547 u64 iova = pi_mr->data_iova; 2548 2549 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2550 meta_sg_offset, mlx5_set_page_pi); 2551 2552 pi_mr->meta_length = pi_mr->ibmr.length; 2553 /* 2554 * PI address for the HW is the offset of the metadata address 2555 * relative to the first data page address. 2556 * It equals to first data page address + size of data pages + 2557 * metadata offset at the first metadata page 2558 */ 2559 pi_mr->pi_iova = (iova & page_mask) + 2560 pi_mr->ndescs * ibmr->page_size + 2561 (pi_mr->ibmr.iova & ~page_mask); 2562 /* 2563 * In order to use one MTT MR for data and metadata, we register 2564 * also the gaps between the end of the data and the start of 2565 * the metadata (the sig MR will verify that the HW will access 2566 * to right addresses). This mapping is safe because we use 2567 * internal mkey for the registration. 2568 */ 2569 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2570 pi_mr->ibmr.iova = iova; 2571 ibmr->length += pi_mr->meta_length; 2572 } 2573 2574 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2575 pi_mr->desc_size * pi_mr->max_descs, 2576 DMA_TO_DEVICE); 2577 2578 return n; 2579 } 2580 2581 static int 2582 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2583 int data_sg_nents, unsigned int *data_sg_offset, 2584 struct scatterlist *meta_sg, int meta_sg_nents, 2585 unsigned int *meta_sg_offset) 2586 { 2587 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2588 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2589 int n; 2590 2591 pi_mr->ndescs = 0; 2592 pi_mr->meta_ndescs = 0; 2593 pi_mr->meta_length = 0; 2594 2595 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2596 pi_mr->desc_size * pi_mr->max_descs, 2597 DMA_TO_DEVICE); 2598 2599 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2600 meta_sg, meta_sg_nents, meta_sg_offset); 2601 2602 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2603 pi_mr->desc_size * pi_mr->max_descs, 2604 DMA_TO_DEVICE); 2605 2606 /* This is zero-based memory region */ 2607 pi_mr->data_iova = 0; 2608 pi_mr->ibmr.iova = 0; 2609 pi_mr->pi_iova = pi_mr->data_length; 2610 ibmr->length = pi_mr->ibmr.length; 2611 2612 return n; 2613 } 2614 2615 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2616 int data_sg_nents, unsigned int *data_sg_offset, 2617 struct scatterlist *meta_sg, int meta_sg_nents, 2618 unsigned int *meta_sg_offset) 2619 { 2620 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2621 struct mlx5_ib_mr *pi_mr = NULL; 2622 int n; 2623 2624 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2625 2626 mr->ndescs = 0; 2627 mr->data_length = 0; 2628 mr->data_iova = 0; 2629 mr->meta_ndescs = 0; 2630 mr->pi_iova = 0; 2631 /* 2632 * As a performance optimization, if possible, there is no need to 2633 * perform UMR operation to register the data/metadata buffers. 2634 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2635 * Fallback to UMR only in case of a failure. 2636 */ 2637 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2638 data_sg_offset, meta_sg, meta_sg_nents, 2639 meta_sg_offset); 2640 if (n == data_sg_nents + meta_sg_nents) 2641 goto out; 2642 /* 2643 * As a performance optimization, if possible, there is no need to map 2644 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2645 * descriptors and fallback to KLM only in case of a failure. 2646 * It's more efficient for the HW to work with MTT descriptors 2647 * (especially in high load). 2648 * Use KLM (indirect access) only if it's mandatory. 2649 */ 2650 pi_mr = mr->mtt_mr; 2651 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2652 data_sg_offset, meta_sg, meta_sg_nents, 2653 meta_sg_offset); 2654 if (n == data_sg_nents + meta_sg_nents) 2655 goto out; 2656 2657 pi_mr = mr->klm_mr; 2658 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2659 data_sg_offset, meta_sg, meta_sg_nents, 2660 meta_sg_offset); 2661 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2662 return -ENOMEM; 2663 2664 out: 2665 /* This is zero-based memory region */ 2666 ibmr->iova = 0; 2667 mr->pi_mr = pi_mr; 2668 if (pi_mr) 2669 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2670 else 2671 ibmr->sig_attrs->meta_length = mr->meta_length; 2672 2673 return 0; 2674 } 2675 2676 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2677 unsigned int *sg_offset) 2678 { 2679 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2680 int n; 2681 2682 mr->ndescs = 0; 2683 2684 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2685 mr->desc_size * mr->max_descs, 2686 DMA_TO_DEVICE); 2687 2688 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2689 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2690 NULL); 2691 else 2692 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2693 mlx5_set_page); 2694 2695 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2696 mr->desc_size * mr->max_descs, 2697 DMA_TO_DEVICE); 2698 2699 return n; 2700 } 2701