xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73 
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 		    (MLX5_CAP_GEN(dev->mdev,
76 				  relaxed_ordering_read_pci_enabled) &&
77 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 	}
80 
81 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
84 }
85 
86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87 {
88 	u8 key = atomic_inc_return(&dev->mkey_var);
89 	void *mkc;
90 
91 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 	MLX5_SET(mkc, mkc, mkey_7_0, key);
93 	*mkey = key;
94 }
95 
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 	int ret;
100 
101 	assign_mkey_variant(dev, &mkey->key, in);
102 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 	if (!ret)
104 		init_waitqueue_head(&mkey->wait);
105 
106 	return ret;
107 }
108 
109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110 {
111 	struct mlx5_ib_dev *dev = async_create->ent->dev;
112 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114 
115 	MLX5_SET(create_mkey_in, async_create->in, opcode,
116 		 MLX5_CMD_OP_CREATE_MKEY);
117 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 				async_create->out, outlen, create_mkey_callback,
120 				&async_create->cb_work);
121 }
122 
123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125 
126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127 {
128 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129 
130 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131 }
132 
133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134 {
135 	if (status == -ENXIO) /* core driver is not available */
136 		return;
137 
138 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 	if (status != -EREMOTEIO) /* driver specific failure */
140 		return;
141 
142 	/* Failed in FW, print cmd out failure details */
143 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144 }
145 
146 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
147 			    void *to_store)
148 {
149 	XA_STATE(xas, &ent->mkeys, 0);
150 	void *curr;
151 
152 	if (limit_pendings &&
153 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
154 		return -EAGAIN;
155 
156 	while (1) {
157 		/*
158 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
159 		 * doesn't transparently unlock. Instead we set the xas index to
160 		 * the current value of reserved every iteration.
161 		 */
162 		xas_set(&xas, ent->reserved);
163 		curr = xas_load(&xas);
164 		if (!curr) {
165 			if (to_store && ent->stored == ent->reserved)
166 				xas_store(&xas, to_store);
167 			else
168 				xas_store(&xas, XA_ZERO_ENTRY);
169 			if (xas_valid(&xas)) {
170 				ent->reserved++;
171 				if (to_store) {
172 					if (ent->stored != ent->reserved)
173 						__xa_store(&ent->mkeys,
174 							   ent->stored,
175 							   to_store,
176 							   GFP_KERNEL);
177 					ent->stored++;
178 					queue_adjust_cache_locked(ent);
179 					WRITE_ONCE(ent->dev->cache.last_add,
180 						   jiffies);
181 				}
182 			}
183 		}
184 		xa_unlock_irq(&ent->mkeys);
185 
186 		/*
187 		 * Notice xas_nomem() must always be called as it cleans
188 		 * up any cached allocation.
189 		 */
190 		if (!xas_nomem(&xas, GFP_KERNEL))
191 			break;
192 		xa_lock_irq(&ent->mkeys);
193 	}
194 	xa_lock_irq(&ent->mkeys);
195 	if (xas_error(&xas))
196 		return xas_error(&xas);
197 	if (WARN_ON(curr))
198 		return -EINVAL;
199 	return 0;
200 }
201 
202 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
203 		     void *to_store)
204 {
205 	int ret;
206 
207 	xa_lock_irq(&ent->mkeys);
208 	ret = push_mkey_locked(ent, limit_pendings, to_store);
209 	xa_unlock_irq(&ent->mkeys);
210 	return ret;
211 }
212 
213 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
214 {
215 	void *old;
216 
217 	ent->reserved--;
218 	old = __xa_erase(&ent->mkeys, ent->reserved);
219 	WARN_ON(old);
220 }
221 
222 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
223 {
224 	void *old;
225 
226 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
227 	WARN_ON(old);
228 	ent->stored++;
229 }
230 
231 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
232 {
233 	void *old, *xa_mkey;
234 
235 	ent->stored--;
236 	ent->reserved--;
237 
238 	if (ent->stored == ent->reserved) {
239 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
240 		WARN_ON(!xa_mkey);
241 		return (u32)xa_to_value(xa_mkey);
242 	}
243 
244 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
245 			     GFP_KERNEL);
246 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
247 	old = __xa_erase(&ent->mkeys, ent->reserved);
248 	WARN_ON(old);
249 	return (u32)xa_to_value(xa_mkey);
250 }
251 
252 static void create_mkey_callback(int status, struct mlx5_async_work *context)
253 {
254 	struct mlx5r_async_create_mkey *mkey_out =
255 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
256 	struct mlx5_cache_ent *ent = mkey_out->ent;
257 	struct mlx5_ib_dev *dev = ent->dev;
258 	unsigned long flags;
259 
260 	if (status) {
261 		create_mkey_warn(dev, status, mkey_out->out);
262 		kfree(mkey_out);
263 		xa_lock_irqsave(&ent->mkeys, flags);
264 		undo_push_reserve_mkey(ent);
265 		WRITE_ONCE(dev->fill_delay, 1);
266 		xa_unlock_irqrestore(&ent->mkeys, flags);
267 		mod_timer(&dev->delay_timer, jiffies + HZ);
268 		return;
269 	}
270 
271 	mkey_out->mkey |= mlx5_idx_to_mkey(
272 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
273 	WRITE_ONCE(dev->cache.last_add, jiffies);
274 
275 	xa_lock_irqsave(&ent->mkeys, flags);
276 	push_to_reserved(ent, mkey_out->mkey);
277 	/* If we are doing fill_to_high_water then keep going. */
278 	queue_adjust_cache_locked(ent);
279 	xa_unlock_irqrestore(&ent->mkeys, flags);
280 	kfree(mkey_out);
281 }
282 
283 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
284 {
285 	int ret = 0;
286 
287 	switch (access_mode) {
288 	case MLX5_MKC_ACCESS_MODE_MTT:
289 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
290 						   sizeof(struct mlx5_mtt));
291 		break;
292 	case MLX5_MKC_ACCESS_MODE_KSM:
293 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
294 						   sizeof(struct mlx5_klm));
295 		break;
296 	default:
297 		WARN_ON(1);
298 	}
299 	return ret;
300 }
301 
302 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
303 {
304 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
305 				      ent->dev->umrc.pd);
306 	MLX5_SET(mkc, mkc, free, 1);
307 	MLX5_SET(mkc, mkc, umr_en, 1);
308 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
309 	MLX5_SET(mkc, mkc, access_mode_4_2,
310 		(ent->rb_key.access_mode >> 2) & 0x7);
311 	MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
312 
313 	MLX5_SET(mkc, mkc, translations_octword_size,
314 		 get_mkc_octo_size(ent->rb_key.access_mode,
315 				   ent->rb_key.ndescs));
316 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
317 }
318 
319 /* Asynchronously schedule new MRs to be populated in the cache. */
320 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
321 {
322 	struct mlx5r_async_create_mkey *async_create;
323 	void *mkc;
324 	int err = 0;
325 	int i;
326 
327 	for (i = 0; i < num; i++) {
328 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
329 				       GFP_KERNEL);
330 		if (!async_create)
331 			return -ENOMEM;
332 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
333 				   memory_key_mkey_entry);
334 		set_cache_mkc(ent, mkc);
335 		async_create->ent = ent;
336 
337 		err = push_mkey(ent, true, NULL);
338 		if (err)
339 			goto free_async_create;
340 
341 		err = mlx5_ib_create_mkey_cb(async_create);
342 		if (err) {
343 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
344 			goto err_undo_reserve;
345 		}
346 	}
347 
348 	return 0;
349 
350 err_undo_reserve:
351 	xa_lock_irq(&ent->mkeys);
352 	undo_push_reserve_mkey(ent);
353 	xa_unlock_irq(&ent->mkeys);
354 free_async_create:
355 	kfree(async_create);
356 	return err;
357 }
358 
359 /* Synchronously create a MR in the cache */
360 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
361 {
362 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
363 	void *mkc;
364 	u32 *in;
365 	int err;
366 
367 	in = kzalloc(inlen, GFP_KERNEL);
368 	if (!in)
369 		return -ENOMEM;
370 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
371 	set_cache_mkc(ent, mkc);
372 
373 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
374 	if (err)
375 		goto free_in;
376 
377 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
378 free_in:
379 	kfree(in);
380 	return err;
381 }
382 
383 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
384 {
385 	u32 mkey;
386 
387 	lockdep_assert_held(&ent->mkeys.xa_lock);
388 	if (!ent->stored)
389 		return;
390 	mkey = pop_stored_mkey(ent);
391 	xa_unlock_irq(&ent->mkeys);
392 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
393 	xa_lock_irq(&ent->mkeys);
394 }
395 
396 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
397 				bool limit_fill)
398 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
399 {
400 	int err;
401 
402 	lockdep_assert_held(&ent->mkeys.xa_lock);
403 
404 	while (true) {
405 		if (limit_fill)
406 			target = ent->limit * 2;
407 		if (target == ent->reserved)
408 			return 0;
409 		if (target > ent->reserved) {
410 			u32 todo = target - ent->reserved;
411 
412 			xa_unlock_irq(&ent->mkeys);
413 			err = add_keys(ent, todo);
414 			if (err == -EAGAIN)
415 				usleep_range(3000, 5000);
416 			xa_lock_irq(&ent->mkeys);
417 			if (err) {
418 				if (err != -EAGAIN)
419 					return err;
420 			} else
421 				return 0;
422 		} else {
423 			remove_cache_mr_locked(ent);
424 		}
425 	}
426 }
427 
428 static ssize_t size_write(struct file *filp, const char __user *buf,
429 			  size_t count, loff_t *pos)
430 {
431 	struct mlx5_cache_ent *ent = filp->private_data;
432 	u32 target;
433 	int err;
434 
435 	err = kstrtou32_from_user(buf, count, 0, &target);
436 	if (err)
437 		return err;
438 
439 	/*
440 	 * Target is the new value of total_mrs the user requests, however we
441 	 * cannot free MRs that are in use. Compute the target value for stored
442 	 * mkeys.
443 	 */
444 	xa_lock_irq(&ent->mkeys);
445 	if (target < ent->in_use) {
446 		err = -EINVAL;
447 		goto err_unlock;
448 	}
449 	target = target - ent->in_use;
450 	if (target < ent->limit || target > ent->limit*2) {
451 		err = -EINVAL;
452 		goto err_unlock;
453 	}
454 	err = resize_available_mrs(ent, target, false);
455 	if (err)
456 		goto err_unlock;
457 	xa_unlock_irq(&ent->mkeys);
458 
459 	return count;
460 
461 err_unlock:
462 	xa_unlock_irq(&ent->mkeys);
463 	return err;
464 }
465 
466 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
467 			 loff_t *pos)
468 {
469 	struct mlx5_cache_ent *ent = filp->private_data;
470 	char lbuf[20];
471 	int err;
472 
473 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
474 	if (err < 0)
475 		return err;
476 
477 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
478 }
479 
480 static const struct file_operations size_fops = {
481 	.owner	= THIS_MODULE,
482 	.open	= simple_open,
483 	.write	= size_write,
484 	.read	= size_read,
485 };
486 
487 static ssize_t limit_write(struct file *filp, const char __user *buf,
488 			   size_t count, loff_t *pos)
489 {
490 	struct mlx5_cache_ent *ent = filp->private_data;
491 	u32 var;
492 	int err;
493 
494 	err = kstrtou32_from_user(buf, count, 0, &var);
495 	if (err)
496 		return err;
497 
498 	/*
499 	 * Upon set we immediately fill the cache to high water mark implied by
500 	 * the limit.
501 	 */
502 	xa_lock_irq(&ent->mkeys);
503 	ent->limit = var;
504 	err = resize_available_mrs(ent, 0, true);
505 	xa_unlock_irq(&ent->mkeys);
506 	if (err)
507 		return err;
508 	return count;
509 }
510 
511 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
512 			  loff_t *pos)
513 {
514 	struct mlx5_cache_ent *ent = filp->private_data;
515 	char lbuf[20];
516 	int err;
517 
518 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
519 	if (err < 0)
520 		return err;
521 
522 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
523 }
524 
525 static const struct file_operations limit_fops = {
526 	.owner	= THIS_MODULE,
527 	.open	= simple_open,
528 	.write	= limit_write,
529 	.read	= limit_read,
530 };
531 
532 static bool someone_adding(struct mlx5_mkey_cache *cache)
533 {
534 	struct mlx5_cache_ent *ent;
535 	struct rb_node *node;
536 	bool ret;
537 
538 	mutex_lock(&cache->rb_lock);
539 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
540 		ent = rb_entry(node, struct mlx5_cache_ent, node);
541 		xa_lock_irq(&ent->mkeys);
542 		ret = ent->stored < ent->limit;
543 		xa_unlock_irq(&ent->mkeys);
544 		if (ret) {
545 			mutex_unlock(&cache->rb_lock);
546 			return true;
547 		}
548 	}
549 	mutex_unlock(&cache->rb_lock);
550 	return false;
551 }
552 
553 /*
554  * Check if the bucket is outside the high/low water mark and schedule an async
555  * update. The cache refill has hysteresis, once the low water mark is hit it is
556  * refilled up to the high mark.
557  */
558 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
559 {
560 	lockdep_assert_held(&ent->mkeys.xa_lock);
561 
562 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
563 		return;
564 	if (ent->stored < ent->limit) {
565 		ent->fill_to_high_water = true;
566 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
567 	} else if (ent->fill_to_high_water &&
568 		   ent->reserved < 2 * ent->limit) {
569 		/*
570 		 * Once we start populating due to hitting a low water mark
571 		 * continue until we pass the high water mark.
572 		 */
573 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
574 	} else if (ent->stored == 2 * ent->limit) {
575 		ent->fill_to_high_water = false;
576 	} else if (ent->stored > 2 * ent->limit) {
577 		/* Queue deletion of excess entries */
578 		ent->fill_to_high_water = false;
579 		if (ent->stored != ent->reserved)
580 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
581 					   msecs_to_jiffies(1000));
582 		else
583 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
584 	}
585 }
586 
587 static void __cache_work_func(struct mlx5_cache_ent *ent)
588 {
589 	struct mlx5_ib_dev *dev = ent->dev;
590 	struct mlx5_mkey_cache *cache = &dev->cache;
591 	int err;
592 
593 	xa_lock_irq(&ent->mkeys);
594 	if (ent->disabled)
595 		goto out;
596 
597 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
598 	    !READ_ONCE(dev->fill_delay)) {
599 		xa_unlock_irq(&ent->mkeys);
600 		err = add_keys(ent, 1);
601 		xa_lock_irq(&ent->mkeys);
602 		if (ent->disabled)
603 			goto out;
604 		if (err) {
605 			/*
606 			 * EAGAIN only happens if there are pending MRs, so we
607 			 * will be rescheduled when storing them. The only
608 			 * failure path here is ENOMEM.
609 			 */
610 			if (err != -EAGAIN) {
611 				mlx5_ib_warn(
612 					dev,
613 					"add keys command failed, err %d\n",
614 					err);
615 				queue_delayed_work(cache->wq, &ent->dwork,
616 						   msecs_to_jiffies(1000));
617 			}
618 		}
619 	} else if (ent->stored > 2 * ent->limit) {
620 		bool need_delay;
621 
622 		/*
623 		 * The remove_cache_mr() logic is performed as garbage
624 		 * collection task. Such task is intended to be run when no
625 		 * other active processes are running.
626 		 *
627 		 * The need_resched() will return TRUE if there are user tasks
628 		 * to be activated in near future.
629 		 *
630 		 * In such case, we don't execute remove_cache_mr() and postpone
631 		 * the garbage collection work to try to run in next cycle, in
632 		 * order to free CPU resources to other tasks.
633 		 */
634 		xa_unlock_irq(&ent->mkeys);
635 		need_delay = need_resched() || someone_adding(cache) ||
636 			     !time_after(jiffies,
637 					 READ_ONCE(cache->last_add) + 300 * HZ);
638 		xa_lock_irq(&ent->mkeys);
639 		if (ent->disabled)
640 			goto out;
641 		if (need_delay) {
642 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
643 			goto out;
644 		}
645 		remove_cache_mr_locked(ent);
646 		queue_adjust_cache_locked(ent);
647 	}
648 out:
649 	xa_unlock_irq(&ent->mkeys);
650 }
651 
652 static void delayed_cache_work_func(struct work_struct *work)
653 {
654 	struct mlx5_cache_ent *ent;
655 
656 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
657 	__cache_work_func(ent);
658 }
659 
660 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
661 			     struct mlx5r_cache_rb_key key2)
662 {
663 	int res;
664 
665 	res = key1.ats - key2.ats;
666 	if (res)
667 		return res;
668 
669 	res = key1.access_mode - key2.access_mode;
670 	if (res)
671 		return res;
672 
673 	res = key1.access_flags - key2.access_flags;
674 	if (res)
675 		return res;
676 
677 	/*
678 	 * keep ndescs the last in the compare table since the find function
679 	 * searches for an exact match on all properties and only closest
680 	 * match in size.
681 	 */
682 	return key1.ndescs - key2.ndescs;
683 }
684 
685 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
686 				 struct mlx5_cache_ent *ent)
687 {
688 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
689 	struct mlx5_cache_ent *cur;
690 	int cmp;
691 
692 	/* Figure out where to put new node */
693 	while (*new) {
694 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
695 		parent = *new;
696 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
697 		if (cmp > 0)
698 			new = &((*new)->rb_left);
699 		if (cmp < 0)
700 			new = &((*new)->rb_right);
701 		if (cmp == 0)
702 			return -EEXIST;
703 	}
704 
705 	/* Add new node and rebalance tree. */
706 	rb_link_node(&ent->node, parent, new);
707 	rb_insert_color(&ent->node, &cache->rb_root);
708 
709 	return 0;
710 }
711 
712 static struct mlx5_cache_ent *
713 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
714 			   struct mlx5r_cache_rb_key rb_key)
715 {
716 	struct rb_node *node = dev->cache.rb_root.rb_node;
717 	struct mlx5_cache_ent *cur, *smallest = NULL;
718 	int cmp;
719 
720 	/*
721 	 * Find the smallest ent with order >= requested_order.
722 	 */
723 	while (node) {
724 		cur = rb_entry(node, struct mlx5_cache_ent, node);
725 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
726 		if (cmp > 0) {
727 			smallest = cur;
728 			node = node->rb_left;
729 		}
730 		if (cmp < 0)
731 			node = node->rb_right;
732 		if (cmp == 0)
733 			return cur;
734 	}
735 
736 	return (smallest &&
737 		smallest->rb_key.access_mode == rb_key.access_mode &&
738 		smallest->rb_key.access_flags == rb_key.access_flags &&
739 		smallest->rb_key.ats == rb_key.ats) ?
740 		       smallest :
741 		       NULL;
742 }
743 
744 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
745 					struct mlx5_cache_ent *ent,
746 					int access_flags)
747 {
748 	struct mlx5_ib_mr *mr;
749 	int err;
750 
751 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
752 	if (!mr)
753 		return ERR_PTR(-ENOMEM);
754 
755 	xa_lock_irq(&ent->mkeys);
756 	ent->in_use++;
757 
758 	if (!ent->stored) {
759 		queue_adjust_cache_locked(ent);
760 		ent->miss++;
761 		xa_unlock_irq(&ent->mkeys);
762 		err = create_cache_mkey(ent, &mr->mmkey.key);
763 		if (err) {
764 			xa_lock_irq(&ent->mkeys);
765 			ent->in_use--;
766 			xa_unlock_irq(&ent->mkeys);
767 			kfree(mr);
768 			return ERR_PTR(err);
769 		}
770 	} else {
771 		mr->mmkey.key = pop_stored_mkey(ent);
772 		queue_adjust_cache_locked(ent);
773 		xa_unlock_irq(&ent->mkeys);
774 	}
775 	mr->mmkey.cache_ent = ent;
776 	mr->mmkey.type = MLX5_MKEY_MR;
777 	init_waitqueue_head(&mr->mmkey.wait);
778 	return mr;
779 }
780 
781 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
782 					 int access_flags)
783 {
784 	int ret = 0;
785 
786 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
787 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
788 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
789 		ret |= IB_ACCESS_REMOTE_ATOMIC;
790 
791 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
792 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
793 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
794 		ret |= IB_ACCESS_RELAXED_ORDERING;
795 
796 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
797 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
798 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
799 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
800 		ret |= IB_ACCESS_RELAXED_ORDERING;
801 
802 	return ret;
803 }
804 
805 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
806 				       int access_flags, int access_mode,
807 				       int ndescs)
808 {
809 	struct mlx5r_cache_rb_key rb_key = {
810 		.ndescs = ndescs,
811 		.access_mode = access_mode,
812 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
813 	};
814 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
815 
816 	if (!ent)
817 		return ERR_PTR(-EOPNOTSUPP);
818 
819 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
820 }
821 
822 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
823 {
824 	u32 mkey;
825 
826 	cancel_delayed_work(&ent->dwork);
827 	xa_lock_irq(&ent->mkeys);
828 	while (ent->stored) {
829 		mkey = pop_stored_mkey(ent);
830 		xa_unlock_irq(&ent->mkeys);
831 		mlx5_core_destroy_mkey(dev->mdev, mkey);
832 		xa_lock_irq(&ent->mkeys);
833 	}
834 	xa_unlock_irq(&ent->mkeys);
835 }
836 
837 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
838 {
839 	if (!mlx5_debugfs_root || dev->is_rep)
840 		return;
841 
842 	debugfs_remove_recursive(dev->cache.fs_root);
843 	dev->cache.fs_root = NULL;
844 }
845 
846 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
847 					    struct mlx5_cache_ent *ent)
848 {
849 	int order = order_base_2(ent->rb_key.ndescs);
850 	struct dentry *dir;
851 
852 	if (!mlx5_debugfs_root || dev->is_rep)
853 		return;
854 
855 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
856 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
857 
858 	sprintf(ent->name, "%d", order);
859 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
860 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
861 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
862 	debugfs_create_ulong("cur", 0400, dir, &ent->stored);
863 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
864 }
865 
866 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
867 {
868 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
869 	struct mlx5_mkey_cache *cache = &dev->cache;
870 
871 	if (!mlx5_debugfs_root || dev->is_rep)
872 		return;
873 
874 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
875 }
876 
877 static void delay_time_func(struct timer_list *t)
878 {
879 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
880 
881 	WRITE_ONCE(dev->fill_delay, 0);
882 }
883 
884 struct mlx5_cache_ent *
885 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
886 			      struct mlx5r_cache_rb_key rb_key,
887 			      bool persistent_entry)
888 {
889 	struct mlx5_cache_ent *ent;
890 	int order;
891 	int ret;
892 
893 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
894 	if (!ent)
895 		return ERR_PTR(-ENOMEM);
896 
897 	xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
898 	ent->rb_key = rb_key;
899 	ent->dev = dev;
900 	ent->is_tmp = !persistent_entry;
901 
902 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
903 
904 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
905 	if (ret) {
906 		kfree(ent);
907 		return ERR_PTR(ret);
908 	}
909 
910 	if (persistent_entry) {
911 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
912 			order = MLX5_IMR_KSM_CACHE_ENTRY;
913 		else
914 			order = order_base_2(rb_key.ndescs) - 2;
915 
916 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
917 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
918 		    mlx5r_umr_can_load_pas(dev, 0))
919 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
920 		else
921 			ent->limit = 0;
922 
923 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
924 	} else {
925 		mod_delayed_work(ent->dev->cache.wq,
926 				 &ent->dev->cache.remove_ent_dwork,
927 				 msecs_to_jiffies(30 * 1000));
928 	}
929 
930 	return ent;
931 }
932 
933 static void remove_ent_work_func(struct work_struct *work)
934 {
935 	struct mlx5_mkey_cache *cache;
936 	struct mlx5_cache_ent *ent;
937 	struct rb_node *cur;
938 
939 	cache = container_of(work, struct mlx5_mkey_cache,
940 			     remove_ent_dwork.work);
941 	mutex_lock(&cache->rb_lock);
942 	cur = rb_last(&cache->rb_root);
943 	while (cur) {
944 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
945 		cur = rb_prev(cur);
946 		mutex_unlock(&cache->rb_lock);
947 
948 		xa_lock_irq(&ent->mkeys);
949 		if (!ent->is_tmp) {
950 			xa_unlock_irq(&ent->mkeys);
951 			mutex_lock(&cache->rb_lock);
952 			continue;
953 		}
954 		xa_unlock_irq(&ent->mkeys);
955 
956 		clean_keys(ent->dev, ent);
957 		mutex_lock(&cache->rb_lock);
958 	}
959 	mutex_unlock(&cache->rb_lock);
960 }
961 
962 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
963 {
964 	struct mlx5_mkey_cache *cache = &dev->cache;
965 	struct rb_root *root = &dev->cache.rb_root;
966 	struct mlx5r_cache_rb_key rb_key = {
967 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
968 	};
969 	struct mlx5_cache_ent *ent;
970 	struct rb_node *node;
971 	int ret;
972 	int i;
973 
974 	mutex_init(&dev->slow_path_mutex);
975 	mutex_init(&dev->cache.rb_lock);
976 	dev->cache.rb_root = RB_ROOT;
977 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
978 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
979 	if (!cache->wq) {
980 		mlx5_ib_warn(dev, "failed to create work queue\n");
981 		return -ENOMEM;
982 	}
983 
984 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
985 	timer_setup(&dev->delay_timer, delay_time_func, 0);
986 	mlx5_mkey_cache_debugfs_init(dev);
987 	mutex_lock(&cache->rb_lock);
988 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
989 		rb_key.ndescs = 1 << (i + 2);
990 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
991 		if (IS_ERR(ent)) {
992 			ret = PTR_ERR(ent);
993 			goto err;
994 		}
995 	}
996 
997 	ret = mlx5_odp_init_mkey_cache(dev);
998 	if (ret)
999 		goto err;
1000 
1001 	mutex_unlock(&cache->rb_lock);
1002 	for (node = rb_first(root); node; node = rb_next(node)) {
1003 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1004 		xa_lock_irq(&ent->mkeys);
1005 		queue_adjust_cache_locked(ent);
1006 		xa_unlock_irq(&ent->mkeys);
1007 	}
1008 
1009 	return 0;
1010 
1011 err:
1012 	mutex_unlock(&cache->rb_lock);
1013 	mlx5_mkey_cache_debugfs_cleanup(dev);
1014 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1015 	return ret;
1016 }
1017 
1018 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1019 {
1020 	struct rb_root *root = &dev->cache.rb_root;
1021 	struct mlx5_cache_ent *ent;
1022 	struct rb_node *node;
1023 
1024 	if (!dev->cache.wq)
1025 		return;
1026 
1027 	mutex_lock(&dev->cache.rb_lock);
1028 	cancel_delayed_work(&dev->cache.remove_ent_dwork);
1029 	for (node = rb_first(root); node; node = rb_next(node)) {
1030 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1031 		xa_lock_irq(&ent->mkeys);
1032 		ent->disabled = true;
1033 		xa_unlock_irq(&ent->mkeys);
1034 		cancel_delayed_work(&ent->dwork);
1035 	}
1036 	mutex_unlock(&dev->cache.rb_lock);
1037 
1038 	/*
1039 	 * After all entries are disabled and will not reschedule on WQ,
1040 	 * flush it and all async commands.
1041 	 */
1042 	flush_workqueue(dev->cache.wq);
1043 
1044 	mlx5_mkey_cache_debugfs_cleanup(dev);
1045 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1046 
1047 	/* At this point all entries are disabled and have no concurrent work. */
1048 	mutex_lock(&dev->cache.rb_lock);
1049 	node = rb_first(root);
1050 	while (node) {
1051 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1052 		node = rb_next(node);
1053 		clean_keys(dev, ent);
1054 		rb_erase(&ent->node, root);
1055 		kfree(ent);
1056 	}
1057 	mutex_unlock(&dev->cache.rb_lock);
1058 
1059 	destroy_workqueue(dev->cache.wq);
1060 	del_timer_sync(&dev->delay_timer);
1061 }
1062 
1063 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1064 {
1065 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1066 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1067 	struct mlx5_ib_mr *mr;
1068 	void *mkc;
1069 	u32 *in;
1070 	int err;
1071 
1072 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1073 	if (!mr)
1074 		return ERR_PTR(-ENOMEM);
1075 
1076 	in = kzalloc(inlen, GFP_KERNEL);
1077 	if (!in) {
1078 		err = -ENOMEM;
1079 		goto err_free;
1080 	}
1081 
1082 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1083 
1084 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1085 	MLX5_SET(mkc, mkc, length64, 1);
1086 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1087 				      pd);
1088 
1089 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1090 	if (err)
1091 		goto err_in;
1092 
1093 	kfree(in);
1094 	mr->mmkey.type = MLX5_MKEY_MR;
1095 	mr->ibmr.lkey = mr->mmkey.key;
1096 	mr->ibmr.rkey = mr->mmkey.key;
1097 	mr->umem = NULL;
1098 
1099 	return &mr->ibmr;
1100 
1101 err_in:
1102 	kfree(in);
1103 
1104 err_free:
1105 	kfree(mr);
1106 
1107 	return ERR_PTR(err);
1108 }
1109 
1110 static int get_octo_len(u64 addr, u64 len, int page_shift)
1111 {
1112 	u64 page_size = 1ULL << page_shift;
1113 	u64 offset;
1114 	int npages;
1115 
1116 	offset = addr & (page_size - 1);
1117 	npages = ALIGN(len + offset, page_size) >> page_shift;
1118 	return (npages + 1) / 2;
1119 }
1120 
1121 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1122 {
1123 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1124 		return MKEY_CACHE_LAST_STD_ENTRY;
1125 	return MLX5_MAX_UMR_SHIFT;
1126 }
1127 
1128 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1129 			  u64 length, int access_flags, u64 iova)
1130 {
1131 	mr->ibmr.lkey = mr->mmkey.key;
1132 	mr->ibmr.rkey = mr->mmkey.key;
1133 	mr->ibmr.length = length;
1134 	mr->ibmr.device = &dev->ib_dev;
1135 	mr->ibmr.iova = iova;
1136 	mr->access_flags = access_flags;
1137 }
1138 
1139 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1140 						  u64 iova)
1141 {
1142 	/*
1143 	 * The alignment of iova has already been checked upon entering
1144 	 * UVERBS_METHOD_REG_DMABUF_MR
1145 	 */
1146 	umem->iova = iova;
1147 	return PAGE_SIZE;
1148 }
1149 
1150 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1151 					     struct ib_umem *umem, u64 iova,
1152 					     int access_flags)
1153 {
1154 	struct mlx5r_cache_rb_key rb_key = {
1155 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1156 	};
1157 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1158 	struct mlx5_cache_ent *ent;
1159 	struct mlx5_ib_mr *mr;
1160 	unsigned int page_size;
1161 
1162 	if (umem->is_dmabuf)
1163 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1164 	else
1165 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1166 						     0, iova);
1167 	if (WARN_ON(!page_size))
1168 		return ERR_PTR(-EINVAL);
1169 
1170 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1171 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1172 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1173 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1174 	/*
1175 	 * If the MR can't come from the cache then synchronously create an uncached
1176 	 * one.
1177 	 */
1178 	if (!ent) {
1179 		mutex_lock(&dev->slow_path_mutex);
1180 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1181 		mutex_unlock(&dev->slow_path_mutex);
1182 		if (IS_ERR(mr))
1183 			return mr;
1184 		mr->mmkey.rb_key = rb_key;
1185 		return mr;
1186 	}
1187 
1188 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1189 	if (IS_ERR(mr))
1190 		return mr;
1191 
1192 	mr->ibmr.pd = pd;
1193 	mr->umem = umem;
1194 	mr->page_shift = order_base_2(page_size);
1195 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1196 
1197 	return mr;
1198 }
1199 
1200 /*
1201  * If ibmr is NULL it will be allocated by reg_create.
1202  * Else, the given ibmr will be used.
1203  */
1204 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1205 				     u64 iova, int access_flags,
1206 				     unsigned int page_size, bool populate)
1207 {
1208 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1209 	struct mlx5_ib_mr *mr;
1210 	__be64 *pas;
1211 	void *mkc;
1212 	int inlen;
1213 	u32 *in;
1214 	int err;
1215 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1216 
1217 	if (!page_size)
1218 		return ERR_PTR(-EINVAL);
1219 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1220 	if (!mr)
1221 		return ERR_PTR(-ENOMEM);
1222 
1223 	mr->ibmr.pd = pd;
1224 	mr->access_flags = access_flags;
1225 	mr->page_shift = order_base_2(page_size);
1226 
1227 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1228 	if (populate)
1229 		inlen += sizeof(*pas) *
1230 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1231 	in = kvzalloc(inlen, GFP_KERNEL);
1232 	if (!in) {
1233 		err = -ENOMEM;
1234 		goto err_1;
1235 	}
1236 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1237 	if (populate) {
1238 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1239 			err = -EINVAL;
1240 			goto err_2;
1241 		}
1242 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1243 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1244 	}
1245 
1246 	/* The pg_access bit allows setting the access flags
1247 	 * in the page list submitted with the command.
1248 	 */
1249 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1250 
1251 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1252 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1253 				      populate ? pd : dev->umrc.pd);
1254 	MLX5_SET(mkc, mkc, free, !populate);
1255 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1256 	MLX5_SET(mkc, mkc, umr_en, 1);
1257 
1258 	MLX5_SET64(mkc, mkc, len, umem->length);
1259 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1260 	MLX5_SET(mkc, mkc, translations_octword_size,
1261 		 get_octo_len(iova, umem->length, mr->page_shift));
1262 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1263 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1264 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1265 	if (populate) {
1266 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1267 			 get_octo_len(iova, umem->length, mr->page_shift));
1268 	}
1269 
1270 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1271 	if (err) {
1272 		mlx5_ib_warn(dev, "create mkey failed\n");
1273 		goto err_2;
1274 	}
1275 	mr->mmkey.type = MLX5_MKEY_MR;
1276 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1277 	mr->umem = umem;
1278 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1279 	kvfree(in);
1280 
1281 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1282 
1283 	return mr;
1284 
1285 err_2:
1286 	kvfree(in);
1287 err_1:
1288 	kfree(mr);
1289 	return ERR_PTR(err);
1290 }
1291 
1292 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1293 				       u64 length, int acc, int mode)
1294 {
1295 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1296 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1297 	struct mlx5_ib_mr *mr;
1298 	void *mkc;
1299 	u32 *in;
1300 	int err;
1301 
1302 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1303 	if (!mr)
1304 		return ERR_PTR(-ENOMEM);
1305 
1306 	in = kzalloc(inlen, GFP_KERNEL);
1307 	if (!in) {
1308 		err = -ENOMEM;
1309 		goto err_free;
1310 	}
1311 
1312 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1313 
1314 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1315 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1316 	MLX5_SET64(mkc, mkc, len, length);
1317 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1318 
1319 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1320 	if (err)
1321 		goto err_in;
1322 
1323 	kfree(in);
1324 
1325 	set_mr_fields(dev, mr, length, acc, start_addr);
1326 
1327 	return &mr->ibmr;
1328 
1329 err_in:
1330 	kfree(in);
1331 
1332 err_free:
1333 	kfree(mr);
1334 
1335 	return ERR_PTR(err);
1336 }
1337 
1338 int mlx5_ib_advise_mr(struct ib_pd *pd,
1339 		      enum ib_uverbs_advise_mr_advice advice,
1340 		      u32 flags,
1341 		      struct ib_sge *sg_list,
1342 		      u32 num_sge,
1343 		      struct uverbs_attr_bundle *attrs)
1344 {
1345 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1346 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1347 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1348 		return -EOPNOTSUPP;
1349 
1350 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1351 					 sg_list, num_sge);
1352 }
1353 
1354 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1355 				struct ib_dm_mr_attr *attr,
1356 				struct uverbs_attr_bundle *attrs)
1357 {
1358 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1359 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1360 	u64 start_addr = mdm->dev_addr + attr->offset;
1361 	int mode;
1362 
1363 	switch (mdm->type) {
1364 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1365 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1366 			return ERR_PTR(-EINVAL);
1367 
1368 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1369 		start_addr -= pci_resource_start(dev->pdev, 0);
1370 		break;
1371 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1372 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1373 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1374 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1375 			return ERR_PTR(-EINVAL);
1376 
1377 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1378 		break;
1379 	default:
1380 		return ERR_PTR(-EINVAL);
1381 	}
1382 
1383 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1384 				 attr->access_flags, mode);
1385 }
1386 
1387 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1388 				    u64 iova, int access_flags)
1389 {
1390 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1391 	struct mlx5_ib_mr *mr = NULL;
1392 	bool xlt_with_umr;
1393 	int err;
1394 
1395 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1396 	if (xlt_with_umr) {
1397 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1398 	} else {
1399 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1400 			umem, mkc, log_page_size, 0, iova);
1401 
1402 		mutex_lock(&dev->slow_path_mutex);
1403 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1404 		mutex_unlock(&dev->slow_path_mutex);
1405 	}
1406 	if (IS_ERR(mr)) {
1407 		ib_umem_release(umem);
1408 		return ERR_CAST(mr);
1409 	}
1410 
1411 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1412 
1413 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1414 
1415 	if (xlt_with_umr) {
1416 		/*
1417 		 * If the MR was created with reg_create then it will be
1418 		 * configured properly but left disabled. It is safe to go ahead
1419 		 * and configure it again via UMR while enabling it.
1420 		 */
1421 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1422 		if (err) {
1423 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1424 			return ERR_PTR(err);
1425 		}
1426 	}
1427 	return &mr->ibmr;
1428 }
1429 
1430 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1431 					u64 iova, int access_flags,
1432 					struct ib_udata *udata)
1433 {
1434 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1435 	struct ib_umem_odp *odp;
1436 	struct mlx5_ib_mr *mr;
1437 	int err;
1438 
1439 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1440 		return ERR_PTR(-EOPNOTSUPP);
1441 
1442 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1443 	if (err)
1444 		return ERR_PTR(err);
1445 	if (!start && length == U64_MAX) {
1446 		if (iova != 0)
1447 			return ERR_PTR(-EINVAL);
1448 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1449 			return ERR_PTR(-EINVAL);
1450 
1451 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1452 		if (IS_ERR(mr))
1453 			return ERR_CAST(mr);
1454 		return &mr->ibmr;
1455 	}
1456 
1457 	/* ODP requires xlt update via umr to work. */
1458 	if (!mlx5r_umr_can_load_pas(dev, length))
1459 		return ERR_PTR(-EINVAL);
1460 
1461 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1462 			      &mlx5_mn_ops);
1463 	if (IS_ERR(odp))
1464 		return ERR_CAST(odp);
1465 
1466 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1467 	if (IS_ERR(mr)) {
1468 		ib_umem_release(&odp->umem);
1469 		return ERR_CAST(mr);
1470 	}
1471 	xa_init(&mr->implicit_children);
1472 
1473 	odp->private = mr;
1474 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1475 	if (err)
1476 		goto err_dereg_mr;
1477 
1478 	err = mlx5_ib_init_odp_mr(mr);
1479 	if (err)
1480 		goto err_dereg_mr;
1481 	return &mr->ibmr;
1482 
1483 err_dereg_mr:
1484 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1485 	return ERR_PTR(err);
1486 }
1487 
1488 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1489 				  u64 iova, int access_flags,
1490 				  struct ib_udata *udata)
1491 {
1492 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1493 	struct ib_umem *umem;
1494 
1495 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1496 		return ERR_PTR(-EOPNOTSUPP);
1497 
1498 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1499 		    start, iova, length, access_flags);
1500 
1501 	if (access_flags & IB_ACCESS_ON_DEMAND)
1502 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1503 					  udata);
1504 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1505 	if (IS_ERR(umem))
1506 		return ERR_CAST(umem);
1507 	return create_real_mr(pd, umem, iova, access_flags);
1508 }
1509 
1510 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1511 {
1512 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1513 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1514 
1515 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1516 
1517 	if (!umem_dmabuf->sgt)
1518 		return;
1519 
1520 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1521 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1522 }
1523 
1524 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1525 	.allow_peer2peer = 1,
1526 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1527 };
1528 
1529 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1530 					 u64 length, u64 virt_addr,
1531 					 int fd, int access_flags,
1532 					 struct ib_udata *udata)
1533 {
1534 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1535 	struct mlx5_ib_mr *mr = NULL;
1536 	struct ib_umem_dmabuf *umem_dmabuf;
1537 	int err;
1538 
1539 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1540 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1541 		return ERR_PTR(-EOPNOTSUPP);
1542 
1543 	mlx5_ib_dbg(dev,
1544 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1545 		    offset, virt_addr, length, fd, access_flags);
1546 
1547 	/* dmabuf requires xlt update via umr to work. */
1548 	if (!mlx5r_umr_can_load_pas(dev, length))
1549 		return ERR_PTR(-EINVAL);
1550 
1551 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1552 					 access_flags,
1553 					 &mlx5_ib_dmabuf_attach_ops);
1554 	if (IS_ERR(umem_dmabuf)) {
1555 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1556 			    PTR_ERR(umem_dmabuf));
1557 		return ERR_CAST(umem_dmabuf);
1558 	}
1559 
1560 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1561 				access_flags);
1562 	if (IS_ERR(mr)) {
1563 		ib_umem_release(&umem_dmabuf->umem);
1564 		return ERR_CAST(mr);
1565 	}
1566 
1567 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1568 
1569 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1570 	umem_dmabuf->private = mr;
1571 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1572 	if (err)
1573 		goto err_dereg_mr;
1574 
1575 	err = mlx5_ib_init_dmabuf_mr(mr);
1576 	if (err)
1577 		goto err_dereg_mr;
1578 	return &mr->ibmr;
1579 
1580 err_dereg_mr:
1581 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1582 	return ERR_PTR(err);
1583 }
1584 
1585 /*
1586  * True if the change in access flags can be done via UMR, only some access
1587  * flags can be updated.
1588  */
1589 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1590 				     unsigned int current_access_flags,
1591 				     unsigned int target_access_flags)
1592 {
1593 	unsigned int diffs = current_access_flags ^ target_access_flags;
1594 
1595 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1596 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1597 		      IB_ACCESS_REMOTE_ATOMIC))
1598 		return false;
1599 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1600 				      target_access_flags);
1601 }
1602 
1603 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1604 				  struct ib_umem *new_umem,
1605 				  int new_access_flags, u64 iova,
1606 				  unsigned long *page_size)
1607 {
1608 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1609 
1610 	/* We only track the allocated sizes of MRs from the cache */
1611 	if (!mr->mmkey.cache_ent)
1612 		return false;
1613 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1614 		return false;
1615 
1616 	*page_size =
1617 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1618 	if (WARN_ON(!*page_size))
1619 		return false;
1620 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1621 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1622 }
1623 
1624 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1625 			 int access_flags, int flags, struct ib_umem *new_umem,
1626 			 u64 iova, unsigned long page_size)
1627 {
1628 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1629 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1630 	struct ib_umem *old_umem = mr->umem;
1631 	int err;
1632 
1633 	/*
1634 	 * To keep everything simple the MR is revoked before we start to mess
1635 	 * with it. This ensure the change is atomic relative to any use of the
1636 	 * MR.
1637 	 */
1638 	err = mlx5r_umr_revoke_mr(mr);
1639 	if (err)
1640 		return err;
1641 
1642 	if (flags & IB_MR_REREG_PD) {
1643 		mr->ibmr.pd = pd;
1644 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1645 	}
1646 	if (flags & IB_MR_REREG_ACCESS) {
1647 		mr->access_flags = access_flags;
1648 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1649 	}
1650 
1651 	mr->ibmr.iova = iova;
1652 	mr->ibmr.length = new_umem->length;
1653 	mr->page_shift = order_base_2(page_size);
1654 	mr->umem = new_umem;
1655 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1656 	if (err) {
1657 		/*
1658 		 * The MR is revoked at this point so there is no issue to free
1659 		 * new_umem.
1660 		 */
1661 		mr->umem = old_umem;
1662 		return err;
1663 	}
1664 
1665 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1666 	ib_umem_release(old_umem);
1667 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1668 	return 0;
1669 }
1670 
1671 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1672 				    u64 length, u64 iova, int new_access_flags,
1673 				    struct ib_pd *new_pd,
1674 				    struct ib_udata *udata)
1675 {
1676 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1677 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1678 	int err;
1679 
1680 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1681 		return ERR_PTR(-EOPNOTSUPP);
1682 
1683 	mlx5_ib_dbg(
1684 		dev,
1685 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1686 		start, iova, length, new_access_flags);
1687 
1688 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1689 		return ERR_PTR(-EOPNOTSUPP);
1690 
1691 	if (!(flags & IB_MR_REREG_ACCESS))
1692 		new_access_flags = mr->access_flags;
1693 	if (!(flags & IB_MR_REREG_PD))
1694 		new_pd = ib_mr->pd;
1695 
1696 	if (!(flags & IB_MR_REREG_TRANS)) {
1697 		struct ib_umem *umem;
1698 
1699 		/* Fast path for PD/access change */
1700 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1701 					     new_access_flags)) {
1702 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1703 							new_access_flags);
1704 			if (err)
1705 				return ERR_PTR(err);
1706 			return NULL;
1707 		}
1708 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1709 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1710 			goto recreate;
1711 
1712 		/*
1713 		 * Only one active MR can refer to a umem at one time, revoke
1714 		 * the old MR before assigning the umem to the new one.
1715 		 */
1716 		err = mlx5r_umr_revoke_mr(mr);
1717 		if (err)
1718 			return ERR_PTR(err);
1719 		umem = mr->umem;
1720 		mr->umem = NULL;
1721 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1722 
1723 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1724 				      new_access_flags);
1725 	}
1726 
1727 	/*
1728 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1729 	 * but the logic around releasing the umem is different
1730 	 */
1731 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1732 		goto recreate;
1733 
1734 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1735 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1736 		struct ib_umem *new_umem;
1737 		unsigned long page_size;
1738 
1739 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1740 				       new_access_flags);
1741 		if (IS_ERR(new_umem))
1742 			return ERR_CAST(new_umem);
1743 
1744 		/* Fast path for PAS change */
1745 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1746 					  &page_size)) {
1747 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1748 					    new_umem, iova, page_size);
1749 			if (err) {
1750 				ib_umem_release(new_umem);
1751 				return ERR_PTR(err);
1752 			}
1753 			return NULL;
1754 		}
1755 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1756 	}
1757 
1758 	/*
1759 	 * Everything else has no state we can preserve, just create a new MR
1760 	 * from scratch
1761 	 */
1762 recreate:
1763 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1764 				   new_access_flags, udata);
1765 }
1766 
1767 static int
1768 mlx5_alloc_priv_descs(struct ib_device *device,
1769 		      struct mlx5_ib_mr *mr,
1770 		      int ndescs,
1771 		      int desc_size)
1772 {
1773 	struct mlx5_ib_dev *dev = to_mdev(device);
1774 	struct device *ddev = &dev->mdev->pdev->dev;
1775 	int size = ndescs * desc_size;
1776 	int add_size;
1777 	int ret;
1778 
1779 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1780 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1781 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1782 
1783 		add_size = min_t(int, end - size, add_size);
1784 	}
1785 
1786 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1787 	if (!mr->descs_alloc)
1788 		return -ENOMEM;
1789 
1790 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1791 
1792 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1793 	if (dma_mapping_error(ddev, mr->desc_map)) {
1794 		ret = -ENOMEM;
1795 		goto err;
1796 	}
1797 
1798 	return 0;
1799 err:
1800 	kfree(mr->descs_alloc);
1801 
1802 	return ret;
1803 }
1804 
1805 static void
1806 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1807 {
1808 	if (!mr->umem && mr->descs) {
1809 		struct ib_device *device = mr->ibmr.device;
1810 		int size = mr->max_descs * mr->desc_size;
1811 		struct mlx5_ib_dev *dev = to_mdev(device);
1812 
1813 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1814 				 DMA_TO_DEVICE);
1815 		kfree(mr->descs_alloc);
1816 		mr->descs = NULL;
1817 	}
1818 }
1819 
1820 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1821 				    struct mlx5_ib_mr *mr)
1822 {
1823 	struct mlx5_mkey_cache *cache = &dev->cache;
1824 	struct mlx5_cache_ent *ent;
1825 	int ret;
1826 
1827 	if (mr->mmkey.cache_ent) {
1828 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1829 		mr->mmkey.cache_ent->in_use--;
1830 		goto end;
1831 	}
1832 
1833 	mutex_lock(&cache->rb_lock);
1834 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1835 	if (ent) {
1836 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1837 			if (ent->disabled) {
1838 				mutex_unlock(&cache->rb_lock);
1839 				return -EOPNOTSUPP;
1840 			}
1841 			mr->mmkey.cache_ent = ent;
1842 			xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1843 			mutex_unlock(&cache->rb_lock);
1844 			goto end;
1845 		}
1846 	}
1847 
1848 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1849 	mutex_unlock(&cache->rb_lock);
1850 	if (IS_ERR(ent))
1851 		return PTR_ERR(ent);
1852 
1853 	mr->mmkey.cache_ent = ent;
1854 	xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1855 
1856 end:
1857 	ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1858 			       xa_mk_value(mr->mmkey.key));
1859 	xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1860 	return ret;
1861 }
1862 
1863 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1864 {
1865 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1866 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1867 	int rc;
1868 
1869 	/*
1870 	 * Any async use of the mr must hold the refcount, once the refcount
1871 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1872 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1873 	 */
1874 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1875 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1876 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1877 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1878 
1879 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1880 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1881 			   mr->sig, NULL, GFP_KERNEL);
1882 
1883 		if (mr->mtt_mr) {
1884 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1885 			if (rc)
1886 				return rc;
1887 			mr->mtt_mr = NULL;
1888 		}
1889 		if (mr->klm_mr) {
1890 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1891 			if (rc)
1892 				return rc;
1893 			mr->klm_mr = NULL;
1894 		}
1895 
1896 		if (mlx5_core_destroy_psv(dev->mdev,
1897 					  mr->sig->psv_memory.psv_idx))
1898 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1899 				     mr->sig->psv_memory.psv_idx);
1900 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1901 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1902 				     mr->sig->psv_wire.psv_idx);
1903 		kfree(mr->sig);
1904 		mr->sig = NULL;
1905 	}
1906 
1907 	/* Stop DMA */
1908 	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1909 		if (mlx5r_umr_revoke_mr(mr) ||
1910 		    cache_ent_find_and_store(dev, mr))
1911 			mr->mmkey.cache_ent = NULL;
1912 
1913 	if (!mr->mmkey.cache_ent) {
1914 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1915 		if (rc)
1916 			return rc;
1917 	}
1918 
1919 	if (mr->umem) {
1920 		bool is_odp = is_odp_mr(mr);
1921 
1922 		if (!is_odp)
1923 			atomic_sub(ib_umem_num_pages(mr->umem),
1924 				   &dev->mdev->priv.reg_pages);
1925 		ib_umem_release(mr->umem);
1926 		if (is_odp)
1927 			mlx5_ib_free_odp_mr(mr);
1928 	}
1929 
1930 	if (!mr->mmkey.cache_ent)
1931 		mlx5_free_priv_descs(mr);
1932 
1933 	kfree(mr);
1934 	return 0;
1935 }
1936 
1937 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1938 				   int access_mode, int page_shift)
1939 {
1940 	void *mkc;
1941 
1942 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1943 
1944 	/* This is only used from the kernel, so setting the PD is OK. */
1945 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1946 	MLX5_SET(mkc, mkc, free, 1);
1947 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1948 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1949 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1950 	MLX5_SET(mkc, mkc, umr_en, 1);
1951 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1952 }
1953 
1954 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1955 				  int ndescs, int desc_size, int page_shift,
1956 				  int access_mode, u32 *in, int inlen)
1957 {
1958 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1959 	int err;
1960 
1961 	mr->access_mode = access_mode;
1962 	mr->desc_size = desc_size;
1963 	mr->max_descs = ndescs;
1964 
1965 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1966 	if (err)
1967 		return err;
1968 
1969 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1970 
1971 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1972 	if (err)
1973 		goto err_free_descs;
1974 
1975 	mr->mmkey.type = MLX5_MKEY_MR;
1976 	mr->ibmr.lkey = mr->mmkey.key;
1977 	mr->ibmr.rkey = mr->mmkey.key;
1978 
1979 	return 0;
1980 
1981 err_free_descs:
1982 	mlx5_free_priv_descs(mr);
1983 	return err;
1984 }
1985 
1986 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1987 				u32 max_num_sg, u32 max_num_meta_sg,
1988 				int desc_size, int access_mode)
1989 {
1990 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1991 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1992 	int page_shift = 0;
1993 	struct mlx5_ib_mr *mr;
1994 	u32 *in;
1995 	int err;
1996 
1997 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1998 	if (!mr)
1999 		return ERR_PTR(-ENOMEM);
2000 
2001 	mr->ibmr.pd = pd;
2002 	mr->ibmr.device = pd->device;
2003 
2004 	in = kzalloc(inlen, GFP_KERNEL);
2005 	if (!in) {
2006 		err = -ENOMEM;
2007 		goto err_free;
2008 	}
2009 
2010 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2011 		page_shift = PAGE_SHIFT;
2012 
2013 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2014 				     access_mode, in, inlen);
2015 	if (err)
2016 		goto err_free_in;
2017 
2018 	mr->umem = NULL;
2019 	kfree(in);
2020 
2021 	return mr;
2022 
2023 err_free_in:
2024 	kfree(in);
2025 err_free:
2026 	kfree(mr);
2027 	return ERR_PTR(err);
2028 }
2029 
2030 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2031 				    int ndescs, u32 *in, int inlen)
2032 {
2033 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2034 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2035 				      inlen);
2036 }
2037 
2038 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2039 				    int ndescs, u32 *in, int inlen)
2040 {
2041 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2042 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2043 }
2044 
2045 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2046 				      int max_num_sg, int max_num_meta_sg,
2047 				      u32 *in, int inlen)
2048 {
2049 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2050 	u32 psv_index[2];
2051 	void *mkc;
2052 	int err;
2053 
2054 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2055 	if (!mr->sig)
2056 		return -ENOMEM;
2057 
2058 	/* create mem & wire PSVs */
2059 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2060 	if (err)
2061 		goto err_free_sig;
2062 
2063 	mr->sig->psv_memory.psv_idx = psv_index[0];
2064 	mr->sig->psv_wire.psv_idx = psv_index[1];
2065 
2066 	mr->sig->sig_status_checked = true;
2067 	mr->sig->sig_err_exists = false;
2068 	/* Next UMR, Arm SIGERR */
2069 	++mr->sig->sigerr_count;
2070 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2071 					 sizeof(struct mlx5_klm),
2072 					 MLX5_MKC_ACCESS_MODE_KLMS);
2073 	if (IS_ERR(mr->klm_mr)) {
2074 		err = PTR_ERR(mr->klm_mr);
2075 		goto err_destroy_psv;
2076 	}
2077 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2078 					 sizeof(struct mlx5_mtt),
2079 					 MLX5_MKC_ACCESS_MODE_MTT);
2080 	if (IS_ERR(mr->mtt_mr)) {
2081 		err = PTR_ERR(mr->mtt_mr);
2082 		goto err_free_klm_mr;
2083 	}
2084 
2085 	/* Set bsf descriptors for mkey */
2086 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2087 	MLX5_SET(mkc, mkc, bsf_en, 1);
2088 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2089 
2090 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2091 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2092 	if (err)
2093 		goto err_free_mtt_mr;
2094 
2095 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2096 			      mr->sig, GFP_KERNEL));
2097 	if (err)
2098 		goto err_free_descs;
2099 	return 0;
2100 
2101 err_free_descs:
2102 	destroy_mkey(dev, mr);
2103 	mlx5_free_priv_descs(mr);
2104 err_free_mtt_mr:
2105 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2106 	mr->mtt_mr = NULL;
2107 err_free_klm_mr:
2108 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2109 	mr->klm_mr = NULL;
2110 err_destroy_psv:
2111 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2112 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2113 			     mr->sig->psv_memory.psv_idx);
2114 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2115 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2116 			     mr->sig->psv_wire.psv_idx);
2117 err_free_sig:
2118 	kfree(mr->sig);
2119 
2120 	return err;
2121 }
2122 
2123 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2124 					enum ib_mr_type mr_type, u32 max_num_sg,
2125 					u32 max_num_meta_sg)
2126 {
2127 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2128 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2129 	int ndescs = ALIGN(max_num_sg, 4);
2130 	struct mlx5_ib_mr *mr;
2131 	u32 *in;
2132 	int err;
2133 
2134 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2135 	if (!mr)
2136 		return ERR_PTR(-ENOMEM);
2137 
2138 	in = kzalloc(inlen, GFP_KERNEL);
2139 	if (!in) {
2140 		err = -ENOMEM;
2141 		goto err_free;
2142 	}
2143 
2144 	mr->ibmr.device = pd->device;
2145 	mr->umem = NULL;
2146 
2147 	switch (mr_type) {
2148 	case IB_MR_TYPE_MEM_REG:
2149 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2150 		break;
2151 	case IB_MR_TYPE_SG_GAPS:
2152 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2153 		break;
2154 	case IB_MR_TYPE_INTEGRITY:
2155 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2156 						 max_num_meta_sg, in, inlen);
2157 		break;
2158 	default:
2159 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2160 		err = -EINVAL;
2161 	}
2162 
2163 	if (err)
2164 		goto err_free_in;
2165 
2166 	kfree(in);
2167 
2168 	return &mr->ibmr;
2169 
2170 err_free_in:
2171 	kfree(in);
2172 err_free:
2173 	kfree(mr);
2174 	return ERR_PTR(err);
2175 }
2176 
2177 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2178 			       u32 max_num_sg)
2179 {
2180 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2181 }
2182 
2183 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2184 					 u32 max_num_sg, u32 max_num_meta_sg)
2185 {
2186 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2187 				  max_num_meta_sg);
2188 }
2189 
2190 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2191 {
2192 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2193 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2194 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2195 	unsigned int ndescs;
2196 	u32 *in = NULL;
2197 	void *mkc;
2198 	int err;
2199 	struct mlx5_ib_alloc_mw req = {};
2200 	struct {
2201 		__u32	comp_mask;
2202 		__u32	response_length;
2203 	} resp = {};
2204 
2205 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2206 	if (err)
2207 		return err;
2208 
2209 	if (req.comp_mask || req.reserved1 || req.reserved2)
2210 		return -EOPNOTSUPP;
2211 
2212 	if (udata->inlen > sizeof(req) &&
2213 	    !ib_is_udata_cleared(udata, sizeof(req),
2214 				 udata->inlen - sizeof(req)))
2215 		return -EOPNOTSUPP;
2216 
2217 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2218 
2219 	in = kzalloc(inlen, GFP_KERNEL);
2220 	if (!in)
2221 		return -ENOMEM;
2222 
2223 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2224 
2225 	MLX5_SET(mkc, mkc, free, 1);
2226 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2227 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2228 	MLX5_SET(mkc, mkc, umr_en, 1);
2229 	MLX5_SET(mkc, mkc, lr, 1);
2230 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2231 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2232 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2233 
2234 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2235 	if (err)
2236 		goto free;
2237 
2238 	mw->mmkey.type = MLX5_MKEY_MW;
2239 	ibmw->rkey = mw->mmkey.key;
2240 	mw->mmkey.ndescs = ndescs;
2241 
2242 	resp.response_length =
2243 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2244 	if (resp.response_length) {
2245 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2246 		if (err)
2247 			goto free_mkey;
2248 	}
2249 
2250 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2251 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2252 		if (err)
2253 			goto free_mkey;
2254 	}
2255 
2256 	kfree(in);
2257 	return 0;
2258 
2259 free_mkey:
2260 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2261 free:
2262 	kfree(in);
2263 	return err;
2264 }
2265 
2266 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2267 {
2268 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2269 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2270 
2271 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2272 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2273 		/*
2274 		 * pagefault_single_data_segment() may be accessing mmw
2275 		 * if the user bound an ODP MR to this MW.
2276 		 */
2277 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2278 
2279 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2280 }
2281 
2282 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2283 			    struct ib_mr_status *mr_status)
2284 {
2285 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2286 	int ret = 0;
2287 
2288 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2289 		pr_err("Invalid status check mask\n");
2290 		ret = -EINVAL;
2291 		goto done;
2292 	}
2293 
2294 	mr_status->fail_status = 0;
2295 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2296 		if (!mmr->sig) {
2297 			ret = -EINVAL;
2298 			pr_err("signature status check requested on a non-signature enabled MR\n");
2299 			goto done;
2300 		}
2301 
2302 		mmr->sig->sig_status_checked = true;
2303 		if (!mmr->sig->sig_err_exists)
2304 			goto done;
2305 
2306 		if (ibmr->lkey == mmr->sig->err_item.key)
2307 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2308 			       sizeof(mr_status->sig_err));
2309 		else {
2310 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2311 			mr_status->sig_err.sig_err_offset = 0;
2312 			mr_status->sig_err.key = mmr->sig->err_item.key;
2313 		}
2314 
2315 		mmr->sig->sig_err_exists = false;
2316 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2317 	}
2318 
2319 done:
2320 	return ret;
2321 }
2322 
2323 static int
2324 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2325 			int data_sg_nents, unsigned int *data_sg_offset,
2326 			struct scatterlist *meta_sg, int meta_sg_nents,
2327 			unsigned int *meta_sg_offset)
2328 {
2329 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2330 	unsigned int sg_offset = 0;
2331 	int n = 0;
2332 
2333 	mr->meta_length = 0;
2334 	if (data_sg_nents == 1) {
2335 		n++;
2336 		mr->mmkey.ndescs = 1;
2337 		if (data_sg_offset)
2338 			sg_offset = *data_sg_offset;
2339 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2340 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2341 		if (meta_sg_nents == 1) {
2342 			n++;
2343 			mr->meta_ndescs = 1;
2344 			if (meta_sg_offset)
2345 				sg_offset = *meta_sg_offset;
2346 			else
2347 				sg_offset = 0;
2348 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2349 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2350 		}
2351 		ibmr->length = mr->data_length + mr->meta_length;
2352 	}
2353 
2354 	return n;
2355 }
2356 
2357 static int
2358 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2359 		   struct scatterlist *sgl,
2360 		   unsigned short sg_nents,
2361 		   unsigned int *sg_offset_p,
2362 		   struct scatterlist *meta_sgl,
2363 		   unsigned short meta_sg_nents,
2364 		   unsigned int *meta_sg_offset_p)
2365 {
2366 	struct scatterlist *sg = sgl;
2367 	struct mlx5_klm *klms = mr->descs;
2368 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2369 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2370 	int i, j = 0;
2371 
2372 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2373 	mr->ibmr.length = 0;
2374 
2375 	for_each_sg(sgl, sg, sg_nents, i) {
2376 		if (unlikely(i >= mr->max_descs))
2377 			break;
2378 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2379 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2380 		klms[i].key = cpu_to_be32(lkey);
2381 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2382 
2383 		sg_offset = 0;
2384 	}
2385 
2386 	if (sg_offset_p)
2387 		*sg_offset_p = sg_offset;
2388 
2389 	mr->mmkey.ndescs = i;
2390 	mr->data_length = mr->ibmr.length;
2391 
2392 	if (meta_sg_nents) {
2393 		sg = meta_sgl;
2394 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2395 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2396 			if (unlikely(i + j >= mr->max_descs))
2397 				break;
2398 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2399 						     sg_offset);
2400 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2401 							 sg_offset);
2402 			klms[i + j].key = cpu_to_be32(lkey);
2403 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2404 
2405 			sg_offset = 0;
2406 		}
2407 		if (meta_sg_offset_p)
2408 			*meta_sg_offset_p = sg_offset;
2409 
2410 		mr->meta_ndescs = j;
2411 		mr->meta_length = mr->ibmr.length - mr->data_length;
2412 	}
2413 
2414 	return i + j;
2415 }
2416 
2417 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2418 {
2419 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2420 	__be64 *descs;
2421 
2422 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2423 		return -ENOMEM;
2424 
2425 	descs = mr->descs;
2426 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2427 
2428 	return 0;
2429 }
2430 
2431 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2432 {
2433 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2434 	__be64 *descs;
2435 
2436 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2437 		return -ENOMEM;
2438 
2439 	descs = mr->descs;
2440 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2441 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2442 
2443 	return 0;
2444 }
2445 
2446 static int
2447 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2448 			 int data_sg_nents, unsigned int *data_sg_offset,
2449 			 struct scatterlist *meta_sg, int meta_sg_nents,
2450 			 unsigned int *meta_sg_offset)
2451 {
2452 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2453 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2454 	int n;
2455 
2456 	pi_mr->mmkey.ndescs = 0;
2457 	pi_mr->meta_ndescs = 0;
2458 	pi_mr->meta_length = 0;
2459 
2460 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2461 				   pi_mr->desc_size * pi_mr->max_descs,
2462 				   DMA_TO_DEVICE);
2463 
2464 	pi_mr->ibmr.page_size = ibmr->page_size;
2465 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2466 			   mlx5_set_page);
2467 	if (n != data_sg_nents)
2468 		return n;
2469 
2470 	pi_mr->data_iova = pi_mr->ibmr.iova;
2471 	pi_mr->data_length = pi_mr->ibmr.length;
2472 	pi_mr->ibmr.length = pi_mr->data_length;
2473 	ibmr->length = pi_mr->data_length;
2474 
2475 	if (meta_sg_nents) {
2476 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2477 		u64 iova = pi_mr->data_iova;
2478 
2479 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2480 				    meta_sg_offset, mlx5_set_page_pi);
2481 
2482 		pi_mr->meta_length = pi_mr->ibmr.length;
2483 		/*
2484 		 * PI address for the HW is the offset of the metadata address
2485 		 * relative to the first data page address.
2486 		 * It equals to first data page address + size of data pages +
2487 		 * metadata offset at the first metadata page
2488 		 */
2489 		pi_mr->pi_iova = (iova & page_mask) +
2490 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2491 				 (pi_mr->ibmr.iova & ~page_mask);
2492 		/*
2493 		 * In order to use one MTT MR for data and metadata, we register
2494 		 * also the gaps between the end of the data and the start of
2495 		 * the metadata (the sig MR will verify that the HW will access
2496 		 * to right addresses). This mapping is safe because we use
2497 		 * internal mkey for the registration.
2498 		 */
2499 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2500 		pi_mr->ibmr.iova = iova;
2501 		ibmr->length += pi_mr->meta_length;
2502 	}
2503 
2504 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2505 				      pi_mr->desc_size * pi_mr->max_descs,
2506 				      DMA_TO_DEVICE);
2507 
2508 	return n;
2509 }
2510 
2511 static int
2512 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2513 			 int data_sg_nents, unsigned int *data_sg_offset,
2514 			 struct scatterlist *meta_sg, int meta_sg_nents,
2515 			 unsigned int *meta_sg_offset)
2516 {
2517 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2518 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2519 	int n;
2520 
2521 	pi_mr->mmkey.ndescs = 0;
2522 	pi_mr->meta_ndescs = 0;
2523 	pi_mr->meta_length = 0;
2524 
2525 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2526 				   pi_mr->desc_size * pi_mr->max_descs,
2527 				   DMA_TO_DEVICE);
2528 
2529 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2530 			       meta_sg, meta_sg_nents, meta_sg_offset);
2531 
2532 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2533 				      pi_mr->desc_size * pi_mr->max_descs,
2534 				      DMA_TO_DEVICE);
2535 
2536 	/* This is zero-based memory region */
2537 	pi_mr->data_iova = 0;
2538 	pi_mr->ibmr.iova = 0;
2539 	pi_mr->pi_iova = pi_mr->data_length;
2540 	ibmr->length = pi_mr->ibmr.length;
2541 
2542 	return n;
2543 }
2544 
2545 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2546 			 int data_sg_nents, unsigned int *data_sg_offset,
2547 			 struct scatterlist *meta_sg, int meta_sg_nents,
2548 			 unsigned int *meta_sg_offset)
2549 {
2550 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2551 	struct mlx5_ib_mr *pi_mr = NULL;
2552 	int n;
2553 
2554 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2555 
2556 	mr->mmkey.ndescs = 0;
2557 	mr->data_length = 0;
2558 	mr->data_iova = 0;
2559 	mr->meta_ndescs = 0;
2560 	mr->pi_iova = 0;
2561 	/*
2562 	 * As a performance optimization, if possible, there is no need to
2563 	 * perform UMR operation to register the data/metadata buffers.
2564 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2565 	 * Fallback to UMR only in case of a failure.
2566 	 */
2567 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2568 				    data_sg_offset, meta_sg, meta_sg_nents,
2569 				    meta_sg_offset);
2570 	if (n == data_sg_nents + meta_sg_nents)
2571 		goto out;
2572 	/*
2573 	 * As a performance optimization, if possible, there is no need to map
2574 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2575 	 * descriptors and fallback to KLM only in case of a failure.
2576 	 * It's more efficient for the HW to work with MTT descriptors
2577 	 * (especially in high load).
2578 	 * Use KLM (indirect access) only if it's mandatory.
2579 	 */
2580 	pi_mr = mr->mtt_mr;
2581 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2582 				     data_sg_offset, meta_sg, meta_sg_nents,
2583 				     meta_sg_offset);
2584 	if (n == data_sg_nents + meta_sg_nents)
2585 		goto out;
2586 
2587 	pi_mr = mr->klm_mr;
2588 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2589 				     data_sg_offset, meta_sg, meta_sg_nents,
2590 				     meta_sg_offset);
2591 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2592 		return -ENOMEM;
2593 
2594 out:
2595 	/* This is zero-based memory region */
2596 	ibmr->iova = 0;
2597 	mr->pi_mr = pi_mr;
2598 	if (pi_mr)
2599 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2600 	else
2601 		ibmr->sig_attrs->meta_length = mr->meta_length;
2602 
2603 	return 0;
2604 }
2605 
2606 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2607 		      unsigned int *sg_offset)
2608 {
2609 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2610 	int n;
2611 
2612 	mr->mmkey.ndescs = 0;
2613 
2614 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2615 				   mr->desc_size * mr->max_descs,
2616 				   DMA_TO_DEVICE);
2617 
2618 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2619 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2620 				       NULL);
2621 	else
2622 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2623 				mlx5_set_page);
2624 
2625 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2626 				      mr->desc_size * mr->max_descs,
2627 				      DMA_TO_DEVICE);
2628 
2629 	return n;
2630 }
2631