1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem.h> 43 #include <rdma/ib_umem_odp.h> 44 #include <rdma/ib_verbs.h> 45 #include "mlx5_ib.h" 46 47 /* 48 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 49 * work on kernel modules memory 50 */ 51 void *xlt_emergency_page; 52 static DEFINE_MUTEX(xlt_emergency_page_mutex); 53 54 enum { 55 MAX_PENDING_REG_MR = 8, 56 }; 57 58 #define MLX5_UMR_ALIGN 2048 59 60 static void 61 create_mkey_callback(int status, struct mlx5_async_work *context); 62 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 63 u64 iova, int access_flags, 64 unsigned int page_size, bool populate); 65 66 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 67 struct ib_pd *pd) 68 { 69 struct mlx5_ib_dev *dev = to_mdev(pd->device); 70 71 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 72 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 73 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 74 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 75 MLX5_SET(mkc, mkc, lr, 1); 76 77 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 78 MLX5_SET(mkc, mkc, relaxed_ordering_write, 79 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 80 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 81 MLX5_SET(mkc, mkc, relaxed_ordering_read, 82 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 83 84 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 85 MLX5_SET(mkc, mkc, qpn, 0xffffff); 86 MLX5_SET64(mkc, mkc, start_addr, start_addr); 87 } 88 89 static void 90 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 91 u32 *in) 92 { 93 u8 key = atomic_inc_return(&dev->mkey_var); 94 void *mkc; 95 96 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 97 MLX5_SET(mkc, mkc, mkey_7_0, key); 98 mkey->key = key; 99 } 100 101 static int 102 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 103 u32 *in, int inlen) 104 { 105 assign_mkey_variant(dev, mkey, in); 106 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 107 } 108 109 static int 110 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 111 struct mlx5_core_mkey *mkey, 112 struct mlx5_async_ctx *async_ctx, 113 u32 *in, int inlen, u32 *out, int outlen, 114 struct mlx5_async_work *context) 115 { 116 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 117 assign_mkey_variant(dev, mkey, in); 118 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 119 create_mkey_callback, context); 120 } 121 122 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 123 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 124 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 126 127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 128 { 129 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 130 } 131 132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 133 { 134 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 135 136 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 137 } 138 139 static void create_mkey_callback(int status, struct mlx5_async_work *context) 140 { 141 struct mlx5_ib_mr *mr = 142 container_of(context, struct mlx5_ib_mr, cb_work); 143 struct mlx5_cache_ent *ent = mr->cache_ent; 144 struct mlx5_ib_dev *dev = ent->dev; 145 unsigned long flags; 146 147 if (status) { 148 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 149 kfree(mr); 150 spin_lock_irqsave(&ent->lock, flags); 151 ent->pending--; 152 WRITE_ONCE(dev->fill_delay, 1); 153 spin_unlock_irqrestore(&ent->lock, flags); 154 mod_timer(&dev->delay_timer, jiffies + HZ); 155 return; 156 } 157 158 mr->mmkey.type = MLX5_MKEY_MR; 159 mr->mmkey.key |= mlx5_idx_to_mkey( 160 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 161 init_waitqueue_head(&mr->mmkey.wait); 162 163 WRITE_ONCE(dev->cache.last_add, jiffies); 164 165 spin_lock_irqsave(&ent->lock, flags); 166 list_add_tail(&mr->list, &ent->head); 167 ent->available_mrs++; 168 ent->total_mrs++; 169 /* If we are doing fill_to_high_water then keep going. */ 170 queue_adjust_cache_locked(ent); 171 ent->pending--; 172 spin_unlock_irqrestore(&ent->lock, flags); 173 } 174 175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 176 { 177 struct mlx5_ib_mr *mr; 178 179 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 180 if (!mr) 181 return NULL; 182 mr->cache_ent = ent; 183 184 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 185 MLX5_SET(mkc, mkc, free, 1); 186 MLX5_SET(mkc, mkc, umr_en, 1); 187 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 188 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 189 190 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 191 MLX5_SET(mkc, mkc, log_page_size, ent->page); 192 return mr; 193 } 194 195 /* Asynchronously schedule new MRs to be populated in the cache. */ 196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 197 { 198 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 199 struct mlx5_ib_mr *mr; 200 void *mkc; 201 u32 *in; 202 int err = 0; 203 int i; 204 205 in = kzalloc(inlen, GFP_KERNEL); 206 if (!in) 207 return -ENOMEM; 208 209 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 210 for (i = 0; i < num; i++) { 211 mr = alloc_cache_mr(ent, mkc); 212 if (!mr) { 213 err = -ENOMEM; 214 break; 215 } 216 spin_lock_irq(&ent->lock); 217 if (ent->pending >= MAX_PENDING_REG_MR) { 218 err = -EAGAIN; 219 spin_unlock_irq(&ent->lock); 220 kfree(mr); 221 break; 222 } 223 ent->pending++; 224 spin_unlock_irq(&ent->lock); 225 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 226 &ent->dev->async_ctx, in, inlen, 227 mr->out, sizeof(mr->out), 228 &mr->cb_work); 229 if (err) { 230 spin_lock_irq(&ent->lock); 231 ent->pending--; 232 spin_unlock_irq(&ent->lock); 233 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 234 kfree(mr); 235 break; 236 } 237 } 238 239 kfree(in); 240 return err; 241 } 242 243 /* Synchronously create a MR in the cache */ 244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 245 { 246 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 247 struct mlx5_ib_mr *mr; 248 void *mkc; 249 u32 *in; 250 int err; 251 252 in = kzalloc(inlen, GFP_KERNEL); 253 if (!in) 254 return ERR_PTR(-ENOMEM); 255 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 256 257 mr = alloc_cache_mr(ent, mkc); 258 if (!mr) { 259 err = -ENOMEM; 260 goto free_in; 261 } 262 263 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 264 if (err) 265 goto free_mr; 266 267 mr->mmkey.type = MLX5_MKEY_MR; 268 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 269 spin_lock_irq(&ent->lock); 270 ent->total_mrs++; 271 spin_unlock_irq(&ent->lock); 272 kfree(in); 273 return mr; 274 free_mr: 275 kfree(mr); 276 free_in: 277 kfree(in); 278 return ERR_PTR(err); 279 } 280 281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 282 { 283 struct mlx5_ib_mr *mr; 284 285 lockdep_assert_held(&ent->lock); 286 if (list_empty(&ent->head)) 287 return; 288 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 289 list_del(&mr->list); 290 ent->available_mrs--; 291 ent->total_mrs--; 292 spin_unlock_irq(&ent->lock); 293 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 294 kfree(mr); 295 spin_lock_irq(&ent->lock); 296 } 297 298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 299 bool limit_fill) 300 { 301 int err; 302 303 lockdep_assert_held(&ent->lock); 304 305 while (true) { 306 if (limit_fill) 307 target = ent->limit * 2; 308 if (target == ent->available_mrs + ent->pending) 309 return 0; 310 if (target > ent->available_mrs + ent->pending) { 311 u32 todo = target - (ent->available_mrs + ent->pending); 312 313 spin_unlock_irq(&ent->lock); 314 err = add_keys(ent, todo); 315 if (err == -EAGAIN) 316 usleep_range(3000, 5000); 317 spin_lock_irq(&ent->lock); 318 if (err) { 319 if (err != -EAGAIN) 320 return err; 321 } else 322 return 0; 323 } else { 324 remove_cache_mr_locked(ent); 325 } 326 } 327 } 328 329 static ssize_t size_write(struct file *filp, const char __user *buf, 330 size_t count, loff_t *pos) 331 { 332 struct mlx5_cache_ent *ent = filp->private_data; 333 u32 target; 334 int err; 335 336 err = kstrtou32_from_user(buf, count, 0, &target); 337 if (err) 338 return err; 339 340 /* 341 * Target is the new value of total_mrs the user requests, however we 342 * cannot free MRs that are in use. Compute the target value for 343 * available_mrs. 344 */ 345 spin_lock_irq(&ent->lock); 346 if (target < ent->total_mrs - ent->available_mrs) { 347 err = -EINVAL; 348 goto err_unlock; 349 } 350 target = target - (ent->total_mrs - ent->available_mrs); 351 if (target < ent->limit || target > ent->limit*2) { 352 err = -EINVAL; 353 goto err_unlock; 354 } 355 err = resize_available_mrs(ent, target, false); 356 if (err) 357 goto err_unlock; 358 spin_unlock_irq(&ent->lock); 359 360 return count; 361 362 err_unlock: 363 spin_unlock_irq(&ent->lock); 364 return err; 365 } 366 367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 368 loff_t *pos) 369 { 370 struct mlx5_cache_ent *ent = filp->private_data; 371 char lbuf[20]; 372 int err; 373 374 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 375 if (err < 0) 376 return err; 377 378 return simple_read_from_buffer(buf, count, pos, lbuf, err); 379 } 380 381 static const struct file_operations size_fops = { 382 .owner = THIS_MODULE, 383 .open = simple_open, 384 .write = size_write, 385 .read = size_read, 386 }; 387 388 static ssize_t limit_write(struct file *filp, const char __user *buf, 389 size_t count, loff_t *pos) 390 { 391 struct mlx5_cache_ent *ent = filp->private_data; 392 u32 var; 393 int err; 394 395 err = kstrtou32_from_user(buf, count, 0, &var); 396 if (err) 397 return err; 398 399 /* 400 * Upon set we immediately fill the cache to high water mark implied by 401 * the limit. 402 */ 403 spin_lock_irq(&ent->lock); 404 ent->limit = var; 405 err = resize_available_mrs(ent, 0, true); 406 spin_unlock_irq(&ent->lock); 407 if (err) 408 return err; 409 return count; 410 } 411 412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 413 loff_t *pos) 414 { 415 struct mlx5_cache_ent *ent = filp->private_data; 416 char lbuf[20]; 417 int err; 418 419 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 420 if (err < 0) 421 return err; 422 423 return simple_read_from_buffer(buf, count, pos, lbuf, err); 424 } 425 426 static const struct file_operations limit_fops = { 427 .owner = THIS_MODULE, 428 .open = simple_open, 429 .write = limit_write, 430 .read = limit_read, 431 }; 432 433 static bool someone_adding(struct mlx5_mr_cache *cache) 434 { 435 unsigned int i; 436 437 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 438 struct mlx5_cache_ent *ent = &cache->ent[i]; 439 bool ret; 440 441 spin_lock_irq(&ent->lock); 442 ret = ent->available_mrs < ent->limit; 443 spin_unlock_irq(&ent->lock); 444 if (ret) 445 return true; 446 } 447 return false; 448 } 449 450 /* 451 * Check if the bucket is outside the high/low water mark and schedule an async 452 * update. The cache refill has hysteresis, once the low water mark is hit it is 453 * refilled up to the high mark. 454 */ 455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 456 { 457 lockdep_assert_held(&ent->lock); 458 459 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 460 return; 461 if (ent->available_mrs < ent->limit) { 462 ent->fill_to_high_water = true; 463 queue_work(ent->dev->cache.wq, &ent->work); 464 } else if (ent->fill_to_high_water && 465 ent->available_mrs + ent->pending < 2 * ent->limit) { 466 /* 467 * Once we start populating due to hitting a low water mark 468 * continue until we pass the high water mark. 469 */ 470 queue_work(ent->dev->cache.wq, &ent->work); 471 } else if (ent->available_mrs == 2 * ent->limit) { 472 ent->fill_to_high_water = false; 473 } else if (ent->available_mrs > 2 * ent->limit) { 474 /* Queue deletion of excess entries */ 475 ent->fill_to_high_water = false; 476 if (ent->pending) 477 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 478 msecs_to_jiffies(1000)); 479 else 480 queue_work(ent->dev->cache.wq, &ent->work); 481 } 482 } 483 484 static void __cache_work_func(struct mlx5_cache_ent *ent) 485 { 486 struct mlx5_ib_dev *dev = ent->dev; 487 struct mlx5_mr_cache *cache = &dev->cache; 488 int err; 489 490 spin_lock_irq(&ent->lock); 491 if (ent->disabled) 492 goto out; 493 494 if (ent->fill_to_high_water && 495 ent->available_mrs + ent->pending < 2 * ent->limit && 496 !READ_ONCE(dev->fill_delay)) { 497 spin_unlock_irq(&ent->lock); 498 err = add_keys(ent, 1); 499 spin_lock_irq(&ent->lock); 500 if (ent->disabled) 501 goto out; 502 if (err) { 503 /* 504 * EAGAIN only happens if pending is positive, so we 505 * will be rescheduled from reg_mr_callback(). The only 506 * failure path here is ENOMEM. 507 */ 508 if (err != -EAGAIN) { 509 mlx5_ib_warn( 510 dev, 511 "command failed order %d, err %d\n", 512 ent->order, err); 513 queue_delayed_work(cache->wq, &ent->dwork, 514 msecs_to_jiffies(1000)); 515 } 516 } 517 } else if (ent->available_mrs > 2 * ent->limit) { 518 bool need_delay; 519 520 /* 521 * The remove_cache_mr() logic is performed as garbage 522 * collection task. Such task is intended to be run when no 523 * other active processes are running. 524 * 525 * The need_resched() will return TRUE if there are user tasks 526 * to be activated in near future. 527 * 528 * In such case, we don't execute remove_cache_mr() and postpone 529 * the garbage collection work to try to run in next cycle, in 530 * order to free CPU resources to other tasks. 531 */ 532 spin_unlock_irq(&ent->lock); 533 need_delay = need_resched() || someone_adding(cache) || 534 time_after(jiffies, 535 READ_ONCE(cache->last_add) + 300 * HZ); 536 spin_lock_irq(&ent->lock); 537 if (ent->disabled) 538 goto out; 539 if (need_delay) 540 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 541 remove_cache_mr_locked(ent); 542 queue_adjust_cache_locked(ent); 543 } 544 out: 545 spin_unlock_irq(&ent->lock); 546 } 547 548 static void delayed_cache_work_func(struct work_struct *work) 549 { 550 struct mlx5_cache_ent *ent; 551 552 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 553 __cache_work_func(ent); 554 } 555 556 static void cache_work_func(struct work_struct *work) 557 { 558 struct mlx5_cache_ent *ent; 559 560 ent = container_of(work, struct mlx5_cache_ent, work); 561 __cache_work_func(ent); 562 } 563 564 /* Allocate a special entry from the cache */ 565 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 566 unsigned int entry, int access_flags) 567 { 568 struct mlx5_mr_cache *cache = &dev->cache; 569 struct mlx5_cache_ent *ent; 570 struct mlx5_ib_mr *mr; 571 572 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 573 entry >= ARRAY_SIZE(cache->ent))) 574 return ERR_PTR(-EINVAL); 575 576 /* Matches access in alloc_cache_mr() */ 577 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 578 return ERR_PTR(-EOPNOTSUPP); 579 580 ent = &cache->ent[entry]; 581 spin_lock_irq(&ent->lock); 582 if (list_empty(&ent->head)) { 583 spin_unlock_irq(&ent->lock); 584 mr = create_cache_mr(ent); 585 if (IS_ERR(mr)) 586 return mr; 587 } else { 588 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 589 list_del(&mr->list); 590 ent->available_mrs--; 591 queue_adjust_cache_locked(ent); 592 spin_unlock_irq(&ent->lock); 593 } 594 mr->access_flags = access_flags; 595 return mr; 596 } 597 598 /* Return a MR already available in the cache */ 599 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 600 { 601 struct mlx5_ib_dev *dev = req_ent->dev; 602 struct mlx5_ib_mr *mr = NULL; 603 struct mlx5_cache_ent *ent = req_ent; 604 605 /* Try larger MR pools from the cache to satisfy the allocation */ 606 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 607 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 608 ent - dev->cache.ent); 609 610 spin_lock_irq(&ent->lock); 611 if (!list_empty(&ent->head)) { 612 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 613 list); 614 list_del(&mr->list); 615 ent->available_mrs--; 616 queue_adjust_cache_locked(ent); 617 spin_unlock_irq(&ent->lock); 618 break; 619 } 620 queue_adjust_cache_locked(ent); 621 spin_unlock_irq(&ent->lock); 622 } 623 624 if (!mr) 625 req_ent->miss++; 626 627 return mr; 628 } 629 630 static void detach_mr_from_cache(struct mlx5_ib_mr *mr) 631 { 632 struct mlx5_cache_ent *ent = mr->cache_ent; 633 634 mr->cache_ent = NULL; 635 spin_lock_irq(&ent->lock); 636 ent->total_mrs--; 637 spin_unlock_irq(&ent->lock); 638 } 639 640 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 641 { 642 struct mlx5_cache_ent *ent = mr->cache_ent; 643 644 if (!ent) 645 return; 646 647 if (mlx5_mr_cache_invalidate(mr)) { 648 detach_mr_from_cache(mr); 649 destroy_mkey(dev, mr); 650 kfree(mr); 651 return; 652 } 653 654 spin_lock_irq(&ent->lock); 655 list_add_tail(&mr->list, &ent->head); 656 ent->available_mrs++; 657 queue_adjust_cache_locked(ent); 658 spin_unlock_irq(&ent->lock); 659 } 660 661 static void clean_keys(struct mlx5_ib_dev *dev, int c) 662 { 663 struct mlx5_mr_cache *cache = &dev->cache; 664 struct mlx5_cache_ent *ent = &cache->ent[c]; 665 struct mlx5_ib_mr *tmp_mr; 666 struct mlx5_ib_mr *mr; 667 LIST_HEAD(del_list); 668 669 cancel_delayed_work(&ent->dwork); 670 while (1) { 671 spin_lock_irq(&ent->lock); 672 if (list_empty(&ent->head)) { 673 spin_unlock_irq(&ent->lock); 674 break; 675 } 676 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 677 list_move(&mr->list, &del_list); 678 ent->available_mrs--; 679 ent->total_mrs--; 680 spin_unlock_irq(&ent->lock); 681 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 682 } 683 684 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 685 list_del(&mr->list); 686 kfree(mr); 687 } 688 } 689 690 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 691 { 692 if (!mlx5_debugfs_root || dev->is_rep) 693 return; 694 695 debugfs_remove_recursive(dev->cache.root); 696 dev->cache.root = NULL; 697 } 698 699 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 700 { 701 struct mlx5_mr_cache *cache = &dev->cache; 702 struct mlx5_cache_ent *ent; 703 struct dentry *dir; 704 int i; 705 706 if (!mlx5_debugfs_root || dev->is_rep) 707 return; 708 709 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 710 711 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 712 ent = &cache->ent[i]; 713 sprintf(ent->name, "%d", ent->order); 714 dir = debugfs_create_dir(ent->name, cache->root); 715 debugfs_create_file("size", 0600, dir, ent, &size_fops); 716 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 717 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 718 debugfs_create_u32("miss", 0600, dir, &ent->miss); 719 } 720 } 721 722 static void delay_time_func(struct timer_list *t) 723 { 724 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 725 726 WRITE_ONCE(dev->fill_delay, 0); 727 } 728 729 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 730 { 731 struct mlx5_mr_cache *cache = &dev->cache; 732 struct mlx5_cache_ent *ent; 733 int i; 734 735 mutex_init(&dev->slow_path_mutex); 736 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 737 if (!cache->wq) { 738 mlx5_ib_warn(dev, "failed to create work queue\n"); 739 return -ENOMEM; 740 } 741 742 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 743 timer_setup(&dev->delay_timer, delay_time_func, 0); 744 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 745 ent = &cache->ent[i]; 746 INIT_LIST_HEAD(&ent->head); 747 spin_lock_init(&ent->lock); 748 ent->order = i + 2; 749 ent->dev = dev; 750 ent->limit = 0; 751 752 INIT_WORK(&ent->work, cache_work_func); 753 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 754 755 if (i > MR_CACHE_LAST_STD_ENTRY) { 756 mlx5_odp_init_mr_cache_entry(ent); 757 continue; 758 } 759 760 if (ent->order > mr_cache_max_order(dev)) 761 continue; 762 763 ent->page = PAGE_SHIFT; 764 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 765 MLX5_IB_UMR_OCTOWORD; 766 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 767 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && 768 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 769 mlx5_ib_can_load_pas_with_umr(dev, 0)) 770 ent->limit = dev->mdev->profile->mr_cache[i].limit; 771 else 772 ent->limit = 0; 773 spin_lock_irq(&ent->lock); 774 queue_adjust_cache_locked(ent); 775 spin_unlock_irq(&ent->lock); 776 } 777 778 mlx5_mr_cache_debugfs_init(dev); 779 780 return 0; 781 } 782 783 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 784 { 785 unsigned int i; 786 787 if (!dev->cache.wq) 788 return 0; 789 790 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 791 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 792 793 spin_lock_irq(&ent->lock); 794 ent->disabled = true; 795 spin_unlock_irq(&ent->lock); 796 cancel_work_sync(&ent->work); 797 cancel_delayed_work_sync(&ent->dwork); 798 } 799 800 mlx5_mr_cache_debugfs_cleanup(dev); 801 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 802 803 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 804 clean_keys(dev, i); 805 806 destroy_workqueue(dev->cache.wq); 807 del_timer_sync(&dev->delay_timer); 808 809 return 0; 810 } 811 812 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 813 { 814 struct mlx5_ib_dev *dev = to_mdev(pd->device); 815 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 816 struct mlx5_ib_mr *mr; 817 void *mkc; 818 u32 *in; 819 int err; 820 821 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 822 if (!mr) 823 return ERR_PTR(-ENOMEM); 824 825 in = kzalloc(inlen, GFP_KERNEL); 826 if (!in) { 827 err = -ENOMEM; 828 goto err_free; 829 } 830 831 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 832 833 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 834 MLX5_SET(mkc, mkc, length64, 1); 835 set_mkc_access_pd_addr_fields(mkc, acc, 0, pd); 836 837 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 838 if (err) 839 goto err_in; 840 841 kfree(in); 842 mr->mmkey.type = MLX5_MKEY_MR; 843 mr->ibmr.lkey = mr->mmkey.key; 844 mr->ibmr.rkey = mr->mmkey.key; 845 mr->umem = NULL; 846 847 return &mr->ibmr; 848 849 err_in: 850 kfree(in); 851 852 err_free: 853 kfree(mr); 854 855 return ERR_PTR(err); 856 } 857 858 static int get_octo_len(u64 addr, u64 len, int page_shift) 859 { 860 u64 page_size = 1ULL << page_shift; 861 u64 offset; 862 int npages; 863 864 offset = addr & (page_size - 1); 865 npages = ALIGN(len + offset, page_size) >> page_shift; 866 return (npages + 1) / 2; 867 } 868 869 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 870 { 871 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 872 return MR_CACHE_LAST_STD_ENTRY + 2; 873 return MLX5_MAX_UMR_SHIFT; 874 } 875 876 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 877 { 878 struct mlx5_ib_umr_context *context = 879 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 880 881 context->status = wc->status; 882 complete(&context->done); 883 } 884 885 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 886 { 887 context->cqe.done = mlx5_ib_umr_done; 888 context->status = -1; 889 init_completion(&context->done); 890 } 891 892 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 893 struct mlx5_umr_wr *umrwr) 894 { 895 struct umr_common *umrc = &dev->umrc; 896 const struct ib_send_wr *bad; 897 int err; 898 struct mlx5_ib_umr_context umr_context; 899 900 mlx5_ib_init_umr_context(&umr_context); 901 umrwr->wr.wr_cqe = &umr_context.cqe; 902 903 down(&umrc->sem); 904 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 905 if (err) { 906 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 907 } else { 908 wait_for_completion(&umr_context.done); 909 if (umr_context.status != IB_WC_SUCCESS) { 910 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 911 umr_context.status); 912 err = -EFAULT; 913 } 914 } 915 up(&umrc->sem); 916 return err; 917 } 918 919 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 920 unsigned int order) 921 { 922 struct mlx5_mr_cache *cache = &dev->cache; 923 924 if (order < cache->ent[0].order) 925 return &cache->ent[0]; 926 order = order - cache->ent[0].order; 927 if (order > MR_CACHE_LAST_STD_ENTRY) 928 return NULL; 929 return &cache->ent[order]; 930 } 931 932 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 933 u64 length, int access_flags) 934 { 935 mr->ibmr.lkey = mr->mmkey.key; 936 mr->ibmr.rkey = mr->mmkey.key; 937 mr->ibmr.length = length; 938 mr->ibmr.device = &dev->ib_dev; 939 mr->access_flags = access_flags; 940 } 941 942 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 943 u64 iova) 944 { 945 /* 946 * The alignment of iova has already been checked upon entering 947 * UVERBS_METHOD_REG_DMABUF_MR 948 */ 949 umem->iova = iova; 950 return PAGE_SIZE; 951 } 952 953 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 954 struct ib_umem *umem, u64 iova, 955 int access_flags) 956 { 957 struct mlx5_ib_dev *dev = to_mdev(pd->device); 958 struct mlx5_cache_ent *ent; 959 struct mlx5_ib_mr *mr; 960 unsigned int page_size; 961 962 if (umem->is_dmabuf) 963 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 964 else 965 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 966 0, iova); 967 if (WARN_ON(!page_size)) 968 return ERR_PTR(-EINVAL); 969 ent = mr_cache_ent_from_order( 970 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size))); 971 /* 972 * Matches access in alloc_cache_mr(). If the MR can't come from the 973 * cache then synchronously create an uncached one. 974 */ 975 if (!ent || ent->limit == 0 || 976 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) { 977 mutex_lock(&dev->slow_path_mutex); 978 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 979 mutex_unlock(&dev->slow_path_mutex); 980 return mr; 981 } 982 983 mr = get_cache_mr(ent); 984 if (!mr) { 985 mr = create_cache_mr(ent); 986 /* 987 * The above already tried to do the same stuff as reg_create(), 988 * no reason to try it again. 989 */ 990 if (IS_ERR(mr)) 991 return mr; 992 } 993 994 mr->ibmr.pd = pd; 995 mr->umem = umem; 996 mr->access_flags = access_flags; 997 mr->desc_size = sizeof(struct mlx5_mtt); 998 mr->mmkey.iova = iova; 999 mr->mmkey.size = umem->length; 1000 mr->mmkey.pd = to_mpd(pd)->pdn; 1001 mr->page_shift = order_base_2(page_size); 1002 set_mr_fields(dev, mr, umem->length, access_flags); 1003 1004 return mr; 1005 } 1006 1007 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 1008 MLX5_UMR_MTT_ALIGNMENT) 1009 #define MLX5_SPARE_UMR_CHUNK 0x10000 1010 1011 /* 1012 * Allocate a temporary buffer to hold the per-page information to transfer to 1013 * HW. For efficiency this should be as large as it can be, but buffer 1014 * allocation failure is not allowed, so try smaller sizes. 1015 */ 1016 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 1017 { 1018 const size_t xlt_chunk_align = 1019 MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size); 1020 size_t size; 1021 void *res = NULL; 1022 1023 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1024 1025 /* 1026 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1027 * allocation can't trigger any kind of reclaim. 1028 */ 1029 might_sleep(); 1030 1031 gfp_mask |= __GFP_ZERO; 1032 1033 /* 1034 * If the system already has a suitable high order page then just use 1035 * that, but don't try hard to create one. This max is about 1M, so a 1036 * free x86 huge page will satisfy it. 1037 */ 1038 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1039 MLX5_MAX_UMR_CHUNK); 1040 *nents = size / ent_size; 1041 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1042 get_order(size)); 1043 if (res) 1044 return res; 1045 1046 if (size > MLX5_SPARE_UMR_CHUNK) { 1047 size = MLX5_SPARE_UMR_CHUNK; 1048 *nents = get_order(size) / ent_size; 1049 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1050 get_order(size)); 1051 if (res) 1052 return res; 1053 } 1054 1055 *nents = PAGE_SIZE / ent_size; 1056 res = (void *)__get_free_page(gfp_mask); 1057 if (res) 1058 return res; 1059 1060 mutex_lock(&xlt_emergency_page_mutex); 1061 memset(xlt_emergency_page, 0, PAGE_SIZE); 1062 return xlt_emergency_page; 1063 } 1064 1065 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1066 { 1067 if (xlt == xlt_emergency_page) { 1068 mutex_unlock(&xlt_emergency_page_mutex); 1069 return; 1070 } 1071 1072 free_pages((unsigned long)xlt, get_order(length)); 1073 } 1074 1075 /* 1076 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1077 * submission. 1078 */ 1079 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1080 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1081 size_t nents, size_t ent_size, 1082 unsigned int flags) 1083 { 1084 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1085 struct device *ddev = &dev->mdev->pdev->dev; 1086 dma_addr_t dma; 1087 void *xlt; 1088 1089 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1090 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1091 GFP_KERNEL); 1092 sg->length = nents * ent_size; 1093 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1094 if (dma_mapping_error(ddev, dma)) { 1095 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1096 mlx5_ib_free_xlt(xlt, sg->length); 1097 return NULL; 1098 } 1099 sg->addr = dma; 1100 sg->lkey = dev->umrc.pd->local_dma_lkey; 1101 1102 memset(wr, 0, sizeof(*wr)); 1103 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1104 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1105 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1106 wr->wr.sg_list = sg; 1107 wr->wr.num_sge = 1; 1108 wr->wr.opcode = MLX5_IB_WR_UMR; 1109 wr->pd = mr->ibmr.pd; 1110 wr->mkey = mr->mmkey.key; 1111 wr->length = mr->mmkey.size; 1112 wr->virt_addr = mr->mmkey.iova; 1113 wr->access_flags = mr->access_flags; 1114 wr->page_shift = mr->page_shift; 1115 wr->xlt_size = sg->length; 1116 return xlt; 1117 } 1118 1119 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1120 struct ib_sge *sg) 1121 { 1122 struct device *ddev = &dev->mdev->pdev->dev; 1123 1124 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1125 mlx5_ib_free_xlt(xlt, sg->length); 1126 } 1127 1128 static unsigned int xlt_wr_final_send_flags(unsigned int flags) 1129 { 1130 unsigned int res = 0; 1131 1132 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1133 res |= MLX5_IB_SEND_UMR_ENABLE_MR | 1134 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1135 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1136 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) 1137 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1138 if (flags & MLX5_IB_UPD_XLT_ADDR) 1139 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1140 return res; 1141 } 1142 1143 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1144 int page_shift, int flags) 1145 { 1146 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1147 struct device *ddev = &dev->mdev->pdev->dev; 1148 void *xlt; 1149 struct mlx5_umr_wr wr; 1150 struct ib_sge sg; 1151 int err = 0; 1152 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1153 ? sizeof(struct mlx5_klm) 1154 : sizeof(struct mlx5_mtt); 1155 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1156 const int page_mask = page_align - 1; 1157 size_t pages_mapped = 0; 1158 size_t pages_to_map = 0; 1159 size_t pages_iter; 1160 size_t size_to_map = 0; 1161 size_t orig_sg_length; 1162 1163 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1164 !umr_can_use_indirect_mkey(dev)) 1165 return -EPERM; 1166 1167 if (WARN_ON(!mr->umem->is_odp)) 1168 return -EINVAL; 1169 1170 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1171 * so we need to align the offset and length accordingly 1172 */ 1173 if (idx & page_mask) { 1174 npages += idx & page_mask; 1175 idx &= ~page_mask; 1176 } 1177 pages_to_map = ALIGN(npages, page_align); 1178 1179 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1180 if (!xlt) 1181 return -ENOMEM; 1182 pages_iter = sg.length / desc_size; 1183 orig_sg_length = sg.length; 1184 1185 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1186 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1187 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1188 1189 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1190 } 1191 1192 wr.page_shift = page_shift; 1193 1194 for (pages_mapped = 0; 1195 pages_mapped < pages_to_map && !err; 1196 pages_mapped += pages_iter, idx += pages_iter) { 1197 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1198 size_to_map = npages * desc_size; 1199 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1200 DMA_TO_DEVICE); 1201 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1202 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1203 DMA_TO_DEVICE); 1204 1205 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1206 1207 if (pages_mapped + pages_iter >= pages_to_map) 1208 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1209 1210 wr.offset = idx * desc_size; 1211 wr.xlt_size = sg.length; 1212 1213 err = mlx5_ib_post_send_wait(dev, &wr); 1214 } 1215 sg.length = orig_sg_length; 1216 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1217 return err; 1218 } 1219 1220 /* 1221 * Send the DMA list to the HW for a normal MR using UMR. 1222 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP 1223 * flag may be used. 1224 */ 1225 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags) 1226 { 1227 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1228 struct device *ddev = &dev->mdev->pdev->dev; 1229 struct ib_block_iter biter; 1230 struct mlx5_mtt *cur_mtt; 1231 struct mlx5_umr_wr wr; 1232 size_t orig_sg_length; 1233 struct mlx5_mtt *mtt; 1234 size_t final_size; 1235 struct ib_sge sg; 1236 int err = 0; 1237 1238 if (WARN_ON(mr->umem->is_odp)) 1239 return -EINVAL; 1240 1241 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, 1242 ib_umem_num_dma_blocks(mr->umem, 1243 1 << mr->page_shift), 1244 sizeof(*mtt), flags); 1245 if (!mtt) 1246 return -ENOMEM; 1247 orig_sg_length = sg.length; 1248 1249 cur_mtt = mtt; 1250 rdma_for_each_block (mr->umem->sg_head.sgl, &biter, mr->umem->nmap, 1251 BIT(mr->page_shift)) { 1252 if (cur_mtt == (void *)mtt + sg.length) { 1253 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1254 DMA_TO_DEVICE); 1255 err = mlx5_ib_post_send_wait(dev, &wr); 1256 if (err) 1257 goto err; 1258 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1259 DMA_TO_DEVICE); 1260 wr.offset += sg.length; 1261 cur_mtt = mtt; 1262 } 1263 1264 cur_mtt->ptag = 1265 cpu_to_be64(rdma_block_iter_dma_address(&biter) | 1266 MLX5_IB_MTT_PRESENT); 1267 1268 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP)) 1269 cur_mtt->ptag = 0; 1270 1271 cur_mtt++; 1272 } 1273 1274 final_size = (void *)cur_mtt - (void *)mtt; 1275 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT); 1276 memset(cur_mtt, 0, sg.length - final_size); 1277 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1278 wr.xlt_size = sg.length; 1279 1280 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE); 1281 err = mlx5_ib_post_send_wait(dev, &wr); 1282 1283 err: 1284 sg.length = orig_sg_length; 1285 mlx5_ib_unmap_free_xlt(dev, mtt, &sg); 1286 return err; 1287 } 1288 1289 /* 1290 * If ibmr is NULL it will be allocated by reg_create. 1291 * Else, the given ibmr will be used. 1292 */ 1293 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1294 u64 iova, int access_flags, 1295 unsigned int page_size, bool populate) 1296 { 1297 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1298 struct mlx5_ib_mr *mr; 1299 __be64 *pas; 1300 void *mkc; 1301 int inlen; 1302 u32 *in; 1303 int err; 1304 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1305 1306 if (!page_size) 1307 return ERR_PTR(-EINVAL); 1308 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1309 if (!mr) 1310 return ERR_PTR(-ENOMEM); 1311 1312 mr->ibmr.pd = pd; 1313 mr->access_flags = access_flags; 1314 mr->page_shift = order_base_2(page_size); 1315 1316 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1317 if (populate) 1318 inlen += sizeof(*pas) * 1319 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1320 in = kvzalloc(inlen, GFP_KERNEL); 1321 if (!in) { 1322 err = -ENOMEM; 1323 goto err_1; 1324 } 1325 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1326 if (populate) { 1327 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1328 err = -EINVAL; 1329 goto err_2; 1330 } 1331 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1332 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1333 } 1334 1335 /* The pg_access bit allows setting the access flags 1336 * in the page list submitted with the command. */ 1337 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1338 1339 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1340 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1341 populate ? pd : dev->umrc.pd); 1342 MLX5_SET(mkc, mkc, free, !populate); 1343 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1344 MLX5_SET(mkc, mkc, umr_en, 1); 1345 1346 MLX5_SET64(mkc, mkc, len, umem->length); 1347 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1348 MLX5_SET(mkc, mkc, translations_octword_size, 1349 get_octo_len(iova, umem->length, mr->page_shift)); 1350 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1351 if (populate) { 1352 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1353 get_octo_len(iova, umem->length, mr->page_shift)); 1354 } 1355 1356 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1357 if (err) { 1358 mlx5_ib_warn(dev, "create mkey failed\n"); 1359 goto err_2; 1360 } 1361 mr->mmkey.type = MLX5_MKEY_MR; 1362 mr->desc_size = sizeof(struct mlx5_mtt); 1363 mr->umem = umem; 1364 set_mr_fields(dev, mr, umem->length, access_flags); 1365 kvfree(in); 1366 1367 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1368 1369 return mr; 1370 1371 err_2: 1372 kvfree(in); 1373 err_1: 1374 kfree(mr); 1375 return ERR_PTR(err); 1376 } 1377 1378 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1379 u64 length, int acc, int mode) 1380 { 1381 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1382 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1383 struct mlx5_ib_mr *mr; 1384 void *mkc; 1385 u32 *in; 1386 int err; 1387 1388 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1389 if (!mr) 1390 return ERR_PTR(-ENOMEM); 1391 1392 in = kzalloc(inlen, GFP_KERNEL); 1393 if (!in) { 1394 err = -ENOMEM; 1395 goto err_free; 1396 } 1397 1398 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1399 1400 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1401 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1402 MLX5_SET64(mkc, mkc, len, length); 1403 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1404 1405 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1406 if (err) 1407 goto err_in; 1408 1409 kfree(in); 1410 1411 set_mr_fields(dev, mr, length, acc); 1412 1413 return &mr->ibmr; 1414 1415 err_in: 1416 kfree(in); 1417 1418 err_free: 1419 kfree(mr); 1420 1421 return ERR_PTR(err); 1422 } 1423 1424 int mlx5_ib_advise_mr(struct ib_pd *pd, 1425 enum ib_uverbs_advise_mr_advice advice, 1426 u32 flags, 1427 struct ib_sge *sg_list, 1428 u32 num_sge, 1429 struct uverbs_attr_bundle *attrs) 1430 { 1431 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1432 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1433 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1434 return -EOPNOTSUPP; 1435 1436 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1437 sg_list, num_sge); 1438 } 1439 1440 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1441 struct ib_dm_mr_attr *attr, 1442 struct uverbs_attr_bundle *attrs) 1443 { 1444 struct mlx5_ib_dm *mdm = to_mdm(dm); 1445 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1446 u64 start_addr = mdm->dev_addr + attr->offset; 1447 int mode; 1448 1449 switch (mdm->type) { 1450 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1451 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1452 return ERR_PTR(-EINVAL); 1453 1454 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1455 start_addr -= pci_resource_start(dev->pdev, 0); 1456 break; 1457 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1458 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1459 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1460 return ERR_PTR(-EINVAL); 1461 1462 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1463 break; 1464 default: 1465 return ERR_PTR(-EINVAL); 1466 } 1467 1468 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1469 attr->access_flags, mode); 1470 } 1471 1472 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1473 u64 iova, int access_flags) 1474 { 1475 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1476 struct mlx5_ib_mr *mr = NULL; 1477 bool xlt_with_umr; 1478 int err; 1479 1480 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length); 1481 if (xlt_with_umr) { 1482 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1483 } else { 1484 unsigned int page_size = mlx5_umem_find_best_pgsz( 1485 umem, mkc, log_page_size, 0, iova); 1486 1487 mutex_lock(&dev->slow_path_mutex); 1488 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1489 mutex_unlock(&dev->slow_path_mutex); 1490 } 1491 if (IS_ERR(mr)) { 1492 ib_umem_release(umem); 1493 return ERR_CAST(mr); 1494 } 1495 1496 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1497 1498 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1499 1500 if (xlt_with_umr) { 1501 /* 1502 * If the MR was created with reg_create then it will be 1503 * configured properly but left disabled. It is safe to go ahead 1504 * and configure it again via UMR while enabling it. 1505 */ 1506 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1507 if (err) { 1508 dereg_mr(dev, mr); 1509 return ERR_PTR(err); 1510 } 1511 } 1512 return &mr->ibmr; 1513 } 1514 1515 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1516 u64 iova, int access_flags, 1517 struct ib_udata *udata) 1518 { 1519 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1520 struct ib_umem_odp *odp; 1521 struct mlx5_ib_mr *mr; 1522 int err; 1523 1524 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1525 return ERR_PTR(-EOPNOTSUPP); 1526 1527 if (!start && length == U64_MAX) { 1528 if (iova != 0) 1529 return ERR_PTR(-EINVAL); 1530 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1531 return ERR_PTR(-EINVAL); 1532 1533 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1534 if (IS_ERR(mr)) 1535 return ERR_CAST(mr); 1536 return &mr->ibmr; 1537 } 1538 1539 /* ODP requires xlt update via umr to work. */ 1540 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1541 return ERR_PTR(-EINVAL); 1542 1543 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1544 &mlx5_mn_ops); 1545 if (IS_ERR(odp)) 1546 return ERR_CAST(odp); 1547 1548 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1549 if (IS_ERR(mr)) { 1550 ib_umem_release(&odp->umem); 1551 return ERR_CAST(mr); 1552 } 1553 1554 odp->private = mr; 1555 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1556 if (err) 1557 goto err_dereg_mr; 1558 1559 err = mlx5_ib_init_odp_mr(mr); 1560 if (err) 1561 goto err_dereg_mr; 1562 return &mr->ibmr; 1563 1564 err_dereg_mr: 1565 dereg_mr(dev, mr); 1566 return ERR_PTR(err); 1567 } 1568 1569 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1570 u64 iova, int access_flags, 1571 struct ib_udata *udata) 1572 { 1573 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1574 struct ib_umem *umem; 1575 1576 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1577 return ERR_PTR(-EOPNOTSUPP); 1578 1579 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1580 start, iova, length, access_flags); 1581 1582 if (access_flags & IB_ACCESS_ON_DEMAND) 1583 return create_user_odp_mr(pd, start, length, iova, access_flags, 1584 udata); 1585 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1586 if (IS_ERR(umem)) 1587 return ERR_CAST(umem); 1588 return create_real_mr(pd, umem, iova, access_flags); 1589 } 1590 1591 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1592 { 1593 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1594 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1595 1596 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1597 1598 if (!umem_dmabuf->sgt) 1599 return; 1600 1601 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1602 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1603 } 1604 1605 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1606 .allow_peer2peer = 1, 1607 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1608 }; 1609 1610 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1611 u64 length, u64 virt_addr, 1612 int fd, int access_flags, 1613 struct ib_udata *udata) 1614 { 1615 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1616 struct mlx5_ib_mr *mr = NULL; 1617 struct ib_umem_dmabuf *umem_dmabuf; 1618 int err; 1619 1620 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1621 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1622 return ERR_PTR(-EOPNOTSUPP); 1623 1624 mlx5_ib_dbg(dev, 1625 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1626 offset, virt_addr, length, fd, access_flags); 1627 1628 /* dmabuf requires xlt update via umr to work. */ 1629 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1630 return ERR_PTR(-EINVAL); 1631 1632 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1633 access_flags, 1634 &mlx5_ib_dmabuf_attach_ops); 1635 if (IS_ERR(umem_dmabuf)) { 1636 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1637 PTR_ERR(umem_dmabuf)); 1638 return ERR_CAST(umem_dmabuf); 1639 } 1640 1641 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1642 access_flags); 1643 if (IS_ERR(mr)) { 1644 ib_umem_release(&umem_dmabuf->umem); 1645 return ERR_CAST(mr); 1646 } 1647 1648 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1649 1650 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1651 umem_dmabuf->private = mr; 1652 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1653 if (err) 1654 goto err_dereg_mr; 1655 1656 err = mlx5_ib_init_dmabuf_mr(mr); 1657 if (err) 1658 goto err_dereg_mr; 1659 return &mr->ibmr; 1660 1661 err_dereg_mr: 1662 dereg_mr(dev, mr); 1663 return ERR_PTR(err); 1664 } 1665 1666 /** 1667 * mlx5_mr_cache_invalidate - Fence all DMA on the MR 1668 * @mr: The MR to fence 1669 * 1670 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1671 * and any DMA inprogress will be completed. Failure of this function 1672 * indicates the HW has failed catastrophically. 1673 */ 1674 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr) 1675 { 1676 struct mlx5_umr_wr umrwr = {}; 1677 1678 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1679 return 0; 1680 1681 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1682 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1683 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1684 umrwr.pd = mr_to_mdev(mr)->umrc.pd; 1685 umrwr.mkey = mr->mmkey.key; 1686 umrwr.ignore_free_state = 1; 1687 1688 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr); 1689 } 1690 1691 /* 1692 * True if the change in access flags can be done via UMR, only some access 1693 * flags can be updated. 1694 */ 1695 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1696 unsigned int current_access_flags, 1697 unsigned int target_access_flags) 1698 { 1699 unsigned int diffs = current_access_flags ^ target_access_flags; 1700 1701 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1702 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1703 return false; 1704 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags, 1705 target_access_flags); 1706 } 1707 1708 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1709 int access_flags) 1710 { 1711 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1712 struct mlx5_umr_wr umrwr = { 1713 .wr = { 1714 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | 1715 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS, 1716 .opcode = MLX5_IB_WR_UMR, 1717 }, 1718 .mkey = mr->mmkey.key, 1719 .pd = pd, 1720 .access_flags = access_flags, 1721 }; 1722 int err; 1723 1724 err = mlx5_ib_post_send_wait(dev, &umrwr); 1725 if (err) 1726 return err; 1727 1728 mr->access_flags = access_flags; 1729 mr->mmkey.pd = to_mpd(pd)->pdn; 1730 return 0; 1731 } 1732 1733 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1734 struct ib_umem *new_umem, 1735 int new_access_flags, u64 iova, 1736 unsigned long *page_size) 1737 { 1738 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1739 1740 /* We only track the allocated sizes of MRs from the cache */ 1741 if (!mr->cache_ent) 1742 return false; 1743 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length)) 1744 return false; 1745 1746 *page_size = 1747 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1748 if (WARN_ON(!*page_size)) 1749 return false; 1750 return (1ULL << mr->cache_ent->order) >= 1751 ib_umem_num_dma_blocks(new_umem, *page_size); 1752 } 1753 1754 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1755 int access_flags, int flags, struct ib_umem *new_umem, 1756 u64 iova, unsigned long page_size) 1757 { 1758 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1759 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1760 struct ib_umem *old_umem = mr->umem; 1761 int err; 1762 1763 /* 1764 * To keep everything simple the MR is revoked before we start to mess 1765 * with it. This ensure the change is atomic relative to any use of the 1766 * MR. 1767 */ 1768 err = mlx5_mr_cache_invalidate(mr); 1769 if (err) 1770 return err; 1771 1772 if (flags & IB_MR_REREG_PD) { 1773 mr->ibmr.pd = pd; 1774 mr->mmkey.pd = to_mpd(pd)->pdn; 1775 upd_flags |= MLX5_IB_UPD_XLT_PD; 1776 } 1777 if (flags & IB_MR_REREG_ACCESS) { 1778 mr->access_flags = access_flags; 1779 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1780 } 1781 1782 mr->ibmr.length = new_umem->length; 1783 mr->mmkey.iova = iova; 1784 mr->mmkey.size = new_umem->length; 1785 mr->page_shift = order_base_2(page_size); 1786 mr->umem = new_umem; 1787 err = mlx5_ib_update_mr_pas(mr, upd_flags); 1788 if (err) { 1789 /* 1790 * The MR is revoked at this point so there is no issue to free 1791 * new_umem. 1792 */ 1793 mr->umem = old_umem; 1794 return err; 1795 } 1796 1797 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1798 ib_umem_release(old_umem); 1799 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1800 return 0; 1801 } 1802 1803 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1804 u64 length, u64 iova, int new_access_flags, 1805 struct ib_pd *new_pd, 1806 struct ib_udata *udata) 1807 { 1808 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1809 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1810 int err; 1811 1812 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1813 return ERR_PTR(-EOPNOTSUPP); 1814 1815 mlx5_ib_dbg( 1816 dev, 1817 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1818 start, iova, length, new_access_flags); 1819 1820 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1821 return ERR_PTR(-EOPNOTSUPP); 1822 1823 if (!(flags & IB_MR_REREG_ACCESS)) 1824 new_access_flags = mr->access_flags; 1825 if (!(flags & IB_MR_REREG_PD)) 1826 new_pd = ib_mr->pd; 1827 1828 if (!(flags & IB_MR_REREG_TRANS)) { 1829 struct ib_umem *umem; 1830 1831 /* Fast path for PD/access change */ 1832 if (can_use_umr_rereg_access(dev, mr->access_flags, 1833 new_access_flags)) { 1834 err = umr_rereg_pd_access(mr, new_pd, new_access_flags); 1835 if (err) 1836 return ERR_PTR(err); 1837 return NULL; 1838 } 1839 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1840 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1841 goto recreate; 1842 1843 /* 1844 * Only one active MR can refer to a umem at one time, revoke 1845 * the old MR before assigning the umem to the new one. 1846 */ 1847 err = mlx5_mr_cache_invalidate(mr); 1848 if (err) 1849 return ERR_PTR(err); 1850 umem = mr->umem; 1851 mr->umem = NULL; 1852 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1853 1854 return create_real_mr(new_pd, umem, mr->mmkey.iova, 1855 new_access_flags); 1856 } 1857 1858 /* 1859 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1860 * but the logic around releasing the umem is different 1861 */ 1862 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1863 goto recreate; 1864 1865 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1866 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1867 struct ib_umem *new_umem; 1868 unsigned long page_size; 1869 1870 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1871 new_access_flags); 1872 if (IS_ERR(new_umem)) 1873 return ERR_CAST(new_umem); 1874 1875 /* Fast path for PAS change */ 1876 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1877 &page_size)) { 1878 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1879 new_umem, iova, page_size); 1880 if (err) { 1881 ib_umem_release(new_umem); 1882 return ERR_PTR(err); 1883 } 1884 return NULL; 1885 } 1886 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1887 } 1888 1889 /* 1890 * Everything else has no state we can preserve, just create a new MR 1891 * from scratch 1892 */ 1893 recreate: 1894 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1895 new_access_flags, udata); 1896 } 1897 1898 static int 1899 mlx5_alloc_priv_descs(struct ib_device *device, 1900 struct mlx5_ib_mr *mr, 1901 int ndescs, 1902 int desc_size) 1903 { 1904 struct mlx5_ib_dev *dev = to_mdev(device); 1905 struct device *ddev = &dev->mdev->pdev->dev; 1906 int size = ndescs * desc_size; 1907 int add_size; 1908 int ret; 1909 1910 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1911 1912 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1913 if (!mr->descs_alloc) 1914 return -ENOMEM; 1915 1916 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1917 1918 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1919 if (dma_mapping_error(ddev, mr->desc_map)) { 1920 ret = -ENOMEM; 1921 goto err; 1922 } 1923 1924 return 0; 1925 err: 1926 kfree(mr->descs_alloc); 1927 1928 return ret; 1929 } 1930 1931 static void 1932 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1933 { 1934 if (mr->descs) { 1935 struct ib_device *device = mr->ibmr.device; 1936 int size = mr->max_descs * mr->desc_size; 1937 struct mlx5_ib_dev *dev = to_mdev(device); 1938 1939 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1940 DMA_TO_DEVICE); 1941 kfree(mr->descs_alloc); 1942 mr->descs = NULL; 1943 } 1944 } 1945 1946 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1947 { 1948 if (mr->sig) { 1949 if (mlx5_core_destroy_psv(dev->mdev, 1950 mr->sig->psv_memory.psv_idx)) 1951 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1952 mr->sig->psv_memory.psv_idx); 1953 if (mlx5_core_destroy_psv(dev->mdev, 1954 mr->sig->psv_wire.psv_idx)) 1955 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1956 mr->sig->psv_wire.psv_idx); 1957 xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key)); 1958 kfree(mr->sig); 1959 mr->sig = NULL; 1960 } 1961 1962 if (!mr->cache_ent) { 1963 destroy_mkey(dev, mr); 1964 mlx5_free_priv_descs(mr); 1965 } 1966 } 1967 1968 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1969 { 1970 struct ib_umem *umem = mr->umem; 1971 1972 /* Stop all DMA */ 1973 if (is_odp_mr(mr)) 1974 mlx5_ib_fence_odp_mr(mr); 1975 else if (is_dmabuf_mr(mr)) 1976 mlx5_ib_fence_dmabuf_mr(mr); 1977 else 1978 clean_mr(dev, mr); 1979 1980 if (umem) { 1981 if (!is_odp_mr(mr)) 1982 atomic_sub(ib_umem_num_pages(umem), 1983 &dev->mdev->priv.reg_pages); 1984 ib_umem_release(umem); 1985 } 1986 1987 if (mr->cache_ent) 1988 mlx5_mr_cache_free(dev, mr); 1989 else 1990 kfree(mr); 1991 } 1992 1993 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1994 { 1995 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1996 1997 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1998 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); 1999 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); 2000 } 2001 2002 if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) { 2003 mlx5_ib_free_implicit_mr(mmr); 2004 return 0; 2005 } 2006 2007 dereg_mr(to_mdev(ibmr->device), mmr); 2008 2009 return 0; 2010 } 2011 2012 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 2013 int access_mode, int page_shift) 2014 { 2015 void *mkc; 2016 2017 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2018 2019 /* This is only used from the kernel, so setting the PD is OK. */ 2020 set_mkc_access_pd_addr_fields(mkc, 0, 0, pd); 2021 MLX5_SET(mkc, mkc, free, 1); 2022 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2023 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 2024 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 2025 MLX5_SET(mkc, mkc, umr_en, 1); 2026 MLX5_SET(mkc, mkc, log_page_size, page_shift); 2027 } 2028 2029 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2030 int ndescs, int desc_size, int page_shift, 2031 int access_mode, u32 *in, int inlen) 2032 { 2033 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2034 int err; 2035 2036 mr->access_mode = access_mode; 2037 mr->desc_size = desc_size; 2038 mr->max_descs = ndescs; 2039 2040 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 2041 if (err) 2042 return err; 2043 2044 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 2045 2046 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 2047 if (err) 2048 goto err_free_descs; 2049 2050 mr->mmkey.type = MLX5_MKEY_MR; 2051 mr->ibmr.lkey = mr->mmkey.key; 2052 mr->ibmr.rkey = mr->mmkey.key; 2053 2054 return 0; 2055 2056 err_free_descs: 2057 mlx5_free_priv_descs(mr); 2058 return err; 2059 } 2060 2061 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 2062 u32 max_num_sg, u32 max_num_meta_sg, 2063 int desc_size, int access_mode) 2064 { 2065 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2066 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 2067 int page_shift = 0; 2068 struct mlx5_ib_mr *mr; 2069 u32 *in; 2070 int err; 2071 2072 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2073 if (!mr) 2074 return ERR_PTR(-ENOMEM); 2075 2076 mr->ibmr.pd = pd; 2077 mr->ibmr.device = pd->device; 2078 2079 in = kzalloc(inlen, GFP_KERNEL); 2080 if (!in) { 2081 err = -ENOMEM; 2082 goto err_free; 2083 } 2084 2085 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2086 page_shift = PAGE_SHIFT; 2087 2088 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2089 access_mode, in, inlen); 2090 if (err) 2091 goto err_free_in; 2092 2093 mr->umem = NULL; 2094 kfree(in); 2095 2096 return mr; 2097 2098 err_free_in: 2099 kfree(in); 2100 err_free: 2101 kfree(mr); 2102 return ERR_PTR(err); 2103 } 2104 2105 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2106 int ndescs, u32 *in, int inlen) 2107 { 2108 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2109 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2110 inlen); 2111 } 2112 2113 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2114 int ndescs, u32 *in, int inlen) 2115 { 2116 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2117 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2118 } 2119 2120 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2121 int max_num_sg, int max_num_meta_sg, 2122 u32 *in, int inlen) 2123 { 2124 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2125 u32 psv_index[2]; 2126 void *mkc; 2127 int err; 2128 2129 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2130 if (!mr->sig) 2131 return -ENOMEM; 2132 2133 /* create mem & wire PSVs */ 2134 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2135 if (err) 2136 goto err_free_sig; 2137 2138 mr->sig->psv_memory.psv_idx = psv_index[0]; 2139 mr->sig->psv_wire.psv_idx = psv_index[1]; 2140 2141 mr->sig->sig_status_checked = true; 2142 mr->sig->sig_err_exists = false; 2143 /* Next UMR, Arm SIGERR */ 2144 ++mr->sig->sigerr_count; 2145 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2146 sizeof(struct mlx5_klm), 2147 MLX5_MKC_ACCESS_MODE_KLMS); 2148 if (IS_ERR(mr->klm_mr)) { 2149 err = PTR_ERR(mr->klm_mr); 2150 goto err_destroy_psv; 2151 } 2152 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2153 sizeof(struct mlx5_mtt), 2154 MLX5_MKC_ACCESS_MODE_MTT); 2155 if (IS_ERR(mr->mtt_mr)) { 2156 err = PTR_ERR(mr->mtt_mr); 2157 goto err_free_klm_mr; 2158 } 2159 2160 /* Set bsf descriptors for mkey */ 2161 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2162 MLX5_SET(mkc, mkc, bsf_en, 1); 2163 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2164 2165 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2166 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2167 if (err) 2168 goto err_free_mtt_mr; 2169 2170 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2171 mr->sig, GFP_KERNEL)); 2172 if (err) 2173 goto err_free_descs; 2174 return 0; 2175 2176 err_free_descs: 2177 destroy_mkey(dev, mr); 2178 mlx5_free_priv_descs(mr); 2179 err_free_mtt_mr: 2180 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); 2181 mr->mtt_mr = NULL; 2182 err_free_klm_mr: 2183 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); 2184 mr->klm_mr = NULL; 2185 err_destroy_psv: 2186 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2187 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2188 mr->sig->psv_memory.psv_idx); 2189 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2190 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2191 mr->sig->psv_wire.psv_idx); 2192 err_free_sig: 2193 kfree(mr->sig); 2194 2195 return err; 2196 } 2197 2198 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2199 enum ib_mr_type mr_type, u32 max_num_sg, 2200 u32 max_num_meta_sg) 2201 { 2202 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2203 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2204 int ndescs = ALIGN(max_num_sg, 4); 2205 struct mlx5_ib_mr *mr; 2206 u32 *in; 2207 int err; 2208 2209 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2210 if (!mr) 2211 return ERR_PTR(-ENOMEM); 2212 2213 in = kzalloc(inlen, GFP_KERNEL); 2214 if (!in) { 2215 err = -ENOMEM; 2216 goto err_free; 2217 } 2218 2219 mr->ibmr.device = pd->device; 2220 mr->umem = NULL; 2221 2222 switch (mr_type) { 2223 case IB_MR_TYPE_MEM_REG: 2224 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2225 break; 2226 case IB_MR_TYPE_SG_GAPS: 2227 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2228 break; 2229 case IB_MR_TYPE_INTEGRITY: 2230 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2231 max_num_meta_sg, in, inlen); 2232 break; 2233 default: 2234 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2235 err = -EINVAL; 2236 } 2237 2238 if (err) 2239 goto err_free_in; 2240 2241 kfree(in); 2242 2243 return &mr->ibmr; 2244 2245 err_free_in: 2246 kfree(in); 2247 err_free: 2248 kfree(mr); 2249 return ERR_PTR(err); 2250 } 2251 2252 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2253 u32 max_num_sg) 2254 { 2255 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2256 } 2257 2258 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2259 u32 max_num_sg, u32 max_num_meta_sg) 2260 { 2261 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2262 max_num_meta_sg); 2263 } 2264 2265 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2266 { 2267 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2268 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2269 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2270 u32 *in = NULL; 2271 void *mkc; 2272 int ndescs; 2273 int err; 2274 struct mlx5_ib_alloc_mw req = {}; 2275 struct { 2276 __u32 comp_mask; 2277 __u32 response_length; 2278 } resp = {}; 2279 2280 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2281 if (err) 2282 return err; 2283 2284 if (req.comp_mask || req.reserved1 || req.reserved2) 2285 return -EOPNOTSUPP; 2286 2287 if (udata->inlen > sizeof(req) && 2288 !ib_is_udata_cleared(udata, sizeof(req), 2289 udata->inlen - sizeof(req))) 2290 return -EOPNOTSUPP; 2291 2292 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2293 2294 in = kzalloc(inlen, GFP_KERNEL); 2295 if (!in) { 2296 err = -ENOMEM; 2297 goto free; 2298 } 2299 2300 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2301 2302 MLX5_SET(mkc, mkc, free, 1); 2303 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2304 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2305 MLX5_SET(mkc, mkc, umr_en, 1); 2306 MLX5_SET(mkc, mkc, lr, 1); 2307 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2308 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2309 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2310 2311 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2312 if (err) 2313 goto free; 2314 2315 mw->mmkey.type = MLX5_MKEY_MW; 2316 ibmw->rkey = mw->mmkey.key; 2317 mw->ndescs = ndescs; 2318 2319 resp.response_length = 2320 min(offsetofend(typeof(resp), response_length), udata->outlen); 2321 if (resp.response_length) { 2322 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2323 if (err) 2324 goto free_mkey; 2325 } 2326 2327 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2328 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2329 if (err) 2330 goto free_mkey; 2331 } 2332 2333 kfree(in); 2334 return 0; 2335 2336 free_mkey: 2337 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2338 free: 2339 kfree(in); 2340 return err; 2341 } 2342 2343 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2344 { 2345 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2346 struct mlx5_ib_mw *mmw = to_mmw(mw); 2347 2348 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2349 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2350 /* 2351 * pagefault_single_data_segment() may be accessing mmw 2352 * if the user bound an ODP MR to this MW. 2353 */ 2354 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2355 2356 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2357 } 2358 2359 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2360 struct ib_mr_status *mr_status) 2361 { 2362 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2363 int ret = 0; 2364 2365 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2366 pr_err("Invalid status check mask\n"); 2367 ret = -EINVAL; 2368 goto done; 2369 } 2370 2371 mr_status->fail_status = 0; 2372 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2373 if (!mmr->sig) { 2374 ret = -EINVAL; 2375 pr_err("signature status check requested on a non-signature enabled MR\n"); 2376 goto done; 2377 } 2378 2379 mmr->sig->sig_status_checked = true; 2380 if (!mmr->sig->sig_err_exists) 2381 goto done; 2382 2383 if (ibmr->lkey == mmr->sig->err_item.key) 2384 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2385 sizeof(mr_status->sig_err)); 2386 else { 2387 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2388 mr_status->sig_err.sig_err_offset = 0; 2389 mr_status->sig_err.key = mmr->sig->err_item.key; 2390 } 2391 2392 mmr->sig->sig_err_exists = false; 2393 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2394 } 2395 2396 done: 2397 return ret; 2398 } 2399 2400 static int 2401 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2402 int data_sg_nents, unsigned int *data_sg_offset, 2403 struct scatterlist *meta_sg, int meta_sg_nents, 2404 unsigned int *meta_sg_offset) 2405 { 2406 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2407 unsigned int sg_offset = 0; 2408 int n = 0; 2409 2410 mr->meta_length = 0; 2411 if (data_sg_nents == 1) { 2412 n++; 2413 mr->ndescs = 1; 2414 if (data_sg_offset) 2415 sg_offset = *data_sg_offset; 2416 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2417 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2418 if (meta_sg_nents == 1) { 2419 n++; 2420 mr->meta_ndescs = 1; 2421 if (meta_sg_offset) 2422 sg_offset = *meta_sg_offset; 2423 else 2424 sg_offset = 0; 2425 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2426 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2427 } 2428 ibmr->length = mr->data_length + mr->meta_length; 2429 } 2430 2431 return n; 2432 } 2433 2434 static int 2435 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2436 struct scatterlist *sgl, 2437 unsigned short sg_nents, 2438 unsigned int *sg_offset_p, 2439 struct scatterlist *meta_sgl, 2440 unsigned short meta_sg_nents, 2441 unsigned int *meta_sg_offset_p) 2442 { 2443 struct scatterlist *sg = sgl; 2444 struct mlx5_klm *klms = mr->descs; 2445 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2446 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2447 int i, j = 0; 2448 2449 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2450 mr->ibmr.length = 0; 2451 2452 for_each_sg(sgl, sg, sg_nents, i) { 2453 if (unlikely(i >= mr->max_descs)) 2454 break; 2455 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2456 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2457 klms[i].key = cpu_to_be32(lkey); 2458 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2459 2460 sg_offset = 0; 2461 } 2462 2463 if (sg_offset_p) 2464 *sg_offset_p = sg_offset; 2465 2466 mr->ndescs = i; 2467 mr->data_length = mr->ibmr.length; 2468 2469 if (meta_sg_nents) { 2470 sg = meta_sgl; 2471 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2472 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2473 if (unlikely(i + j >= mr->max_descs)) 2474 break; 2475 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2476 sg_offset); 2477 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2478 sg_offset); 2479 klms[i + j].key = cpu_to_be32(lkey); 2480 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2481 2482 sg_offset = 0; 2483 } 2484 if (meta_sg_offset_p) 2485 *meta_sg_offset_p = sg_offset; 2486 2487 mr->meta_ndescs = j; 2488 mr->meta_length = mr->ibmr.length - mr->data_length; 2489 } 2490 2491 return i + j; 2492 } 2493 2494 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2495 { 2496 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2497 __be64 *descs; 2498 2499 if (unlikely(mr->ndescs == mr->max_descs)) 2500 return -ENOMEM; 2501 2502 descs = mr->descs; 2503 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2504 2505 return 0; 2506 } 2507 2508 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2509 { 2510 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2511 __be64 *descs; 2512 2513 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2514 return -ENOMEM; 2515 2516 descs = mr->descs; 2517 descs[mr->ndescs + mr->meta_ndescs++] = 2518 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2519 2520 return 0; 2521 } 2522 2523 static int 2524 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2525 int data_sg_nents, unsigned int *data_sg_offset, 2526 struct scatterlist *meta_sg, int meta_sg_nents, 2527 unsigned int *meta_sg_offset) 2528 { 2529 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2530 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2531 int n; 2532 2533 pi_mr->ndescs = 0; 2534 pi_mr->meta_ndescs = 0; 2535 pi_mr->meta_length = 0; 2536 2537 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2538 pi_mr->desc_size * pi_mr->max_descs, 2539 DMA_TO_DEVICE); 2540 2541 pi_mr->ibmr.page_size = ibmr->page_size; 2542 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2543 mlx5_set_page); 2544 if (n != data_sg_nents) 2545 return n; 2546 2547 pi_mr->data_iova = pi_mr->ibmr.iova; 2548 pi_mr->data_length = pi_mr->ibmr.length; 2549 pi_mr->ibmr.length = pi_mr->data_length; 2550 ibmr->length = pi_mr->data_length; 2551 2552 if (meta_sg_nents) { 2553 u64 page_mask = ~((u64)ibmr->page_size - 1); 2554 u64 iova = pi_mr->data_iova; 2555 2556 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2557 meta_sg_offset, mlx5_set_page_pi); 2558 2559 pi_mr->meta_length = pi_mr->ibmr.length; 2560 /* 2561 * PI address for the HW is the offset of the metadata address 2562 * relative to the first data page address. 2563 * It equals to first data page address + size of data pages + 2564 * metadata offset at the first metadata page 2565 */ 2566 pi_mr->pi_iova = (iova & page_mask) + 2567 pi_mr->ndescs * ibmr->page_size + 2568 (pi_mr->ibmr.iova & ~page_mask); 2569 /* 2570 * In order to use one MTT MR for data and metadata, we register 2571 * also the gaps between the end of the data and the start of 2572 * the metadata (the sig MR will verify that the HW will access 2573 * to right addresses). This mapping is safe because we use 2574 * internal mkey for the registration. 2575 */ 2576 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2577 pi_mr->ibmr.iova = iova; 2578 ibmr->length += pi_mr->meta_length; 2579 } 2580 2581 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2582 pi_mr->desc_size * pi_mr->max_descs, 2583 DMA_TO_DEVICE); 2584 2585 return n; 2586 } 2587 2588 static int 2589 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2590 int data_sg_nents, unsigned int *data_sg_offset, 2591 struct scatterlist *meta_sg, int meta_sg_nents, 2592 unsigned int *meta_sg_offset) 2593 { 2594 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2595 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2596 int n; 2597 2598 pi_mr->ndescs = 0; 2599 pi_mr->meta_ndescs = 0; 2600 pi_mr->meta_length = 0; 2601 2602 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2603 pi_mr->desc_size * pi_mr->max_descs, 2604 DMA_TO_DEVICE); 2605 2606 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2607 meta_sg, meta_sg_nents, meta_sg_offset); 2608 2609 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2610 pi_mr->desc_size * pi_mr->max_descs, 2611 DMA_TO_DEVICE); 2612 2613 /* This is zero-based memory region */ 2614 pi_mr->data_iova = 0; 2615 pi_mr->ibmr.iova = 0; 2616 pi_mr->pi_iova = pi_mr->data_length; 2617 ibmr->length = pi_mr->ibmr.length; 2618 2619 return n; 2620 } 2621 2622 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2623 int data_sg_nents, unsigned int *data_sg_offset, 2624 struct scatterlist *meta_sg, int meta_sg_nents, 2625 unsigned int *meta_sg_offset) 2626 { 2627 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2628 struct mlx5_ib_mr *pi_mr = NULL; 2629 int n; 2630 2631 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2632 2633 mr->ndescs = 0; 2634 mr->data_length = 0; 2635 mr->data_iova = 0; 2636 mr->meta_ndescs = 0; 2637 mr->pi_iova = 0; 2638 /* 2639 * As a performance optimization, if possible, there is no need to 2640 * perform UMR operation to register the data/metadata buffers. 2641 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2642 * Fallback to UMR only in case of a failure. 2643 */ 2644 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2645 data_sg_offset, meta_sg, meta_sg_nents, 2646 meta_sg_offset); 2647 if (n == data_sg_nents + meta_sg_nents) 2648 goto out; 2649 /* 2650 * As a performance optimization, if possible, there is no need to map 2651 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2652 * descriptors and fallback to KLM only in case of a failure. 2653 * It's more efficient for the HW to work with MTT descriptors 2654 * (especially in high load). 2655 * Use KLM (indirect access) only if it's mandatory. 2656 */ 2657 pi_mr = mr->mtt_mr; 2658 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2659 data_sg_offset, meta_sg, meta_sg_nents, 2660 meta_sg_offset); 2661 if (n == data_sg_nents + meta_sg_nents) 2662 goto out; 2663 2664 pi_mr = mr->klm_mr; 2665 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2666 data_sg_offset, meta_sg, meta_sg_nents, 2667 meta_sg_offset); 2668 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2669 return -ENOMEM; 2670 2671 out: 2672 /* This is zero-based memory region */ 2673 ibmr->iova = 0; 2674 mr->pi_mr = pi_mr; 2675 if (pi_mr) 2676 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2677 else 2678 ibmr->sig_attrs->meta_length = mr->meta_length; 2679 2680 return 0; 2681 } 2682 2683 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2684 unsigned int *sg_offset) 2685 { 2686 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2687 int n; 2688 2689 mr->ndescs = 0; 2690 2691 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2692 mr->desc_size * mr->max_descs, 2693 DMA_TO_DEVICE); 2694 2695 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2696 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2697 NULL); 2698 else 2699 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2700 mlx5_set_page); 2701 2702 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2703 mr->desc_size * mr->max_descs, 2704 DMA_TO_DEVICE); 2705 2706 return n; 2707 } 2708