xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 5edb7691)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 
54 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
55 {
56 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
57 }
58 
59 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
60 {
61 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
62 
63 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
64 }
65 
66 static int order2idx(struct mlx5_ib_dev *dev, int order)
67 {
68 	struct mlx5_mr_cache *cache = &dev->cache;
69 
70 	if (order < cache->ent[0].order)
71 		return 0;
72 	else
73 		return order - cache->ent[0].order;
74 }
75 
76 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
77 {
78 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
79 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
80 }
81 
82 static void reg_mr_callback(int status, struct mlx5_async_work *context)
83 {
84 	struct mlx5_ib_mr *mr =
85 		container_of(context, struct mlx5_ib_mr, cb_work);
86 	struct mlx5_ib_dev *dev = mr->dev;
87 	struct mlx5_mr_cache *cache = &dev->cache;
88 	int c = order2idx(dev, mr->order);
89 	struct mlx5_cache_ent *ent = &cache->ent[c];
90 	u8 key;
91 	unsigned long flags;
92 
93 	spin_lock_irqsave(&ent->lock, flags);
94 	ent->pending--;
95 	spin_unlock_irqrestore(&ent->lock, flags);
96 	if (status) {
97 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
98 		kfree(mr);
99 		dev->fill_delay = 1;
100 		mod_timer(&dev->delay_timer, jiffies + HZ);
101 		return;
102 	}
103 
104 	mr->mmkey.type = MLX5_MKEY_MR;
105 	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
106 	key = dev->mdev->priv.mkey_key++;
107 	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
108 	mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
109 
110 	cache->last_add = jiffies;
111 
112 	spin_lock_irqsave(&ent->lock, flags);
113 	list_add_tail(&mr->list, &ent->head);
114 	ent->cur++;
115 	ent->size++;
116 	spin_unlock_irqrestore(&ent->lock, flags);
117 
118 	if (!completion_done(&ent->compl))
119 		complete(&ent->compl);
120 }
121 
122 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
123 {
124 	struct mlx5_mr_cache *cache = &dev->cache;
125 	struct mlx5_cache_ent *ent = &cache->ent[c];
126 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
127 	struct mlx5_ib_mr *mr;
128 	void *mkc;
129 	u32 *in;
130 	int err = 0;
131 	int i;
132 
133 	in = kzalloc(inlen, GFP_KERNEL);
134 	if (!in)
135 		return -ENOMEM;
136 
137 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
138 	for (i = 0; i < num; i++) {
139 		if (ent->pending >= MAX_PENDING_REG_MR) {
140 			err = -EAGAIN;
141 			break;
142 		}
143 
144 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
145 		if (!mr) {
146 			err = -ENOMEM;
147 			break;
148 		}
149 		mr->order = ent->order;
150 		mr->allocated_from_cache = true;
151 		mr->dev = dev;
152 
153 		MLX5_SET(mkc, mkc, free, 1);
154 		MLX5_SET(mkc, mkc, umr_en, 1);
155 		MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
156 		MLX5_SET(mkc, mkc, access_mode_4_2,
157 			 (ent->access_mode >> 2) & 0x7);
158 
159 		MLX5_SET(mkc, mkc, qpn, 0xffffff);
160 		MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
161 		MLX5_SET(mkc, mkc, log_page_size, ent->page);
162 
163 		spin_lock_irq(&ent->lock);
164 		ent->pending++;
165 		spin_unlock_irq(&ent->lock);
166 		err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
167 					       &dev->async_ctx, in, inlen,
168 					       mr->out, sizeof(mr->out),
169 					       reg_mr_callback, &mr->cb_work);
170 		if (err) {
171 			spin_lock_irq(&ent->lock);
172 			ent->pending--;
173 			spin_unlock_irq(&ent->lock);
174 			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
175 			kfree(mr);
176 			break;
177 		}
178 	}
179 
180 	kfree(in);
181 	return err;
182 }
183 
184 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
185 {
186 	struct mlx5_mr_cache *cache = &dev->cache;
187 	struct mlx5_cache_ent *ent = &cache->ent[c];
188 	struct mlx5_ib_mr *tmp_mr;
189 	struct mlx5_ib_mr *mr;
190 	LIST_HEAD(del_list);
191 	int i;
192 
193 	for (i = 0; i < num; i++) {
194 		spin_lock_irq(&ent->lock);
195 		if (list_empty(&ent->head)) {
196 			spin_unlock_irq(&ent->lock);
197 			break;
198 		}
199 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
200 		list_move(&mr->list, &del_list);
201 		ent->cur--;
202 		ent->size--;
203 		spin_unlock_irq(&ent->lock);
204 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
205 	}
206 
207 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
208 		list_del(&mr->list);
209 		kfree(mr);
210 	}
211 }
212 
213 static ssize_t size_write(struct file *filp, const char __user *buf,
214 			  size_t count, loff_t *pos)
215 {
216 	struct mlx5_cache_ent *ent = filp->private_data;
217 	struct mlx5_ib_dev *dev = ent->dev;
218 	char lbuf[20] = {0};
219 	u32 var;
220 	int err;
221 	int c;
222 
223 	count = min(count, sizeof(lbuf) - 1);
224 	if (copy_from_user(lbuf, buf, count))
225 		return -EFAULT;
226 
227 	c = order2idx(dev, ent->order);
228 
229 	if (sscanf(lbuf, "%u", &var) != 1)
230 		return -EINVAL;
231 
232 	if (var < ent->limit)
233 		return -EINVAL;
234 
235 	if (var > ent->size) {
236 		do {
237 			err = add_keys(dev, c, var - ent->size);
238 			if (err && err != -EAGAIN)
239 				return err;
240 
241 			usleep_range(3000, 5000);
242 		} while (err);
243 	} else if (var < ent->size) {
244 		remove_keys(dev, c, ent->size - var);
245 	}
246 
247 	return count;
248 }
249 
250 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
251 			 loff_t *pos)
252 {
253 	struct mlx5_cache_ent *ent = filp->private_data;
254 	char lbuf[20];
255 	int err;
256 
257 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
258 	if (err < 0)
259 		return err;
260 
261 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
262 }
263 
264 static const struct file_operations size_fops = {
265 	.owner	= THIS_MODULE,
266 	.open	= simple_open,
267 	.write	= size_write,
268 	.read	= size_read,
269 };
270 
271 static ssize_t limit_write(struct file *filp, const char __user *buf,
272 			   size_t count, loff_t *pos)
273 {
274 	struct mlx5_cache_ent *ent = filp->private_data;
275 	struct mlx5_ib_dev *dev = ent->dev;
276 	char lbuf[20] = {0};
277 	u32 var;
278 	int err;
279 	int c;
280 
281 	count = min(count, sizeof(lbuf) - 1);
282 	if (copy_from_user(lbuf, buf, count))
283 		return -EFAULT;
284 
285 	c = order2idx(dev, ent->order);
286 
287 	if (sscanf(lbuf, "%u", &var) != 1)
288 		return -EINVAL;
289 
290 	if (var > ent->size)
291 		return -EINVAL;
292 
293 	ent->limit = var;
294 
295 	if (ent->cur < ent->limit) {
296 		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
297 		if (err)
298 			return err;
299 	}
300 
301 	return count;
302 }
303 
304 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
305 			  loff_t *pos)
306 {
307 	struct mlx5_cache_ent *ent = filp->private_data;
308 	char lbuf[20];
309 	int err;
310 
311 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
312 	if (err < 0)
313 		return err;
314 
315 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
316 }
317 
318 static const struct file_operations limit_fops = {
319 	.owner	= THIS_MODULE,
320 	.open	= simple_open,
321 	.write	= limit_write,
322 	.read	= limit_read,
323 };
324 
325 static int someone_adding(struct mlx5_mr_cache *cache)
326 {
327 	int i;
328 
329 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
330 		if (cache->ent[i].cur < cache->ent[i].limit)
331 			return 1;
332 	}
333 
334 	return 0;
335 }
336 
337 static void __cache_work_func(struct mlx5_cache_ent *ent)
338 {
339 	struct mlx5_ib_dev *dev = ent->dev;
340 	struct mlx5_mr_cache *cache = &dev->cache;
341 	int i = order2idx(dev, ent->order);
342 	int err;
343 
344 	if (cache->stopped)
345 		return;
346 
347 	ent = &dev->cache.ent[i];
348 	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
349 		err = add_keys(dev, i, 1);
350 		if (ent->cur < 2 * ent->limit) {
351 			if (err == -EAGAIN) {
352 				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
353 					    i + 2);
354 				queue_delayed_work(cache->wq, &ent->dwork,
355 						   msecs_to_jiffies(3));
356 			} else if (err) {
357 				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
358 					     i + 2, err);
359 				queue_delayed_work(cache->wq, &ent->dwork,
360 						   msecs_to_jiffies(1000));
361 			} else {
362 				queue_work(cache->wq, &ent->work);
363 			}
364 		}
365 	} else if (ent->cur > 2 * ent->limit) {
366 		/*
367 		 * The remove_keys() logic is performed as garbage collection
368 		 * task. Such task is intended to be run when no other active
369 		 * processes are running.
370 		 *
371 		 * The need_resched() will return TRUE if there are user tasks
372 		 * to be activated in near future.
373 		 *
374 		 * In such case, we don't execute remove_keys() and postpone
375 		 * the garbage collection work to try to run in next cycle,
376 		 * in order to free CPU resources to other tasks.
377 		 */
378 		if (!need_resched() && !someone_adding(cache) &&
379 		    time_after(jiffies, cache->last_add + 300 * HZ)) {
380 			remove_keys(dev, i, 1);
381 			if (ent->cur > ent->limit)
382 				queue_work(cache->wq, &ent->work);
383 		} else {
384 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
385 		}
386 	}
387 }
388 
389 static void delayed_cache_work_func(struct work_struct *work)
390 {
391 	struct mlx5_cache_ent *ent;
392 
393 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
394 	__cache_work_func(ent);
395 }
396 
397 static void cache_work_func(struct work_struct *work)
398 {
399 	struct mlx5_cache_ent *ent;
400 
401 	ent = container_of(work, struct mlx5_cache_ent, work);
402 	__cache_work_func(ent);
403 }
404 
405 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
406 {
407 	struct mlx5_mr_cache *cache = &dev->cache;
408 	struct mlx5_cache_ent *ent;
409 	struct mlx5_ib_mr *mr;
410 	int err;
411 
412 	if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
413 		mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
414 		return ERR_PTR(-EINVAL);
415 	}
416 
417 	ent = &cache->ent[entry];
418 	while (1) {
419 		spin_lock_irq(&ent->lock);
420 		if (list_empty(&ent->head)) {
421 			spin_unlock_irq(&ent->lock);
422 
423 			err = add_keys(dev, entry, 1);
424 			if (err && err != -EAGAIN)
425 				return ERR_PTR(err);
426 
427 			wait_for_completion(&ent->compl);
428 		} else {
429 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
430 					      list);
431 			list_del(&mr->list);
432 			ent->cur--;
433 			spin_unlock_irq(&ent->lock);
434 			if (ent->cur < ent->limit)
435 				queue_work(cache->wq, &ent->work);
436 			return mr;
437 		}
438 	}
439 }
440 
441 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
442 {
443 	struct mlx5_mr_cache *cache = &dev->cache;
444 	struct mlx5_ib_mr *mr = NULL;
445 	struct mlx5_cache_ent *ent;
446 	int last_umr_cache_entry;
447 	int c;
448 	int i;
449 
450 	c = order2idx(dev, order);
451 	last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
452 	if (c < 0 || c > last_umr_cache_entry) {
453 		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
454 		return NULL;
455 	}
456 
457 	for (i = c; i <= last_umr_cache_entry; i++) {
458 		ent = &cache->ent[i];
459 
460 		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
461 
462 		spin_lock_irq(&ent->lock);
463 		if (!list_empty(&ent->head)) {
464 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
465 					      list);
466 			list_del(&mr->list);
467 			ent->cur--;
468 			spin_unlock_irq(&ent->lock);
469 			if (ent->cur < ent->limit)
470 				queue_work(cache->wq, &ent->work);
471 			break;
472 		}
473 		spin_unlock_irq(&ent->lock);
474 
475 		queue_work(cache->wq, &ent->work);
476 	}
477 
478 	if (!mr)
479 		cache->ent[c].miss++;
480 
481 	return mr;
482 }
483 
484 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
485 {
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	struct mlx5_cache_ent *ent;
488 	int shrink = 0;
489 	int c;
490 
491 	if (!mr->allocated_from_cache)
492 		return;
493 
494 	c = order2idx(dev, mr->order);
495 	WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
496 
497 	if (mlx5_mr_cache_invalidate(mr)) {
498 		mr->allocated_from_cache = false;
499 		destroy_mkey(dev, mr);
500 		ent = &cache->ent[c];
501 		if (ent->cur < ent->limit)
502 			queue_work(cache->wq, &ent->work);
503 		return;
504 	}
505 
506 	ent = &cache->ent[c];
507 	spin_lock_irq(&ent->lock);
508 	list_add_tail(&mr->list, &ent->head);
509 	ent->cur++;
510 	if (ent->cur > 2 * ent->limit)
511 		shrink = 1;
512 	spin_unlock_irq(&ent->lock);
513 
514 	if (shrink)
515 		queue_work(cache->wq, &ent->work);
516 }
517 
518 static void clean_keys(struct mlx5_ib_dev *dev, int c)
519 {
520 	struct mlx5_mr_cache *cache = &dev->cache;
521 	struct mlx5_cache_ent *ent = &cache->ent[c];
522 	struct mlx5_ib_mr *tmp_mr;
523 	struct mlx5_ib_mr *mr;
524 	LIST_HEAD(del_list);
525 
526 	cancel_delayed_work(&ent->dwork);
527 	while (1) {
528 		spin_lock_irq(&ent->lock);
529 		if (list_empty(&ent->head)) {
530 			spin_unlock_irq(&ent->lock);
531 			break;
532 		}
533 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
534 		list_move(&mr->list, &del_list);
535 		ent->cur--;
536 		ent->size--;
537 		spin_unlock_irq(&ent->lock);
538 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
539 	}
540 
541 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
542 		list_del(&mr->list);
543 		kfree(mr);
544 	}
545 }
546 
547 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
548 {
549 	if (!mlx5_debugfs_root || dev->is_rep)
550 		return;
551 
552 	debugfs_remove_recursive(dev->cache.root);
553 	dev->cache.root = NULL;
554 }
555 
556 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
557 {
558 	struct mlx5_mr_cache *cache = &dev->cache;
559 	struct mlx5_cache_ent *ent;
560 	struct dentry *dir;
561 	int i;
562 
563 	if (!mlx5_debugfs_root || dev->is_rep)
564 		return;
565 
566 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
567 
568 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
569 		ent = &cache->ent[i];
570 		sprintf(ent->name, "%d", ent->order);
571 		dir = debugfs_create_dir(ent->name, cache->root);
572 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
573 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
574 		debugfs_create_u32("cur", 0400, dir, &ent->cur);
575 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
576 	}
577 }
578 
579 static void delay_time_func(struct timer_list *t)
580 {
581 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
582 
583 	dev->fill_delay = 0;
584 }
585 
586 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
587 {
588 	struct mlx5_mr_cache *cache = &dev->cache;
589 	struct mlx5_cache_ent *ent;
590 	int i;
591 
592 	mutex_init(&dev->slow_path_mutex);
593 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
594 	if (!cache->wq) {
595 		mlx5_ib_warn(dev, "failed to create work queue\n");
596 		return -ENOMEM;
597 	}
598 
599 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
600 	timer_setup(&dev->delay_timer, delay_time_func, 0);
601 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
602 		ent = &cache->ent[i];
603 		INIT_LIST_HEAD(&ent->head);
604 		spin_lock_init(&ent->lock);
605 		ent->order = i + 2;
606 		ent->dev = dev;
607 		ent->limit = 0;
608 
609 		init_completion(&ent->compl);
610 		INIT_WORK(&ent->work, cache_work_func);
611 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
612 
613 		if (i > MR_CACHE_LAST_STD_ENTRY) {
614 			mlx5_odp_init_mr_cache_entry(ent);
615 			continue;
616 		}
617 
618 		if (ent->order > mr_cache_max_order(dev))
619 			continue;
620 
621 		ent->page = PAGE_SHIFT;
622 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
623 			   MLX5_IB_UMR_OCTOWORD;
624 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
625 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
626 		    !dev->is_rep &&
627 		    mlx5_core_is_pf(dev->mdev))
628 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
629 		else
630 			ent->limit = 0;
631 		queue_work(cache->wq, &ent->work);
632 	}
633 
634 	mlx5_mr_cache_debugfs_init(dev);
635 
636 	return 0;
637 }
638 
639 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
640 {
641 	int i;
642 
643 	if (!dev->cache.wq)
644 		return 0;
645 
646 	dev->cache.stopped = 1;
647 	flush_workqueue(dev->cache.wq);
648 
649 	mlx5_mr_cache_debugfs_cleanup(dev);
650 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
651 
652 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
653 		clean_keys(dev, i);
654 
655 	destroy_workqueue(dev->cache.wq);
656 	del_timer_sync(&dev->delay_timer);
657 
658 	return 0;
659 }
660 
661 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
662 					  struct ib_pd *pd)
663 {
664 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
665 
666 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
667 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
668 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
669 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
670 	MLX5_SET(mkc, mkc, lr, 1);
671 
672 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
673 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
674 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
675 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
676 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
677 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
678 
679 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
680 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
681 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
682 }
683 
684 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
685 {
686 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
687 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
688 	struct mlx5_core_dev *mdev = dev->mdev;
689 	struct mlx5_ib_mr *mr;
690 	void *mkc;
691 	u32 *in;
692 	int err;
693 
694 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
695 	if (!mr)
696 		return ERR_PTR(-ENOMEM);
697 
698 	in = kzalloc(inlen, GFP_KERNEL);
699 	if (!in) {
700 		err = -ENOMEM;
701 		goto err_free;
702 	}
703 
704 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
705 
706 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
707 	MLX5_SET(mkc, mkc, length64, 1);
708 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
709 
710 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
711 	if (err)
712 		goto err_in;
713 
714 	kfree(in);
715 	mr->mmkey.type = MLX5_MKEY_MR;
716 	mr->ibmr.lkey = mr->mmkey.key;
717 	mr->ibmr.rkey = mr->mmkey.key;
718 	mr->umem = NULL;
719 
720 	return &mr->ibmr;
721 
722 err_in:
723 	kfree(in);
724 
725 err_free:
726 	kfree(mr);
727 
728 	return ERR_PTR(err);
729 }
730 
731 static int get_octo_len(u64 addr, u64 len, int page_shift)
732 {
733 	u64 page_size = 1ULL << page_shift;
734 	u64 offset;
735 	int npages;
736 
737 	offset = addr & (page_size - 1);
738 	npages = ALIGN(len + offset, page_size) >> page_shift;
739 	return (npages + 1) / 2;
740 }
741 
742 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
743 {
744 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
745 		return MR_CACHE_LAST_STD_ENTRY + 2;
746 	return MLX5_MAX_UMR_SHIFT;
747 }
748 
749 static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length,
750 		       int access_flags, struct ib_umem **umem, int *npages,
751 		       int *page_shift, int *ncont, int *order)
752 {
753 	struct ib_umem *u;
754 
755 	*umem = NULL;
756 
757 	if (access_flags & IB_ACCESS_ON_DEMAND) {
758 		struct ib_umem_odp *odp;
759 
760 		odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
761 				      &mlx5_mn_ops);
762 		if (IS_ERR(odp)) {
763 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
764 				    PTR_ERR(odp));
765 			return PTR_ERR(odp);
766 		}
767 
768 		u = &odp->umem;
769 
770 		*page_shift = odp->page_shift;
771 		*ncont = ib_umem_odp_num_pages(odp);
772 		*npages = *ncont << (*page_shift - PAGE_SHIFT);
773 		if (order)
774 			*order = ilog2(roundup_pow_of_two(*ncont));
775 	} else {
776 		u = ib_umem_get(&dev->ib_dev, start, length, access_flags);
777 		if (IS_ERR(u)) {
778 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
779 			return PTR_ERR(u);
780 		}
781 
782 		mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
783 				   page_shift, ncont, order);
784 	}
785 
786 	if (!*npages) {
787 		mlx5_ib_warn(dev, "avoid zero region\n");
788 		ib_umem_release(u);
789 		return -EINVAL;
790 	}
791 
792 	*umem = u;
793 
794 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
795 		    *npages, *ncont, *order, *page_shift);
796 
797 	return 0;
798 }
799 
800 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
801 {
802 	struct mlx5_ib_umr_context *context =
803 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
804 
805 	context->status = wc->status;
806 	complete(&context->done);
807 }
808 
809 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
810 {
811 	context->cqe.done = mlx5_ib_umr_done;
812 	context->status = -1;
813 	init_completion(&context->done);
814 }
815 
816 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
817 				  struct mlx5_umr_wr *umrwr)
818 {
819 	struct umr_common *umrc = &dev->umrc;
820 	const struct ib_send_wr *bad;
821 	int err;
822 	struct mlx5_ib_umr_context umr_context;
823 
824 	mlx5_ib_init_umr_context(&umr_context);
825 	umrwr->wr.wr_cqe = &umr_context.cqe;
826 
827 	down(&umrc->sem);
828 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
829 	if (err) {
830 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
831 	} else {
832 		wait_for_completion(&umr_context.done);
833 		if (umr_context.status != IB_WC_SUCCESS) {
834 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
835 				     umr_context.status);
836 			err = -EFAULT;
837 		}
838 	}
839 	up(&umrc->sem);
840 	return err;
841 }
842 
843 static struct mlx5_ib_mr *alloc_mr_from_cache(
844 				  struct ib_pd *pd, struct ib_umem *umem,
845 				  u64 virt_addr, u64 len, int npages,
846 				  int page_shift, int order, int access_flags)
847 {
848 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
849 	struct mlx5_ib_mr *mr;
850 	int err = 0;
851 	int i;
852 
853 	for (i = 0; i < 1; i++) {
854 		mr = alloc_cached_mr(dev, order);
855 		if (mr)
856 			break;
857 
858 		err = add_keys(dev, order2idx(dev, order), 1);
859 		if (err && err != -EAGAIN) {
860 			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
861 			break;
862 		}
863 	}
864 
865 	if (!mr)
866 		return ERR_PTR(-EAGAIN);
867 
868 	mr->ibmr.pd = pd;
869 	mr->umem = umem;
870 	mr->access_flags = access_flags;
871 	mr->desc_size = sizeof(struct mlx5_mtt);
872 	mr->mmkey.iova = virt_addr;
873 	mr->mmkey.size = len;
874 	mr->mmkey.pd = to_mpd(pd)->pdn;
875 
876 	return mr;
877 }
878 
879 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
880 			    MLX5_UMR_MTT_ALIGNMENT)
881 #define MLX5_SPARE_UMR_CHUNK 0x10000
882 
883 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
884 		       int page_shift, int flags)
885 {
886 	struct mlx5_ib_dev *dev = mr->dev;
887 	struct device *ddev = dev->ib_dev.dev.parent;
888 	int size;
889 	void *xlt;
890 	dma_addr_t dma;
891 	struct mlx5_umr_wr wr;
892 	struct ib_sge sg;
893 	int err = 0;
894 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
895 			       ? sizeof(struct mlx5_klm)
896 			       : sizeof(struct mlx5_mtt);
897 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
898 	const int page_mask = page_align - 1;
899 	size_t pages_mapped = 0;
900 	size_t pages_to_map = 0;
901 	size_t pages_iter = 0;
902 	size_t size_to_map = 0;
903 	gfp_t gfp;
904 	bool use_emergency_page = false;
905 
906 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
907 	    !umr_can_use_indirect_mkey(dev))
908 		return -EPERM;
909 
910 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
911 	 * so we need to align the offset and length accordingly
912 	 */
913 	if (idx & page_mask) {
914 		npages += idx & page_mask;
915 		idx &= ~page_mask;
916 	}
917 
918 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
919 	gfp |= __GFP_ZERO | __GFP_NOWARN;
920 
921 	pages_to_map = ALIGN(npages, page_align);
922 	size = desc_size * pages_to_map;
923 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
924 
925 	xlt = (void *)__get_free_pages(gfp, get_order(size));
926 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
927 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
928 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
929 
930 		size = MLX5_SPARE_UMR_CHUNK;
931 		xlt = (void *)__get_free_pages(gfp, get_order(size));
932 	}
933 
934 	if (!xlt) {
935 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
936 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
937 		size = PAGE_SIZE;
938 		memset(xlt, 0, size);
939 		use_emergency_page = true;
940 	}
941 	pages_iter = size / desc_size;
942 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
943 	if (dma_mapping_error(ddev, dma)) {
944 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
945 		err = -ENOMEM;
946 		goto free_xlt;
947 	}
948 
949 	if (mr->umem->is_odp) {
950 		if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
951 			struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
952 			size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
953 
954 			pages_to_map = min_t(size_t, pages_to_map, max_pages);
955 		}
956 	}
957 
958 	sg.addr = dma;
959 	sg.lkey = dev->umrc.pd->local_dma_lkey;
960 
961 	memset(&wr, 0, sizeof(wr));
962 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
963 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
964 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
965 	wr.wr.sg_list = &sg;
966 	wr.wr.num_sge = 1;
967 	wr.wr.opcode = MLX5_IB_WR_UMR;
968 
969 	wr.pd = mr->ibmr.pd;
970 	wr.mkey = mr->mmkey.key;
971 	wr.length = mr->mmkey.size;
972 	wr.virt_addr = mr->mmkey.iova;
973 	wr.access_flags = mr->access_flags;
974 	wr.page_shift = page_shift;
975 
976 	for (pages_mapped = 0;
977 	     pages_mapped < pages_to_map && !err;
978 	     pages_mapped += pages_iter, idx += pages_iter) {
979 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
980 		size_to_map = npages * desc_size;
981 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
982 		if (mr->umem->is_odp) {
983 			mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
984 		} else {
985 			__mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx,
986 					       npages, xlt,
987 					       MLX5_IB_MTT_PRESENT);
988 			/* Clear padding after the pages
989 			 * brought from the umem.
990 			 */
991 			memset(xlt + size_to_map, 0, size - size_to_map);
992 		}
993 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
994 
995 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
996 
997 		if (pages_mapped + pages_iter >= pages_to_map) {
998 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
999 				wr.wr.send_flags |=
1000 					MLX5_IB_SEND_UMR_ENABLE_MR |
1001 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1002 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1003 			if (flags & MLX5_IB_UPD_XLT_PD ||
1004 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1005 				wr.wr.send_flags |=
1006 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1007 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1008 				wr.wr.send_flags |=
1009 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1010 		}
1011 
1012 		wr.offset = idx * desc_size;
1013 		wr.xlt_size = sg.length;
1014 
1015 		err = mlx5_ib_post_send_wait(dev, &wr);
1016 	}
1017 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1018 
1019 free_xlt:
1020 	if (use_emergency_page)
1021 		mlx5_ib_put_xlt_emergency_page();
1022 	else
1023 		free_pages((unsigned long)xlt, get_order(size));
1024 
1025 	return err;
1026 }
1027 
1028 /*
1029  * If ibmr is NULL it will be allocated by reg_create.
1030  * Else, the given ibmr will be used.
1031  */
1032 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1033 				     u64 virt_addr, u64 length,
1034 				     struct ib_umem *umem, int npages,
1035 				     int page_shift, int access_flags,
1036 				     bool populate)
1037 {
1038 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1039 	struct mlx5_ib_mr *mr;
1040 	__be64 *pas;
1041 	void *mkc;
1042 	int inlen;
1043 	u32 *in;
1044 	int err;
1045 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1046 
1047 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1048 	if (!mr)
1049 		return ERR_PTR(-ENOMEM);
1050 
1051 	mr->ibmr.pd = pd;
1052 	mr->access_flags = access_flags;
1053 
1054 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1055 	if (populate)
1056 		inlen += sizeof(*pas) * roundup(npages, 2);
1057 	in = kvzalloc(inlen, GFP_KERNEL);
1058 	if (!in) {
1059 		err = -ENOMEM;
1060 		goto err_1;
1061 	}
1062 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1063 	if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1064 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1065 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1066 
1067 	/* The pg_access bit allows setting the access flags
1068 	 * in the page list submitted with the command. */
1069 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1070 
1071 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1072 	MLX5_SET(mkc, mkc, free, !populate);
1073 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1074 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
1075 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
1076 			 !!(access_flags & IB_ACCESS_RELAXED_ORDERING));
1077 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
1078 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
1079 			 !!(access_flags & IB_ACCESS_RELAXED_ORDERING));
1080 	MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1081 	MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1082 	MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1083 	MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1084 	MLX5_SET(mkc, mkc, lr, 1);
1085 	MLX5_SET(mkc, mkc, umr_en, 1);
1086 
1087 	MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1088 	MLX5_SET64(mkc, mkc, len, length);
1089 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1090 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1091 	MLX5_SET(mkc, mkc, translations_octword_size,
1092 		 get_octo_len(virt_addr, length, page_shift));
1093 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1094 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1095 	if (populate) {
1096 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1097 			 get_octo_len(virt_addr, length, page_shift));
1098 	}
1099 
1100 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1101 	if (err) {
1102 		mlx5_ib_warn(dev, "create mkey failed\n");
1103 		goto err_2;
1104 	}
1105 	mr->mmkey.type = MLX5_MKEY_MR;
1106 	mr->desc_size = sizeof(struct mlx5_mtt);
1107 	mr->dev = dev;
1108 	kvfree(in);
1109 
1110 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1111 
1112 	return mr;
1113 
1114 err_2:
1115 	kvfree(in);
1116 
1117 err_1:
1118 	if (!ibmr)
1119 		kfree(mr);
1120 
1121 	return ERR_PTR(err);
1122 }
1123 
1124 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1125 			  int npages, u64 length, int access_flags)
1126 {
1127 	mr->npages = npages;
1128 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1129 	mr->ibmr.lkey = mr->mmkey.key;
1130 	mr->ibmr.rkey = mr->mmkey.key;
1131 	mr->ibmr.length = length;
1132 	mr->access_flags = access_flags;
1133 }
1134 
1135 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1136 				       u64 length, int acc, int mode)
1137 {
1138 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1139 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1140 	struct mlx5_core_dev *mdev = dev->mdev;
1141 	struct mlx5_ib_mr *mr;
1142 	void *mkc;
1143 	u32 *in;
1144 	int err;
1145 
1146 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1147 	if (!mr)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	in = kzalloc(inlen, GFP_KERNEL);
1151 	if (!in) {
1152 		err = -ENOMEM;
1153 		goto err_free;
1154 	}
1155 
1156 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1157 
1158 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1159 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1160 	MLX5_SET64(mkc, mkc, len, length);
1161 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1162 
1163 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1164 	if (err)
1165 		goto err_in;
1166 
1167 	kfree(in);
1168 
1169 	mr->umem = NULL;
1170 	set_mr_fields(dev, mr, 0, length, acc);
1171 
1172 	return &mr->ibmr;
1173 
1174 err_in:
1175 	kfree(in);
1176 
1177 err_free:
1178 	kfree(mr);
1179 
1180 	return ERR_PTR(err);
1181 }
1182 
1183 int mlx5_ib_advise_mr(struct ib_pd *pd,
1184 		      enum ib_uverbs_advise_mr_advice advice,
1185 		      u32 flags,
1186 		      struct ib_sge *sg_list,
1187 		      u32 num_sge,
1188 		      struct uverbs_attr_bundle *attrs)
1189 {
1190 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1191 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1192 		return -EOPNOTSUPP;
1193 
1194 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1195 					 sg_list, num_sge);
1196 }
1197 
1198 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1199 				struct ib_dm_mr_attr *attr,
1200 				struct uverbs_attr_bundle *attrs)
1201 {
1202 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1203 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1204 	u64 start_addr = mdm->dev_addr + attr->offset;
1205 	int mode;
1206 
1207 	switch (mdm->type) {
1208 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1209 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1210 			return ERR_PTR(-EINVAL);
1211 
1212 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1213 		start_addr -= pci_resource_start(dev->pdev, 0);
1214 		break;
1215 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1216 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1217 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1218 			return ERR_PTR(-EINVAL);
1219 
1220 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1221 		break;
1222 	default:
1223 		return ERR_PTR(-EINVAL);
1224 	}
1225 
1226 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1227 				 attr->access_flags, mode);
1228 }
1229 
1230 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1231 				  u64 virt_addr, int access_flags,
1232 				  struct ib_udata *udata)
1233 {
1234 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1235 	struct mlx5_ib_mr *mr = NULL;
1236 	bool use_umr;
1237 	struct ib_umem *umem;
1238 	int page_shift;
1239 	int npages;
1240 	int ncont;
1241 	int order;
1242 	int err;
1243 
1244 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1245 		return ERR_PTR(-EOPNOTSUPP);
1246 
1247 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1248 		    start, virt_addr, length, access_flags);
1249 
1250 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1251 	    length == U64_MAX) {
1252 		if (virt_addr != start)
1253 			return ERR_PTR(-EINVAL);
1254 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1255 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1256 			return ERR_PTR(-EINVAL);
1257 
1258 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1259 		if (IS_ERR(mr))
1260 			return ERR_CAST(mr);
1261 		return &mr->ibmr;
1262 	}
1263 
1264 	err = mr_umem_get(dev, start, length, access_flags, &umem,
1265 			  &npages, &page_shift, &ncont, &order);
1266 
1267 	if (err < 0)
1268 		return ERR_PTR(err);
1269 
1270 	use_umr = mlx5_ib_can_use_umr(dev, true, access_flags);
1271 
1272 	if (order <= mr_cache_max_order(dev) && use_umr) {
1273 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1274 					 page_shift, order, access_flags);
1275 		if (PTR_ERR(mr) == -EAGAIN) {
1276 			mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1277 			mr = NULL;
1278 		}
1279 	} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1280 		if (access_flags & IB_ACCESS_ON_DEMAND) {
1281 			err = -EINVAL;
1282 			pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1283 			goto error;
1284 		}
1285 		use_umr = false;
1286 	}
1287 
1288 	if (!mr) {
1289 		mutex_lock(&dev->slow_path_mutex);
1290 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1291 				page_shift, access_flags, !use_umr);
1292 		mutex_unlock(&dev->slow_path_mutex);
1293 	}
1294 
1295 	if (IS_ERR(mr)) {
1296 		err = PTR_ERR(mr);
1297 		goto error;
1298 	}
1299 
1300 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1301 
1302 	mr->umem = umem;
1303 	set_mr_fields(dev, mr, npages, length, access_flags);
1304 
1305 	if (use_umr) {
1306 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1307 
1308 		if (access_flags & IB_ACCESS_ON_DEMAND)
1309 			update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1310 
1311 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1312 					 update_xlt_flags);
1313 
1314 		if (err) {
1315 			dereg_mr(dev, mr);
1316 			return ERR_PTR(err);
1317 		}
1318 	}
1319 
1320 	if (is_odp_mr(mr)) {
1321 		to_ib_umem_odp(mr->umem)->private = mr;
1322 		atomic_set(&mr->num_deferred_work, 0);
1323 		err = xa_err(xa_store(&dev->odp_mkeys,
1324 				      mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
1325 				      GFP_KERNEL));
1326 		if (err) {
1327 			dereg_mr(dev, mr);
1328 			return ERR_PTR(err);
1329 		}
1330 	}
1331 
1332 	return &mr->ibmr;
1333 error:
1334 	ib_umem_release(umem);
1335 	return ERR_PTR(err);
1336 }
1337 
1338 /**
1339  * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1340  * @mr: The MR to fence
1341  *
1342  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1343  * and any DMA inprogress will be completed. Failure of this function
1344  * indicates the HW has failed catastrophically.
1345  */
1346 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1347 {
1348 	struct mlx5_umr_wr umrwr = {};
1349 
1350 	if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1351 		return 0;
1352 
1353 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1354 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1355 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1356 	umrwr.pd = mr->dev->umrc.pd;
1357 	umrwr.mkey = mr->mmkey.key;
1358 	umrwr.ignore_free_state = 1;
1359 
1360 	return mlx5_ib_post_send_wait(mr->dev, &umrwr);
1361 }
1362 
1363 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1364 		     int access_flags, int flags)
1365 {
1366 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1367 	struct mlx5_umr_wr umrwr = {};
1368 	int err;
1369 
1370 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1371 
1372 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1373 	umrwr.mkey = mr->mmkey.key;
1374 
1375 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1376 		umrwr.pd = pd;
1377 		umrwr.access_flags = access_flags;
1378 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1379 	}
1380 
1381 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1382 
1383 	return err;
1384 }
1385 
1386 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1387 			  u64 length, u64 virt_addr, int new_access_flags,
1388 			  struct ib_pd *new_pd, struct ib_udata *udata)
1389 {
1390 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1391 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1392 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1393 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1394 			    new_access_flags :
1395 			    mr->access_flags;
1396 	int page_shift = 0;
1397 	int upd_flags = 0;
1398 	int npages = 0;
1399 	int ncont = 0;
1400 	int order = 0;
1401 	u64 addr, len;
1402 	int err;
1403 
1404 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1405 		    start, virt_addr, length, access_flags);
1406 
1407 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1408 
1409 	if (!mr->umem)
1410 		return -EINVAL;
1411 
1412 	if (is_odp_mr(mr))
1413 		return -EOPNOTSUPP;
1414 
1415 	if (flags & IB_MR_REREG_TRANS) {
1416 		addr = virt_addr;
1417 		len = length;
1418 	} else {
1419 		addr = mr->umem->address;
1420 		len = mr->umem->length;
1421 	}
1422 
1423 	if (flags != IB_MR_REREG_PD) {
1424 		/*
1425 		 * Replace umem. This needs to be done whether or not UMR is
1426 		 * used.
1427 		 */
1428 		flags |= IB_MR_REREG_TRANS;
1429 		ib_umem_release(mr->umem);
1430 		mr->umem = NULL;
1431 		err = mr_umem_get(dev, addr, len, access_flags, &mr->umem,
1432 				  &npages, &page_shift, &ncont, &order);
1433 		if (err)
1434 			goto err;
1435 	}
1436 
1437 	if (!mlx5_ib_can_use_umr(dev, true, access_flags) ||
1438 	    (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1439 		/*
1440 		 * UMR can't be used - MKey needs to be replaced.
1441 		 */
1442 		if (mr->allocated_from_cache)
1443 			err = mlx5_mr_cache_invalidate(mr);
1444 		else
1445 			err = destroy_mkey(dev, mr);
1446 		if (err)
1447 			goto err;
1448 
1449 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1450 				page_shift, access_flags, true);
1451 
1452 		if (IS_ERR(mr)) {
1453 			err = PTR_ERR(mr);
1454 			mr = to_mmr(ib_mr);
1455 			goto err;
1456 		}
1457 
1458 		mr->allocated_from_cache = false;
1459 	} else {
1460 		/*
1461 		 * Send a UMR WQE
1462 		 */
1463 		mr->ibmr.pd = pd;
1464 		mr->access_flags = access_flags;
1465 		mr->mmkey.iova = addr;
1466 		mr->mmkey.size = len;
1467 		mr->mmkey.pd = to_mpd(pd)->pdn;
1468 
1469 		if (flags & IB_MR_REREG_TRANS) {
1470 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1471 			if (flags & IB_MR_REREG_PD)
1472 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1473 			if (flags & IB_MR_REREG_ACCESS)
1474 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1475 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1476 						 upd_flags);
1477 		} else {
1478 			err = rereg_umr(pd, mr, access_flags, flags);
1479 		}
1480 
1481 		if (err)
1482 			goto err;
1483 	}
1484 
1485 	set_mr_fields(dev, mr, npages, len, access_flags);
1486 
1487 	return 0;
1488 
1489 err:
1490 	ib_umem_release(mr->umem);
1491 	mr->umem = NULL;
1492 
1493 	clean_mr(dev, mr);
1494 	return err;
1495 }
1496 
1497 static int
1498 mlx5_alloc_priv_descs(struct ib_device *device,
1499 		      struct mlx5_ib_mr *mr,
1500 		      int ndescs,
1501 		      int desc_size)
1502 {
1503 	int size = ndescs * desc_size;
1504 	int add_size;
1505 	int ret;
1506 
1507 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1508 
1509 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1510 	if (!mr->descs_alloc)
1511 		return -ENOMEM;
1512 
1513 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1514 
1515 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1516 				      size, DMA_TO_DEVICE);
1517 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1518 		ret = -ENOMEM;
1519 		goto err;
1520 	}
1521 
1522 	return 0;
1523 err:
1524 	kfree(mr->descs_alloc);
1525 
1526 	return ret;
1527 }
1528 
1529 static void
1530 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1531 {
1532 	if (mr->descs) {
1533 		struct ib_device *device = mr->ibmr.device;
1534 		int size = mr->max_descs * mr->desc_size;
1535 
1536 		dma_unmap_single(device->dev.parent, mr->desc_map,
1537 				 size, DMA_TO_DEVICE);
1538 		kfree(mr->descs_alloc);
1539 		mr->descs = NULL;
1540 	}
1541 }
1542 
1543 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1544 {
1545 	int allocated_from_cache = mr->allocated_from_cache;
1546 
1547 	if (mr->sig) {
1548 		if (mlx5_core_destroy_psv(dev->mdev,
1549 					  mr->sig->psv_memory.psv_idx))
1550 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1551 				     mr->sig->psv_memory.psv_idx);
1552 		if (mlx5_core_destroy_psv(dev->mdev,
1553 					  mr->sig->psv_wire.psv_idx))
1554 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1555 				     mr->sig->psv_wire.psv_idx);
1556 		xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1557 		kfree(mr->sig);
1558 		mr->sig = NULL;
1559 	}
1560 
1561 	if (!allocated_from_cache) {
1562 		destroy_mkey(dev, mr);
1563 		mlx5_free_priv_descs(mr);
1564 	}
1565 }
1566 
1567 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1568 {
1569 	int npages = mr->npages;
1570 	struct ib_umem *umem = mr->umem;
1571 
1572 	/* Stop all DMA */
1573 	if (is_odp_mr(mr))
1574 		mlx5_ib_fence_odp_mr(mr);
1575 	else
1576 		clean_mr(dev, mr);
1577 
1578 	if (mr->allocated_from_cache)
1579 		mlx5_mr_cache_free(dev, mr);
1580 	else
1581 		kfree(mr);
1582 
1583 	ib_umem_release(umem);
1584 	atomic_sub(npages, &dev->mdev->priv.reg_pages);
1585 
1586 }
1587 
1588 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1589 {
1590 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1591 
1592 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1593 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1594 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1595 	}
1596 
1597 	if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
1598 		mlx5_ib_free_implicit_mr(mmr);
1599 		return 0;
1600 	}
1601 
1602 	dereg_mr(to_mdev(ibmr->device), mmr);
1603 
1604 	return 0;
1605 }
1606 
1607 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1608 				   int access_mode, int page_shift)
1609 {
1610 	void *mkc;
1611 
1612 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1613 
1614 	MLX5_SET(mkc, mkc, free, 1);
1615 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1616 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1617 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1618 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1619 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1620 	MLX5_SET(mkc, mkc, umr_en, 1);
1621 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1622 }
1623 
1624 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1625 				  int ndescs, int desc_size, int page_shift,
1626 				  int access_mode, u32 *in, int inlen)
1627 {
1628 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1629 	int err;
1630 
1631 	mr->access_mode = access_mode;
1632 	mr->desc_size = desc_size;
1633 	mr->max_descs = ndescs;
1634 
1635 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1636 	if (err)
1637 		return err;
1638 
1639 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1640 
1641 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1642 	if (err)
1643 		goto err_free_descs;
1644 
1645 	mr->mmkey.type = MLX5_MKEY_MR;
1646 	mr->ibmr.lkey = mr->mmkey.key;
1647 	mr->ibmr.rkey = mr->mmkey.key;
1648 
1649 	return 0;
1650 
1651 err_free_descs:
1652 	mlx5_free_priv_descs(mr);
1653 	return err;
1654 }
1655 
1656 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1657 				u32 max_num_sg, u32 max_num_meta_sg,
1658 				int desc_size, int access_mode)
1659 {
1660 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1661 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1662 	int page_shift = 0;
1663 	struct mlx5_ib_mr *mr;
1664 	u32 *in;
1665 	int err;
1666 
1667 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1668 	if (!mr)
1669 		return ERR_PTR(-ENOMEM);
1670 
1671 	mr->ibmr.pd = pd;
1672 	mr->ibmr.device = pd->device;
1673 
1674 	in = kzalloc(inlen, GFP_KERNEL);
1675 	if (!in) {
1676 		err = -ENOMEM;
1677 		goto err_free;
1678 	}
1679 
1680 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1681 		page_shift = PAGE_SHIFT;
1682 
1683 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1684 				     access_mode, in, inlen);
1685 	if (err)
1686 		goto err_free_in;
1687 
1688 	mr->umem = NULL;
1689 	kfree(in);
1690 
1691 	return mr;
1692 
1693 err_free_in:
1694 	kfree(in);
1695 err_free:
1696 	kfree(mr);
1697 	return ERR_PTR(err);
1698 }
1699 
1700 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1701 				    int ndescs, u32 *in, int inlen)
1702 {
1703 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1704 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1705 				      inlen);
1706 }
1707 
1708 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1709 				    int ndescs, u32 *in, int inlen)
1710 {
1711 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1712 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1713 }
1714 
1715 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1716 				      int max_num_sg, int max_num_meta_sg,
1717 				      u32 *in, int inlen)
1718 {
1719 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1720 	u32 psv_index[2];
1721 	void *mkc;
1722 	int err;
1723 
1724 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1725 	if (!mr->sig)
1726 		return -ENOMEM;
1727 
1728 	/* create mem & wire PSVs */
1729 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1730 	if (err)
1731 		goto err_free_sig;
1732 
1733 	mr->sig->psv_memory.psv_idx = psv_index[0];
1734 	mr->sig->psv_wire.psv_idx = psv_index[1];
1735 
1736 	mr->sig->sig_status_checked = true;
1737 	mr->sig->sig_err_exists = false;
1738 	/* Next UMR, Arm SIGERR */
1739 	++mr->sig->sigerr_count;
1740 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1741 					 sizeof(struct mlx5_klm),
1742 					 MLX5_MKC_ACCESS_MODE_KLMS);
1743 	if (IS_ERR(mr->klm_mr)) {
1744 		err = PTR_ERR(mr->klm_mr);
1745 		goto err_destroy_psv;
1746 	}
1747 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1748 					 sizeof(struct mlx5_mtt),
1749 					 MLX5_MKC_ACCESS_MODE_MTT);
1750 	if (IS_ERR(mr->mtt_mr)) {
1751 		err = PTR_ERR(mr->mtt_mr);
1752 		goto err_free_klm_mr;
1753 	}
1754 
1755 	/* Set bsf descriptors for mkey */
1756 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1757 	MLX5_SET(mkc, mkc, bsf_en, 1);
1758 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1759 
1760 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1761 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1762 	if (err)
1763 		goto err_free_mtt_mr;
1764 
1765 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1766 			      mr->sig, GFP_KERNEL));
1767 	if (err)
1768 		goto err_free_descs;
1769 	return 0;
1770 
1771 err_free_descs:
1772 	destroy_mkey(dev, mr);
1773 	mlx5_free_priv_descs(mr);
1774 err_free_mtt_mr:
1775 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1776 	mr->mtt_mr = NULL;
1777 err_free_klm_mr:
1778 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1779 	mr->klm_mr = NULL;
1780 err_destroy_psv:
1781 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1782 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1783 			     mr->sig->psv_memory.psv_idx);
1784 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1785 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1786 			     mr->sig->psv_wire.psv_idx);
1787 err_free_sig:
1788 	kfree(mr->sig);
1789 
1790 	return err;
1791 }
1792 
1793 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1794 					enum ib_mr_type mr_type, u32 max_num_sg,
1795 					u32 max_num_meta_sg)
1796 {
1797 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1798 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1799 	int ndescs = ALIGN(max_num_sg, 4);
1800 	struct mlx5_ib_mr *mr;
1801 	u32 *in;
1802 	int err;
1803 
1804 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1805 	if (!mr)
1806 		return ERR_PTR(-ENOMEM);
1807 
1808 	in = kzalloc(inlen, GFP_KERNEL);
1809 	if (!in) {
1810 		err = -ENOMEM;
1811 		goto err_free;
1812 	}
1813 
1814 	mr->ibmr.device = pd->device;
1815 	mr->umem = NULL;
1816 
1817 	switch (mr_type) {
1818 	case IB_MR_TYPE_MEM_REG:
1819 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1820 		break;
1821 	case IB_MR_TYPE_SG_GAPS:
1822 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1823 		break;
1824 	case IB_MR_TYPE_INTEGRITY:
1825 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1826 						 max_num_meta_sg, in, inlen);
1827 		break;
1828 	default:
1829 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1830 		err = -EINVAL;
1831 	}
1832 
1833 	if (err)
1834 		goto err_free_in;
1835 
1836 	kfree(in);
1837 
1838 	return &mr->ibmr;
1839 
1840 err_free_in:
1841 	kfree(in);
1842 err_free:
1843 	kfree(mr);
1844 	return ERR_PTR(err);
1845 }
1846 
1847 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1848 			       u32 max_num_sg, struct ib_udata *udata)
1849 {
1850 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1851 }
1852 
1853 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1854 					 u32 max_num_sg, u32 max_num_meta_sg)
1855 {
1856 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1857 				  max_num_meta_sg);
1858 }
1859 
1860 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1861 			       struct ib_udata *udata)
1862 {
1863 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1864 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1865 	struct mlx5_ib_mw *mw = NULL;
1866 	u32 *in = NULL;
1867 	void *mkc;
1868 	int ndescs;
1869 	int err;
1870 	struct mlx5_ib_alloc_mw req = {};
1871 	struct {
1872 		__u32	comp_mask;
1873 		__u32	response_length;
1874 	} resp = {};
1875 
1876 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1877 	if (err)
1878 		return ERR_PTR(err);
1879 
1880 	if (req.comp_mask || req.reserved1 || req.reserved2)
1881 		return ERR_PTR(-EOPNOTSUPP);
1882 
1883 	if (udata->inlen > sizeof(req) &&
1884 	    !ib_is_udata_cleared(udata, sizeof(req),
1885 				 udata->inlen - sizeof(req)))
1886 		return ERR_PTR(-EOPNOTSUPP);
1887 
1888 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1889 
1890 	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1891 	in = kzalloc(inlen, GFP_KERNEL);
1892 	if (!mw || !in) {
1893 		err = -ENOMEM;
1894 		goto free;
1895 	}
1896 
1897 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1898 
1899 	MLX5_SET(mkc, mkc, free, 1);
1900 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1901 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1902 	MLX5_SET(mkc, mkc, umr_en, 1);
1903 	MLX5_SET(mkc, mkc, lr, 1);
1904 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1905 	MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1906 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1907 
1908 	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1909 	if (err)
1910 		goto free;
1911 
1912 	mw->mmkey.type = MLX5_MKEY_MW;
1913 	mw->ibmw.rkey = mw->mmkey.key;
1914 	mw->ndescs = ndescs;
1915 
1916 	resp.response_length = min(offsetof(typeof(resp), response_length) +
1917 				   sizeof(resp.response_length), udata->outlen);
1918 	if (resp.response_length) {
1919 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1920 		if (err) {
1921 			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1922 			goto free;
1923 		}
1924 	}
1925 
1926 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1927 		err = xa_err(xa_store(&dev->odp_mkeys,
1928 				      mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
1929 				      GFP_KERNEL));
1930 		if (err)
1931 			goto free_mkey;
1932 	}
1933 
1934 	kfree(in);
1935 	return &mw->ibmw;
1936 
1937 free_mkey:
1938 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1939 free:
1940 	kfree(mw);
1941 	kfree(in);
1942 	return ERR_PTR(err);
1943 }
1944 
1945 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1946 {
1947 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
1948 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1949 	int err;
1950 
1951 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1952 		xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
1953 		/*
1954 		 * pagefault_single_data_segment() may be accessing mmw under
1955 		 * SRCU if the user bound an ODP MR to this MW.
1956 		 */
1957 		synchronize_srcu(&dev->odp_srcu);
1958 	}
1959 
1960 	err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
1961 	if (err)
1962 		return err;
1963 	kfree(mmw);
1964 	return 0;
1965 }
1966 
1967 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1968 			    struct ib_mr_status *mr_status)
1969 {
1970 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1971 	int ret = 0;
1972 
1973 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1974 		pr_err("Invalid status check mask\n");
1975 		ret = -EINVAL;
1976 		goto done;
1977 	}
1978 
1979 	mr_status->fail_status = 0;
1980 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1981 		if (!mmr->sig) {
1982 			ret = -EINVAL;
1983 			pr_err("signature status check requested on a non-signature enabled MR\n");
1984 			goto done;
1985 		}
1986 
1987 		mmr->sig->sig_status_checked = true;
1988 		if (!mmr->sig->sig_err_exists)
1989 			goto done;
1990 
1991 		if (ibmr->lkey == mmr->sig->err_item.key)
1992 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1993 			       sizeof(mr_status->sig_err));
1994 		else {
1995 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1996 			mr_status->sig_err.sig_err_offset = 0;
1997 			mr_status->sig_err.key = mmr->sig->err_item.key;
1998 		}
1999 
2000 		mmr->sig->sig_err_exists = false;
2001 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2002 	}
2003 
2004 done:
2005 	return ret;
2006 }
2007 
2008 static int
2009 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2010 			int data_sg_nents, unsigned int *data_sg_offset,
2011 			struct scatterlist *meta_sg, int meta_sg_nents,
2012 			unsigned int *meta_sg_offset)
2013 {
2014 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2015 	unsigned int sg_offset = 0;
2016 	int n = 0;
2017 
2018 	mr->meta_length = 0;
2019 	if (data_sg_nents == 1) {
2020 		n++;
2021 		mr->ndescs = 1;
2022 		if (data_sg_offset)
2023 			sg_offset = *data_sg_offset;
2024 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2025 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2026 		if (meta_sg_nents == 1) {
2027 			n++;
2028 			mr->meta_ndescs = 1;
2029 			if (meta_sg_offset)
2030 				sg_offset = *meta_sg_offset;
2031 			else
2032 				sg_offset = 0;
2033 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2034 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2035 		}
2036 		ibmr->length = mr->data_length + mr->meta_length;
2037 	}
2038 
2039 	return n;
2040 }
2041 
2042 static int
2043 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2044 		   struct scatterlist *sgl,
2045 		   unsigned short sg_nents,
2046 		   unsigned int *sg_offset_p,
2047 		   struct scatterlist *meta_sgl,
2048 		   unsigned short meta_sg_nents,
2049 		   unsigned int *meta_sg_offset_p)
2050 {
2051 	struct scatterlist *sg = sgl;
2052 	struct mlx5_klm *klms = mr->descs;
2053 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2054 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2055 	int i, j = 0;
2056 
2057 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2058 	mr->ibmr.length = 0;
2059 
2060 	for_each_sg(sgl, sg, sg_nents, i) {
2061 		if (unlikely(i >= mr->max_descs))
2062 			break;
2063 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2064 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2065 		klms[i].key = cpu_to_be32(lkey);
2066 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2067 
2068 		sg_offset = 0;
2069 	}
2070 
2071 	if (sg_offset_p)
2072 		*sg_offset_p = sg_offset;
2073 
2074 	mr->ndescs = i;
2075 	mr->data_length = mr->ibmr.length;
2076 
2077 	if (meta_sg_nents) {
2078 		sg = meta_sgl;
2079 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2080 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2081 			if (unlikely(i + j >= mr->max_descs))
2082 				break;
2083 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2084 						     sg_offset);
2085 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2086 							 sg_offset);
2087 			klms[i + j].key = cpu_to_be32(lkey);
2088 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2089 
2090 			sg_offset = 0;
2091 		}
2092 		if (meta_sg_offset_p)
2093 			*meta_sg_offset_p = sg_offset;
2094 
2095 		mr->meta_ndescs = j;
2096 		mr->meta_length = mr->ibmr.length - mr->data_length;
2097 	}
2098 
2099 	return i + j;
2100 }
2101 
2102 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2103 {
2104 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2105 	__be64 *descs;
2106 
2107 	if (unlikely(mr->ndescs == mr->max_descs))
2108 		return -ENOMEM;
2109 
2110 	descs = mr->descs;
2111 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2112 
2113 	return 0;
2114 }
2115 
2116 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2117 {
2118 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2119 	__be64 *descs;
2120 
2121 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2122 		return -ENOMEM;
2123 
2124 	descs = mr->descs;
2125 	descs[mr->ndescs + mr->meta_ndescs++] =
2126 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2127 
2128 	return 0;
2129 }
2130 
2131 static int
2132 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2133 			 int data_sg_nents, unsigned int *data_sg_offset,
2134 			 struct scatterlist *meta_sg, int meta_sg_nents,
2135 			 unsigned int *meta_sg_offset)
2136 {
2137 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2138 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2139 	int n;
2140 
2141 	pi_mr->ndescs = 0;
2142 	pi_mr->meta_ndescs = 0;
2143 	pi_mr->meta_length = 0;
2144 
2145 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2146 				   pi_mr->desc_size * pi_mr->max_descs,
2147 				   DMA_TO_DEVICE);
2148 
2149 	pi_mr->ibmr.page_size = ibmr->page_size;
2150 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2151 			   mlx5_set_page);
2152 	if (n != data_sg_nents)
2153 		return n;
2154 
2155 	pi_mr->data_iova = pi_mr->ibmr.iova;
2156 	pi_mr->data_length = pi_mr->ibmr.length;
2157 	pi_mr->ibmr.length = pi_mr->data_length;
2158 	ibmr->length = pi_mr->data_length;
2159 
2160 	if (meta_sg_nents) {
2161 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2162 		u64 iova = pi_mr->data_iova;
2163 
2164 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2165 				    meta_sg_offset, mlx5_set_page_pi);
2166 
2167 		pi_mr->meta_length = pi_mr->ibmr.length;
2168 		/*
2169 		 * PI address for the HW is the offset of the metadata address
2170 		 * relative to the first data page address.
2171 		 * It equals to first data page address + size of data pages +
2172 		 * metadata offset at the first metadata page
2173 		 */
2174 		pi_mr->pi_iova = (iova & page_mask) +
2175 				 pi_mr->ndescs * ibmr->page_size +
2176 				 (pi_mr->ibmr.iova & ~page_mask);
2177 		/*
2178 		 * In order to use one MTT MR for data and metadata, we register
2179 		 * also the gaps between the end of the data and the start of
2180 		 * the metadata (the sig MR will verify that the HW will access
2181 		 * to right addresses). This mapping is safe because we use
2182 		 * internal mkey for the registration.
2183 		 */
2184 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2185 		pi_mr->ibmr.iova = iova;
2186 		ibmr->length += pi_mr->meta_length;
2187 	}
2188 
2189 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2190 				      pi_mr->desc_size * pi_mr->max_descs,
2191 				      DMA_TO_DEVICE);
2192 
2193 	return n;
2194 }
2195 
2196 static int
2197 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2198 			 int data_sg_nents, unsigned int *data_sg_offset,
2199 			 struct scatterlist *meta_sg, int meta_sg_nents,
2200 			 unsigned int *meta_sg_offset)
2201 {
2202 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2203 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2204 	int n;
2205 
2206 	pi_mr->ndescs = 0;
2207 	pi_mr->meta_ndescs = 0;
2208 	pi_mr->meta_length = 0;
2209 
2210 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2211 				   pi_mr->desc_size * pi_mr->max_descs,
2212 				   DMA_TO_DEVICE);
2213 
2214 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2215 			       meta_sg, meta_sg_nents, meta_sg_offset);
2216 
2217 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2218 				      pi_mr->desc_size * pi_mr->max_descs,
2219 				      DMA_TO_DEVICE);
2220 
2221 	/* This is zero-based memory region */
2222 	pi_mr->data_iova = 0;
2223 	pi_mr->ibmr.iova = 0;
2224 	pi_mr->pi_iova = pi_mr->data_length;
2225 	ibmr->length = pi_mr->ibmr.length;
2226 
2227 	return n;
2228 }
2229 
2230 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2231 			 int data_sg_nents, unsigned int *data_sg_offset,
2232 			 struct scatterlist *meta_sg, int meta_sg_nents,
2233 			 unsigned int *meta_sg_offset)
2234 {
2235 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2236 	struct mlx5_ib_mr *pi_mr = NULL;
2237 	int n;
2238 
2239 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2240 
2241 	mr->ndescs = 0;
2242 	mr->data_length = 0;
2243 	mr->data_iova = 0;
2244 	mr->meta_ndescs = 0;
2245 	mr->pi_iova = 0;
2246 	/*
2247 	 * As a performance optimization, if possible, there is no need to
2248 	 * perform UMR operation to register the data/metadata buffers.
2249 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2250 	 * Fallback to UMR only in case of a failure.
2251 	 */
2252 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2253 				    data_sg_offset, meta_sg, meta_sg_nents,
2254 				    meta_sg_offset);
2255 	if (n == data_sg_nents + meta_sg_nents)
2256 		goto out;
2257 	/*
2258 	 * As a performance optimization, if possible, there is no need to map
2259 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2260 	 * descriptors and fallback to KLM only in case of a failure.
2261 	 * It's more efficient for the HW to work with MTT descriptors
2262 	 * (especially in high load).
2263 	 * Use KLM (indirect access) only if it's mandatory.
2264 	 */
2265 	pi_mr = mr->mtt_mr;
2266 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2267 				     data_sg_offset, meta_sg, meta_sg_nents,
2268 				     meta_sg_offset);
2269 	if (n == data_sg_nents + meta_sg_nents)
2270 		goto out;
2271 
2272 	pi_mr = mr->klm_mr;
2273 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2274 				     data_sg_offset, meta_sg, meta_sg_nents,
2275 				     meta_sg_offset);
2276 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2277 		return -ENOMEM;
2278 
2279 out:
2280 	/* This is zero-based memory region */
2281 	ibmr->iova = 0;
2282 	mr->pi_mr = pi_mr;
2283 	if (pi_mr)
2284 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2285 	else
2286 		ibmr->sig_attrs->meta_length = mr->meta_length;
2287 
2288 	return 0;
2289 }
2290 
2291 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2292 		      unsigned int *sg_offset)
2293 {
2294 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2295 	int n;
2296 
2297 	mr->ndescs = 0;
2298 
2299 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2300 				   mr->desc_size * mr->max_descs,
2301 				   DMA_TO_DEVICE);
2302 
2303 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2304 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2305 				       NULL);
2306 	else
2307 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2308 				mlx5_set_page);
2309 
2310 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2311 				      mr->desc_size * mr->max_descs,
2312 				      DMA_TO_DEVICE);
2313 
2314 	return n;
2315 }
2316