1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem_odp.h> 43 #include "dm.h" 44 #include "mlx5_ib.h" 45 #include "umr.h" 46 47 enum { 48 MAX_PENDING_REG_MR = 8, 49 }; 50 51 #define MLX5_UMR_ALIGN 2048 52 53 static void 54 create_mkey_callback(int status, struct mlx5_async_work *context); 55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 56 u64 iova, int access_flags, 57 unsigned int page_size, bool populate); 58 59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 60 struct ib_pd *pd) 61 { 62 struct mlx5_ib_dev *dev = to_mdev(pd->device); 63 64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 68 MLX5_SET(mkc, mkc, lr, 1); 69 70 if (acc & IB_ACCESS_RELAXED_ORDERING) { 71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1); 73 74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || 75 (MLX5_CAP_GEN(dev->mdev, 76 relaxed_ordering_read_pci_enabled) && 77 pcie_relaxed_ordering_enabled(dev->mdev->pdev))) 78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1); 79 } 80 81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 82 MLX5_SET(mkc, mkc, qpn, 0xffffff); 83 MLX5_SET64(mkc, mkc, start_addr, start_addr); 84 } 85 86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in) 87 { 88 u8 key = atomic_inc_return(&dev->mkey_var); 89 void *mkc; 90 91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 92 MLX5_SET(mkc, mkc, mkey_7_0, key); 93 *mkey = key; 94 } 95 96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, 97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen) 98 { 99 int ret; 100 101 assign_mkey_variant(dev, &mkey->key, in); 102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen); 103 if (!ret) 104 init_waitqueue_head(&mkey->wait); 105 106 return ret; 107 } 108 109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create) 110 { 111 struct mlx5_ib_dev *dev = async_create->ent->dev; 112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out); 114 115 MLX5_SET(create_mkey_in, async_create->in, opcode, 116 MLX5_CMD_OP_CREATE_MKEY); 117 assign_mkey_variant(dev, &async_create->mkey, async_create->in); 118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen, 119 async_create->out, outlen, create_mkey_callback, 120 &async_create->cb_work); 121 } 122 123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev); 124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 125 126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 127 { 128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 129 130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key); 131 } 132 133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out) 134 { 135 if (status == -ENXIO) /* core driver is not available */ 136 return; 137 138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 139 if (status != -EREMOTEIO) /* driver specific failure */ 140 return; 141 142 /* Failed in FW, print cmd out failure details */ 143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out); 144 } 145 146 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings, 147 void *to_store) 148 { 149 XA_STATE(xas, &ent->mkeys, 0); 150 void *curr; 151 152 if (limit_pendings && 153 (ent->reserved - ent->stored) > MAX_PENDING_REG_MR) 154 return -EAGAIN; 155 156 while (1) { 157 /* 158 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version 159 * doesn't transparently unlock. Instead we set the xas index to 160 * the current value of reserved every iteration. 161 */ 162 xas_set(&xas, ent->reserved); 163 curr = xas_load(&xas); 164 if (!curr) { 165 if (to_store && ent->stored == ent->reserved) 166 xas_store(&xas, to_store); 167 else 168 xas_store(&xas, XA_ZERO_ENTRY); 169 if (xas_valid(&xas)) { 170 ent->reserved++; 171 if (to_store) { 172 if (ent->stored != ent->reserved) 173 __xa_store(&ent->mkeys, 174 ent->stored, 175 to_store, 176 GFP_KERNEL); 177 ent->stored++; 178 queue_adjust_cache_locked(ent); 179 WRITE_ONCE(ent->dev->cache.last_add, 180 jiffies); 181 } 182 } 183 } 184 xa_unlock_irq(&ent->mkeys); 185 186 /* 187 * Notice xas_nomem() must always be called as it cleans 188 * up any cached allocation. 189 */ 190 if (!xas_nomem(&xas, GFP_KERNEL)) 191 break; 192 xa_lock_irq(&ent->mkeys); 193 } 194 xa_lock_irq(&ent->mkeys); 195 if (xas_error(&xas)) 196 return xas_error(&xas); 197 if (WARN_ON(curr)) 198 return -EINVAL; 199 return 0; 200 } 201 202 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings, 203 void *to_store) 204 { 205 int ret; 206 207 xa_lock_irq(&ent->mkeys); 208 ret = push_mkey_locked(ent, limit_pendings, to_store); 209 xa_unlock_irq(&ent->mkeys); 210 return ret; 211 } 212 213 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent) 214 { 215 void *old; 216 217 ent->reserved--; 218 old = __xa_erase(&ent->mkeys, ent->reserved); 219 WARN_ON(old); 220 } 221 222 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey) 223 { 224 void *old; 225 226 old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0); 227 WARN_ON(old); 228 ent->stored++; 229 } 230 231 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent) 232 { 233 void *old, *xa_mkey; 234 235 ent->stored--; 236 ent->reserved--; 237 238 if (ent->stored == ent->reserved) { 239 xa_mkey = __xa_erase(&ent->mkeys, ent->stored); 240 WARN_ON(!xa_mkey); 241 return (u32)xa_to_value(xa_mkey); 242 } 243 244 xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY, 245 GFP_KERNEL); 246 WARN_ON(!xa_mkey || xa_is_err(xa_mkey)); 247 old = __xa_erase(&ent->mkeys, ent->reserved); 248 WARN_ON(old); 249 return (u32)xa_to_value(xa_mkey); 250 } 251 252 static void create_mkey_callback(int status, struct mlx5_async_work *context) 253 { 254 struct mlx5r_async_create_mkey *mkey_out = 255 container_of(context, struct mlx5r_async_create_mkey, cb_work); 256 struct mlx5_cache_ent *ent = mkey_out->ent; 257 struct mlx5_ib_dev *dev = ent->dev; 258 unsigned long flags; 259 260 if (status) { 261 create_mkey_warn(dev, status, mkey_out->out); 262 kfree(mkey_out); 263 xa_lock_irqsave(&ent->mkeys, flags); 264 undo_push_reserve_mkey(ent); 265 WRITE_ONCE(dev->fill_delay, 1); 266 xa_unlock_irqrestore(&ent->mkeys, flags); 267 mod_timer(&dev->delay_timer, jiffies + HZ); 268 return; 269 } 270 271 mkey_out->mkey |= mlx5_idx_to_mkey( 272 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index)); 273 WRITE_ONCE(dev->cache.last_add, jiffies); 274 275 xa_lock_irqsave(&ent->mkeys, flags); 276 push_to_reserved(ent, mkey_out->mkey); 277 /* If we are doing fill_to_high_water then keep going. */ 278 queue_adjust_cache_locked(ent); 279 xa_unlock_irqrestore(&ent->mkeys, flags); 280 kfree(mkey_out); 281 } 282 283 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs) 284 { 285 int ret = 0; 286 287 switch (access_mode) { 288 case MLX5_MKC_ACCESS_MODE_MTT: 289 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / 290 sizeof(struct mlx5_mtt)); 291 break; 292 case MLX5_MKC_ACCESS_MODE_KSM: 293 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / 294 sizeof(struct mlx5_klm)); 295 break; 296 default: 297 WARN_ON(1); 298 } 299 return ret; 300 } 301 302 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc) 303 { 304 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0, 305 ent->dev->umrc.pd); 306 MLX5_SET(mkc, mkc, free, 1); 307 MLX5_SET(mkc, mkc, umr_en, 1); 308 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3); 309 MLX5_SET(mkc, mkc, access_mode_4_2, 310 (ent->rb_key.access_mode >> 2) & 0x7); 311 312 MLX5_SET(mkc, mkc, translations_octword_size, 313 get_mkc_octo_size(ent->rb_key.access_mode, 314 ent->rb_key.ndescs)); 315 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT); 316 } 317 318 /* Asynchronously schedule new MRs to be populated in the cache. */ 319 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 320 { 321 struct mlx5r_async_create_mkey *async_create; 322 void *mkc; 323 int err = 0; 324 int i; 325 326 for (i = 0; i < num; i++) { 327 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey), 328 GFP_KERNEL); 329 if (!async_create) 330 return -ENOMEM; 331 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in, 332 memory_key_mkey_entry); 333 set_cache_mkc(ent, mkc); 334 async_create->ent = ent; 335 336 err = push_mkey(ent, true, NULL); 337 if (err) 338 goto free_async_create; 339 340 err = mlx5_ib_create_mkey_cb(async_create); 341 if (err) { 342 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 343 goto err_undo_reserve; 344 } 345 } 346 347 return 0; 348 349 err_undo_reserve: 350 xa_lock_irq(&ent->mkeys); 351 undo_push_reserve_mkey(ent); 352 xa_unlock_irq(&ent->mkeys); 353 free_async_create: 354 kfree(async_create); 355 return err; 356 } 357 358 /* Synchronously create a MR in the cache */ 359 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey) 360 { 361 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 362 void *mkc; 363 u32 *in; 364 int err; 365 366 in = kzalloc(inlen, GFP_KERNEL); 367 if (!in) 368 return -ENOMEM; 369 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 370 set_cache_mkc(ent, mkc); 371 372 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen); 373 if (err) 374 goto free_in; 375 376 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 377 free_in: 378 kfree(in); 379 return err; 380 } 381 382 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 383 { 384 u32 mkey; 385 386 lockdep_assert_held(&ent->mkeys.xa_lock); 387 if (!ent->stored) 388 return; 389 mkey = pop_stored_mkey(ent); 390 xa_unlock_irq(&ent->mkeys); 391 mlx5_core_destroy_mkey(ent->dev->mdev, mkey); 392 xa_lock_irq(&ent->mkeys); 393 } 394 395 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 396 bool limit_fill) 397 __acquires(&ent->mkeys) __releases(&ent->mkeys) 398 { 399 int err; 400 401 lockdep_assert_held(&ent->mkeys.xa_lock); 402 403 while (true) { 404 if (limit_fill) 405 target = ent->limit * 2; 406 if (target == ent->reserved) 407 return 0; 408 if (target > ent->reserved) { 409 u32 todo = target - ent->reserved; 410 411 xa_unlock_irq(&ent->mkeys); 412 err = add_keys(ent, todo); 413 if (err == -EAGAIN) 414 usleep_range(3000, 5000); 415 xa_lock_irq(&ent->mkeys); 416 if (err) { 417 if (err != -EAGAIN) 418 return err; 419 } else 420 return 0; 421 } else { 422 remove_cache_mr_locked(ent); 423 } 424 } 425 } 426 427 static ssize_t size_write(struct file *filp, const char __user *buf, 428 size_t count, loff_t *pos) 429 { 430 struct mlx5_cache_ent *ent = filp->private_data; 431 u32 target; 432 int err; 433 434 err = kstrtou32_from_user(buf, count, 0, &target); 435 if (err) 436 return err; 437 438 /* 439 * Target is the new value of total_mrs the user requests, however we 440 * cannot free MRs that are in use. Compute the target value for stored 441 * mkeys. 442 */ 443 xa_lock_irq(&ent->mkeys); 444 if (target < ent->in_use) { 445 err = -EINVAL; 446 goto err_unlock; 447 } 448 target = target - ent->in_use; 449 if (target < ent->limit || target > ent->limit*2) { 450 err = -EINVAL; 451 goto err_unlock; 452 } 453 err = resize_available_mrs(ent, target, false); 454 if (err) 455 goto err_unlock; 456 xa_unlock_irq(&ent->mkeys); 457 458 return count; 459 460 err_unlock: 461 xa_unlock_irq(&ent->mkeys); 462 return err; 463 } 464 465 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 466 loff_t *pos) 467 { 468 struct mlx5_cache_ent *ent = filp->private_data; 469 char lbuf[20]; 470 int err; 471 472 err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use); 473 if (err < 0) 474 return err; 475 476 return simple_read_from_buffer(buf, count, pos, lbuf, err); 477 } 478 479 static const struct file_operations size_fops = { 480 .owner = THIS_MODULE, 481 .open = simple_open, 482 .write = size_write, 483 .read = size_read, 484 }; 485 486 static ssize_t limit_write(struct file *filp, const char __user *buf, 487 size_t count, loff_t *pos) 488 { 489 struct mlx5_cache_ent *ent = filp->private_data; 490 u32 var; 491 int err; 492 493 err = kstrtou32_from_user(buf, count, 0, &var); 494 if (err) 495 return err; 496 497 /* 498 * Upon set we immediately fill the cache to high water mark implied by 499 * the limit. 500 */ 501 xa_lock_irq(&ent->mkeys); 502 ent->limit = var; 503 err = resize_available_mrs(ent, 0, true); 504 xa_unlock_irq(&ent->mkeys); 505 if (err) 506 return err; 507 return count; 508 } 509 510 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 511 loff_t *pos) 512 { 513 struct mlx5_cache_ent *ent = filp->private_data; 514 char lbuf[20]; 515 int err; 516 517 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 518 if (err < 0) 519 return err; 520 521 return simple_read_from_buffer(buf, count, pos, lbuf, err); 522 } 523 524 static const struct file_operations limit_fops = { 525 .owner = THIS_MODULE, 526 .open = simple_open, 527 .write = limit_write, 528 .read = limit_read, 529 }; 530 531 static bool someone_adding(struct mlx5_mkey_cache *cache) 532 { 533 struct mlx5_cache_ent *ent; 534 struct rb_node *node; 535 bool ret; 536 537 mutex_lock(&cache->rb_lock); 538 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) { 539 ent = rb_entry(node, struct mlx5_cache_ent, node); 540 xa_lock_irq(&ent->mkeys); 541 ret = ent->stored < ent->limit; 542 xa_unlock_irq(&ent->mkeys); 543 if (ret) { 544 mutex_unlock(&cache->rb_lock); 545 return true; 546 } 547 } 548 mutex_unlock(&cache->rb_lock); 549 return false; 550 } 551 552 /* 553 * Check if the bucket is outside the high/low water mark and schedule an async 554 * update. The cache refill has hysteresis, once the low water mark is hit it is 555 * refilled up to the high mark. 556 */ 557 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 558 { 559 lockdep_assert_held(&ent->mkeys.xa_lock); 560 561 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp) 562 return; 563 if (ent->stored < ent->limit) { 564 ent->fill_to_high_water = true; 565 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); 566 } else if (ent->fill_to_high_water && 567 ent->reserved < 2 * ent->limit) { 568 /* 569 * Once we start populating due to hitting a low water mark 570 * continue until we pass the high water mark. 571 */ 572 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); 573 } else if (ent->stored == 2 * ent->limit) { 574 ent->fill_to_high_water = false; 575 } else if (ent->stored > 2 * ent->limit) { 576 /* Queue deletion of excess entries */ 577 ent->fill_to_high_water = false; 578 if (ent->stored != ent->reserved) 579 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 580 msecs_to_jiffies(1000)); 581 else 582 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); 583 } 584 } 585 586 static void __cache_work_func(struct mlx5_cache_ent *ent) 587 { 588 struct mlx5_ib_dev *dev = ent->dev; 589 struct mlx5_mkey_cache *cache = &dev->cache; 590 int err; 591 592 xa_lock_irq(&ent->mkeys); 593 if (ent->disabled) 594 goto out; 595 596 if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit && 597 !READ_ONCE(dev->fill_delay)) { 598 xa_unlock_irq(&ent->mkeys); 599 err = add_keys(ent, 1); 600 xa_lock_irq(&ent->mkeys); 601 if (ent->disabled) 602 goto out; 603 if (err) { 604 /* 605 * EAGAIN only happens if there are pending MRs, so we 606 * will be rescheduled when storing them. The only 607 * failure path here is ENOMEM. 608 */ 609 if (err != -EAGAIN) { 610 mlx5_ib_warn( 611 dev, 612 "add keys command failed, err %d\n", 613 err); 614 queue_delayed_work(cache->wq, &ent->dwork, 615 msecs_to_jiffies(1000)); 616 } 617 } 618 } else if (ent->stored > 2 * ent->limit) { 619 bool need_delay; 620 621 /* 622 * The remove_cache_mr() logic is performed as garbage 623 * collection task. Such task is intended to be run when no 624 * other active processes are running. 625 * 626 * The need_resched() will return TRUE if there are user tasks 627 * to be activated in near future. 628 * 629 * In such case, we don't execute remove_cache_mr() and postpone 630 * the garbage collection work to try to run in next cycle, in 631 * order to free CPU resources to other tasks. 632 */ 633 xa_unlock_irq(&ent->mkeys); 634 need_delay = need_resched() || someone_adding(cache) || 635 !time_after(jiffies, 636 READ_ONCE(cache->last_add) + 300 * HZ); 637 xa_lock_irq(&ent->mkeys); 638 if (ent->disabled) 639 goto out; 640 if (need_delay) { 641 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 642 goto out; 643 } 644 remove_cache_mr_locked(ent); 645 queue_adjust_cache_locked(ent); 646 } 647 out: 648 xa_unlock_irq(&ent->mkeys); 649 } 650 651 static void delayed_cache_work_func(struct work_struct *work) 652 { 653 struct mlx5_cache_ent *ent; 654 655 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 656 __cache_work_func(ent); 657 } 658 659 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1, 660 struct mlx5r_cache_rb_key key2) 661 { 662 int res; 663 664 res = key1.ats - key2.ats; 665 if (res) 666 return res; 667 668 res = key1.access_mode - key2.access_mode; 669 if (res) 670 return res; 671 672 res = key1.access_flags - key2.access_flags; 673 if (res) 674 return res; 675 676 /* 677 * keep ndescs the last in the compare table since the find function 678 * searches for an exact match on all properties and only closest 679 * match in size. 680 */ 681 return key1.ndescs - key2.ndescs; 682 } 683 684 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache, 685 struct mlx5_cache_ent *ent) 686 { 687 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL; 688 struct mlx5_cache_ent *cur; 689 int cmp; 690 691 /* Figure out where to put new node */ 692 while (*new) { 693 cur = rb_entry(*new, struct mlx5_cache_ent, node); 694 parent = *new; 695 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key); 696 if (cmp > 0) 697 new = &((*new)->rb_left); 698 if (cmp < 0) 699 new = &((*new)->rb_right); 700 if (cmp == 0) { 701 mutex_unlock(&cache->rb_lock); 702 return -EEXIST; 703 } 704 } 705 706 /* Add new node and rebalance tree. */ 707 rb_link_node(&ent->node, parent, new); 708 rb_insert_color(&ent->node, &cache->rb_root); 709 710 return 0; 711 } 712 713 static struct mlx5_cache_ent * 714 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev, 715 struct mlx5r_cache_rb_key rb_key) 716 { 717 struct rb_node *node = dev->cache.rb_root.rb_node; 718 struct mlx5_cache_ent *cur, *smallest = NULL; 719 int cmp; 720 721 /* 722 * Find the smallest ent with order >= requested_order. 723 */ 724 while (node) { 725 cur = rb_entry(node, struct mlx5_cache_ent, node); 726 cmp = cache_ent_key_cmp(cur->rb_key, rb_key); 727 if (cmp > 0) { 728 smallest = cur; 729 node = node->rb_left; 730 } 731 if (cmp < 0) 732 node = node->rb_right; 733 if (cmp == 0) 734 return cur; 735 } 736 737 return (smallest && 738 smallest->rb_key.access_mode == rb_key.access_mode && 739 smallest->rb_key.access_flags == rb_key.access_flags && 740 smallest->rb_key.ats == rb_key.ats) ? 741 smallest : 742 NULL; 743 } 744 745 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 746 struct mlx5_cache_ent *ent, 747 int access_flags) 748 { 749 struct mlx5_ib_mr *mr; 750 int err; 751 752 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 753 if (!mr) 754 return ERR_PTR(-ENOMEM); 755 756 xa_lock_irq(&ent->mkeys); 757 ent->in_use++; 758 759 if (!ent->stored) { 760 queue_adjust_cache_locked(ent); 761 ent->miss++; 762 xa_unlock_irq(&ent->mkeys); 763 err = create_cache_mkey(ent, &mr->mmkey.key); 764 if (err) { 765 xa_lock_irq(&ent->mkeys); 766 ent->in_use--; 767 xa_unlock_irq(&ent->mkeys); 768 kfree(mr); 769 return ERR_PTR(err); 770 } 771 } else { 772 mr->mmkey.key = pop_stored_mkey(ent); 773 queue_adjust_cache_locked(ent); 774 xa_unlock_irq(&ent->mkeys); 775 } 776 mr->mmkey.cache_ent = ent; 777 mr->mmkey.type = MLX5_MKEY_MR; 778 init_waitqueue_head(&mr->mmkey.wait); 779 return mr; 780 } 781 782 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev, 783 int access_flags) 784 { 785 int ret = 0; 786 787 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) && 788 MLX5_CAP_GEN(dev->mdev, atomic) && 789 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled)) 790 ret |= IB_ACCESS_REMOTE_ATOMIC; 791 792 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && 793 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) && 794 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr)) 795 ret |= IB_ACCESS_RELAXED_ORDERING; 796 797 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && 798 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || 799 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) && 800 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr)) 801 ret |= IB_ACCESS_RELAXED_ORDERING; 802 803 return ret; 804 } 805 806 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 807 int access_flags, int access_mode, 808 int ndescs) 809 { 810 struct mlx5r_cache_rb_key rb_key = { 811 .ndescs = ndescs, 812 .access_mode = access_mode, 813 .access_flags = get_unchangeable_access_flags(dev, access_flags) 814 }; 815 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key); 816 817 if (!ent) 818 return ERR_PTR(-EOPNOTSUPP); 819 820 return _mlx5_mr_cache_alloc(dev, ent, access_flags); 821 } 822 823 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent) 824 { 825 u32 mkey; 826 827 cancel_delayed_work(&ent->dwork); 828 xa_lock_irq(&ent->mkeys); 829 while (ent->stored) { 830 mkey = pop_stored_mkey(ent); 831 xa_unlock_irq(&ent->mkeys); 832 mlx5_core_destroy_mkey(dev->mdev, mkey); 833 xa_lock_irq(&ent->mkeys); 834 } 835 xa_unlock_irq(&ent->mkeys); 836 } 837 838 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 839 { 840 if (!mlx5_debugfs_root || dev->is_rep) 841 return; 842 843 debugfs_remove_recursive(dev->cache.fs_root); 844 dev->cache.fs_root = NULL; 845 } 846 847 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev, 848 struct mlx5_cache_ent *ent) 849 { 850 int order = order_base_2(ent->rb_key.ndescs); 851 struct dentry *dir; 852 853 if (!mlx5_debugfs_root || dev->is_rep) 854 return; 855 856 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) 857 order = MLX5_IMR_KSM_CACHE_ENTRY + 2; 858 859 sprintf(ent->name, "%d", order); 860 dir = debugfs_create_dir(ent->name, dev->cache.fs_root); 861 debugfs_create_file("size", 0600, dir, ent, &size_fops); 862 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 863 debugfs_create_ulong("cur", 0400, dir, &ent->stored); 864 debugfs_create_u32("miss", 0600, dir, &ent->miss); 865 } 866 867 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev) 868 { 869 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev); 870 struct mlx5_mkey_cache *cache = &dev->cache; 871 872 if (!mlx5_debugfs_root || dev->is_rep) 873 return; 874 875 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root); 876 } 877 878 static void delay_time_func(struct timer_list *t) 879 { 880 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 881 882 WRITE_ONCE(dev->fill_delay, 0); 883 } 884 885 struct mlx5_cache_ent * 886 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev, 887 struct mlx5r_cache_rb_key rb_key, 888 bool persistent_entry) 889 { 890 struct mlx5_cache_ent *ent; 891 int order; 892 int ret; 893 894 ent = kzalloc(sizeof(*ent), GFP_KERNEL); 895 if (!ent) 896 return ERR_PTR(-ENOMEM); 897 898 xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ); 899 ent->rb_key = rb_key; 900 ent->dev = dev; 901 ent->is_tmp = !persistent_entry; 902 903 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 904 905 ret = mlx5_cache_ent_insert(&dev->cache, ent); 906 if (ret) { 907 kfree(ent); 908 return ERR_PTR(ret); 909 } 910 911 if (persistent_entry) { 912 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) 913 order = MLX5_IMR_KSM_CACHE_ENTRY; 914 else 915 order = order_base_2(rb_key.ndescs) - 2; 916 917 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && 918 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 919 mlx5r_umr_can_load_pas(dev, 0)) 920 ent->limit = dev->mdev->profile.mr_cache[order].limit; 921 else 922 ent->limit = 0; 923 924 mlx5_mkey_cache_debugfs_add_ent(dev, ent); 925 } else { 926 mod_delayed_work(ent->dev->cache.wq, 927 &ent->dev->cache.remove_ent_dwork, 928 msecs_to_jiffies(30 * 1000)); 929 } 930 931 return ent; 932 } 933 934 static void remove_ent_work_func(struct work_struct *work) 935 { 936 struct mlx5_mkey_cache *cache; 937 struct mlx5_cache_ent *ent; 938 struct rb_node *cur; 939 940 cache = container_of(work, struct mlx5_mkey_cache, 941 remove_ent_dwork.work); 942 mutex_lock(&cache->rb_lock); 943 cur = rb_last(&cache->rb_root); 944 while (cur) { 945 ent = rb_entry(cur, struct mlx5_cache_ent, node); 946 cur = rb_prev(cur); 947 mutex_unlock(&cache->rb_lock); 948 949 xa_lock_irq(&ent->mkeys); 950 if (!ent->is_tmp) { 951 xa_unlock_irq(&ent->mkeys); 952 mutex_lock(&cache->rb_lock); 953 continue; 954 } 955 xa_unlock_irq(&ent->mkeys); 956 957 clean_keys(ent->dev, ent); 958 mutex_lock(&cache->rb_lock); 959 } 960 mutex_unlock(&cache->rb_lock); 961 } 962 963 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev) 964 { 965 struct mlx5_mkey_cache *cache = &dev->cache; 966 struct rb_root *root = &dev->cache.rb_root; 967 struct mlx5r_cache_rb_key rb_key = { 968 .access_mode = MLX5_MKC_ACCESS_MODE_MTT, 969 }; 970 struct mlx5_cache_ent *ent; 971 struct rb_node *node; 972 int ret; 973 int i; 974 975 mutex_init(&dev->slow_path_mutex); 976 mutex_init(&dev->cache.rb_lock); 977 dev->cache.rb_root = RB_ROOT; 978 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func); 979 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 980 if (!cache->wq) { 981 mlx5_ib_warn(dev, "failed to create work queue\n"); 982 return -ENOMEM; 983 } 984 985 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 986 timer_setup(&dev->delay_timer, delay_time_func, 0); 987 mlx5_mkey_cache_debugfs_init(dev); 988 mutex_lock(&cache->rb_lock); 989 for (i = 0; i <= mkey_cache_max_order(dev); i++) { 990 rb_key.ndescs = 1 << (i + 2); 991 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); 992 if (IS_ERR(ent)) { 993 ret = PTR_ERR(ent); 994 goto err; 995 } 996 } 997 998 ret = mlx5_odp_init_mkey_cache(dev); 999 if (ret) 1000 goto err; 1001 1002 mutex_unlock(&cache->rb_lock); 1003 for (node = rb_first(root); node; node = rb_next(node)) { 1004 ent = rb_entry(node, struct mlx5_cache_ent, node); 1005 xa_lock_irq(&ent->mkeys); 1006 queue_adjust_cache_locked(ent); 1007 xa_unlock_irq(&ent->mkeys); 1008 } 1009 1010 return 0; 1011 1012 err: 1013 mutex_unlock(&cache->rb_lock); 1014 mlx5_mkey_cache_debugfs_cleanup(dev); 1015 mlx5_ib_warn(dev, "failed to create mkey cache entry\n"); 1016 return ret; 1017 } 1018 1019 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev) 1020 { 1021 struct rb_root *root = &dev->cache.rb_root; 1022 struct mlx5_cache_ent *ent; 1023 struct rb_node *node; 1024 1025 if (!dev->cache.wq) 1026 return; 1027 1028 mutex_lock(&dev->cache.rb_lock); 1029 for (node = rb_first(root); node; node = rb_next(node)) { 1030 ent = rb_entry(node, struct mlx5_cache_ent, node); 1031 xa_lock_irq(&ent->mkeys); 1032 ent->disabled = true; 1033 xa_unlock_irq(&ent->mkeys); 1034 } 1035 mutex_unlock(&dev->cache.rb_lock); 1036 1037 /* 1038 * After all entries are disabled and will not reschedule on WQ, 1039 * flush it and all async commands. 1040 */ 1041 flush_workqueue(dev->cache.wq); 1042 1043 mlx5_mkey_cache_debugfs_cleanup(dev); 1044 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 1045 1046 /* At this point all entries are disabled and have no concurrent work. */ 1047 mutex_lock(&dev->cache.rb_lock); 1048 node = rb_first(root); 1049 while (node) { 1050 ent = rb_entry(node, struct mlx5_cache_ent, node); 1051 node = rb_next(node); 1052 clean_keys(dev, ent); 1053 rb_erase(&ent->node, root); 1054 kfree(ent); 1055 } 1056 mutex_unlock(&dev->cache.rb_lock); 1057 1058 destroy_workqueue(dev->cache.wq); 1059 del_timer_sync(&dev->delay_timer); 1060 } 1061 1062 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 1063 { 1064 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1065 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1066 struct mlx5_ib_mr *mr; 1067 void *mkc; 1068 u32 *in; 1069 int err; 1070 1071 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1072 if (!mr) 1073 return ERR_PTR(-ENOMEM); 1074 1075 in = kzalloc(inlen, GFP_KERNEL); 1076 if (!in) { 1077 err = -ENOMEM; 1078 goto err_free; 1079 } 1080 1081 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1082 1083 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 1084 MLX5_SET(mkc, mkc, length64, 1); 1085 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, 1086 pd); 1087 1088 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1089 if (err) 1090 goto err_in; 1091 1092 kfree(in); 1093 mr->mmkey.type = MLX5_MKEY_MR; 1094 mr->ibmr.lkey = mr->mmkey.key; 1095 mr->ibmr.rkey = mr->mmkey.key; 1096 mr->umem = NULL; 1097 1098 return &mr->ibmr; 1099 1100 err_in: 1101 kfree(in); 1102 1103 err_free: 1104 kfree(mr); 1105 1106 return ERR_PTR(err); 1107 } 1108 1109 static int get_octo_len(u64 addr, u64 len, int page_shift) 1110 { 1111 u64 page_size = 1ULL << page_shift; 1112 u64 offset; 1113 int npages; 1114 1115 offset = addr & (page_size - 1); 1116 npages = ALIGN(len + offset, page_size) >> page_shift; 1117 return (npages + 1) / 2; 1118 } 1119 1120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev) 1121 { 1122 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 1123 return MKEY_CACHE_LAST_STD_ENTRY; 1124 return MLX5_MAX_UMR_SHIFT; 1125 } 1126 1127 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 1128 u64 length, int access_flags, u64 iova) 1129 { 1130 mr->ibmr.lkey = mr->mmkey.key; 1131 mr->ibmr.rkey = mr->mmkey.key; 1132 mr->ibmr.length = length; 1133 mr->ibmr.device = &dev->ib_dev; 1134 mr->ibmr.iova = iova; 1135 mr->access_flags = access_flags; 1136 } 1137 1138 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 1139 u64 iova) 1140 { 1141 /* 1142 * The alignment of iova has already been checked upon entering 1143 * UVERBS_METHOD_REG_DMABUF_MR 1144 */ 1145 umem->iova = iova; 1146 return PAGE_SIZE; 1147 } 1148 1149 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 1150 struct ib_umem *umem, u64 iova, 1151 int access_flags) 1152 { 1153 struct mlx5r_cache_rb_key rb_key = { 1154 .access_mode = MLX5_MKC_ACCESS_MODE_MTT, 1155 }; 1156 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1157 struct mlx5_cache_ent *ent; 1158 struct mlx5_ib_mr *mr; 1159 unsigned int page_size; 1160 1161 if (umem->is_dmabuf) 1162 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 1163 else 1164 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 1165 0, iova); 1166 if (WARN_ON(!page_size)) 1167 return ERR_PTR(-EINVAL); 1168 1169 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size); 1170 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags); 1171 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags); 1172 ent = mkey_cache_ent_from_rb_key(dev, rb_key); 1173 /* 1174 * If the MR can't come from the cache then synchronously create an uncached 1175 * one. 1176 */ 1177 if (!ent) { 1178 mutex_lock(&dev->slow_path_mutex); 1179 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 1180 mutex_unlock(&dev->slow_path_mutex); 1181 if (IS_ERR(mr)) 1182 return mr; 1183 mr->mmkey.rb_key = rb_key; 1184 return mr; 1185 } 1186 1187 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags); 1188 if (IS_ERR(mr)) 1189 return mr; 1190 1191 mr->ibmr.pd = pd; 1192 mr->umem = umem; 1193 mr->page_shift = order_base_2(page_size); 1194 set_mr_fields(dev, mr, umem->length, access_flags, iova); 1195 1196 return mr; 1197 } 1198 1199 /* 1200 * If ibmr is NULL it will be allocated by reg_create. 1201 * Else, the given ibmr will be used. 1202 */ 1203 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1204 u64 iova, int access_flags, 1205 unsigned int page_size, bool populate) 1206 { 1207 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1208 struct mlx5_ib_mr *mr; 1209 __be64 *pas; 1210 void *mkc; 1211 int inlen; 1212 u32 *in; 1213 int err; 1214 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1215 1216 if (!page_size) 1217 return ERR_PTR(-EINVAL); 1218 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1219 if (!mr) 1220 return ERR_PTR(-ENOMEM); 1221 1222 mr->ibmr.pd = pd; 1223 mr->access_flags = access_flags; 1224 mr->page_shift = order_base_2(page_size); 1225 1226 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1227 if (populate) 1228 inlen += sizeof(*pas) * 1229 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1230 in = kvzalloc(inlen, GFP_KERNEL); 1231 if (!in) { 1232 err = -ENOMEM; 1233 goto err_1; 1234 } 1235 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1236 if (populate) { 1237 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1238 err = -EINVAL; 1239 goto err_2; 1240 } 1241 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1242 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1243 } 1244 1245 /* The pg_access bit allows setting the access flags 1246 * in the page list submitted with the command. 1247 */ 1248 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1249 1250 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1251 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1252 populate ? pd : dev->umrc.pd); 1253 MLX5_SET(mkc, mkc, free, !populate); 1254 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1255 MLX5_SET(mkc, mkc, umr_en, 1); 1256 1257 MLX5_SET64(mkc, mkc, len, umem->length); 1258 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1259 MLX5_SET(mkc, mkc, translations_octword_size, 1260 get_octo_len(iova, umem->length, mr->page_shift)); 1261 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1262 if (mlx5_umem_needs_ats(dev, umem, access_flags)) 1263 MLX5_SET(mkc, mkc, ma_translation_mode, 1); 1264 if (populate) { 1265 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1266 get_octo_len(iova, umem->length, mr->page_shift)); 1267 } 1268 1269 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1270 if (err) { 1271 mlx5_ib_warn(dev, "create mkey failed\n"); 1272 goto err_2; 1273 } 1274 mr->mmkey.type = MLX5_MKEY_MR; 1275 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift); 1276 mr->umem = umem; 1277 set_mr_fields(dev, mr, umem->length, access_flags, iova); 1278 kvfree(in); 1279 1280 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1281 1282 return mr; 1283 1284 err_2: 1285 kvfree(in); 1286 err_1: 1287 kfree(mr); 1288 return ERR_PTR(err); 1289 } 1290 1291 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1292 u64 length, int acc, int mode) 1293 { 1294 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1295 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1296 struct mlx5_ib_mr *mr; 1297 void *mkc; 1298 u32 *in; 1299 int err; 1300 1301 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1302 if (!mr) 1303 return ERR_PTR(-ENOMEM); 1304 1305 in = kzalloc(inlen, GFP_KERNEL); 1306 if (!in) { 1307 err = -ENOMEM; 1308 goto err_free; 1309 } 1310 1311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1312 1313 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1314 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1315 MLX5_SET64(mkc, mkc, len, length); 1316 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1317 1318 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1319 if (err) 1320 goto err_in; 1321 1322 kfree(in); 1323 1324 set_mr_fields(dev, mr, length, acc, start_addr); 1325 1326 return &mr->ibmr; 1327 1328 err_in: 1329 kfree(in); 1330 1331 err_free: 1332 kfree(mr); 1333 1334 return ERR_PTR(err); 1335 } 1336 1337 int mlx5_ib_advise_mr(struct ib_pd *pd, 1338 enum ib_uverbs_advise_mr_advice advice, 1339 u32 flags, 1340 struct ib_sge *sg_list, 1341 u32 num_sge, 1342 struct uverbs_attr_bundle *attrs) 1343 { 1344 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1345 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1346 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1347 return -EOPNOTSUPP; 1348 1349 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1350 sg_list, num_sge); 1351 } 1352 1353 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1354 struct ib_dm_mr_attr *attr, 1355 struct uverbs_attr_bundle *attrs) 1356 { 1357 struct mlx5_ib_dm *mdm = to_mdm(dm); 1358 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1359 u64 start_addr = mdm->dev_addr + attr->offset; 1360 int mode; 1361 1362 switch (mdm->type) { 1363 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1364 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1365 return ERR_PTR(-EINVAL); 1366 1367 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1368 start_addr -= pci_resource_start(dev->pdev, 0); 1369 break; 1370 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1371 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1372 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM: 1373 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1374 return ERR_PTR(-EINVAL); 1375 1376 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1377 break; 1378 default: 1379 return ERR_PTR(-EINVAL); 1380 } 1381 1382 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1383 attr->access_flags, mode); 1384 } 1385 1386 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1387 u64 iova, int access_flags) 1388 { 1389 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1390 struct mlx5_ib_mr *mr = NULL; 1391 bool xlt_with_umr; 1392 int err; 1393 1394 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length); 1395 if (xlt_with_umr) { 1396 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1397 } else { 1398 unsigned int page_size = mlx5_umem_find_best_pgsz( 1399 umem, mkc, log_page_size, 0, iova); 1400 1401 mutex_lock(&dev->slow_path_mutex); 1402 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1403 mutex_unlock(&dev->slow_path_mutex); 1404 } 1405 if (IS_ERR(mr)) { 1406 ib_umem_release(umem); 1407 return ERR_CAST(mr); 1408 } 1409 1410 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1411 1412 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1413 1414 if (xlt_with_umr) { 1415 /* 1416 * If the MR was created with reg_create then it will be 1417 * configured properly but left disabled. It is safe to go ahead 1418 * and configure it again via UMR while enabling it. 1419 */ 1420 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1421 if (err) { 1422 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1423 return ERR_PTR(err); 1424 } 1425 } 1426 return &mr->ibmr; 1427 } 1428 1429 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1430 u64 iova, int access_flags, 1431 struct ib_udata *udata) 1432 { 1433 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1434 struct ib_umem_odp *odp; 1435 struct mlx5_ib_mr *mr; 1436 int err; 1437 1438 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1439 return ERR_PTR(-EOPNOTSUPP); 1440 1441 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); 1442 if (err) 1443 return ERR_PTR(err); 1444 if (!start && length == U64_MAX) { 1445 if (iova != 0) 1446 return ERR_PTR(-EINVAL); 1447 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1448 return ERR_PTR(-EINVAL); 1449 1450 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); 1451 if (IS_ERR(mr)) 1452 return ERR_CAST(mr); 1453 return &mr->ibmr; 1454 } 1455 1456 /* ODP requires xlt update via umr to work. */ 1457 if (!mlx5r_umr_can_load_pas(dev, length)) 1458 return ERR_PTR(-EINVAL); 1459 1460 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1461 &mlx5_mn_ops); 1462 if (IS_ERR(odp)) 1463 return ERR_CAST(odp); 1464 1465 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1466 if (IS_ERR(mr)) { 1467 ib_umem_release(&odp->umem); 1468 return ERR_CAST(mr); 1469 } 1470 xa_init(&mr->implicit_children); 1471 1472 odp->private = mr; 1473 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1474 if (err) 1475 goto err_dereg_mr; 1476 1477 err = mlx5_ib_init_odp_mr(mr); 1478 if (err) 1479 goto err_dereg_mr; 1480 return &mr->ibmr; 1481 1482 err_dereg_mr: 1483 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1484 return ERR_PTR(err); 1485 } 1486 1487 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1488 u64 iova, int access_flags, 1489 struct ib_udata *udata) 1490 { 1491 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1492 struct ib_umem *umem; 1493 1494 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1495 return ERR_PTR(-EOPNOTSUPP); 1496 1497 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1498 start, iova, length, access_flags); 1499 1500 if (access_flags & IB_ACCESS_ON_DEMAND) 1501 return create_user_odp_mr(pd, start, length, iova, access_flags, 1502 udata); 1503 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1504 if (IS_ERR(umem)) 1505 return ERR_CAST(umem); 1506 return create_real_mr(pd, umem, iova, access_flags); 1507 } 1508 1509 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1510 { 1511 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1512 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1513 1514 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1515 1516 if (!umem_dmabuf->sgt) 1517 return; 1518 1519 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1520 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1521 } 1522 1523 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1524 .allow_peer2peer = 1, 1525 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1526 }; 1527 1528 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1529 u64 length, u64 virt_addr, 1530 int fd, int access_flags, 1531 struct ib_udata *udata) 1532 { 1533 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1534 struct mlx5_ib_mr *mr = NULL; 1535 struct ib_umem_dmabuf *umem_dmabuf; 1536 int err; 1537 1538 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1539 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1540 return ERR_PTR(-EOPNOTSUPP); 1541 1542 mlx5_ib_dbg(dev, 1543 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1544 offset, virt_addr, length, fd, access_flags); 1545 1546 /* dmabuf requires xlt update via umr to work. */ 1547 if (!mlx5r_umr_can_load_pas(dev, length)) 1548 return ERR_PTR(-EINVAL); 1549 1550 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1551 access_flags, 1552 &mlx5_ib_dmabuf_attach_ops); 1553 if (IS_ERR(umem_dmabuf)) { 1554 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1555 PTR_ERR(umem_dmabuf)); 1556 return ERR_CAST(umem_dmabuf); 1557 } 1558 1559 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1560 access_flags); 1561 if (IS_ERR(mr)) { 1562 ib_umem_release(&umem_dmabuf->umem); 1563 return ERR_CAST(mr); 1564 } 1565 1566 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1567 1568 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1569 umem_dmabuf->private = mr; 1570 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1571 if (err) 1572 goto err_dereg_mr; 1573 1574 err = mlx5_ib_init_dmabuf_mr(mr); 1575 if (err) 1576 goto err_dereg_mr; 1577 return &mr->ibmr; 1578 1579 err_dereg_mr: 1580 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1581 return ERR_PTR(err); 1582 } 1583 1584 /* 1585 * True if the change in access flags can be done via UMR, only some access 1586 * flags can be updated. 1587 */ 1588 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1589 unsigned int current_access_flags, 1590 unsigned int target_access_flags) 1591 { 1592 unsigned int diffs = current_access_flags ^ target_access_flags; 1593 1594 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1595 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1596 return false; 1597 return mlx5r_umr_can_reconfig(dev, current_access_flags, 1598 target_access_flags); 1599 } 1600 1601 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1602 struct ib_umem *new_umem, 1603 int new_access_flags, u64 iova, 1604 unsigned long *page_size) 1605 { 1606 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1607 1608 /* We only track the allocated sizes of MRs from the cache */ 1609 if (!mr->mmkey.cache_ent) 1610 return false; 1611 if (!mlx5r_umr_can_load_pas(dev, new_umem->length)) 1612 return false; 1613 1614 *page_size = 1615 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1616 if (WARN_ON(!*page_size)) 1617 return false; 1618 return (mr->mmkey.cache_ent->rb_key.ndescs) >= 1619 ib_umem_num_dma_blocks(new_umem, *page_size); 1620 } 1621 1622 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1623 int access_flags, int flags, struct ib_umem *new_umem, 1624 u64 iova, unsigned long page_size) 1625 { 1626 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1627 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1628 struct ib_umem *old_umem = mr->umem; 1629 int err; 1630 1631 /* 1632 * To keep everything simple the MR is revoked before we start to mess 1633 * with it. This ensure the change is atomic relative to any use of the 1634 * MR. 1635 */ 1636 err = mlx5r_umr_revoke_mr(mr); 1637 if (err) 1638 return err; 1639 1640 if (flags & IB_MR_REREG_PD) { 1641 mr->ibmr.pd = pd; 1642 upd_flags |= MLX5_IB_UPD_XLT_PD; 1643 } 1644 if (flags & IB_MR_REREG_ACCESS) { 1645 mr->access_flags = access_flags; 1646 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1647 } 1648 1649 mr->ibmr.iova = iova; 1650 mr->ibmr.length = new_umem->length; 1651 mr->page_shift = order_base_2(page_size); 1652 mr->umem = new_umem; 1653 err = mlx5r_umr_update_mr_pas(mr, upd_flags); 1654 if (err) { 1655 /* 1656 * The MR is revoked at this point so there is no issue to free 1657 * new_umem. 1658 */ 1659 mr->umem = old_umem; 1660 return err; 1661 } 1662 1663 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1664 ib_umem_release(old_umem); 1665 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1666 return 0; 1667 } 1668 1669 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1670 u64 length, u64 iova, int new_access_flags, 1671 struct ib_pd *new_pd, 1672 struct ib_udata *udata) 1673 { 1674 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1675 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1676 int err; 1677 1678 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1679 return ERR_PTR(-EOPNOTSUPP); 1680 1681 mlx5_ib_dbg( 1682 dev, 1683 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1684 start, iova, length, new_access_flags); 1685 1686 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1687 return ERR_PTR(-EOPNOTSUPP); 1688 1689 if (!(flags & IB_MR_REREG_ACCESS)) 1690 new_access_flags = mr->access_flags; 1691 if (!(flags & IB_MR_REREG_PD)) 1692 new_pd = ib_mr->pd; 1693 1694 if (!(flags & IB_MR_REREG_TRANS)) { 1695 struct ib_umem *umem; 1696 1697 /* Fast path for PD/access change */ 1698 if (can_use_umr_rereg_access(dev, mr->access_flags, 1699 new_access_flags)) { 1700 err = mlx5r_umr_rereg_pd_access(mr, new_pd, 1701 new_access_flags); 1702 if (err) 1703 return ERR_PTR(err); 1704 return NULL; 1705 } 1706 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1707 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1708 goto recreate; 1709 1710 /* 1711 * Only one active MR can refer to a umem at one time, revoke 1712 * the old MR before assigning the umem to the new one. 1713 */ 1714 err = mlx5r_umr_revoke_mr(mr); 1715 if (err) 1716 return ERR_PTR(err); 1717 umem = mr->umem; 1718 mr->umem = NULL; 1719 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1720 1721 return create_real_mr(new_pd, umem, mr->ibmr.iova, 1722 new_access_flags); 1723 } 1724 1725 /* 1726 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1727 * but the logic around releasing the umem is different 1728 */ 1729 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1730 goto recreate; 1731 1732 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1733 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1734 struct ib_umem *new_umem; 1735 unsigned long page_size; 1736 1737 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1738 new_access_flags); 1739 if (IS_ERR(new_umem)) 1740 return ERR_CAST(new_umem); 1741 1742 /* Fast path for PAS change */ 1743 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1744 &page_size)) { 1745 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1746 new_umem, iova, page_size); 1747 if (err) { 1748 ib_umem_release(new_umem); 1749 return ERR_PTR(err); 1750 } 1751 return NULL; 1752 } 1753 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1754 } 1755 1756 /* 1757 * Everything else has no state we can preserve, just create a new MR 1758 * from scratch 1759 */ 1760 recreate: 1761 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1762 new_access_flags, udata); 1763 } 1764 1765 static int 1766 mlx5_alloc_priv_descs(struct ib_device *device, 1767 struct mlx5_ib_mr *mr, 1768 int ndescs, 1769 int desc_size) 1770 { 1771 struct mlx5_ib_dev *dev = to_mdev(device); 1772 struct device *ddev = &dev->mdev->pdev->dev; 1773 int size = ndescs * desc_size; 1774 int add_size; 1775 int ret; 1776 1777 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1778 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) { 1779 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size)); 1780 1781 add_size = min_t(int, end - size, add_size); 1782 } 1783 1784 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1785 if (!mr->descs_alloc) 1786 return -ENOMEM; 1787 1788 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1789 1790 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1791 if (dma_mapping_error(ddev, mr->desc_map)) { 1792 ret = -ENOMEM; 1793 goto err; 1794 } 1795 1796 return 0; 1797 err: 1798 kfree(mr->descs_alloc); 1799 1800 return ret; 1801 } 1802 1803 static void 1804 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1805 { 1806 if (!mr->umem && mr->descs) { 1807 struct ib_device *device = mr->ibmr.device; 1808 int size = mr->max_descs * mr->desc_size; 1809 struct mlx5_ib_dev *dev = to_mdev(device); 1810 1811 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1812 DMA_TO_DEVICE); 1813 kfree(mr->descs_alloc); 1814 mr->descs = NULL; 1815 } 1816 } 1817 1818 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev, 1819 struct mlx5_ib_mr *mr) 1820 { 1821 struct mlx5_mkey_cache *cache = &dev->cache; 1822 struct mlx5_cache_ent *ent; 1823 int ret; 1824 1825 if (mr->mmkey.cache_ent) { 1826 xa_lock_irq(&mr->mmkey.cache_ent->mkeys); 1827 mr->mmkey.cache_ent->in_use--; 1828 goto end; 1829 } 1830 1831 mutex_lock(&cache->rb_lock); 1832 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key); 1833 if (ent) { 1834 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) { 1835 if (ent->disabled) { 1836 mutex_unlock(&cache->rb_lock); 1837 return -EOPNOTSUPP; 1838 } 1839 mr->mmkey.cache_ent = ent; 1840 xa_lock_irq(&mr->mmkey.cache_ent->mkeys); 1841 mutex_unlock(&cache->rb_lock); 1842 goto end; 1843 } 1844 } 1845 1846 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false); 1847 mutex_unlock(&cache->rb_lock); 1848 if (IS_ERR(ent)) 1849 return PTR_ERR(ent); 1850 1851 mr->mmkey.cache_ent = ent; 1852 xa_lock_irq(&mr->mmkey.cache_ent->mkeys); 1853 1854 end: 1855 ret = push_mkey_locked(mr->mmkey.cache_ent, false, 1856 xa_mk_value(mr->mmkey.key)); 1857 xa_unlock_irq(&mr->mmkey.cache_ent->mkeys); 1858 return ret; 1859 } 1860 1861 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1862 { 1863 struct mlx5_ib_mr *mr = to_mmr(ibmr); 1864 struct mlx5_ib_dev *dev = to_mdev(ibmr->device); 1865 int rc; 1866 1867 /* 1868 * Any async use of the mr must hold the refcount, once the refcount 1869 * goes to zero no other thread, such as ODP page faults, prefetch, any 1870 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. 1871 */ 1872 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 1873 refcount_read(&mr->mmkey.usecount) != 0 && 1874 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) 1875 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 1876 1877 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1878 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1879 mr->sig, NULL, GFP_KERNEL); 1880 1881 if (mr->mtt_mr) { 1882 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 1883 if (rc) 1884 return rc; 1885 mr->mtt_mr = NULL; 1886 } 1887 if (mr->klm_mr) { 1888 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 1889 if (rc) 1890 return rc; 1891 mr->klm_mr = NULL; 1892 } 1893 1894 if (mlx5_core_destroy_psv(dev->mdev, 1895 mr->sig->psv_memory.psv_idx)) 1896 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1897 mr->sig->psv_memory.psv_idx); 1898 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1899 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1900 mr->sig->psv_wire.psv_idx); 1901 kfree(mr->sig); 1902 mr->sig = NULL; 1903 } 1904 1905 /* Stop DMA */ 1906 if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length)) 1907 if (mlx5r_umr_revoke_mr(mr) || 1908 cache_ent_find_and_store(dev, mr)) 1909 mr->mmkey.cache_ent = NULL; 1910 1911 if (!mr->mmkey.cache_ent) { 1912 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); 1913 if (rc) 1914 return rc; 1915 } 1916 1917 if (mr->umem) { 1918 bool is_odp = is_odp_mr(mr); 1919 1920 if (!is_odp) 1921 atomic_sub(ib_umem_num_pages(mr->umem), 1922 &dev->mdev->priv.reg_pages); 1923 ib_umem_release(mr->umem); 1924 if (is_odp) 1925 mlx5_ib_free_odp_mr(mr); 1926 } 1927 1928 if (!mr->mmkey.cache_ent) 1929 mlx5_free_priv_descs(mr); 1930 1931 kfree(mr); 1932 return 0; 1933 } 1934 1935 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 1936 int access_mode, int page_shift) 1937 { 1938 void *mkc; 1939 1940 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1941 1942 /* This is only used from the kernel, so setting the PD is OK. */ 1943 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); 1944 MLX5_SET(mkc, mkc, free, 1); 1945 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1946 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 1947 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 1948 MLX5_SET(mkc, mkc, umr_en, 1); 1949 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1950 } 1951 1952 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1953 int ndescs, int desc_size, int page_shift, 1954 int access_mode, u32 *in, int inlen) 1955 { 1956 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1957 int err; 1958 1959 mr->access_mode = access_mode; 1960 mr->desc_size = desc_size; 1961 mr->max_descs = ndescs; 1962 1963 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 1964 if (err) 1965 return err; 1966 1967 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 1968 1969 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1970 if (err) 1971 goto err_free_descs; 1972 1973 mr->mmkey.type = MLX5_MKEY_MR; 1974 mr->ibmr.lkey = mr->mmkey.key; 1975 mr->ibmr.rkey = mr->mmkey.key; 1976 1977 return 0; 1978 1979 err_free_descs: 1980 mlx5_free_priv_descs(mr); 1981 return err; 1982 } 1983 1984 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 1985 u32 max_num_sg, u32 max_num_meta_sg, 1986 int desc_size, int access_mode) 1987 { 1988 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1989 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 1990 int page_shift = 0; 1991 struct mlx5_ib_mr *mr; 1992 u32 *in; 1993 int err; 1994 1995 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1996 if (!mr) 1997 return ERR_PTR(-ENOMEM); 1998 1999 mr->ibmr.pd = pd; 2000 mr->ibmr.device = pd->device; 2001 2002 in = kzalloc(inlen, GFP_KERNEL); 2003 if (!in) { 2004 err = -ENOMEM; 2005 goto err_free; 2006 } 2007 2008 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2009 page_shift = PAGE_SHIFT; 2010 2011 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2012 access_mode, in, inlen); 2013 if (err) 2014 goto err_free_in; 2015 2016 mr->umem = NULL; 2017 kfree(in); 2018 2019 return mr; 2020 2021 err_free_in: 2022 kfree(in); 2023 err_free: 2024 kfree(mr); 2025 return ERR_PTR(err); 2026 } 2027 2028 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2029 int ndescs, u32 *in, int inlen) 2030 { 2031 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2032 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2033 inlen); 2034 } 2035 2036 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2037 int ndescs, u32 *in, int inlen) 2038 { 2039 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2040 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2041 } 2042 2043 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2044 int max_num_sg, int max_num_meta_sg, 2045 u32 *in, int inlen) 2046 { 2047 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2048 u32 psv_index[2]; 2049 void *mkc; 2050 int err; 2051 2052 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2053 if (!mr->sig) 2054 return -ENOMEM; 2055 2056 /* create mem & wire PSVs */ 2057 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2058 if (err) 2059 goto err_free_sig; 2060 2061 mr->sig->psv_memory.psv_idx = psv_index[0]; 2062 mr->sig->psv_wire.psv_idx = psv_index[1]; 2063 2064 mr->sig->sig_status_checked = true; 2065 mr->sig->sig_err_exists = false; 2066 /* Next UMR, Arm SIGERR */ 2067 ++mr->sig->sigerr_count; 2068 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2069 sizeof(struct mlx5_klm), 2070 MLX5_MKC_ACCESS_MODE_KLMS); 2071 if (IS_ERR(mr->klm_mr)) { 2072 err = PTR_ERR(mr->klm_mr); 2073 goto err_destroy_psv; 2074 } 2075 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2076 sizeof(struct mlx5_mtt), 2077 MLX5_MKC_ACCESS_MODE_MTT); 2078 if (IS_ERR(mr->mtt_mr)) { 2079 err = PTR_ERR(mr->mtt_mr); 2080 goto err_free_klm_mr; 2081 } 2082 2083 /* Set bsf descriptors for mkey */ 2084 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2085 MLX5_SET(mkc, mkc, bsf_en, 1); 2086 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2087 2088 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2089 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2090 if (err) 2091 goto err_free_mtt_mr; 2092 2093 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2094 mr->sig, GFP_KERNEL)); 2095 if (err) 2096 goto err_free_descs; 2097 return 0; 2098 2099 err_free_descs: 2100 destroy_mkey(dev, mr); 2101 mlx5_free_priv_descs(mr); 2102 err_free_mtt_mr: 2103 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 2104 mr->mtt_mr = NULL; 2105 err_free_klm_mr: 2106 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 2107 mr->klm_mr = NULL; 2108 err_destroy_psv: 2109 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2110 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2111 mr->sig->psv_memory.psv_idx); 2112 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2113 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2114 mr->sig->psv_wire.psv_idx); 2115 err_free_sig: 2116 kfree(mr->sig); 2117 2118 return err; 2119 } 2120 2121 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2122 enum ib_mr_type mr_type, u32 max_num_sg, 2123 u32 max_num_meta_sg) 2124 { 2125 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2126 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2127 int ndescs = ALIGN(max_num_sg, 4); 2128 struct mlx5_ib_mr *mr; 2129 u32 *in; 2130 int err; 2131 2132 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2133 if (!mr) 2134 return ERR_PTR(-ENOMEM); 2135 2136 in = kzalloc(inlen, GFP_KERNEL); 2137 if (!in) { 2138 err = -ENOMEM; 2139 goto err_free; 2140 } 2141 2142 mr->ibmr.device = pd->device; 2143 mr->umem = NULL; 2144 2145 switch (mr_type) { 2146 case IB_MR_TYPE_MEM_REG: 2147 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2148 break; 2149 case IB_MR_TYPE_SG_GAPS: 2150 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2151 break; 2152 case IB_MR_TYPE_INTEGRITY: 2153 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2154 max_num_meta_sg, in, inlen); 2155 break; 2156 default: 2157 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2158 err = -EINVAL; 2159 } 2160 2161 if (err) 2162 goto err_free_in; 2163 2164 kfree(in); 2165 2166 return &mr->ibmr; 2167 2168 err_free_in: 2169 kfree(in); 2170 err_free: 2171 kfree(mr); 2172 return ERR_PTR(err); 2173 } 2174 2175 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2176 u32 max_num_sg) 2177 { 2178 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2179 } 2180 2181 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2182 u32 max_num_sg, u32 max_num_meta_sg) 2183 { 2184 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2185 max_num_meta_sg); 2186 } 2187 2188 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2189 { 2190 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2191 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2192 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2193 unsigned int ndescs; 2194 u32 *in = NULL; 2195 void *mkc; 2196 int err; 2197 struct mlx5_ib_alloc_mw req = {}; 2198 struct { 2199 __u32 comp_mask; 2200 __u32 response_length; 2201 } resp = {}; 2202 2203 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2204 if (err) 2205 return err; 2206 2207 if (req.comp_mask || req.reserved1 || req.reserved2) 2208 return -EOPNOTSUPP; 2209 2210 if (udata->inlen > sizeof(req) && 2211 !ib_is_udata_cleared(udata, sizeof(req), 2212 udata->inlen - sizeof(req))) 2213 return -EOPNOTSUPP; 2214 2215 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2216 2217 in = kzalloc(inlen, GFP_KERNEL); 2218 if (!in) 2219 return -ENOMEM; 2220 2221 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2222 2223 MLX5_SET(mkc, mkc, free, 1); 2224 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2225 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2226 MLX5_SET(mkc, mkc, umr_en, 1); 2227 MLX5_SET(mkc, mkc, lr, 1); 2228 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2229 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2230 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2231 2232 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2233 if (err) 2234 goto free; 2235 2236 mw->mmkey.type = MLX5_MKEY_MW; 2237 ibmw->rkey = mw->mmkey.key; 2238 mw->mmkey.ndescs = ndescs; 2239 2240 resp.response_length = 2241 min(offsetofend(typeof(resp), response_length), udata->outlen); 2242 if (resp.response_length) { 2243 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2244 if (err) 2245 goto free_mkey; 2246 } 2247 2248 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2249 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2250 if (err) 2251 goto free_mkey; 2252 } 2253 2254 kfree(in); 2255 return 0; 2256 2257 free_mkey: 2258 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key); 2259 free: 2260 kfree(in); 2261 return err; 2262 } 2263 2264 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2265 { 2266 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2267 struct mlx5_ib_mw *mmw = to_mmw(mw); 2268 2269 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2270 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2271 /* 2272 * pagefault_single_data_segment() may be accessing mmw 2273 * if the user bound an ODP MR to this MW. 2274 */ 2275 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2276 2277 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key); 2278 } 2279 2280 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2281 struct ib_mr_status *mr_status) 2282 { 2283 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2284 int ret = 0; 2285 2286 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2287 pr_err("Invalid status check mask\n"); 2288 ret = -EINVAL; 2289 goto done; 2290 } 2291 2292 mr_status->fail_status = 0; 2293 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2294 if (!mmr->sig) { 2295 ret = -EINVAL; 2296 pr_err("signature status check requested on a non-signature enabled MR\n"); 2297 goto done; 2298 } 2299 2300 mmr->sig->sig_status_checked = true; 2301 if (!mmr->sig->sig_err_exists) 2302 goto done; 2303 2304 if (ibmr->lkey == mmr->sig->err_item.key) 2305 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2306 sizeof(mr_status->sig_err)); 2307 else { 2308 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2309 mr_status->sig_err.sig_err_offset = 0; 2310 mr_status->sig_err.key = mmr->sig->err_item.key; 2311 } 2312 2313 mmr->sig->sig_err_exists = false; 2314 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2315 } 2316 2317 done: 2318 return ret; 2319 } 2320 2321 static int 2322 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2323 int data_sg_nents, unsigned int *data_sg_offset, 2324 struct scatterlist *meta_sg, int meta_sg_nents, 2325 unsigned int *meta_sg_offset) 2326 { 2327 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2328 unsigned int sg_offset = 0; 2329 int n = 0; 2330 2331 mr->meta_length = 0; 2332 if (data_sg_nents == 1) { 2333 n++; 2334 mr->mmkey.ndescs = 1; 2335 if (data_sg_offset) 2336 sg_offset = *data_sg_offset; 2337 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2338 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2339 if (meta_sg_nents == 1) { 2340 n++; 2341 mr->meta_ndescs = 1; 2342 if (meta_sg_offset) 2343 sg_offset = *meta_sg_offset; 2344 else 2345 sg_offset = 0; 2346 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2347 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2348 } 2349 ibmr->length = mr->data_length + mr->meta_length; 2350 } 2351 2352 return n; 2353 } 2354 2355 static int 2356 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2357 struct scatterlist *sgl, 2358 unsigned short sg_nents, 2359 unsigned int *sg_offset_p, 2360 struct scatterlist *meta_sgl, 2361 unsigned short meta_sg_nents, 2362 unsigned int *meta_sg_offset_p) 2363 { 2364 struct scatterlist *sg = sgl; 2365 struct mlx5_klm *klms = mr->descs; 2366 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2367 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2368 int i, j = 0; 2369 2370 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2371 mr->ibmr.length = 0; 2372 2373 for_each_sg(sgl, sg, sg_nents, i) { 2374 if (unlikely(i >= mr->max_descs)) 2375 break; 2376 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2377 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2378 klms[i].key = cpu_to_be32(lkey); 2379 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2380 2381 sg_offset = 0; 2382 } 2383 2384 if (sg_offset_p) 2385 *sg_offset_p = sg_offset; 2386 2387 mr->mmkey.ndescs = i; 2388 mr->data_length = mr->ibmr.length; 2389 2390 if (meta_sg_nents) { 2391 sg = meta_sgl; 2392 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2393 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2394 if (unlikely(i + j >= mr->max_descs)) 2395 break; 2396 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2397 sg_offset); 2398 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2399 sg_offset); 2400 klms[i + j].key = cpu_to_be32(lkey); 2401 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2402 2403 sg_offset = 0; 2404 } 2405 if (meta_sg_offset_p) 2406 *meta_sg_offset_p = sg_offset; 2407 2408 mr->meta_ndescs = j; 2409 mr->meta_length = mr->ibmr.length - mr->data_length; 2410 } 2411 2412 return i + j; 2413 } 2414 2415 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2416 { 2417 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2418 __be64 *descs; 2419 2420 if (unlikely(mr->mmkey.ndescs == mr->max_descs)) 2421 return -ENOMEM; 2422 2423 descs = mr->descs; 2424 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2425 2426 return 0; 2427 } 2428 2429 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2430 { 2431 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2432 __be64 *descs; 2433 2434 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs)) 2435 return -ENOMEM; 2436 2437 descs = mr->descs; 2438 descs[mr->mmkey.ndescs + mr->meta_ndescs++] = 2439 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2440 2441 return 0; 2442 } 2443 2444 static int 2445 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2446 int data_sg_nents, unsigned int *data_sg_offset, 2447 struct scatterlist *meta_sg, int meta_sg_nents, 2448 unsigned int *meta_sg_offset) 2449 { 2450 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2451 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2452 int n; 2453 2454 pi_mr->mmkey.ndescs = 0; 2455 pi_mr->meta_ndescs = 0; 2456 pi_mr->meta_length = 0; 2457 2458 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2459 pi_mr->desc_size * pi_mr->max_descs, 2460 DMA_TO_DEVICE); 2461 2462 pi_mr->ibmr.page_size = ibmr->page_size; 2463 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2464 mlx5_set_page); 2465 if (n != data_sg_nents) 2466 return n; 2467 2468 pi_mr->data_iova = pi_mr->ibmr.iova; 2469 pi_mr->data_length = pi_mr->ibmr.length; 2470 pi_mr->ibmr.length = pi_mr->data_length; 2471 ibmr->length = pi_mr->data_length; 2472 2473 if (meta_sg_nents) { 2474 u64 page_mask = ~((u64)ibmr->page_size - 1); 2475 u64 iova = pi_mr->data_iova; 2476 2477 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2478 meta_sg_offset, mlx5_set_page_pi); 2479 2480 pi_mr->meta_length = pi_mr->ibmr.length; 2481 /* 2482 * PI address for the HW is the offset of the metadata address 2483 * relative to the first data page address. 2484 * It equals to first data page address + size of data pages + 2485 * metadata offset at the first metadata page 2486 */ 2487 pi_mr->pi_iova = (iova & page_mask) + 2488 pi_mr->mmkey.ndescs * ibmr->page_size + 2489 (pi_mr->ibmr.iova & ~page_mask); 2490 /* 2491 * In order to use one MTT MR for data and metadata, we register 2492 * also the gaps between the end of the data and the start of 2493 * the metadata (the sig MR will verify that the HW will access 2494 * to right addresses). This mapping is safe because we use 2495 * internal mkey for the registration. 2496 */ 2497 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2498 pi_mr->ibmr.iova = iova; 2499 ibmr->length += pi_mr->meta_length; 2500 } 2501 2502 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2503 pi_mr->desc_size * pi_mr->max_descs, 2504 DMA_TO_DEVICE); 2505 2506 return n; 2507 } 2508 2509 static int 2510 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2511 int data_sg_nents, unsigned int *data_sg_offset, 2512 struct scatterlist *meta_sg, int meta_sg_nents, 2513 unsigned int *meta_sg_offset) 2514 { 2515 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2516 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2517 int n; 2518 2519 pi_mr->mmkey.ndescs = 0; 2520 pi_mr->meta_ndescs = 0; 2521 pi_mr->meta_length = 0; 2522 2523 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2524 pi_mr->desc_size * pi_mr->max_descs, 2525 DMA_TO_DEVICE); 2526 2527 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2528 meta_sg, meta_sg_nents, meta_sg_offset); 2529 2530 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2531 pi_mr->desc_size * pi_mr->max_descs, 2532 DMA_TO_DEVICE); 2533 2534 /* This is zero-based memory region */ 2535 pi_mr->data_iova = 0; 2536 pi_mr->ibmr.iova = 0; 2537 pi_mr->pi_iova = pi_mr->data_length; 2538 ibmr->length = pi_mr->ibmr.length; 2539 2540 return n; 2541 } 2542 2543 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2544 int data_sg_nents, unsigned int *data_sg_offset, 2545 struct scatterlist *meta_sg, int meta_sg_nents, 2546 unsigned int *meta_sg_offset) 2547 { 2548 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2549 struct mlx5_ib_mr *pi_mr = NULL; 2550 int n; 2551 2552 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2553 2554 mr->mmkey.ndescs = 0; 2555 mr->data_length = 0; 2556 mr->data_iova = 0; 2557 mr->meta_ndescs = 0; 2558 mr->pi_iova = 0; 2559 /* 2560 * As a performance optimization, if possible, there is no need to 2561 * perform UMR operation to register the data/metadata buffers. 2562 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2563 * Fallback to UMR only in case of a failure. 2564 */ 2565 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2566 data_sg_offset, meta_sg, meta_sg_nents, 2567 meta_sg_offset); 2568 if (n == data_sg_nents + meta_sg_nents) 2569 goto out; 2570 /* 2571 * As a performance optimization, if possible, there is no need to map 2572 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2573 * descriptors and fallback to KLM only in case of a failure. 2574 * It's more efficient for the HW to work with MTT descriptors 2575 * (especially in high load). 2576 * Use KLM (indirect access) only if it's mandatory. 2577 */ 2578 pi_mr = mr->mtt_mr; 2579 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2580 data_sg_offset, meta_sg, meta_sg_nents, 2581 meta_sg_offset); 2582 if (n == data_sg_nents + meta_sg_nents) 2583 goto out; 2584 2585 pi_mr = mr->klm_mr; 2586 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2587 data_sg_offset, meta_sg, meta_sg_nents, 2588 meta_sg_offset); 2589 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2590 return -ENOMEM; 2591 2592 out: 2593 /* This is zero-based memory region */ 2594 ibmr->iova = 0; 2595 mr->pi_mr = pi_mr; 2596 if (pi_mr) 2597 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2598 else 2599 ibmr->sig_attrs->meta_length = mr->meta_length; 2600 2601 return 0; 2602 } 2603 2604 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2605 unsigned int *sg_offset) 2606 { 2607 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2608 int n; 2609 2610 mr->mmkey.ndescs = 0; 2611 2612 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2613 mr->desc_size * mr->max_descs, 2614 DMA_TO_DEVICE); 2615 2616 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2617 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2618 NULL); 2619 else 2620 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2621 mlx5_set_page); 2622 2623 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2624 mr->desc_size * mr->max_descs, 2625 DMA_TO_DEVICE); 2626 2627 return n; 2628 } 2629