1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 34 #include <linux/kref.h> 35 #include <linux/random.h> 36 #include <linux/debugfs.h> 37 #include <linux/export.h> 38 #include <linux/delay.h> 39 #include <rdma/ib_umem.h> 40 #include <rdma/ib_umem_odp.h> 41 #include <rdma/ib_verbs.h> 42 #include "mlx5_ib.h" 43 44 enum { 45 MAX_PENDING_REG_MR = 8, 46 }; 47 48 #define MLX5_UMR_ALIGN 2048 49 50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 52 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 54 55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 56 { 57 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 58 } 59 60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 61 { 62 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 63 64 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 65 /* Wait until all page fault handlers using the mr complete. */ 66 synchronize_srcu(&dev->mr_srcu); 67 68 return err; 69 } 70 71 static int order2idx(struct mlx5_ib_dev *dev, int order) 72 { 73 struct mlx5_mr_cache *cache = &dev->cache; 74 75 if (order < cache->ent[0].order) 76 return 0; 77 else 78 return order - cache->ent[0].order; 79 } 80 81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) 82 { 83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= 84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); 85 } 86 87 static void update_odp_mr(struct mlx5_ib_mr *mr) 88 { 89 if (is_odp_mr(mr)) { 90 /* 91 * This barrier prevents the compiler from moving the 92 * setting of umem->odp_data->private to point to our 93 * MR, before reg_umr finished, to ensure that the MR 94 * initialization have finished before starting to 95 * handle invalidations. 96 */ 97 smp_wmb(); 98 to_ib_umem_odp(mr->umem)->private = mr; 99 /* 100 * Make sure we will see the new 101 * umem->odp_data->private value in the invalidation 102 * routines, before we can get page faults on the 103 * MR. Page faults can happen once we put the MR in 104 * the tree, below this line. Without the barrier, 105 * there can be a fault handling and an invalidation 106 * before umem->odp_data->private == mr is visible to 107 * the invalidation handler. 108 */ 109 smp_wmb(); 110 } 111 } 112 113 static void reg_mr_callback(int status, struct mlx5_async_work *context) 114 { 115 struct mlx5_ib_mr *mr = 116 container_of(context, struct mlx5_ib_mr, cb_work); 117 struct mlx5_ib_dev *dev = mr->dev; 118 struct mlx5_mr_cache *cache = &dev->cache; 119 int c = order2idx(dev, mr->order); 120 struct mlx5_cache_ent *ent = &cache->ent[c]; 121 u8 key; 122 unsigned long flags; 123 struct xarray *mkeys = &dev->mdev->priv.mkey_table; 124 int err; 125 126 spin_lock_irqsave(&ent->lock, flags); 127 ent->pending--; 128 spin_unlock_irqrestore(&ent->lock, flags); 129 if (status) { 130 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 131 kfree(mr); 132 dev->fill_delay = 1; 133 mod_timer(&dev->delay_timer, jiffies + HZ); 134 return; 135 } 136 137 mr->mmkey.type = MLX5_MKEY_MR; 138 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags); 139 key = dev->mdev->priv.mkey_key++; 140 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags); 141 mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key; 142 143 cache->last_add = jiffies; 144 145 spin_lock_irqsave(&ent->lock, flags); 146 list_add_tail(&mr->list, &ent->head); 147 ent->cur++; 148 ent->size++; 149 spin_unlock_irqrestore(&ent->lock, flags); 150 151 xa_lock_irqsave(mkeys, flags); 152 err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key), 153 &mr->mmkey, GFP_ATOMIC)); 154 xa_unlock_irqrestore(mkeys, flags); 155 if (err) 156 pr_err("Error inserting to mkey tree. 0x%x\n", -err); 157 158 if (!completion_done(&ent->compl)) 159 complete(&ent->compl); 160 } 161 162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num) 163 { 164 struct mlx5_mr_cache *cache = &dev->cache; 165 struct mlx5_cache_ent *ent = &cache->ent[c]; 166 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 167 struct mlx5_ib_mr *mr; 168 void *mkc; 169 u32 *in; 170 int err = 0; 171 int i; 172 173 in = kzalloc(inlen, GFP_KERNEL); 174 if (!in) 175 return -ENOMEM; 176 177 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 178 for (i = 0; i < num; i++) { 179 if (ent->pending >= MAX_PENDING_REG_MR) { 180 err = -EAGAIN; 181 break; 182 } 183 184 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 185 if (!mr) { 186 err = -ENOMEM; 187 break; 188 } 189 mr->order = ent->order; 190 mr->allocated_from_cache = 1; 191 mr->dev = dev; 192 193 MLX5_SET(mkc, mkc, free, 1); 194 MLX5_SET(mkc, mkc, umr_en, 1); 195 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 196 MLX5_SET(mkc, mkc, access_mode_4_2, 197 (ent->access_mode >> 2) & 0x7); 198 199 MLX5_SET(mkc, mkc, qpn, 0xffffff); 200 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 201 MLX5_SET(mkc, mkc, log_page_size, ent->page); 202 203 spin_lock_irq(&ent->lock); 204 ent->pending++; 205 spin_unlock_irq(&ent->lock); 206 err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey, 207 &dev->async_ctx, in, inlen, 208 mr->out, sizeof(mr->out), 209 reg_mr_callback, &mr->cb_work); 210 if (err) { 211 spin_lock_irq(&ent->lock); 212 ent->pending--; 213 spin_unlock_irq(&ent->lock); 214 mlx5_ib_warn(dev, "create mkey failed %d\n", err); 215 kfree(mr); 216 break; 217 } 218 } 219 220 kfree(in); 221 return err; 222 } 223 224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num) 225 { 226 struct mlx5_mr_cache *cache = &dev->cache; 227 struct mlx5_cache_ent *ent = &cache->ent[c]; 228 struct mlx5_ib_mr *tmp_mr; 229 struct mlx5_ib_mr *mr; 230 LIST_HEAD(del_list); 231 int i; 232 233 for (i = 0; i < num; i++) { 234 spin_lock_irq(&ent->lock); 235 if (list_empty(&ent->head)) { 236 spin_unlock_irq(&ent->lock); 237 break; 238 } 239 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 240 list_move(&mr->list, &del_list); 241 ent->cur--; 242 ent->size--; 243 spin_unlock_irq(&ent->lock); 244 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 245 } 246 247 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 248 synchronize_srcu(&dev->mr_srcu); 249 250 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 251 list_del(&mr->list); 252 kfree(mr); 253 } 254 } 255 256 static ssize_t size_write(struct file *filp, const char __user *buf, 257 size_t count, loff_t *pos) 258 { 259 struct mlx5_cache_ent *ent = filp->private_data; 260 struct mlx5_ib_dev *dev = ent->dev; 261 char lbuf[20] = {0}; 262 u32 var; 263 int err; 264 int c; 265 266 count = min(count, sizeof(lbuf) - 1); 267 if (copy_from_user(lbuf, buf, count)) 268 return -EFAULT; 269 270 c = order2idx(dev, ent->order); 271 272 if (sscanf(lbuf, "%u", &var) != 1) 273 return -EINVAL; 274 275 if (var < ent->limit) 276 return -EINVAL; 277 278 if (var > ent->size) { 279 do { 280 err = add_keys(dev, c, var - ent->size); 281 if (err && err != -EAGAIN) 282 return err; 283 284 usleep_range(3000, 5000); 285 } while (err); 286 } else if (var < ent->size) { 287 remove_keys(dev, c, ent->size - var); 288 } 289 290 return count; 291 } 292 293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 294 loff_t *pos) 295 { 296 struct mlx5_cache_ent *ent = filp->private_data; 297 char lbuf[20]; 298 int err; 299 300 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size); 301 if (err < 0) 302 return err; 303 304 return simple_read_from_buffer(buf, count, pos, lbuf, err); 305 } 306 307 static const struct file_operations size_fops = { 308 .owner = THIS_MODULE, 309 .open = simple_open, 310 .write = size_write, 311 .read = size_read, 312 }; 313 314 static ssize_t limit_write(struct file *filp, const char __user *buf, 315 size_t count, loff_t *pos) 316 { 317 struct mlx5_cache_ent *ent = filp->private_data; 318 struct mlx5_ib_dev *dev = ent->dev; 319 char lbuf[20] = {0}; 320 u32 var; 321 int err; 322 int c; 323 324 count = min(count, sizeof(lbuf) - 1); 325 if (copy_from_user(lbuf, buf, count)) 326 return -EFAULT; 327 328 c = order2idx(dev, ent->order); 329 330 if (sscanf(lbuf, "%u", &var) != 1) 331 return -EINVAL; 332 333 if (var > ent->size) 334 return -EINVAL; 335 336 ent->limit = var; 337 338 if (ent->cur < ent->limit) { 339 err = add_keys(dev, c, 2 * ent->limit - ent->cur); 340 if (err) 341 return err; 342 } 343 344 return count; 345 } 346 347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 348 loff_t *pos) 349 { 350 struct mlx5_cache_ent *ent = filp->private_data; 351 char lbuf[20]; 352 int err; 353 354 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 355 if (err < 0) 356 return err; 357 358 return simple_read_from_buffer(buf, count, pos, lbuf, err); 359 } 360 361 static const struct file_operations limit_fops = { 362 .owner = THIS_MODULE, 363 .open = simple_open, 364 .write = limit_write, 365 .read = limit_read, 366 }; 367 368 static int someone_adding(struct mlx5_mr_cache *cache) 369 { 370 int i; 371 372 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 373 if (cache->ent[i].cur < cache->ent[i].limit) 374 return 1; 375 } 376 377 return 0; 378 } 379 380 static void __cache_work_func(struct mlx5_cache_ent *ent) 381 { 382 struct mlx5_ib_dev *dev = ent->dev; 383 struct mlx5_mr_cache *cache = &dev->cache; 384 int i = order2idx(dev, ent->order); 385 int err; 386 387 if (cache->stopped) 388 return; 389 390 ent = &dev->cache.ent[i]; 391 if (ent->cur < 2 * ent->limit && !dev->fill_delay) { 392 err = add_keys(dev, i, 1); 393 if (ent->cur < 2 * ent->limit) { 394 if (err == -EAGAIN) { 395 mlx5_ib_dbg(dev, "returned eagain, order %d\n", 396 i + 2); 397 queue_delayed_work(cache->wq, &ent->dwork, 398 msecs_to_jiffies(3)); 399 } else if (err) { 400 mlx5_ib_warn(dev, "command failed order %d, err %d\n", 401 i + 2, err); 402 queue_delayed_work(cache->wq, &ent->dwork, 403 msecs_to_jiffies(1000)); 404 } else { 405 queue_work(cache->wq, &ent->work); 406 } 407 } 408 } else if (ent->cur > 2 * ent->limit) { 409 /* 410 * The remove_keys() logic is performed as garbage collection 411 * task. Such task is intended to be run when no other active 412 * processes are running. 413 * 414 * The need_resched() will return TRUE if there are user tasks 415 * to be activated in near future. 416 * 417 * In such case, we don't execute remove_keys() and postpone 418 * the garbage collection work to try to run in next cycle, 419 * in order to free CPU resources to other tasks. 420 */ 421 if (!need_resched() && !someone_adding(cache) && 422 time_after(jiffies, cache->last_add + 300 * HZ)) { 423 remove_keys(dev, i, 1); 424 if (ent->cur > ent->limit) 425 queue_work(cache->wq, &ent->work); 426 } else { 427 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 428 } 429 } 430 } 431 432 static void delayed_cache_work_func(struct work_struct *work) 433 { 434 struct mlx5_cache_ent *ent; 435 436 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 437 __cache_work_func(ent); 438 } 439 440 static void cache_work_func(struct work_struct *work) 441 { 442 struct mlx5_cache_ent *ent; 443 444 ent = container_of(work, struct mlx5_cache_ent, work); 445 __cache_work_func(ent); 446 } 447 448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry) 449 { 450 struct mlx5_mr_cache *cache = &dev->cache; 451 struct mlx5_cache_ent *ent; 452 struct mlx5_ib_mr *mr; 453 int err; 454 455 if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) { 456 mlx5_ib_err(dev, "cache entry %d is out of range\n", entry); 457 return NULL; 458 } 459 460 ent = &cache->ent[entry]; 461 while (1) { 462 spin_lock_irq(&ent->lock); 463 if (list_empty(&ent->head)) { 464 spin_unlock_irq(&ent->lock); 465 466 err = add_keys(dev, entry, 1); 467 if (err && err != -EAGAIN) 468 return ERR_PTR(err); 469 470 wait_for_completion(&ent->compl); 471 } else { 472 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 473 list); 474 list_del(&mr->list); 475 ent->cur--; 476 spin_unlock_irq(&ent->lock); 477 if (ent->cur < ent->limit) 478 queue_work(cache->wq, &ent->work); 479 return mr; 480 } 481 } 482 } 483 484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order) 485 { 486 struct mlx5_mr_cache *cache = &dev->cache; 487 struct mlx5_ib_mr *mr = NULL; 488 struct mlx5_cache_ent *ent; 489 int last_umr_cache_entry; 490 int c; 491 int i; 492 493 c = order2idx(dev, order); 494 last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev)); 495 if (c < 0 || c > last_umr_cache_entry) { 496 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c); 497 return NULL; 498 } 499 500 for (i = c; i <= last_umr_cache_entry; i++) { 501 ent = &cache->ent[i]; 502 503 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i); 504 505 spin_lock_irq(&ent->lock); 506 if (!list_empty(&ent->head)) { 507 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 508 list); 509 list_del(&mr->list); 510 ent->cur--; 511 spin_unlock_irq(&ent->lock); 512 if (ent->cur < ent->limit) 513 queue_work(cache->wq, &ent->work); 514 break; 515 } 516 spin_unlock_irq(&ent->lock); 517 518 queue_work(cache->wq, &ent->work); 519 } 520 521 if (!mr) 522 cache->ent[c].miss++; 523 524 return mr; 525 } 526 527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 528 { 529 struct mlx5_mr_cache *cache = &dev->cache; 530 struct mlx5_cache_ent *ent; 531 int shrink = 0; 532 int c; 533 534 if (!mr->allocated_from_cache) 535 return; 536 537 c = order2idx(dev, mr->order); 538 WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES); 539 540 if (unreg_umr(dev, mr)) { 541 mr->allocated_from_cache = false; 542 destroy_mkey(dev, mr); 543 ent = &cache->ent[c]; 544 if (ent->cur < ent->limit) 545 queue_work(cache->wq, &ent->work); 546 return; 547 } 548 549 ent = &cache->ent[c]; 550 spin_lock_irq(&ent->lock); 551 list_add_tail(&mr->list, &ent->head); 552 ent->cur++; 553 if (ent->cur > 2 * ent->limit) 554 shrink = 1; 555 spin_unlock_irq(&ent->lock); 556 557 if (shrink) 558 queue_work(cache->wq, &ent->work); 559 } 560 561 static void clean_keys(struct mlx5_ib_dev *dev, int c) 562 { 563 struct mlx5_mr_cache *cache = &dev->cache; 564 struct mlx5_cache_ent *ent = &cache->ent[c]; 565 struct mlx5_ib_mr *tmp_mr; 566 struct mlx5_ib_mr *mr; 567 LIST_HEAD(del_list); 568 569 cancel_delayed_work(&ent->dwork); 570 while (1) { 571 spin_lock_irq(&ent->lock); 572 if (list_empty(&ent->head)) { 573 spin_unlock_irq(&ent->lock); 574 break; 575 } 576 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 577 list_move(&mr->list, &del_list); 578 ent->cur--; 579 ent->size--; 580 spin_unlock_irq(&ent->lock); 581 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 582 } 583 584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 585 synchronize_srcu(&dev->mr_srcu); 586 #endif 587 588 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 589 list_del(&mr->list); 590 kfree(mr); 591 } 592 } 593 594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 595 { 596 if (!mlx5_debugfs_root || dev->is_rep) 597 return; 598 599 debugfs_remove_recursive(dev->cache.root); 600 dev->cache.root = NULL; 601 } 602 603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 604 { 605 struct mlx5_mr_cache *cache = &dev->cache; 606 struct mlx5_cache_ent *ent; 607 struct dentry *dir; 608 int i; 609 610 if (!mlx5_debugfs_root || dev->is_rep) 611 return; 612 613 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 614 615 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 616 ent = &cache->ent[i]; 617 sprintf(ent->name, "%d", ent->order); 618 dir = debugfs_create_dir(ent->name, cache->root); 619 debugfs_create_file("size", 0600, dir, ent, &size_fops); 620 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 621 debugfs_create_u32("cur", 0400, dir, &ent->cur); 622 debugfs_create_u32("miss", 0600, dir, &ent->miss); 623 } 624 } 625 626 static void delay_time_func(struct timer_list *t) 627 { 628 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 629 630 dev->fill_delay = 0; 631 } 632 633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 634 { 635 struct mlx5_mr_cache *cache = &dev->cache; 636 struct mlx5_cache_ent *ent; 637 int i; 638 639 mutex_init(&dev->slow_path_mutex); 640 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 641 if (!cache->wq) { 642 mlx5_ib_warn(dev, "failed to create work queue\n"); 643 return -ENOMEM; 644 } 645 646 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 647 timer_setup(&dev->delay_timer, delay_time_func, 0); 648 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 649 ent = &cache->ent[i]; 650 INIT_LIST_HEAD(&ent->head); 651 spin_lock_init(&ent->lock); 652 ent->order = i + 2; 653 ent->dev = dev; 654 ent->limit = 0; 655 656 init_completion(&ent->compl); 657 INIT_WORK(&ent->work, cache_work_func); 658 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 659 660 if (i > MR_CACHE_LAST_STD_ENTRY) { 661 mlx5_odp_init_mr_cache_entry(ent); 662 continue; 663 } 664 665 if (ent->order > mr_cache_max_order(dev)) 666 continue; 667 668 ent->page = PAGE_SHIFT; 669 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 670 MLX5_IB_UMR_OCTOWORD; 671 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 672 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && 673 !dev->is_rep && 674 mlx5_core_is_pf(dev->mdev)) 675 ent->limit = dev->mdev->profile->mr_cache[i].limit; 676 else 677 ent->limit = 0; 678 queue_work(cache->wq, &ent->work); 679 } 680 681 mlx5_mr_cache_debugfs_init(dev); 682 683 return 0; 684 } 685 686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 687 { 688 int i; 689 690 if (!dev->cache.wq) 691 return 0; 692 693 dev->cache.stopped = 1; 694 flush_workqueue(dev->cache.wq); 695 696 mlx5_mr_cache_debugfs_cleanup(dev); 697 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 698 699 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 700 clean_keys(dev, i); 701 702 destroy_workqueue(dev->cache.wq); 703 del_timer_sync(&dev->delay_timer); 704 705 return 0; 706 } 707 708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 709 { 710 struct mlx5_ib_dev *dev = to_mdev(pd->device); 711 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 712 struct mlx5_core_dev *mdev = dev->mdev; 713 struct mlx5_ib_mr *mr; 714 void *mkc; 715 u32 *in; 716 int err; 717 718 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 719 if (!mr) 720 return ERR_PTR(-ENOMEM); 721 722 in = kzalloc(inlen, GFP_KERNEL); 723 if (!in) { 724 err = -ENOMEM; 725 goto err_free; 726 } 727 728 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 729 730 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 731 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 732 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 733 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 734 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 735 MLX5_SET(mkc, mkc, lr, 1); 736 737 MLX5_SET(mkc, mkc, length64, 1); 738 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 739 MLX5_SET(mkc, mkc, qpn, 0xffffff); 740 MLX5_SET64(mkc, mkc, start_addr, 0); 741 742 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); 743 if (err) 744 goto err_in; 745 746 kfree(in); 747 mr->mmkey.type = MLX5_MKEY_MR; 748 mr->ibmr.lkey = mr->mmkey.key; 749 mr->ibmr.rkey = mr->mmkey.key; 750 mr->umem = NULL; 751 752 return &mr->ibmr; 753 754 err_in: 755 kfree(in); 756 757 err_free: 758 kfree(mr); 759 760 return ERR_PTR(err); 761 } 762 763 static int get_octo_len(u64 addr, u64 len, int page_shift) 764 { 765 u64 page_size = 1ULL << page_shift; 766 u64 offset; 767 int npages; 768 769 offset = addr & (page_size - 1); 770 npages = ALIGN(len + offset, page_size) >> page_shift; 771 return (npages + 1) / 2; 772 } 773 774 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 775 { 776 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 777 return MR_CACHE_LAST_STD_ENTRY + 2; 778 return MLX5_MAX_UMR_SHIFT; 779 } 780 781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata, 782 u64 start, u64 length, int access_flags, 783 struct ib_umem **umem, int *npages, int *page_shift, 784 int *ncont, int *order) 785 { 786 struct ib_umem *u; 787 788 *umem = NULL; 789 790 if (access_flags & IB_ACCESS_ON_DEMAND) { 791 struct ib_umem_odp *odp; 792 793 odp = ib_umem_odp_get(udata, start, length, access_flags); 794 if (IS_ERR(odp)) { 795 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", 796 PTR_ERR(odp)); 797 return PTR_ERR(odp); 798 } 799 800 u = &odp->umem; 801 802 *page_shift = odp->page_shift; 803 *ncont = ib_umem_odp_num_pages(odp); 804 *npages = *ncont << (*page_shift - PAGE_SHIFT); 805 if (order) 806 *order = ilog2(roundup_pow_of_two(*ncont)); 807 } else { 808 u = ib_umem_get(udata, start, length, access_flags, 0); 809 if (IS_ERR(u)) { 810 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u)); 811 return PTR_ERR(u); 812 } 813 814 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, 815 page_shift, ncont, order); 816 } 817 818 if (!*npages) { 819 mlx5_ib_warn(dev, "avoid zero region\n"); 820 ib_umem_release(u); 821 return -EINVAL; 822 } 823 824 *umem = u; 825 826 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", 827 *npages, *ncont, *order, *page_shift); 828 829 return 0; 830 } 831 832 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 833 { 834 struct mlx5_ib_umr_context *context = 835 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 836 837 context->status = wc->status; 838 complete(&context->done); 839 } 840 841 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 842 { 843 context->cqe.done = mlx5_ib_umr_done; 844 context->status = -1; 845 init_completion(&context->done); 846 } 847 848 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 849 struct mlx5_umr_wr *umrwr) 850 { 851 struct umr_common *umrc = &dev->umrc; 852 const struct ib_send_wr *bad; 853 int err; 854 struct mlx5_ib_umr_context umr_context; 855 856 mlx5_ib_init_umr_context(&umr_context); 857 umrwr->wr.wr_cqe = &umr_context.cqe; 858 859 down(&umrc->sem); 860 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 861 if (err) { 862 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 863 } else { 864 wait_for_completion(&umr_context.done); 865 if (umr_context.status != IB_WC_SUCCESS) { 866 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 867 umr_context.status); 868 err = -EFAULT; 869 } 870 } 871 up(&umrc->sem); 872 return err; 873 } 874 875 static struct mlx5_ib_mr *alloc_mr_from_cache( 876 struct ib_pd *pd, struct ib_umem *umem, 877 u64 virt_addr, u64 len, int npages, 878 int page_shift, int order, int access_flags) 879 { 880 struct mlx5_ib_dev *dev = to_mdev(pd->device); 881 struct mlx5_ib_mr *mr; 882 int err = 0; 883 int i; 884 885 for (i = 0; i < 1; i++) { 886 mr = alloc_cached_mr(dev, order); 887 if (mr) 888 break; 889 890 err = add_keys(dev, order2idx(dev, order), 1); 891 if (err && err != -EAGAIN) { 892 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err); 893 break; 894 } 895 } 896 897 if (!mr) 898 return ERR_PTR(-EAGAIN); 899 900 mr->ibmr.pd = pd; 901 mr->umem = umem; 902 mr->access_flags = access_flags; 903 mr->desc_size = sizeof(struct mlx5_mtt); 904 mr->mmkey.iova = virt_addr; 905 mr->mmkey.size = len; 906 mr->mmkey.pd = to_mpd(pd)->pdn; 907 908 return mr; 909 } 910 911 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages, 912 void *xlt, int page_shift, size_t size, 913 int flags) 914 { 915 struct mlx5_ib_dev *dev = mr->dev; 916 struct ib_umem *umem = mr->umem; 917 918 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 919 if (!umr_can_use_indirect_mkey(dev)) 920 return -EPERM; 921 mlx5_odp_populate_klm(xlt, idx, npages, mr, flags); 922 return npages; 923 } 924 925 npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx); 926 927 if (!(flags & MLX5_IB_UPD_XLT_ZAP)) { 928 __mlx5_ib_populate_pas(dev, umem, page_shift, 929 idx, npages, xlt, 930 MLX5_IB_MTT_PRESENT); 931 /* Clear padding after the pages 932 * brought from the umem. 933 */ 934 memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0, 935 size - npages * sizeof(struct mlx5_mtt)); 936 } 937 938 return npages; 939 } 940 941 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 942 MLX5_UMR_MTT_ALIGNMENT) 943 #define MLX5_SPARE_UMR_CHUNK 0x10000 944 945 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 946 int page_shift, int flags) 947 { 948 struct mlx5_ib_dev *dev = mr->dev; 949 struct device *ddev = dev->ib_dev.dev.parent; 950 int size; 951 void *xlt; 952 dma_addr_t dma; 953 struct mlx5_umr_wr wr; 954 struct ib_sge sg; 955 int err = 0; 956 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 957 ? sizeof(struct mlx5_klm) 958 : sizeof(struct mlx5_mtt); 959 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 960 const int page_mask = page_align - 1; 961 size_t pages_mapped = 0; 962 size_t pages_to_map = 0; 963 size_t pages_iter = 0; 964 gfp_t gfp; 965 bool use_emergency_page = false; 966 967 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 968 !umr_can_use_indirect_mkey(dev)) 969 return -EPERM; 970 971 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 972 * so we need to align the offset and length accordingly 973 */ 974 if (idx & page_mask) { 975 npages += idx & page_mask; 976 idx &= ~page_mask; 977 } 978 979 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL; 980 gfp |= __GFP_ZERO | __GFP_NOWARN; 981 982 pages_to_map = ALIGN(npages, page_align); 983 size = desc_size * pages_to_map; 984 size = min_t(int, size, MLX5_MAX_UMR_CHUNK); 985 986 xlt = (void *)__get_free_pages(gfp, get_order(size)); 987 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) { 988 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n", 989 size, get_order(size), MLX5_SPARE_UMR_CHUNK); 990 991 size = MLX5_SPARE_UMR_CHUNK; 992 xlt = (void *)__get_free_pages(gfp, get_order(size)); 993 } 994 995 if (!xlt) { 996 mlx5_ib_warn(dev, "Using XLT emergency buffer\n"); 997 xlt = (void *)mlx5_ib_get_xlt_emergency_page(); 998 size = PAGE_SIZE; 999 memset(xlt, 0, size); 1000 use_emergency_page = true; 1001 } 1002 pages_iter = size / desc_size; 1003 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE); 1004 if (dma_mapping_error(ddev, dma)) { 1005 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1006 err = -ENOMEM; 1007 goto free_xlt; 1008 } 1009 1010 sg.addr = dma; 1011 sg.lkey = dev->umrc.pd->local_dma_lkey; 1012 1013 memset(&wr, 0, sizeof(wr)); 1014 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1015 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1016 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1017 wr.wr.sg_list = &sg; 1018 wr.wr.num_sge = 1; 1019 wr.wr.opcode = MLX5_IB_WR_UMR; 1020 1021 wr.pd = mr->ibmr.pd; 1022 wr.mkey = mr->mmkey.key; 1023 wr.length = mr->mmkey.size; 1024 wr.virt_addr = mr->mmkey.iova; 1025 wr.access_flags = mr->access_flags; 1026 wr.page_shift = page_shift; 1027 1028 for (pages_mapped = 0; 1029 pages_mapped < pages_to_map && !err; 1030 pages_mapped += pages_iter, idx += pages_iter) { 1031 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1032 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); 1033 npages = populate_xlt(mr, idx, npages, xlt, 1034 page_shift, size, flags); 1035 1036 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); 1037 1038 sg.length = ALIGN(npages * desc_size, 1039 MLX5_UMR_MTT_ALIGNMENT); 1040 1041 if (pages_mapped + pages_iter >= pages_to_map) { 1042 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1043 wr.wr.send_flags |= 1044 MLX5_IB_SEND_UMR_ENABLE_MR | 1045 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1046 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1047 if (flags & MLX5_IB_UPD_XLT_PD || 1048 flags & MLX5_IB_UPD_XLT_ACCESS) 1049 wr.wr.send_flags |= 1050 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1051 if (flags & MLX5_IB_UPD_XLT_ADDR) 1052 wr.wr.send_flags |= 1053 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1054 } 1055 1056 wr.offset = idx * desc_size; 1057 wr.xlt_size = sg.length; 1058 1059 err = mlx5_ib_post_send_wait(dev, &wr); 1060 } 1061 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); 1062 1063 free_xlt: 1064 if (use_emergency_page) 1065 mlx5_ib_put_xlt_emergency_page(); 1066 else 1067 free_pages((unsigned long)xlt, get_order(size)); 1068 1069 return err; 1070 } 1071 1072 /* 1073 * If ibmr is NULL it will be allocated by reg_create. 1074 * Else, the given ibmr will be used. 1075 */ 1076 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, 1077 u64 virt_addr, u64 length, 1078 struct ib_umem *umem, int npages, 1079 int page_shift, int access_flags, 1080 bool populate) 1081 { 1082 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1083 struct mlx5_ib_mr *mr; 1084 __be64 *pas; 1085 void *mkc; 1086 int inlen; 1087 u32 *in; 1088 int err; 1089 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1090 1091 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); 1092 if (!mr) 1093 return ERR_PTR(-ENOMEM); 1094 1095 mr->ibmr.pd = pd; 1096 mr->access_flags = access_flags; 1097 1098 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1099 if (populate) 1100 inlen += sizeof(*pas) * roundup(npages, 2); 1101 in = kvzalloc(inlen, GFP_KERNEL); 1102 if (!in) { 1103 err = -ENOMEM; 1104 goto err_1; 1105 } 1106 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1107 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND)) 1108 mlx5_ib_populate_pas(dev, umem, page_shift, pas, 1109 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1110 1111 /* The pg_access bit allows setting the access flags 1112 * in the page list submitted with the command. */ 1113 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1114 1115 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1116 MLX5_SET(mkc, mkc, free, !populate); 1117 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1118 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); 1119 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); 1120 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); 1121 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); 1122 MLX5_SET(mkc, mkc, lr, 1); 1123 MLX5_SET(mkc, mkc, umr_en, 1); 1124 1125 MLX5_SET64(mkc, mkc, start_addr, virt_addr); 1126 MLX5_SET64(mkc, mkc, len, length); 1127 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1128 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1129 MLX5_SET(mkc, mkc, translations_octword_size, 1130 get_octo_len(virt_addr, length, page_shift)); 1131 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1132 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1133 if (populate) { 1134 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1135 get_octo_len(virt_addr, length, page_shift)); 1136 } 1137 1138 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); 1139 if (err) { 1140 mlx5_ib_warn(dev, "create mkey failed\n"); 1141 goto err_2; 1142 } 1143 mr->mmkey.type = MLX5_MKEY_MR; 1144 mr->desc_size = sizeof(struct mlx5_mtt); 1145 mr->dev = dev; 1146 kvfree(in); 1147 1148 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1149 1150 return mr; 1151 1152 err_2: 1153 kvfree(in); 1154 1155 err_1: 1156 if (!ibmr) 1157 kfree(mr); 1158 1159 return ERR_PTR(err); 1160 } 1161 1162 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 1163 int npages, u64 length, int access_flags) 1164 { 1165 mr->npages = npages; 1166 atomic_add(npages, &dev->mdev->priv.reg_pages); 1167 mr->ibmr.lkey = mr->mmkey.key; 1168 mr->ibmr.rkey = mr->mmkey.key; 1169 mr->ibmr.length = length; 1170 mr->access_flags = access_flags; 1171 } 1172 1173 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1174 u64 length, int acc, int mode) 1175 { 1176 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1177 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1178 struct mlx5_core_dev *mdev = dev->mdev; 1179 struct mlx5_ib_mr *mr; 1180 void *mkc; 1181 u32 *in; 1182 int err; 1183 1184 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1185 if (!mr) 1186 return ERR_PTR(-ENOMEM); 1187 1188 in = kzalloc(inlen, GFP_KERNEL); 1189 if (!in) { 1190 err = -ENOMEM; 1191 goto err_free; 1192 } 1193 1194 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1195 1196 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1197 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1198 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 1199 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 1200 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 1201 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 1202 MLX5_SET(mkc, mkc, lr, 1); 1203 1204 MLX5_SET64(mkc, mkc, len, length); 1205 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1206 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1207 MLX5_SET64(mkc, mkc, start_addr, start_addr); 1208 1209 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); 1210 if (err) 1211 goto err_in; 1212 1213 kfree(in); 1214 1215 mr->umem = NULL; 1216 set_mr_fields(dev, mr, 0, length, acc); 1217 1218 return &mr->ibmr; 1219 1220 err_in: 1221 kfree(in); 1222 1223 err_free: 1224 kfree(mr); 1225 1226 return ERR_PTR(err); 1227 } 1228 1229 int mlx5_ib_advise_mr(struct ib_pd *pd, 1230 enum ib_uverbs_advise_mr_advice advice, 1231 u32 flags, 1232 struct ib_sge *sg_list, 1233 u32 num_sge, 1234 struct uverbs_attr_bundle *attrs) 1235 { 1236 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1237 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE) 1238 return -EOPNOTSUPP; 1239 1240 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1241 sg_list, num_sge); 1242 } 1243 1244 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1245 struct ib_dm_mr_attr *attr, 1246 struct uverbs_attr_bundle *attrs) 1247 { 1248 struct mlx5_ib_dm *mdm = to_mdm(dm); 1249 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1250 u64 start_addr = mdm->dev_addr + attr->offset; 1251 int mode; 1252 1253 switch (mdm->type) { 1254 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1255 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1256 return ERR_PTR(-EINVAL); 1257 1258 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1259 start_addr -= pci_resource_start(dev->pdev, 0); 1260 break; 1261 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1262 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1263 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1264 return ERR_PTR(-EINVAL); 1265 1266 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1267 break; 1268 default: 1269 return ERR_PTR(-EINVAL); 1270 } 1271 1272 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1273 attr->access_flags, mode); 1274 } 1275 1276 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1277 u64 virt_addr, int access_flags, 1278 struct ib_udata *udata) 1279 { 1280 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1281 struct mlx5_ib_mr *mr = NULL; 1282 bool use_umr; 1283 struct ib_umem *umem; 1284 int page_shift; 1285 int npages; 1286 int ncont; 1287 int order; 1288 int err; 1289 1290 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1291 return ERR_PTR(-EOPNOTSUPP); 1292 1293 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1294 start, virt_addr, length, access_flags); 1295 1296 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && 1297 length == U64_MAX) { 1298 if (!(access_flags & IB_ACCESS_ON_DEMAND) || 1299 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1300 return ERR_PTR(-EINVAL); 1301 1302 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1303 if (IS_ERR(mr)) 1304 return ERR_CAST(mr); 1305 return &mr->ibmr; 1306 } 1307 1308 err = mr_umem_get(dev, udata, start, length, access_flags, &umem, 1309 &npages, &page_shift, &ncont, &order); 1310 1311 if (err < 0) 1312 return ERR_PTR(err); 1313 1314 use_umr = mlx5_ib_can_use_umr(dev, true); 1315 1316 if (order <= mr_cache_max_order(dev) && use_umr) { 1317 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont, 1318 page_shift, order, access_flags); 1319 if (PTR_ERR(mr) == -EAGAIN) { 1320 mlx5_ib_dbg(dev, "cache empty for order %d\n", order); 1321 mr = NULL; 1322 } 1323 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) { 1324 if (access_flags & IB_ACCESS_ON_DEMAND) { 1325 err = -EINVAL; 1326 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n"); 1327 goto error; 1328 } 1329 use_umr = false; 1330 } 1331 1332 if (!mr) { 1333 mutex_lock(&dev->slow_path_mutex); 1334 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, 1335 page_shift, access_flags, !use_umr); 1336 mutex_unlock(&dev->slow_path_mutex); 1337 } 1338 1339 if (IS_ERR(mr)) { 1340 err = PTR_ERR(mr); 1341 goto error; 1342 } 1343 1344 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1345 1346 mr->umem = umem; 1347 set_mr_fields(dev, mr, npages, length, access_flags); 1348 1349 update_odp_mr(mr); 1350 1351 if (use_umr) { 1352 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; 1353 1354 if (access_flags & IB_ACCESS_ON_DEMAND) 1355 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP; 1356 1357 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift, 1358 update_xlt_flags); 1359 1360 if (err) { 1361 dereg_mr(dev, mr); 1362 return ERR_PTR(err); 1363 } 1364 } 1365 1366 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 1367 mr->live = 1; 1368 atomic_set(&mr->num_pending_prefetch, 0); 1369 } 1370 1371 return &mr->ibmr; 1372 error: 1373 ib_umem_release(umem); 1374 return ERR_PTR(err); 1375 } 1376 1377 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1378 { 1379 struct mlx5_core_dev *mdev = dev->mdev; 1380 struct mlx5_umr_wr umrwr = {}; 1381 1382 if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1383 return 0; 1384 1385 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1386 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1387 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1388 umrwr.pd = dev->umrc.pd; 1389 umrwr.mkey = mr->mmkey.key; 1390 umrwr.ignore_free_state = 1; 1391 1392 return mlx5_ib_post_send_wait(dev, &umrwr); 1393 } 1394 1395 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1396 int access_flags, int flags) 1397 { 1398 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1399 struct mlx5_umr_wr umrwr = {}; 1400 int err; 1401 1402 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1403 1404 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1405 umrwr.mkey = mr->mmkey.key; 1406 1407 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { 1408 umrwr.pd = pd; 1409 umrwr.access_flags = access_flags; 1410 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1411 } 1412 1413 err = mlx5_ib_post_send_wait(dev, &umrwr); 1414 1415 return err; 1416 } 1417 1418 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1419 u64 length, u64 virt_addr, int new_access_flags, 1420 struct ib_pd *new_pd, struct ib_udata *udata) 1421 { 1422 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1423 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1424 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; 1425 int access_flags = flags & IB_MR_REREG_ACCESS ? 1426 new_access_flags : 1427 mr->access_flags; 1428 int page_shift = 0; 1429 int upd_flags = 0; 1430 int npages = 0; 1431 int ncont = 0; 1432 int order = 0; 1433 u64 addr, len; 1434 int err; 1435 1436 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1437 start, virt_addr, length, access_flags); 1438 1439 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); 1440 1441 if (!mr->umem) 1442 return -EINVAL; 1443 1444 if (flags & IB_MR_REREG_TRANS) { 1445 addr = virt_addr; 1446 len = length; 1447 } else { 1448 addr = mr->umem->address; 1449 len = mr->umem->length; 1450 } 1451 1452 if (flags != IB_MR_REREG_PD) { 1453 /* 1454 * Replace umem. This needs to be done whether or not UMR is 1455 * used. 1456 */ 1457 flags |= IB_MR_REREG_TRANS; 1458 ib_umem_release(mr->umem); 1459 mr->umem = NULL; 1460 err = mr_umem_get(dev, udata, addr, len, access_flags, 1461 &mr->umem, &npages, &page_shift, &ncont, 1462 &order); 1463 if (err) 1464 goto err; 1465 } 1466 1467 if (!mlx5_ib_can_use_umr(dev, true) || 1468 (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) { 1469 /* 1470 * UMR can't be used - MKey needs to be replaced. 1471 */ 1472 if (mr->allocated_from_cache) 1473 err = unreg_umr(dev, mr); 1474 else 1475 err = destroy_mkey(dev, mr); 1476 if (err) 1477 goto err; 1478 1479 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, 1480 page_shift, access_flags, true); 1481 1482 if (IS_ERR(mr)) { 1483 err = PTR_ERR(mr); 1484 mr = to_mmr(ib_mr); 1485 goto err; 1486 } 1487 1488 mr->allocated_from_cache = 0; 1489 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1490 mr->live = 1; 1491 } else { 1492 /* 1493 * Send a UMR WQE 1494 */ 1495 mr->ibmr.pd = pd; 1496 mr->access_flags = access_flags; 1497 mr->mmkey.iova = addr; 1498 mr->mmkey.size = len; 1499 mr->mmkey.pd = to_mpd(pd)->pdn; 1500 1501 if (flags & IB_MR_REREG_TRANS) { 1502 upd_flags = MLX5_IB_UPD_XLT_ADDR; 1503 if (flags & IB_MR_REREG_PD) 1504 upd_flags |= MLX5_IB_UPD_XLT_PD; 1505 if (flags & IB_MR_REREG_ACCESS) 1506 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1507 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift, 1508 upd_flags); 1509 } else { 1510 err = rereg_umr(pd, mr, access_flags, flags); 1511 } 1512 1513 if (err) 1514 goto err; 1515 } 1516 1517 set_mr_fields(dev, mr, npages, len, access_flags); 1518 1519 update_odp_mr(mr); 1520 return 0; 1521 1522 err: 1523 ib_umem_release(mr->umem); 1524 mr->umem = NULL; 1525 1526 clean_mr(dev, mr); 1527 return err; 1528 } 1529 1530 static int 1531 mlx5_alloc_priv_descs(struct ib_device *device, 1532 struct mlx5_ib_mr *mr, 1533 int ndescs, 1534 int desc_size) 1535 { 1536 int size = ndescs * desc_size; 1537 int add_size; 1538 int ret; 1539 1540 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1541 1542 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1543 if (!mr->descs_alloc) 1544 return -ENOMEM; 1545 1546 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1547 1548 mr->desc_map = dma_map_single(device->dev.parent, mr->descs, 1549 size, DMA_TO_DEVICE); 1550 if (dma_mapping_error(device->dev.parent, mr->desc_map)) { 1551 ret = -ENOMEM; 1552 goto err; 1553 } 1554 1555 return 0; 1556 err: 1557 kfree(mr->descs_alloc); 1558 1559 return ret; 1560 } 1561 1562 static void 1563 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1564 { 1565 if (mr->descs) { 1566 struct ib_device *device = mr->ibmr.device; 1567 int size = mr->max_descs * mr->desc_size; 1568 1569 dma_unmap_single(device->dev.parent, mr->desc_map, 1570 size, DMA_TO_DEVICE); 1571 kfree(mr->descs_alloc); 1572 mr->descs = NULL; 1573 } 1574 } 1575 1576 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1577 { 1578 int allocated_from_cache = mr->allocated_from_cache; 1579 1580 if (mr->sig) { 1581 if (mlx5_core_destroy_psv(dev->mdev, 1582 mr->sig->psv_memory.psv_idx)) 1583 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1584 mr->sig->psv_memory.psv_idx); 1585 if (mlx5_core_destroy_psv(dev->mdev, 1586 mr->sig->psv_wire.psv_idx)) 1587 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1588 mr->sig->psv_wire.psv_idx); 1589 kfree(mr->sig); 1590 mr->sig = NULL; 1591 } 1592 1593 if (!allocated_from_cache) { 1594 destroy_mkey(dev, mr); 1595 mlx5_free_priv_descs(mr); 1596 } 1597 } 1598 1599 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1600 { 1601 int npages = mr->npages; 1602 struct ib_umem *umem = mr->umem; 1603 1604 if (is_odp_mr(mr)) { 1605 struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem); 1606 1607 /* Prevent new page faults and 1608 * prefetch requests from succeeding 1609 */ 1610 mr->live = 0; 1611 1612 /* dequeue pending prefetch requests for the mr */ 1613 if (atomic_read(&mr->num_pending_prefetch)) 1614 flush_workqueue(system_unbound_wq); 1615 WARN_ON(atomic_read(&mr->num_pending_prefetch)); 1616 1617 /* Wait for all running page-fault handlers to finish. */ 1618 synchronize_srcu(&dev->mr_srcu); 1619 /* Destroy all page mappings */ 1620 if (!umem_odp->is_implicit_odp) 1621 mlx5_ib_invalidate_range(umem_odp, 1622 ib_umem_start(umem_odp), 1623 ib_umem_end(umem_odp)); 1624 else 1625 mlx5_ib_free_implicit_mr(mr); 1626 /* 1627 * We kill the umem before the MR for ODP, 1628 * so that there will not be any invalidations in 1629 * flight, looking at the *mr struct. 1630 */ 1631 ib_umem_odp_release(umem_odp); 1632 atomic_sub(npages, &dev->mdev->priv.reg_pages); 1633 1634 /* Avoid double-freeing the umem. */ 1635 umem = NULL; 1636 } 1637 1638 clean_mr(dev, mr); 1639 1640 /* 1641 * We should unregister the DMA address from the HCA before 1642 * remove the DMA mapping. 1643 */ 1644 mlx5_mr_cache_free(dev, mr); 1645 ib_umem_release(umem); 1646 if (umem) 1647 atomic_sub(npages, &dev->mdev->priv.reg_pages); 1648 1649 if (!mr->allocated_from_cache) 1650 kfree(mr); 1651 } 1652 1653 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1654 { 1655 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1656 1657 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1658 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); 1659 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); 1660 } 1661 1662 dereg_mr(to_mdev(ibmr->device), mmr); 1663 1664 return 0; 1665 } 1666 1667 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 1668 int access_mode, int page_shift) 1669 { 1670 void *mkc; 1671 1672 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1673 1674 MLX5_SET(mkc, mkc, free, 1); 1675 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1676 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1677 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1678 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 1679 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 1680 MLX5_SET(mkc, mkc, umr_en, 1); 1681 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1682 } 1683 1684 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1685 int ndescs, int desc_size, int page_shift, 1686 int access_mode, u32 *in, int inlen) 1687 { 1688 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1689 int err; 1690 1691 mr->access_mode = access_mode; 1692 mr->desc_size = desc_size; 1693 mr->max_descs = ndescs; 1694 1695 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 1696 if (err) 1697 return err; 1698 1699 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 1700 1701 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); 1702 if (err) 1703 goto err_free_descs; 1704 1705 mr->mmkey.type = MLX5_MKEY_MR; 1706 mr->ibmr.lkey = mr->mmkey.key; 1707 mr->ibmr.rkey = mr->mmkey.key; 1708 1709 return 0; 1710 1711 err_free_descs: 1712 mlx5_free_priv_descs(mr); 1713 return err; 1714 } 1715 1716 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 1717 u32 max_num_sg, u32 max_num_meta_sg, 1718 int desc_size, int access_mode) 1719 { 1720 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1721 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 1722 int page_shift = 0; 1723 struct mlx5_ib_mr *mr; 1724 u32 *in; 1725 int err; 1726 1727 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1728 if (!mr) 1729 return ERR_PTR(-ENOMEM); 1730 1731 mr->ibmr.pd = pd; 1732 mr->ibmr.device = pd->device; 1733 1734 in = kzalloc(inlen, GFP_KERNEL); 1735 if (!in) { 1736 err = -ENOMEM; 1737 goto err_free; 1738 } 1739 1740 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 1741 page_shift = PAGE_SHIFT; 1742 1743 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 1744 access_mode, in, inlen); 1745 if (err) 1746 goto err_free_in; 1747 1748 mr->umem = NULL; 1749 kfree(in); 1750 1751 return mr; 1752 1753 err_free_in: 1754 kfree(in); 1755 err_free: 1756 kfree(mr); 1757 return ERR_PTR(err); 1758 } 1759 1760 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1761 int ndescs, u32 *in, int inlen) 1762 { 1763 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 1764 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 1765 inlen); 1766 } 1767 1768 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1769 int ndescs, u32 *in, int inlen) 1770 { 1771 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 1772 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1773 } 1774 1775 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1776 int max_num_sg, int max_num_meta_sg, 1777 u32 *in, int inlen) 1778 { 1779 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1780 u32 psv_index[2]; 1781 void *mkc; 1782 int err; 1783 1784 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 1785 if (!mr->sig) 1786 return -ENOMEM; 1787 1788 /* create mem & wire PSVs */ 1789 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 1790 if (err) 1791 goto err_free_sig; 1792 1793 mr->sig->psv_memory.psv_idx = psv_index[0]; 1794 mr->sig->psv_wire.psv_idx = psv_index[1]; 1795 1796 mr->sig->sig_status_checked = true; 1797 mr->sig->sig_err_exists = false; 1798 /* Next UMR, Arm SIGERR */ 1799 ++mr->sig->sigerr_count; 1800 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1801 sizeof(struct mlx5_klm), 1802 MLX5_MKC_ACCESS_MODE_KLMS); 1803 if (IS_ERR(mr->klm_mr)) { 1804 err = PTR_ERR(mr->klm_mr); 1805 goto err_destroy_psv; 1806 } 1807 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1808 sizeof(struct mlx5_mtt), 1809 MLX5_MKC_ACCESS_MODE_MTT); 1810 if (IS_ERR(mr->mtt_mr)) { 1811 err = PTR_ERR(mr->mtt_mr); 1812 goto err_free_klm_mr; 1813 } 1814 1815 /* Set bsf descriptors for mkey */ 1816 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1817 MLX5_SET(mkc, mkc, bsf_en, 1); 1818 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 1819 1820 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 1821 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1822 if (err) 1823 goto err_free_mtt_mr; 1824 1825 return 0; 1826 1827 err_free_mtt_mr: 1828 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); 1829 mr->mtt_mr = NULL; 1830 err_free_klm_mr: 1831 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); 1832 mr->klm_mr = NULL; 1833 err_destroy_psv: 1834 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 1835 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1836 mr->sig->psv_memory.psv_idx); 1837 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1838 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1839 mr->sig->psv_wire.psv_idx); 1840 err_free_sig: 1841 kfree(mr->sig); 1842 1843 return err; 1844 } 1845 1846 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 1847 enum ib_mr_type mr_type, u32 max_num_sg, 1848 u32 max_num_meta_sg) 1849 { 1850 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1851 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1852 int ndescs = ALIGN(max_num_sg, 4); 1853 struct mlx5_ib_mr *mr; 1854 u32 *in; 1855 int err; 1856 1857 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1858 if (!mr) 1859 return ERR_PTR(-ENOMEM); 1860 1861 in = kzalloc(inlen, GFP_KERNEL); 1862 if (!in) { 1863 err = -ENOMEM; 1864 goto err_free; 1865 } 1866 1867 mr->ibmr.device = pd->device; 1868 mr->umem = NULL; 1869 1870 switch (mr_type) { 1871 case IB_MR_TYPE_MEM_REG: 1872 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 1873 break; 1874 case IB_MR_TYPE_SG_GAPS: 1875 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 1876 break; 1877 case IB_MR_TYPE_INTEGRITY: 1878 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 1879 max_num_meta_sg, in, inlen); 1880 break; 1881 default: 1882 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 1883 err = -EINVAL; 1884 } 1885 1886 if (err) 1887 goto err_free_in; 1888 1889 kfree(in); 1890 1891 return &mr->ibmr; 1892 1893 err_free_in: 1894 kfree(in); 1895 err_free: 1896 kfree(mr); 1897 return ERR_PTR(err); 1898 } 1899 1900 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 1901 u32 max_num_sg, struct ib_udata *udata) 1902 { 1903 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 1904 } 1905 1906 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 1907 u32 max_num_sg, u32 max_num_meta_sg) 1908 { 1909 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 1910 max_num_meta_sg); 1911 } 1912 1913 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, 1914 struct ib_udata *udata) 1915 { 1916 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1917 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1918 struct mlx5_ib_mw *mw = NULL; 1919 u32 *in = NULL; 1920 void *mkc; 1921 int ndescs; 1922 int err; 1923 struct mlx5_ib_alloc_mw req = {}; 1924 struct { 1925 __u32 comp_mask; 1926 __u32 response_length; 1927 } resp = {}; 1928 1929 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 1930 if (err) 1931 return ERR_PTR(err); 1932 1933 if (req.comp_mask || req.reserved1 || req.reserved2) 1934 return ERR_PTR(-EOPNOTSUPP); 1935 1936 if (udata->inlen > sizeof(req) && 1937 !ib_is_udata_cleared(udata, sizeof(req), 1938 udata->inlen - sizeof(req))) 1939 return ERR_PTR(-EOPNOTSUPP); 1940 1941 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 1942 1943 mw = kzalloc(sizeof(*mw), GFP_KERNEL); 1944 in = kzalloc(inlen, GFP_KERNEL); 1945 if (!mw || !in) { 1946 err = -ENOMEM; 1947 goto free; 1948 } 1949 1950 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1951 1952 MLX5_SET(mkc, mkc, free, 1); 1953 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1954 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1955 MLX5_SET(mkc, mkc, umr_en, 1); 1956 MLX5_SET(mkc, mkc, lr, 1); 1957 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 1958 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); 1959 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1960 1961 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen); 1962 if (err) 1963 goto free; 1964 1965 mw->mmkey.type = MLX5_MKEY_MW; 1966 mw->ibmw.rkey = mw->mmkey.key; 1967 mw->ndescs = ndescs; 1968 1969 resp.response_length = min(offsetof(typeof(resp), response_length) + 1970 sizeof(resp.response_length), udata->outlen); 1971 if (resp.response_length) { 1972 err = ib_copy_to_udata(udata, &resp, resp.response_length); 1973 if (err) { 1974 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 1975 goto free; 1976 } 1977 } 1978 1979 kfree(in); 1980 return &mw->ibmw; 1981 1982 free: 1983 kfree(mw); 1984 kfree(in); 1985 return ERR_PTR(err); 1986 } 1987 1988 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 1989 { 1990 struct mlx5_ib_mw *mmw = to_mmw(mw); 1991 int err; 1992 1993 err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev, 1994 &mmw->mmkey); 1995 if (!err) 1996 kfree(mmw); 1997 return err; 1998 } 1999 2000 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2001 struct ib_mr_status *mr_status) 2002 { 2003 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2004 int ret = 0; 2005 2006 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2007 pr_err("Invalid status check mask\n"); 2008 ret = -EINVAL; 2009 goto done; 2010 } 2011 2012 mr_status->fail_status = 0; 2013 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2014 if (!mmr->sig) { 2015 ret = -EINVAL; 2016 pr_err("signature status check requested on a non-signature enabled MR\n"); 2017 goto done; 2018 } 2019 2020 mmr->sig->sig_status_checked = true; 2021 if (!mmr->sig->sig_err_exists) 2022 goto done; 2023 2024 if (ibmr->lkey == mmr->sig->err_item.key) 2025 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2026 sizeof(mr_status->sig_err)); 2027 else { 2028 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2029 mr_status->sig_err.sig_err_offset = 0; 2030 mr_status->sig_err.key = mmr->sig->err_item.key; 2031 } 2032 2033 mmr->sig->sig_err_exists = false; 2034 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2035 } 2036 2037 done: 2038 return ret; 2039 } 2040 2041 static int 2042 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2043 int data_sg_nents, unsigned int *data_sg_offset, 2044 struct scatterlist *meta_sg, int meta_sg_nents, 2045 unsigned int *meta_sg_offset) 2046 { 2047 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2048 unsigned int sg_offset = 0; 2049 int n = 0; 2050 2051 mr->meta_length = 0; 2052 if (data_sg_nents == 1) { 2053 n++; 2054 mr->ndescs = 1; 2055 if (data_sg_offset) 2056 sg_offset = *data_sg_offset; 2057 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2058 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2059 if (meta_sg_nents == 1) { 2060 n++; 2061 mr->meta_ndescs = 1; 2062 if (meta_sg_offset) 2063 sg_offset = *meta_sg_offset; 2064 else 2065 sg_offset = 0; 2066 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2067 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2068 } 2069 ibmr->length = mr->data_length + mr->meta_length; 2070 } 2071 2072 return n; 2073 } 2074 2075 static int 2076 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2077 struct scatterlist *sgl, 2078 unsigned short sg_nents, 2079 unsigned int *sg_offset_p, 2080 struct scatterlist *meta_sgl, 2081 unsigned short meta_sg_nents, 2082 unsigned int *meta_sg_offset_p) 2083 { 2084 struct scatterlist *sg = sgl; 2085 struct mlx5_klm *klms = mr->descs; 2086 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2087 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2088 int i, j = 0; 2089 2090 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2091 mr->ibmr.length = 0; 2092 2093 for_each_sg(sgl, sg, sg_nents, i) { 2094 if (unlikely(i >= mr->max_descs)) 2095 break; 2096 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2097 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2098 klms[i].key = cpu_to_be32(lkey); 2099 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2100 2101 sg_offset = 0; 2102 } 2103 2104 if (sg_offset_p) 2105 *sg_offset_p = sg_offset; 2106 2107 mr->ndescs = i; 2108 mr->data_length = mr->ibmr.length; 2109 2110 if (meta_sg_nents) { 2111 sg = meta_sgl; 2112 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2113 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2114 if (unlikely(i + j >= mr->max_descs)) 2115 break; 2116 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2117 sg_offset); 2118 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2119 sg_offset); 2120 klms[i + j].key = cpu_to_be32(lkey); 2121 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2122 2123 sg_offset = 0; 2124 } 2125 if (meta_sg_offset_p) 2126 *meta_sg_offset_p = sg_offset; 2127 2128 mr->meta_ndescs = j; 2129 mr->meta_length = mr->ibmr.length - mr->data_length; 2130 } 2131 2132 return i + j; 2133 } 2134 2135 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2136 { 2137 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2138 __be64 *descs; 2139 2140 if (unlikely(mr->ndescs == mr->max_descs)) 2141 return -ENOMEM; 2142 2143 descs = mr->descs; 2144 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2145 2146 return 0; 2147 } 2148 2149 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2150 { 2151 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2152 __be64 *descs; 2153 2154 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2155 return -ENOMEM; 2156 2157 descs = mr->descs; 2158 descs[mr->ndescs + mr->meta_ndescs++] = 2159 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2160 2161 return 0; 2162 } 2163 2164 static int 2165 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2166 int data_sg_nents, unsigned int *data_sg_offset, 2167 struct scatterlist *meta_sg, int meta_sg_nents, 2168 unsigned int *meta_sg_offset) 2169 { 2170 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2171 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2172 int n; 2173 2174 pi_mr->ndescs = 0; 2175 pi_mr->meta_ndescs = 0; 2176 pi_mr->meta_length = 0; 2177 2178 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2179 pi_mr->desc_size * pi_mr->max_descs, 2180 DMA_TO_DEVICE); 2181 2182 pi_mr->ibmr.page_size = ibmr->page_size; 2183 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2184 mlx5_set_page); 2185 if (n != data_sg_nents) 2186 return n; 2187 2188 pi_mr->data_iova = pi_mr->ibmr.iova; 2189 pi_mr->data_length = pi_mr->ibmr.length; 2190 pi_mr->ibmr.length = pi_mr->data_length; 2191 ibmr->length = pi_mr->data_length; 2192 2193 if (meta_sg_nents) { 2194 u64 page_mask = ~((u64)ibmr->page_size - 1); 2195 u64 iova = pi_mr->data_iova; 2196 2197 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2198 meta_sg_offset, mlx5_set_page_pi); 2199 2200 pi_mr->meta_length = pi_mr->ibmr.length; 2201 /* 2202 * PI address for the HW is the offset of the metadata address 2203 * relative to the first data page address. 2204 * It equals to first data page address + size of data pages + 2205 * metadata offset at the first metadata page 2206 */ 2207 pi_mr->pi_iova = (iova & page_mask) + 2208 pi_mr->ndescs * ibmr->page_size + 2209 (pi_mr->ibmr.iova & ~page_mask); 2210 /* 2211 * In order to use one MTT MR for data and metadata, we register 2212 * also the gaps between the end of the data and the start of 2213 * the metadata (the sig MR will verify that the HW will access 2214 * to right addresses). This mapping is safe because we use 2215 * internal mkey for the registration. 2216 */ 2217 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2218 pi_mr->ibmr.iova = iova; 2219 ibmr->length += pi_mr->meta_length; 2220 } 2221 2222 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2223 pi_mr->desc_size * pi_mr->max_descs, 2224 DMA_TO_DEVICE); 2225 2226 return n; 2227 } 2228 2229 static int 2230 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2231 int data_sg_nents, unsigned int *data_sg_offset, 2232 struct scatterlist *meta_sg, int meta_sg_nents, 2233 unsigned int *meta_sg_offset) 2234 { 2235 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2236 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2237 int n; 2238 2239 pi_mr->ndescs = 0; 2240 pi_mr->meta_ndescs = 0; 2241 pi_mr->meta_length = 0; 2242 2243 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2244 pi_mr->desc_size * pi_mr->max_descs, 2245 DMA_TO_DEVICE); 2246 2247 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2248 meta_sg, meta_sg_nents, meta_sg_offset); 2249 2250 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2251 pi_mr->desc_size * pi_mr->max_descs, 2252 DMA_TO_DEVICE); 2253 2254 /* This is zero-based memory region */ 2255 pi_mr->data_iova = 0; 2256 pi_mr->ibmr.iova = 0; 2257 pi_mr->pi_iova = pi_mr->data_length; 2258 ibmr->length = pi_mr->ibmr.length; 2259 2260 return n; 2261 } 2262 2263 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2264 int data_sg_nents, unsigned int *data_sg_offset, 2265 struct scatterlist *meta_sg, int meta_sg_nents, 2266 unsigned int *meta_sg_offset) 2267 { 2268 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2269 struct mlx5_ib_mr *pi_mr = NULL; 2270 int n; 2271 2272 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2273 2274 mr->ndescs = 0; 2275 mr->data_length = 0; 2276 mr->data_iova = 0; 2277 mr->meta_ndescs = 0; 2278 mr->pi_iova = 0; 2279 /* 2280 * As a performance optimization, if possible, there is no need to 2281 * perform UMR operation to register the data/metadata buffers. 2282 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2283 * Fallback to UMR only in case of a failure. 2284 */ 2285 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2286 data_sg_offset, meta_sg, meta_sg_nents, 2287 meta_sg_offset); 2288 if (n == data_sg_nents + meta_sg_nents) 2289 goto out; 2290 /* 2291 * As a performance optimization, if possible, there is no need to map 2292 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2293 * descriptors and fallback to KLM only in case of a failure. 2294 * It's more efficient for the HW to work with MTT descriptors 2295 * (especially in high load). 2296 * Use KLM (indirect access) only if it's mandatory. 2297 */ 2298 pi_mr = mr->mtt_mr; 2299 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2300 data_sg_offset, meta_sg, meta_sg_nents, 2301 meta_sg_offset); 2302 if (n == data_sg_nents + meta_sg_nents) 2303 goto out; 2304 2305 pi_mr = mr->klm_mr; 2306 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2307 data_sg_offset, meta_sg, meta_sg_nents, 2308 meta_sg_offset); 2309 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2310 return -ENOMEM; 2311 2312 out: 2313 /* This is zero-based memory region */ 2314 ibmr->iova = 0; 2315 mr->pi_mr = pi_mr; 2316 if (pi_mr) 2317 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2318 else 2319 ibmr->sig_attrs->meta_length = mr->meta_length; 2320 2321 return 0; 2322 } 2323 2324 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2325 unsigned int *sg_offset) 2326 { 2327 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2328 int n; 2329 2330 mr->ndescs = 0; 2331 2332 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2333 mr->desc_size * mr->max_descs, 2334 DMA_TO_DEVICE); 2335 2336 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2337 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2338 NULL); 2339 else 2340 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2341 mlx5_set_page); 2342 2343 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2344 mr->desc_size * mr->max_descs, 2345 DMA_TO_DEVICE); 2346 2347 return n; 2348 } 2349