1 /* 2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/slab.h> 35 36 #include "mlx4_ib.h" 37 38 static u32 convert_access(int acc) 39 { 40 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | 41 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | 42 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | 43 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | 44 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | 45 MLX4_PERM_LOCAL_READ; 46 } 47 48 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) 49 { 50 switch (type) { 51 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; 52 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; 53 default: return -1; 54 } 55 } 56 57 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) 58 { 59 struct mlx4_ib_mr *mr; 60 int err; 61 62 mr = kmalloc(sizeof *mr, GFP_KERNEL); 63 if (!mr) 64 return ERR_PTR(-ENOMEM); 65 66 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, 67 ~0ull, convert_access(acc), 0, 0, &mr->mmr); 68 if (err) 69 goto err_free; 70 71 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); 72 if (err) 73 goto err_mr; 74 75 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 76 mr->umem = NULL; 77 78 return &mr->ibmr; 79 80 err_mr: 81 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 82 83 err_free: 84 kfree(mr); 85 86 return ERR_PTR(err); 87 } 88 89 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, 90 struct ib_umem *umem) 91 { 92 u64 *pages; 93 int i, k, entry; 94 int n; 95 int len; 96 int err = 0; 97 struct scatterlist *sg; 98 99 pages = (u64 *) __get_free_page(GFP_KERNEL); 100 if (!pages) 101 return -ENOMEM; 102 103 i = n = 0; 104 105 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { 106 len = sg_dma_len(sg) >> mtt->page_shift; 107 for (k = 0; k < len; ++k) { 108 pages[i++] = sg_dma_address(sg) + 109 umem->page_size * k; 110 /* 111 * Be friendly to mlx4_write_mtt() and 112 * pass it chunks of appropriate size. 113 */ 114 if (i == PAGE_SIZE / sizeof (u64)) { 115 err = mlx4_write_mtt(dev->dev, mtt, n, 116 i, pages); 117 if (err) 118 goto out; 119 n += i; 120 i = 0; 121 } 122 } 123 } 124 125 if (i) 126 err = mlx4_write_mtt(dev->dev, mtt, n, i, pages); 127 128 out: 129 free_page((unsigned long) pages); 130 return err; 131 } 132 133 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 134 u64 virt_addr, int access_flags, 135 struct ib_udata *udata) 136 { 137 struct mlx4_ib_dev *dev = to_mdev(pd->device); 138 struct mlx4_ib_mr *mr; 139 int shift; 140 int err; 141 int n; 142 143 mr = kmalloc(sizeof *mr, GFP_KERNEL); 144 if (!mr) 145 return ERR_PTR(-ENOMEM); 146 147 /* Force registering the memory as writable. */ 148 /* Used for memory re-registeration. HCA protects the access */ 149 mr->umem = ib_umem_get(pd->uobject->context, start, length, 150 access_flags | IB_ACCESS_LOCAL_WRITE, 0); 151 if (IS_ERR(mr->umem)) { 152 err = PTR_ERR(mr->umem); 153 goto err_free; 154 } 155 156 n = ib_umem_page_count(mr->umem); 157 shift = ilog2(mr->umem->page_size); 158 159 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, 160 convert_access(access_flags), n, shift, &mr->mmr); 161 if (err) 162 goto err_umem; 163 164 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); 165 if (err) 166 goto err_mr; 167 168 err = mlx4_mr_enable(dev->dev, &mr->mmr); 169 if (err) 170 goto err_mr; 171 172 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 173 174 return &mr->ibmr; 175 176 err_mr: 177 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 178 179 err_umem: 180 ib_umem_release(mr->umem); 181 182 err_free: 183 kfree(mr); 184 185 return ERR_PTR(err); 186 } 187 188 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, 189 u64 start, u64 length, u64 virt_addr, 190 int mr_access_flags, struct ib_pd *pd, 191 struct ib_udata *udata) 192 { 193 struct mlx4_ib_dev *dev = to_mdev(mr->device); 194 struct mlx4_ib_mr *mmr = to_mmr(mr); 195 struct mlx4_mpt_entry *mpt_entry; 196 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; 197 int err; 198 199 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, 200 * we assume that the calls can't run concurrently. Otherwise, a 201 * race exists. 202 */ 203 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); 204 205 if (err) 206 return err; 207 208 if (flags & IB_MR_REREG_PD) { 209 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, 210 to_mpd(pd)->pdn); 211 212 if (err) 213 goto release_mpt_entry; 214 } 215 216 if (flags & IB_MR_REREG_ACCESS) { 217 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, 218 convert_access(mr_access_flags)); 219 220 if (err) 221 goto release_mpt_entry; 222 } 223 224 if (flags & IB_MR_REREG_TRANS) { 225 int shift; 226 int err; 227 int n; 228 229 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 230 ib_umem_release(mmr->umem); 231 mmr->umem = ib_umem_get(mr->uobject->context, start, length, 232 mr_access_flags | 233 IB_ACCESS_LOCAL_WRITE, 234 0); 235 if (IS_ERR(mmr->umem)) { 236 err = PTR_ERR(mmr->umem); 237 mmr->umem = NULL; 238 goto release_mpt_entry; 239 } 240 n = ib_umem_page_count(mmr->umem); 241 shift = ilog2(mmr->umem->page_size); 242 243 mmr->mmr.iova = virt_addr; 244 mmr->mmr.size = length; 245 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, 246 virt_addr, length, n, shift, 247 *pmpt_entry); 248 if (err) { 249 ib_umem_release(mmr->umem); 250 goto release_mpt_entry; 251 } 252 253 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); 254 if (err) { 255 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 256 ib_umem_release(mmr->umem); 257 goto release_mpt_entry; 258 } 259 } 260 261 /* If we couldn't transfer the MR to the HCA, just remember to 262 * return a failure. But dereg_mr will free the resources. 263 */ 264 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); 265 266 release_mpt_entry: 267 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); 268 269 return err; 270 } 271 272 int mlx4_ib_dereg_mr(struct ib_mr *ibmr) 273 { 274 struct mlx4_ib_mr *mr = to_mmr(ibmr); 275 int ret; 276 277 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); 278 if (ret) 279 return ret; 280 if (mr->umem) 281 ib_umem_release(mr->umem); 282 kfree(mr); 283 284 return 0; 285 } 286 287 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type) 288 { 289 struct mlx4_ib_dev *dev = to_mdev(pd->device); 290 struct mlx4_ib_mw *mw; 291 int err; 292 293 mw = kmalloc(sizeof(*mw), GFP_KERNEL); 294 if (!mw) 295 return ERR_PTR(-ENOMEM); 296 297 err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, 298 to_mlx4_type(type), &mw->mmw); 299 if (err) 300 goto err_free; 301 302 err = mlx4_mw_enable(dev->dev, &mw->mmw); 303 if (err) 304 goto err_mw; 305 306 mw->ibmw.rkey = mw->mmw.key; 307 308 return &mw->ibmw; 309 310 err_mw: 311 mlx4_mw_free(dev->dev, &mw->mmw); 312 313 err_free: 314 kfree(mw); 315 316 return ERR_PTR(err); 317 } 318 319 int mlx4_ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, 320 struct ib_mw_bind *mw_bind) 321 { 322 struct ib_send_wr wr; 323 struct ib_send_wr *bad_wr; 324 int ret; 325 326 memset(&wr, 0, sizeof(wr)); 327 wr.opcode = IB_WR_BIND_MW; 328 wr.wr_id = mw_bind->wr_id; 329 wr.send_flags = mw_bind->send_flags; 330 wr.wr.bind_mw.mw = mw; 331 wr.wr.bind_mw.bind_info = mw_bind->bind_info; 332 wr.wr.bind_mw.rkey = ib_inc_rkey(mw->rkey); 333 334 ret = mlx4_ib_post_send(qp, &wr, &bad_wr); 335 if (!ret) 336 mw->rkey = wr.wr.bind_mw.rkey; 337 338 return ret; 339 } 340 341 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) 342 { 343 struct mlx4_ib_mw *mw = to_mmw(ibmw); 344 345 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); 346 kfree(mw); 347 348 return 0; 349 } 350 351 struct ib_mr *mlx4_ib_alloc_fast_reg_mr(struct ib_pd *pd, 352 int max_page_list_len) 353 { 354 struct mlx4_ib_dev *dev = to_mdev(pd->device); 355 struct mlx4_ib_mr *mr; 356 int err; 357 358 mr = kmalloc(sizeof *mr, GFP_KERNEL); 359 if (!mr) 360 return ERR_PTR(-ENOMEM); 361 362 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, 363 max_page_list_len, 0, &mr->mmr); 364 if (err) 365 goto err_free; 366 367 err = mlx4_mr_enable(dev->dev, &mr->mmr); 368 if (err) 369 goto err_mr; 370 371 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 372 mr->umem = NULL; 373 374 return &mr->ibmr; 375 376 err_mr: 377 (void) mlx4_mr_free(dev->dev, &mr->mmr); 378 379 err_free: 380 kfree(mr); 381 return ERR_PTR(err); 382 } 383 384 struct ib_fast_reg_page_list *mlx4_ib_alloc_fast_reg_page_list(struct ib_device *ibdev, 385 int page_list_len) 386 { 387 struct mlx4_ib_dev *dev = to_mdev(ibdev); 388 struct mlx4_ib_fast_reg_page_list *mfrpl; 389 int size = page_list_len * sizeof (u64); 390 391 if (page_list_len > MLX4_MAX_FAST_REG_PAGES) 392 return ERR_PTR(-EINVAL); 393 394 mfrpl = kmalloc(sizeof *mfrpl, GFP_KERNEL); 395 if (!mfrpl) 396 return ERR_PTR(-ENOMEM); 397 398 mfrpl->ibfrpl.page_list = kmalloc(size, GFP_KERNEL); 399 if (!mfrpl->ibfrpl.page_list) 400 goto err_free; 401 402 mfrpl->mapped_page_list = dma_alloc_coherent(&dev->dev->pdev->dev, 403 size, &mfrpl->map, 404 GFP_KERNEL); 405 if (!mfrpl->mapped_page_list) 406 goto err_free; 407 408 WARN_ON(mfrpl->map & 0x3f); 409 410 return &mfrpl->ibfrpl; 411 412 err_free: 413 kfree(mfrpl->ibfrpl.page_list); 414 kfree(mfrpl); 415 return ERR_PTR(-ENOMEM); 416 } 417 418 void mlx4_ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list) 419 { 420 struct mlx4_ib_dev *dev = to_mdev(page_list->device); 421 struct mlx4_ib_fast_reg_page_list *mfrpl = to_mfrpl(page_list); 422 int size = page_list->max_page_list_len * sizeof (u64); 423 424 dma_free_coherent(&dev->dev->pdev->dev, size, mfrpl->mapped_page_list, 425 mfrpl->map); 426 kfree(mfrpl->ibfrpl.page_list); 427 kfree(mfrpl); 428 } 429 430 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, 431 struct ib_fmr_attr *fmr_attr) 432 { 433 struct mlx4_ib_dev *dev = to_mdev(pd->device); 434 struct mlx4_ib_fmr *fmr; 435 int err = -ENOMEM; 436 437 fmr = kmalloc(sizeof *fmr, GFP_KERNEL); 438 if (!fmr) 439 return ERR_PTR(-ENOMEM); 440 441 err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), 442 fmr_attr->max_pages, fmr_attr->max_maps, 443 fmr_attr->page_shift, &fmr->mfmr); 444 if (err) 445 goto err_free; 446 447 err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); 448 if (err) 449 goto err_mr; 450 451 fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; 452 453 return &fmr->ibfmr; 454 455 err_mr: 456 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); 457 458 err_free: 459 kfree(fmr); 460 461 return ERR_PTR(err); 462 } 463 464 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 465 int npages, u64 iova) 466 { 467 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 468 struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); 469 470 return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, 471 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 472 } 473 474 int mlx4_ib_unmap_fmr(struct list_head *fmr_list) 475 { 476 struct ib_fmr *ibfmr; 477 int err; 478 struct mlx4_dev *mdev = NULL; 479 480 list_for_each_entry(ibfmr, fmr_list, list) { 481 if (mdev && to_mdev(ibfmr->device)->dev != mdev) 482 return -EINVAL; 483 mdev = to_mdev(ibfmr->device)->dev; 484 } 485 486 if (!mdev) 487 return 0; 488 489 list_for_each_entry(ibfmr, fmr_list, list) { 490 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 491 492 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 493 } 494 495 /* 496 * Make sure all MPT status updates are visible before issuing 497 * SYNC_TPT firmware command. 498 */ 499 wmb(); 500 501 err = mlx4_SYNC_TPT(mdev); 502 if (err) 503 pr_warn("SYNC_TPT error %d when " 504 "unmapping FMRs\n", err); 505 506 return 0; 507 } 508 509 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) 510 { 511 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 512 struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); 513 int err; 514 515 err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); 516 517 if (!err) 518 kfree(ifmr); 519 520 return err; 521 } 522