1 /* 2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/slab.h> 35 #include <rdma/ib_user_verbs.h> 36 37 #include "mlx4_ib.h" 38 39 static u32 convert_access(int acc) 40 { 41 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | 42 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | 43 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | 44 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | 45 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | 46 MLX4_PERM_LOCAL_READ; 47 } 48 49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) 50 { 51 switch (type) { 52 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; 53 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; 54 default: return -1; 55 } 56 } 57 58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) 59 { 60 struct mlx4_ib_mr *mr; 61 int err; 62 63 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 64 if (!mr) 65 return ERR_PTR(-ENOMEM); 66 67 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, 68 ~0ull, convert_access(acc), 0, 0, &mr->mmr); 69 if (err) 70 goto err_free; 71 72 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); 73 if (err) 74 goto err_mr; 75 76 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 77 mr->umem = NULL; 78 79 return &mr->ibmr; 80 81 err_mr: 82 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 83 84 err_free: 85 kfree(mr); 86 87 return ERR_PTR(err); 88 } 89 90 enum { 91 MLX4_MAX_MTT_SHIFT = 31 92 }; 93 94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, 95 struct mlx4_mtt *mtt, 96 u64 mtt_size, u64 mtt_shift, u64 len, 97 u64 cur_start_addr, u64 *pages, 98 int *start_index, int *npages) 99 { 100 u64 cur_end_addr = cur_start_addr + len; 101 u64 cur_end_addr_aligned = 0; 102 u64 mtt_entries; 103 int err = 0; 104 int k; 105 106 len += (cur_start_addr & (mtt_size - 1ULL)); 107 cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); 108 len += (cur_end_addr_aligned - cur_end_addr); 109 if (len & (mtt_size - 1ULL)) { 110 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n", 111 len, mtt_size); 112 return -EINVAL; 113 } 114 115 mtt_entries = (len >> mtt_shift); 116 117 /* 118 * Align the MTT start address to the mtt_size. 119 * Required to handle cases when the MR starts in the middle of an MTT 120 * record. Was not required in old code since the physical addresses 121 * provided by the dma subsystem were page aligned, which was also the 122 * MTT size. 123 */ 124 cur_start_addr = round_down(cur_start_addr, mtt_size); 125 /* A new block is started ... */ 126 for (k = 0; k < mtt_entries; ++k) { 127 pages[*npages] = cur_start_addr + (mtt_size * k); 128 (*npages)++; 129 /* 130 * Be friendly to mlx4_write_mtt() and pass it chunks of 131 * appropriate size. 132 */ 133 if (*npages == PAGE_SIZE / sizeof(u64)) { 134 err = mlx4_write_mtt(dev->dev, mtt, *start_index, 135 *npages, pages); 136 if (err) 137 return err; 138 139 (*start_index) += *npages; 140 *npages = 0; 141 } 142 } 143 144 return 0; 145 } 146 147 static inline u64 alignment_of(u64 ptr) 148 { 149 return ilog2(ptr & (~(ptr - 1))); 150 } 151 152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, 153 u64 current_block_end, 154 u64 block_shift) 155 { 156 /* Check whether the alignment of the new block is aligned as well as 157 * the previous block. 158 * Block address must start with zeros till size of entity_size. 159 */ 160 if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) 161 /* 162 * It is not as well aligned as the previous block-reduce the 163 * mtt size accordingly. Here we take the last right bit which 164 * is 1. 165 */ 166 block_shift = alignment_of(next_block_start); 167 168 /* 169 * Check whether the alignment of the end of previous block - is it 170 * aligned as well as the start of the block 171 */ 172 if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) 173 /* 174 * It is not as well aligned as the start of the block - 175 * reduce the mtt size accordingly. 176 */ 177 block_shift = alignment_of(current_block_end); 178 179 return block_shift; 180 } 181 182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, 183 struct ib_umem *umem) 184 { 185 u64 *pages; 186 u64 len = 0; 187 int err = 0; 188 u64 mtt_size; 189 u64 cur_start_addr = 0; 190 u64 mtt_shift; 191 int start_index = 0; 192 int npages = 0; 193 struct scatterlist *sg; 194 int i; 195 196 pages = (u64 *) __get_free_page(GFP_KERNEL); 197 if (!pages) 198 return -ENOMEM; 199 200 mtt_shift = mtt->page_shift; 201 mtt_size = 1ULL << mtt_shift; 202 203 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { 204 if (cur_start_addr + len == sg_dma_address(sg)) { 205 /* still the same block */ 206 len += sg_dma_len(sg); 207 continue; 208 } 209 /* 210 * A new block is started ... 211 * If len is malaligned, write an extra mtt entry to cover the 212 * misaligned area (round up the division) 213 */ 214 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, 215 mtt_shift, len, 216 cur_start_addr, 217 pages, &start_index, 218 &npages); 219 if (err) 220 goto out; 221 222 cur_start_addr = sg_dma_address(sg); 223 len = sg_dma_len(sg); 224 } 225 226 /* Handle the last block */ 227 if (len > 0) { 228 /* 229 * If len is malaligned, write an extra mtt entry to cover 230 * the misaligned area (round up the division) 231 */ 232 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, 233 mtt_shift, len, 234 cur_start_addr, pages, 235 &start_index, &npages); 236 if (err) 237 goto out; 238 } 239 240 if (npages) 241 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); 242 243 out: 244 free_page((unsigned long) pages); 245 return err; 246 } 247 248 /* 249 * Calculate optimal mtt size based on contiguous pages. 250 * Function will return also the number of pages that are not aligned to the 251 * calculated mtt_size to be added to total number of pages. For that we should 252 * check the first chunk length & last chunk length and if not aligned to 253 * mtt_size we should increment the non_aligned_pages number. All chunks in the 254 * middle already handled as part of mtt shift calculation for both their start 255 * & end addresses. 256 */ 257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, 258 int *num_of_mtts) 259 { 260 u64 block_shift = MLX4_MAX_MTT_SHIFT; 261 u64 min_shift = umem->page_shift; 262 u64 last_block_aligned_end = 0; 263 u64 current_block_start = 0; 264 u64 first_block_start = 0; 265 u64 current_block_len = 0; 266 u64 last_block_end = 0; 267 struct scatterlist *sg; 268 u64 current_block_end; 269 u64 misalignment_bits; 270 u64 next_block_start; 271 u64 total_len = 0; 272 int i; 273 274 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { 275 /* 276 * Initialization - save the first chunk start as the 277 * current_block_start - block means contiguous pages. 278 */ 279 if (current_block_len == 0 && current_block_start == 0) { 280 current_block_start = sg_dma_address(sg); 281 first_block_start = current_block_start; 282 /* 283 * Find the bits that are different between the physical 284 * address and the virtual address for the start of the 285 * MR. 286 * umem_get aligned the start_va to a page boundary. 287 * Therefore, we need to align the start va to the same 288 * boundary. 289 * misalignment_bits is needed to handle the case of a 290 * single memory region. In this case, the rest of the 291 * logic will not reduce the block size. If we use a 292 * block size which is bigger than the alignment of the 293 * misalignment bits, we might use the virtual page 294 * number instead of the physical page number, resulting 295 * in access to the wrong data. 296 */ 297 misalignment_bits = 298 (start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL))) 299 ^ current_block_start; 300 block_shift = min(alignment_of(misalignment_bits), 301 block_shift); 302 } 303 304 /* 305 * Go over the scatter entries and check if they continue the 306 * previous scatter entry. 307 */ 308 next_block_start = sg_dma_address(sg); 309 current_block_end = current_block_start + current_block_len; 310 /* If we have a split (non-contig.) between two blocks */ 311 if (current_block_end != next_block_start) { 312 block_shift = mlx4_ib_umem_calc_block_mtt 313 (next_block_start, 314 current_block_end, 315 block_shift); 316 317 /* 318 * If we reached the minimum shift for 4k page we stop 319 * the loop. 320 */ 321 if (block_shift <= min_shift) 322 goto end; 323 324 /* 325 * If not saved yet we are in first block - we save the 326 * length of first block to calculate the 327 * non_aligned_pages number at the end. 328 */ 329 total_len += current_block_len; 330 331 /* Start a new block */ 332 current_block_start = next_block_start; 333 current_block_len = sg_dma_len(sg); 334 continue; 335 } 336 /* The scatter entry is another part of the current block, 337 * increase the block size. 338 * An entry in the scatter can be larger than 4k (page) as of 339 * dma mapping which merge some blocks together. 340 */ 341 current_block_len += sg_dma_len(sg); 342 } 343 344 /* Account for the last block in the total len */ 345 total_len += current_block_len; 346 /* Add to the first block the misalignment that it suffers from. */ 347 total_len += (first_block_start & ((1ULL << block_shift) - 1ULL)); 348 last_block_end = current_block_start + current_block_len; 349 last_block_aligned_end = round_up(last_block_end, 1 << block_shift); 350 total_len += (last_block_aligned_end - last_block_end); 351 352 if (total_len & ((1ULL << block_shift) - 1ULL)) 353 pr_warn("misaligned total length detected (%llu, %llu)!", 354 total_len, block_shift); 355 356 *num_of_mtts = total_len >> block_shift; 357 end: 358 if (block_shift < min_shift) { 359 /* 360 * If shift is less than the min we set a warning and return the 361 * min shift. 362 */ 363 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift); 364 365 block_shift = min_shift; 366 } 367 return block_shift; 368 } 369 370 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 371 u64 virt_addr, int access_flags, 372 struct ib_udata *udata) 373 { 374 struct mlx4_ib_dev *dev = to_mdev(pd->device); 375 struct mlx4_ib_mr *mr; 376 int shift; 377 int err; 378 int n; 379 380 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 381 if (!mr) 382 return ERR_PTR(-ENOMEM); 383 384 /* Force registering the memory as writable. */ 385 /* Used for memory re-registeration. HCA protects the access */ 386 mr->umem = ib_umem_get(pd->uobject->context, start, length, 387 access_flags | IB_ACCESS_LOCAL_WRITE, 0); 388 if (IS_ERR(mr->umem)) { 389 err = PTR_ERR(mr->umem); 390 goto err_free; 391 } 392 393 n = ib_umem_page_count(mr->umem); 394 shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); 395 396 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, 397 convert_access(access_flags), n, shift, &mr->mmr); 398 if (err) 399 goto err_umem; 400 401 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); 402 if (err) 403 goto err_mr; 404 405 err = mlx4_mr_enable(dev->dev, &mr->mmr); 406 if (err) 407 goto err_mr; 408 409 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 410 411 return &mr->ibmr; 412 413 err_mr: 414 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 415 416 err_umem: 417 ib_umem_release(mr->umem); 418 419 err_free: 420 kfree(mr); 421 422 return ERR_PTR(err); 423 } 424 425 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, 426 u64 start, u64 length, u64 virt_addr, 427 int mr_access_flags, struct ib_pd *pd, 428 struct ib_udata *udata) 429 { 430 struct mlx4_ib_dev *dev = to_mdev(mr->device); 431 struct mlx4_ib_mr *mmr = to_mmr(mr); 432 struct mlx4_mpt_entry *mpt_entry; 433 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; 434 int err; 435 436 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, 437 * we assume that the calls can't run concurrently. Otherwise, a 438 * race exists. 439 */ 440 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); 441 442 if (err) 443 return err; 444 445 if (flags & IB_MR_REREG_PD) { 446 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, 447 to_mpd(pd)->pdn); 448 449 if (err) 450 goto release_mpt_entry; 451 } 452 453 if (flags & IB_MR_REREG_ACCESS) { 454 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, 455 convert_access(mr_access_flags)); 456 457 if (err) 458 goto release_mpt_entry; 459 } 460 461 if (flags & IB_MR_REREG_TRANS) { 462 int shift; 463 int n; 464 465 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 466 ib_umem_release(mmr->umem); 467 mmr->umem = ib_umem_get(mr->uobject->context, start, length, 468 mr_access_flags | 469 IB_ACCESS_LOCAL_WRITE, 470 0); 471 if (IS_ERR(mmr->umem)) { 472 err = PTR_ERR(mmr->umem); 473 /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ 474 mmr->umem = NULL; 475 goto release_mpt_entry; 476 } 477 n = ib_umem_page_count(mmr->umem); 478 shift = mmr->umem->page_shift; 479 480 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, 481 virt_addr, length, n, shift, 482 *pmpt_entry); 483 if (err) { 484 ib_umem_release(mmr->umem); 485 goto release_mpt_entry; 486 } 487 mmr->mmr.iova = virt_addr; 488 mmr->mmr.size = length; 489 490 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); 491 if (err) { 492 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 493 ib_umem_release(mmr->umem); 494 goto release_mpt_entry; 495 } 496 } 497 498 /* If we couldn't transfer the MR to the HCA, just remember to 499 * return a failure. But dereg_mr will free the resources. 500 */ 501 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); 502 if (!err && flags & IB_MR_REREG_ACCESS) 503 mmr->mmr.access = mr_access_flags; 504 505 release_mpt_entry: 506 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); 507 508 return err; 509 } 510 511 static int 512 mlx4_alloc_priv_pages(struct ib_device *device, 513 struct mlx4_ib_mr *mr, 514 int max_pages) 515 { 516 int ret; 517 518 /* Ensure that size is aligned to DMA cacheline 519 * requirements. 520 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES 521 * so page_map_size will never cross PAGE_SIZE. 522 */ 523 mr->page_map_size = roundup(max_pages * sizeof(u64), 524 MLX4_MR_PAGES_ALIGN); 525 526 /* Prevent cross page boundary allocation. */ 527 mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); 528 if (!mr->pages) 529 return -ENOMEM; 530 531 mr->page_map = dma_map_single(device->dev.parent, mr->pages, 532 mr->page_map_size, DMA_TO_DEVICE); 533 534 if (dma_mapping_error(device->dev.parent, mr->page_map)) { 535 ret = -ENOMEM; 536 goto err; 537 } 538 539 return 0; 540 541 err: 542 free_page((unsigned long)mr->pages); 543 return ret; 544 } 545 546 static void 547 mlx4_free_priv_pages(struct mlx4_ib_mr *mr) 548 { 549 if (mr->pages) { 550 struct ib_device *device = mr->ibmr.device; 551 552 dma_unmap_single(device->dev.parent, mr->page_map, 553 mr->page_map_size, DMA_TO_DEVICE); 554 free_page((unsigned long)mr->pages); 555 mr->pages = NULL; 556 } 557 } 558 559 int mlx4_ib_dereg_mr(struct ib_mr *ibmr) 560 { 561 struct mlx4_ib_mr *mr = to_mmr(ibmr); 562 int ret; 563 564 mlx4_free_priv_pages(mr); 565 566 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); 567 if (ret) 568 return ret; 569 if (mr->umem) 570 ib_umem_release(mr->umem); 571 kfree(mr); 572 573 return 0; 574 } 575 576 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, 577 struct ib_udata *udata) 578 { 579 struct mlx4_ib_dev *dev = to_mdev(pd->device); 580 struct mlx4_ib_mw *mw; 581 int err; 582 583 mw = kmalloc(sizeof(*mw), GFP_KERNEL); 584 if (!mw) 585 return ERR_PTR(-ENOMEM); 586 587 err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, 588 to_mlx4_type(type), &mw->mmw); 589 if (err) 590 goto err_free; 591 592 err = mlx4_mw_enable(dev->dev, &mw->mmw); 593 if (err) 594 goto err_mw; 595 596 mw->ibmw.rkey = mw->mmw.key; 597 598 return &mw->ibmw; 599 600 err_mw: 601 mlx4_mw_free(dev->dev, &mw->mmw); 602 603 err_free: 604 kfree(mw); 605 606 return ERR_PTR(err); 607 } 608 609 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) 610 { 611 struct mlx4_ib_mw *mw = to_mmw(ibmw); 612 613 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); 614 kfree(mw); 615 616 return 0; 617 } 618 619 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, 620 enum ib_mr_type mr_type, 621 u32 max_num_sg) 622 { 623 struct mlx4_ib_dev *dev = to_mdev(pd->device); 624 struct mlx4_ib_mr *mr; 625 int err; 626 627 if (mr_type != IB_MR_TYPE_MEM_REG || 628 max_num_sg > MLX4_MAX_FAST_REG_PAGES) 629 return ERR_PTR(-EINVAL); 630 631 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 632 if (!mr) 633 return ERR_PTR(-ENOMEM); 634 635 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, 636 max_num_sg, 0, &mr->mmr); 637 if (err) 638 goto err_free; 639 640 err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); 641 if (err) 642 goto err_free_mr; 643 644 mr->max_pages = max_num_sg; 645 err = mlx4_mr_enable(dev->dev, &mr->mmr); 646 if (err) 647 goto err_free_pl; 648 649 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 650 mr->umem = NULL; 651 652 return &mr->ibmr; 653 654 err_free_pl: 655 mr->ibmr.device = pd->device; 656 mlx4_free_priv_pages(mr); 657 err_free_mr: 658 (void) mlx4_mr_free(dev->dev, &mr->mmr); 659 err_free: 660 kfree(mr); 661 return ERR_PTR(err); 662 } 663 664 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, 665 struct ib_fmr_attr *fmr_attr) 666 { 667 struct mlx4_ib_dev *dev = to_mdev(pd->device); 668 struct mlx4_ib_fmr *fmr; 669 int err = -ENOMEM; 670 671 fmr = kmalloc(sizeof *fmr, GFP_KERNEL); 672 if (!fmr) 673 return ERR_PTR(-ENOMEM); 674 675 err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), 676 fmr_attr->max_pages, fmr_attr->max_maps, 677 fmr_attr->page_shift, &fmr->mfmr); 678 if (err) 679 goto err_free; 680 681 err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); 682 if (err) 683 goto err_mr; 684 685 fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; 686 687 return &fmr->ibfmr; 688 689 err_mr: 690 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); 691 692 err_free: 693 kfree(fmr); 694 695 return ERR_PTR(err); 696 } 697 698 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 699 int npages, u64 iova) 700 { 701 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 702 struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); 703 704 return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, 705 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 706 } 707 708 int mlx4_ib_unmap_fmr(struct list_head *fmr_list) 709 { 710 struct ib_fmr *ibfmr; 711 int err; 712 struct mlx4_dev *mdev = NULL; 713 714 list_for_each_entry(ibfmr, fmr_list, list) { 715 if (mdev && to_mdev(ibfmr->device)->dev != mdev) 716 return -EINVAL; 717 mdev = to_mdev(ibfmr->device)->dev; 718 } 719 720 if (!mdev) 721 return 0; 722 723 list_for_each_entry(ibfmr, fmr_list, list) { 724 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 725 726 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 727 } 728 729 /* 730 * Make sure all MPT status updates are visible before issuing 731 * SYNC_TPT firmware command. 732 */ 733 wmb(); 734 735 err = mlx4_SYNC_TPT(mdev); 736 if (err) 737 pr_warn("SYNC_TPT error %d when " 738 "unmapping FMRs\n", err); 739 740 return 0; 741 } 742 743 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) 744 { 745 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 746 struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); 747 int err; 748 749 err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); 750 751 if (!err) 752 kfree(ifmr); 753 754 return err; 755 } 756 757 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) 758 { 759 struct mlx4_ib_mr *mr = to_mmr(ibmr); 760 761 if (unlikely(mr->npages == mr->max_pages)) 762 return -ENOMEM; 763 764 mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); 765 766 return 0; 767 } 768 769 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 770 unsigned int *sg_offset) 771 { 772 struct mlx4_ib_mr *mr = to_mmr(ibmr); 773 int rc; 774 775 mr->npages = 0; 776 777 ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, 778 mr->page_map_size, DMA_TO_DEVICE); 779 780 rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); 781 782 ib_dma_sync_single_for_device(ibmr->device, mr->page_map, 783 mr->page_map_size, DMA_TO_DEVICE); 784 785 return rc; 786 } 787