1 /* 2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/slab.h> 35 #include <rdma/ib_user_verbs.h> 36 37 #include "mlx4_ib.h" 38 39 static u32 convert_access(int acc) 40 { 41 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | 42 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | 43 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | 44 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | 45 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | 46 MLX4_PERM_LOCAL_READ; 47 } 48 49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) 50 { 51 switch (type) { 52 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; 53 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; 54 default: return -1; 55 } 56 } 57 58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) 59 { 60 struct mlx4_ib_mr *mr; 61 int err; 62 63 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 64 if (!mr) 65 return ERR_PTR(-ENOMEM); 66 67 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, 68 ~0ull, convert_access(acc), 0, 0, &mr->mmr); 69 if (err) 70 goto err_free; 71 72 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); 73 if (err) 74 goto err_mr; 75 76 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 77 mr->umem = NULL; 78 79 return &mr->ibmr; 80 81 err_mr: 82 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 83 84 err_free: 85 kfree(mr); 86 87 return ERR_PTR(err); 88 } 89 90 enum { 91 MLX4_MAX_MTT_SHIFT = 31 92 }; 93 94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, 95 struct mlx4_mtt *mtt, 96 u64 mtt_size, u64 mtt_shift, u64 len, 97 u64 cur_start_addr, u64 *pages, 98 int *start_index, int *npages) 99 { 100 u64 cur_end_addr = cur_start_addr + len; 101 u64 cur_end_addr_aligned = 0; 102 u64 mtt_entries; 103 int err = 0; 104 int k; 105 106 len += (cur_start_addr & (mtt_size - 1ULL)); 107 cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); 108 len += (cur_end_addr_aligned - cur_end_addr); 109 if (len & (mtt_size - 1ULL)) { 110 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n", 111 len, mtt_size); 112 return -EINVAL; 113 } 114 115 mtt_entries = (len >> mtt_shift); 116 117 /* 118 * Align the MTT start address to the mtt_size. 119 * Required to handle cases when the MR starts in the middle of an MTT 120 * record. Was not required in old code since the physical addresses 121 * provided by the dma subsystem were page aligned, which was also the 122 * MTT size. 123 */ 124 cur_start_addr = round_down(cur_start_addr, mtt_size); 125 /* A new block is started ... */ 126 for (k = 0; k < mtt_entries; ++k) { 127 pages[*npages] = cur_start_addr + (mtt_size * k); 128 (*npages)++; 129 /* 130 * Be friendly to mlx4_write_mtt() and pass it chunks of 131 * appropriate size. 132 */ 133 if (*npages == PAGE_SIZE / sizeof(u64)) { 134 err = mlx4_write_mtt(dev->dev, mtt, *start_index, 135 *npages, pages); 136 if (err) 137 return err; 138 139 (*start_index) += *npages; 140 *npages = 0; 141 } 142 } 143 144 return 0; 145 } 146 147 static inline u64 alignment_of(u64 ptr) 148 { 149 return ilog2(ptr & (~(ptr - 1))); 150 } 151 152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, 153 u64 current_block_end, 154 u64 block_shift) 155 { 156 /* Check whether the alignment of the new block is aligned as well as 157 * the previous block. 158 * Block address must start with zeros till size of entity_size. 159 */ 160 if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) 161 /* 162 * It is not as well aligned as the previous block-reduce the 163 * mtt size accordingly. Here we take the last right bit which 164 * is 1. 165 */ 166 block_shift = alignment_of(next_block_start); 167 168 /* 169 * Check whether the alignment of the end of previous block - is it 170 * aligned as well as the start of the block 171 */ 172 if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) 173 /* 174 * It is not as well aligned as the start of the block - 175 * reduce the mtt size accordingly. 176 */ 177 block_shift = alignment_of(current_block_end); 178 179 return block_shift; 180 } 181 182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, 183 struct ib_umem *umem) 184 { 185 u64 *pages; 186 u64 len = 0; 187 int err = 0; 188 u64 mtt_size; 189 u64 cur_start_addr = 0; 190 u64 mtt_shift; 191 int start_index = 0; 192 int npages = 0; 193 struct scatterlist *sg; 194 int i; 195 196 pages = (u64 *) __get_free_page(GFP_KERNEL); 197 if (!pages) 198 return -ENOMEM; 199 200 mtt_shift = mtt->page_shift; 201 mtt_size = 1ULL << mtt_shift; 202 203 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { 204 if (cur_start_addr + len == sg_dma_address(sg)) { 205 /* still the same block */ 206 len += sg_dma_len(sg); 207 continue; 208 } 209 /* 210 * A new block is started ... 211 * If len is malaligned, write an extra mtt entry to cover the 212 * misaligned area (round up the division) 213 */ 214 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, 215 mtt_shift, len, 216 cur_start_addr, 217 pages, &start_index, 218 &npages); 219 if (err) 220 goto out; 221 222 cur_start_addr = sg_dma_address(sg); 223 len = sg_dma_len(sg); 224 } 225 226 /* Handle the last block */ 227 if (len > 0) { 228 /* 229 * If len is malaligned, write an extra mtt entry to cover 230 * the misaligned area (round up the division) 231 */ 232 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, 233 mtt_shift, len, 234 cur_start_addr, pages, 235 &start_index, &npages); 236 if (err) 237 goto out; 238 } 239 240 if (npages) 241 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); 242 243 out: 244 free_page((unsigned long) pages); 245 return err; 246 } 247 248 /* 249 * Calculate optimal mtt size based on contiguous pages. 250 * Function will return also the number of pages that are not aligned to the 251 * calculated mtt_size to be added to total number of pages. For that we should 252 * check the first chunk length & last chunk length and if not aligned to 253 * mtt_size we should increment the non_aligned_pages number. All chunks in the 254 * middle already handled as part of mtt shift calculation for both their start 255 * & end addresses. 256 */ 257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, 258 int *num_of_mtts) 259 { 260 u64 block_shift = MLX4_MAX_MTT_SHIFT; 261 u64 min_shift = PAGE_SHIFT; 262 u64 last_block_aligned_end = 0; 263 u64 current_block_start = 0; 264 u64 first_block_start = 0; 265 u64 current_block_len = 0; 266 u64 last_block_end = 0; 267 struct scatterlist *sg; 268 u64 current_block_end; 269 u64 misalignment_bits; 270 u64 next_block_start; 271 u64 total_len = 0; 272 int i; 273 274 *num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE); 275 276 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { 277 /* 278 * Initialization - save the first chunk start as the 279 * current_block_start - block means contiguous pages. 280 */ 281 if (current_block_len == 0 && current_block_start == 0) { 282 current_block_start = sg_dma_address(sg); 283 first_block_start = current_block_start; 284 /* 285 * Find the bits that are different between the physical 286 * address and the virtual address for the start of the 287 * MR. 288 * umem_get aligned the start_va to a page boundary. 289 * Therefore, we need to align the start va to the same 290 * boundary. 291 * misalignment_bits is needed to handle the case of a 292 * single memory region. In this case, the rest of the 293 * logic will not reduce the block size. If we use a 294 * block size which is bigger than the alignment of the 295 * misalignment bits, we might use the virtual page 296 * number instead of the physical page number, resulting 297 * in access to the wrong data. 298 */ 299 misalignment_bits = 300 (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^ 301 current_block_start; 302 block_shift = min(alignment_of(misalignment_bits), 303 block_shift); 304 } 305 306 /* 307 * Go over the scatter entries and check if they continue the 308 * previous scatter entry. 309 */ 310 next_block_start = sg_dma_address(sg); 311 current_block_end = current_block_start + current_block_len; 312 /* If we have a split (non-contig.) between two blocks */ 313 if (current_block_end != next_block_start) { 314 block_shift = mlx4_ib_umem_calc_block_mtt 315 (next_block_start, 316 current_block_end, 317 block_shift); 318 319 /* 320 * If we reached the minimum shift for 4k page we stop 321 * the loop. 322 */ 323 if (block_shift <= min_shift) 324 goto end; 325 326 /* 327 * If not saved yet we are in first block - we save the 328 * length of first block to calculate the 329 * non_aligned_pages number at the end. 330 */ 331 total_len += current_block_len; 332 333 /* Start a new block */ 334 current_block_start = next_block_start; 335 current_block_len = sg_dma_len(sg); 336 continue; 337 } 338 /* The scatter entry is another part of the current block, 339 * increase the block size. 340 * An entry in the scatter can be larger than 4k (page) as of 341 * dma mapping which merge some blocks together. 342 */ 343 current_block_len += sg_dma_len(sg); 344 } 345 346 /* Account for the last block in the total len */ 347 total_len += current_block_len; 348 /* Add to the first block the misalignment that it suffers from. */ 349 total_len += (first_block_start & ((1ULL << block_shift) - 1ULL)); 350 last_block_end = current_block_start + current_block_len; 351 last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift); 352 total_len += (last_block_aligned_end - last_block_end); 353 354 if (total_len & ((1ULL << block_shift) - 1ULL)) 355 pr_warn("misaligned total length detected (%llu, %llu)!", 356 total_len, block_shift); 357 358 *num_of_mtts = total_len >> block_shift; 359 end: 360 if (block_shift < min_shift) { 361 /* 362 * If shift is less than the min we set a warning and return the 363 * min shift. 364 */ 365 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift); 366 367 block_shift = min_shift; 368 } 369 return block_shift; 370 } 371 372 static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start, 373 u64 length, int access_flags) 374 { 375 /* 376 * Force registering the memory as writable if the underlying pages 377 * are writable. This is so rereg can change the access permissions 378 * from readable to writable without having to run through ib_umem_get 379 * again 380 */ 381 if (!ib_access_writable(access_flags)) { 382 unsigned long untagged_start = untagged_addr(start); 383 struct vm_area_struct *vma; 384 385 mmap_read_lock(current->mm); 386 /* 387 * FIXME: Ideally this would iterate over all the vmas that 388 * cover the memory, but for now it requires a single vma to 389 * entirely cover the MR to support RO mappings. 390 */ 391 vma = find_vma(current->mm, untagged_start); 392 if (vma && vma->vm_end >= untagged_start + length && 393 vma->vm_start <= untagged_start) { 394 if (vma->vm_flags & VM_WRITE) 395 access_flags |= IB_ACCESS_LOCAL_WRITE; 396 } else { 397 access_flags |= IB_ACCESS_LOCAL_WRITE; 398 } 399 400 mmap_read_unlock(current->mm); 401 } 402 403 return ib_umem_get(device, start, length, access_flags); 404 } 405 406 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 407 u64 virt_addr, int access_flags, 408 struct ib_udata *udata) 409 { 410 struct mlx4_ib_dev *dev = to_mdev(pd->device); 411 struct mlx4_ib_mr *mr; 412 int shift; 413 int err; 414 int n; 415 416 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 417 if (!mr) 418 return ERR_PTR(-ENOMEM); 419 420 mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags); 421 if (IS_ERR(mr->umem)) { 422 err = PTR_ERR(mr->umem); 423 goto err_free; 424 } 425 426 shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); 427 428 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, 429 convert_access(access_flags), n, shift, &mr->mmr); 430 if (err) 431 goto err_umem; 432 433 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); 434 if (err) 435 goto err_mr; 436 437 err = mlx4_mr_enable(dev->dev, &mr->mmr); 438 if (err) 439 goto err_mr; 440 441 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 442 mr->ibmr.length = length; 443 mr->ibmr.page_size = 1U << shift; 444 445 return &mr->ibmr; 446 447 err_mr: 448 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 449 450 err_umem: 451 ib_umem_release(mr->umem); 452 453 err_free: 454 kfree(mr); 455 456 return ERR_PTR(err); 457 } 458 459 struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start, 460 u64 length, u64 virt_addr, 461 int mr_access_flags, struct ib_pd *pd, 462 struct ib_udata *udata) 463 { 464 struct mlx4_ib_dev *dev = to_mdev(mr->device); 465 struct mlx4_ib_mr *mmr = to_mmr(mr); 466 struct mlx4_mpt_entry *mpt_entry; 467 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; 468 int err; 469 470 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, 471 * we assume that the calls can't run concurrently. Otherwise, a 472 * race exists. 473 */ 474 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); 475 if (err) 476 return ERR_PTR(err); 477 478 if (flags & IB_MR_REREG_PD) { 479 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, 480 to_mpd(pd)->pdn); 481 482 if (err) 483 goto release_mpt_entry; 484 } 485 486 if (flags & IB_MR_REREG_ACCESS) { 487 if (ib_access_writable(mr_access_flags) && 488 !mmr->umem->writable) { 489 err = -EPERM; 490 goto release_mpt_entry; 491 } 492 493 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, 494 convert_access(mr_access_flags)); 495 496 if (err) 497 goto release_mpt_entry; 498 } 499 500 if (flags & IB_MR_REREG_TRANS) { 501 int shift; 502 int n; 503 504 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 505 ib_umem_release(mmr->umem); 506 mmr->umem = mlx4_get_umem_mr(mr->device, start, length, 507 mr_access_flags); 508 if (IS_ERR(mmr->umem)) { 509 err = PTR_ERR(mmr->umem); 510 /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ 511 mmr->umem = NULL; 512 goto release_mpt_entry; 513 } 514 n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE); 515 shift = PAGE_SHIFT; 516 517 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, 518 virt_addr, length, n, shift, 519 *pmpt_entry); 520 if (err) { 521 ib_umem_release(mmr->umem); 522 goto release_mpt_entry; 523 } 524 mmr->mmr.iova = virt_addr; 525 mmr->mmr.size = length; 526 527 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); 528 if (err) { 529 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 530 ib_umem_release(mmr->umem); 531 goto release_mpt_entry; 532 } 533 } 534 535 /* If we couldn't transfer the MR to the HCA, just remember to 536 * return a failure. But dereg_mr will free the resources. 537 */ 538 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); 539 if (!err && flags & IB_MR_REREG_ACCESS) 540 mmr->mmr.access = mr_access_flags; 541 542 release_mpt_entry: 543 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); 544 if (err) 545 return ERR_PTR(err); 546 return NULL; 547 } 548 549 static int 550 mlx4_alloc_priv_pages(struct ib_device *device, 551 struct mlx4_ib_mr *mr, 552 int max_pages) 553 { 554 int ret; 555 556 /* Ensure that size is aligned to DMA cacheline 557 * requirements. 558 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES 559 * so page_map_size will never cross PAGE_SIZE. 560 */ 561 mr->page_map_size = roundup(max_pages * sizeof(u64), 562 MLX4_MR_PAGES_ALIGN); 563 564 /* Prevent cross page boundary allocation. */ 565 mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); 566 if (!mr->pages) 567 return -ENOMEM; 568 569 mr->page_map = dma_map_single(device->dev.parent, mr->pages, 570 mr->page_map_size, DMA_TO_DEVICE); 571 572 if (dma_mapping_error(device->dev.parent, mr->page_map)) { 573 ret = -ENOMEM; 574 goto err; 575 } 576 577 return 0; 578 579 err: 580 free_page((unsigned long)mr->pages); 581 return ret; 582 } 583 584 static void 585 mlx4_free_priv_pages(struct mlx4_ib_mr *mr) 586 { 587 if (mr->pages) { 588 struct ib_device *device = mr->ibmr.device; 589 590 dma_unmap_single(device->dev.parent, mr->page_map, 591 mr->page_map_size, DMA_TO_DEVICE); 592 free_page((unsigned long)mr->pages); 593 mr->pages = NULL; 594 } 595 } 596 597 int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 598 { 599 struct mlx4_ib_mr *mr = to_mmr(ibmr); 600 int ret; 601 602 mlx4_free_priv_pages(mr); 603 604 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); 605 if (ret) 606 return ret; 607 if (mr->umem) 608 ib_umem_release(mr->umem); 609 kfree(mr); 610 611 return 0; 612 } 613 614 int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 615 { 616 struct mlx4_ib_dev *dev = to_mdev(ibmw->device); 617 struct mlx4_ib_mw *mw = to_mmw(ibmw); 618 int err; 619 620 err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn, 621 to_mlx4_type(ibmw->type), &mw->mmw); 622 if (err) 623 return err; 624 625 err = mlx4_mw_enable(dev->dev, &mw->mmw); 626 if (err) 627 goto err_mw; 628 629 ibmw->rkey = mw->mmw.key; 630 return 0; 631 632 err_mw: 633 mlx4_mw_free(dev->dev, &mw->mmw); 634 return err; 635 } 636 637 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) 638 { 639 struct mlx4_ib_mw *mw = to_mmw(ibmw); 640 641 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); 642 return 0; 643 } 644 645 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 646 u32 max_num_sg) 647 { 648 struct mlx4_ib_dev *dev = to_mdev(pd->device); 649 struct mlx4_ib_mr *mr; 650 int err; 651 652 if (mr_type != IB_MR_TYPE_MEM_REG || 653 max_num_sg > MLX4_MAX_FAST_REG_PAGES) 654 return ERR_PTR(-EINVAL); 655 656 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 657 if (!mr) 658 return ERR_PTR(-ENOMEM); 659 660 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, 661 max_num_sg, 0, &mr->mmr); 662 if (err) 663 goto err_free; 664 665 err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); 666 if (err) 667 goto err_free_mr; 668 669 mr->max_pages = max_num_sg; 670 err = mlx4_mr_enable(dev->dev, &mr->mmr); 671 if (err) 672 goto err_free_pl; 673 674 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 675 mr->umem = NULL; 676 677 return &mr->ibmr; 678 679 err_free_pl: 680 mr->ibmr.device = pd->device; 681 mlx4_free_priv_pages(mr); 682 err_free_mr: 683 (void) mlx4_mr_free(dev->dev, &mr->mmr); 684 err_free: 685 kfree(mr); 686 return ERR_PTR(err); 687 } 688 689 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) 690 { 691 struct mlx4_ib_mr *mr = to_mmr(ibmr); 692 693 if (unlikely(mr->npages == mr->max_pages)) 694 return -ENOMEM; 695 696 mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); 697 698 return 0; 699 } 700 701 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 702 unsigned int *sg_offset) 703 { 704 struct mlx4_ib_mr *mr = to_mmr(ibmr); 705 int rc; 706 707 mr->npages = 0; 708 709 ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, 710 mr->page_map_size, DMA_TO_DEVICE); 711 712 rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); 713 714 ib_dma_sync_single_for_device(ibmr->device, mr->page_map, 715 mr->page_map_size, DMA_TO_DEVICE); 716 717 return rc; 718 } 719