xref: /openbmc/linux/drivers/infiniband/hw/mlx4/mr.c (revision 18da174d)
1 /*
2  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
36 
37 #include "mlx4_ib.h"
38 
39 static u32 convert_access(int acc)
40 {
41 	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
42 	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
43 	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
44 	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
45 	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
46 	       MLX4_PERM_LOCAL_READ;
47 }
48 
49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50 {
51 	switch (type) {
52 	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
53 	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
54 	default:		return -1;
55 	}
56 }
57 
58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59 {
60 	struct mlx4_ib_mr *mr;
61 	int err;
62 
63 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64 	if (!mr)
65 		return ERR_PTR(-ENOMEM);
66 
67 	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68 			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69 	if (err)
70 		goto err_free;
71 
72 	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73 	if (err)
74 		goto err_mr;
75 
76 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77 	mr->umem = NULL;
78 
79 	return &mr->ibmr;
80 
81 err_mr:
82 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83 
84 err_free:
85 	kfree(mr);
86 
87 	return ERR_PTR(err);
88 }
89 
90 enum {
91 	MLX4_MAX_MTT_SHIFT = 31
92 };
93 
94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
95 					struct mlx4_mtt *mtt,
96 					u64 mtt_size, u64 mtt_shift, u64 len,
97 					u64 cur_start_addr, u64 *pages,
98 					int *start_index, int *npages)
99 {
100 	u64 cur_end_addr = cur_start_addr + len;
101 	u64 cur_end_addr_aligned = 0;
102 	u64 mtt_entries;
103 	int err = 0;
104 	int k;
105 
106 	len += (cur_start_addr & (mtt_size - 1ULL));
107 	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108 	len += (cur_end_addr_aligned - cur_end_addr);
109 	if (len & (mtt_size - 1ULL)) {
110 		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111 			len, mtt_size);
112 		return -EINVAL;
113 	}
114 
115 	mtt_entries = (len >> mtt_shift);
116 
117 	/*
118 	 * Align the MTT start address to the mtt_size.
119 	 * Required to handle cases when the MR starts in the middle of an MTT
120 	 * record. Was not required in old code since the physical addresses
121 	 * provided by the dma subsystem were page aligned, which was also the
122 	 * MTT size.
123 	 */
124 	cur_start_addr = round_down(cur_start_addr, mtt_size);
125 	/* A new block is started ... */
126 	for (k = 0; k < mtt_entries; ++k) {
127 		pages[*npages] = cur_start_addr + (mtt_size * k);
128 		(*npages)++;
129 		/*
130 		 * Be friendly to mlx4_write_mtt() and pass it chunks of
131 		 * appropriate size.
132 		 */
133 		if (*npages == PAGE_SIZE / sizeof(u64)) {
134 			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135 					     *npages, pages);
136 			if (err)
137 				return err;
138 
139 			(*start_index) += *npages;
140 			*npages = 0;
141 		}
142 	}
143 
144 	return 0;
145 }
146 
147 static inline u64 alignment_of(u64 ptr)
148 {
149 	return ilog2(ptr & (~(ptr - 1)));
150 }
151 
152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153 				       u64 current_block_end,
154 				       u64 block_shift)
155 {
156 	/* Check whether the alignment of the new block is aligned as well as
157 	 * the previous block.
158 	 * Block address must start with zeros till size of entity_size.
159 	 */
160 	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161 		/*
162 		 * It is not as well aligned as the previous block-reduce the
163 		 * mtt size accordingly. Here we take the last right bit which
164 		 * is 1.
165 		 */
166 		block_shift = alignment_of(next_block_start);
167 
168 	/*
169 	 * Check whether the alignment of the end of previous block - is it
170 	 * aligned as well as the start of the block
171 	 */
172 	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173 		/*
174 		 * It is not as well aligned as the start of the block -
175 		 * reduce the mtt size accordingly.
176 		 */
177 		block_shift = alignment_of(current_block_end);
178 
179 	return block_shift;
180 }
181 
182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183 			   struct ib_umem *umem)
184 {
185 	u64 *pages;
186 	u64 len = 0;
187 	int err = 0;
188 	u64 mtt_size;
189 	u64 cur_start_addr = 0;
190 	u64 mtt_shift;
191 	int start_index = 0;
192 	int npages = 0;
193 	struct scatterlist *sg;
194 	int i;
195 
196 	pages = (u64 *) __get_free_page(GFP_KERNEL);
197 	if (!pages)
198 		return -ENOMEM;
199 
200 	mtt_shift = mtt->page_shift;
201 	mtt_size = 1ULL << mtt_shift;
202 
203 	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
204 		if (cur_start_addr + len == sg_dma_address(sg)) {
205 			/* still the same block */
206 			len += sg_dma_len(sg);
207 			continue;
208 		}
209 		/*
210 		 * A new block is started ...
211 		 * If len is malaligned, write an extra mtt entry to cover the
212 		 * misaligned area (round up the division)
213 		 */
214 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215 						   mtt_shift, len,
216 						   cur_start_addr,
217 						   pages, &start_index,
218 						   &npages);
219 		if (err)
220 			goto out;
221 
222 		cur_start_addr = sg_dma_address(sg);
223 		len = sg_dma_len(sg);
224 	}
225 
226 	/* Handle the last block */
227 	if (len > 0) {
228 		/*
229 		 * If len is malaligned, write an extra mtt entry to cover
230 		 * the misaligned area (round up the division)
231 		 */
232 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233 						   mtt_shift, len,
234 						   cur_start_addr, pages,
235 						   &start_index, &npages);
236 		if (err)
237 			goto out;
238 	}
239 
240 	if (npages)
241 		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242 
243 out:
244 	free_page((unsigned long) pages);
245 	return err;
246 }
247 
248 /*
249  * Calculate optimal mtt size based on contiguous pages.
250  * Function will return also the number of pages that are not aligned to the
251  * calculated mtt_size to be added to total number of pages. For that we should
252  * check the first chunk length & last chunk length and if not aligned to
253  * mtt_size we should increment the non_aligned_pages number. All chunks in the
254  * middle already handled as part of mtt shift calculation for both their start
255  * & end addresses.
256  */
257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258 				       int *num_of_mtts)
259 {
260 	u64 block_shift = MLX4_MAX_MTT_SHIFT;
261 	u64 min_shift = PAGE_SHIFT;
262 	u64 last_block_aligned_end = 0;
263 	u64 current_block_start = 0;
264 	u64 first_block_start = 0;
265 	u64 current_block_len = 0;
266 	u64 last_block_end = 0;
267 	struct scatterlist *sg;
268 	u64 current_block_end;
269 	u64 misalignment_bits;
270 	u64 next_block_start;
271 	u64 total_len = 0;
272 	int i;
273 
274 	*num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE);
275 
276 	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
277 		/*
278 		 * Initialization - save the first chunk start as the
279 		 * current_block_start - block means contiguous pages.
280 		 */
281 		if (current_block_len == 0 && current_block_start == 0) {
282 			current_block_start = sg_dma_address(sg);
283 			first_block_start = current_block_start;
284 			/*
285 			 * Find the bits that are different between the physical
286 			 * address and the virtual address for the start of the
287 			 * MR.
288 			 * umem_get aligned the start_va to a page boundary.
289 			 * Therefore, we need to align the start va to the same
290 			 * boundary.
291 			 * misalignment_bits is needed to handle the  case of a
292 			 * single memory region. In this case, the rest of the
293 			 * logic will not reduce the block size.  If we use a
294 			 * block size which is bigger than the alignment of the
295 			 * misalignment bits, we might use the virtual page
296 			 * number instead of the physical page number, resulting
297 			 * in access to the wrong data.
298 			 */
299 			misalignment_bits =
300 				(start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
301 				current_block_start;
302 			block_shift = min(alignment_of(misalignment_bits),
303 					  block_shift);
304 		}
305 
306 		/*
307 		 * Go over the scatter entries and check if they continue the
308 		 * previous scatter entry.
309 		 */
310 		next_block_start = sg_dma_address(sg);
311 		current_block_end = current_block_start	+ current_block_len;
312 		/* If we have a split (non-contig.) between two blocks */
313 		if (current_block_end != next_block_start) {
314 			block_shift = mlx4_ib_umem_calc_block_mtt
315 					(next_block_start,
316 					 current_block_end,
317 					 block_shift);
318 
319 			/*
320 			 * If we reached the minimum shift for 4k page we stop
321 			 * the loop.
322 			 */
323 			if (block_shift <= min_shift)
324 				goto end;
325 
326 			/*
327 			 * If not saved yet we are in first block - we save the
328 			 * length of first block to calculate the
329 			 * non_aligned_pages number at the end.
330 			 */
331 			total_len += current_block_len;
332 
333 			/* Start a new block */
334 			current_block_start = next_block_start;
335 			current_block_len = sg_dma_len(sg);
336 			continue;
337 		}
338 		/* The scatter entry is another part of the current block,
339 		 * increase the block size.
340 		 * An entry in the scatter can be larger than 4k (page) as of
341 		 * dma mapping which merge some blocks together.
342 		 */
343 		current_block_len += sg_dma_len(sg);
344 	}
345 
346 	/* Account for the last block in the total len */
347 	total_len += current_block_len;
348 	/* Add to the first block the misalignment that it suffers from. */
349 	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
350 	last_block_end = current_block_start + current_block_len;
351 	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
352 	total_len += (last_block_aligned_end - last_block_end);
353 
354 	if (total_len & ((1ULL << block_shift) - 1ULL))
355 		pr_warn("misaligned total length detected (%llu, %llu)!",
356 			total_len, block_shift);
357 
358 	*num_of_mtts = total_len >> block_shift;
359 end:
360 	if (block_shift < min_shift) {
361 		/*
362 		 * If shift is less than the min we set a warning and return the
363 		 * min shift.
364 		 */
365 		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
366 
367 		block_shift = min_shift;
368 	}
369 	return block_shift;
370 }
371 
372 static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
373 					u64 length, int access_flags)
374 {
375 	/*
376 	 * Force registering the memory as writable if the underlying pages
377 	 * are writable.  This is so rereg can change the access permissions
378 	 * from readable to writable without having to run through ib_umem_get
379 	 * again
380 	 */
381 	if (!ib_access_writable(access_flags)) {
382 		unsigned long untagged_start = untagged_addr(start);
383 		struct vm_area_struct *vma;
384 
385 		mmap_read_lock(current->mm);
386 		/*
387 		 * FIXME: Ideally this would iterate over all the vmas that
388 		 * cover the memory, but for now it requires a single vma to
389 		 * entirely cover the MR to support RO mappings.
390 		 */
391 		vma = find_vma(current->mm, untagged_start);
392 		if (vma && vma->vm_end >= untagged_start + length &&
393 		    vma->vm_start <= untagged_start) {
394 			if (vma->vm_flags & VM_WRITE)
395 				access_flags |= IB_ACCESS_LOCAL_WRITE;
396 		} else {
397 			access_flags |= IB_ACCESS_LOCAL_WRITE;
398 		}
399 
400 		mmap_read_unlock(current->mm);
401 	}
402 
403 	return ib_umem_get(device, start, length, access_flags);
404 }
405 
406 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
407 				  u64 virt_addr, int access_flags,
408 				  struct ib_udata *udata)
409 {
410 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
411 	struct mlx4_ib_mr *mr;
412 	int shift;
413 	int err;
414 	int n;
415 
416 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
417 	if (!mr)
418 		return ERR_PTR(-ENOMEM);
419 
420 	mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
421 	if (IS_ERR(mr->umem)) {
422 		err = PTR_ERR(mr->umem);
423 		goto err_free;
424 	}
425 
426 	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
427 
428 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
429 			    convert_access(access_flags), n, shift, &mr->mmr);
430 	if (err)
431 		goto err_umem;
432 
433 	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
434 	if (err)
435 		goto err_mr;
436 
437 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
438 	if (err)
439 		goto err_mr;
440 
441 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
442 	mr->ibmr.page_size = 1U << shift;
443 
444 	return &mr->ibmr;
445 
446 err_mr:
447 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
448 
449 err_umem:
450 	ib_umem_release(mr->umem);
451 
452 err_free:
453 	kfree(mr);
454 
455 	return ERR_PTR(err);
456 }
457 
458 struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
459 				    u64 length, u64 virt_addr,
460 				    int mr_access_flags, struct ib_pd *pd,
461 				    struct ib_udata *udata)
462 {
463 	struct mlx4_ib_dev *dev = to_mdev(mr->device);
464 	struct mlx4_ib_mr *mmr = to_mmr(mr);
465 	struct mlx4_mpt_entry *mpt_entry;
466 	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
467 	int err;
468 
469 	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
470 	 * we assume that the calls can't run concurrently. Otherwise, a
471 	 * race exists.
472 	 */
473 	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
474 	if (err)
475 		return ERR_PTR(err);
476 
477 	if (flags & IB_MR_REREG_PD) {
478 		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
479 					   to_mpd(pd)->pdn);
480 
481 		if (err)
482 			goto release_mpt_entry;
483 	}
484 
485 	if (flags & IB_MR_REREG_ACCESS) {
486 		if (ib_access_writable(mr_access_flags) &&
487 		    !mmr->umem->writable) {
488 			err = -EPERM;
489 			goto release_mpt_entry;
490 		}
491 
492 		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
493 					       convert_access(mr_access_flags));
494 
495 		if (err)
496 			goto release_mpt_entry;
497 	}
498 
499 	if (flags & IB_MR_REREG_TRANS) {
500 		int shift;
501 		int n;
502 
503 		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
504 		ib_umem_release(mmr->umem);
505 		mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
506 					     mr_access_flags);
507 		if (IS_ERR(mmr->umem)) {
508 			err = PTR_ERR(mmr->umem);
509 			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
510 			mmr->umem = NULL;
511 			goto release_mpt_entry;
512 		}
513 		n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
514 		shift = PAGE_SHIFT;
515 
516 		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
517 					      virt_addr, length, n, shift,
518 					      *pmpt_entry);
519 		if (err) {
520 			ib_umem_release(mmr->umem);
521 			goto release_mpt_entry;
522 		}
523 		mmr->mmr.iova       = virt_addr;
524 		mmr->mmr.size       = length;
525 
526 		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
527 		if (err) {
528 			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
529 			ib_umem_release(mmr->umem);
530 			goto release_mpt_entry;
531 		}
532 	}
533 
534 	/* If we couldn't transfer the MR to the HCA, just remember to
535 	 * return a failure. But dereg_mr will free the resources.
536 	 */
537 	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
538 	if (!err && flags & IB_MR_REREG_ACCESS)
539 		mmr->mmr.access = mr_access_flags;
540 
541 release_mpt_entry:
542 	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
543 	if (err)
544 		return ERR_PTR(err);
545 	return NULL;
546 }
547 
548 static int
549 mlx4_alloc_priv_pages(struct ib_device *device,
550 		      struct mlx4_ib_mr *mr,
551 		      int max_pages)
552 {
553 	int ret;
554 
555 	/* Ensure that size is aligned to DMA cacheline
556 	 * requirements.
557 	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
558 	 * so page_map_size will never cross PAGE_SIZE.
559 	 */
560 	mr->page_map_size = roundup(max_pages * sizeof(u64),
561 				    MLX4_MR_PAGES_ALIGN);
562 
563 	/* Prevent cross page boundary allocation. */
564 	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
565 	if (!mr->pages)
566 		return -ENOMEM;
567 
568 	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
569 				      mr->page_map_size, DMA_TO_DEVICE);
570 
571 	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
572 		ret = -ENOMEM;
573 		goto err;
574 	}
575 
576 	return 0;
577 
578 err:
579 	free_page((unsigned long)mr->pages);
580 	return ret;
581 }
582 
583 static void
584 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
585 {
586 	if (mr->pages) {
587 		struct ib_device *device = mr->ibmr.device;
588 
589 		dma_unmap_single(device->dev.parent, mr->page_map,
590 				 mr->page_map_size, DMA_TO_DEVICE);
591 		free_page((unsigned long)mr->pages);
592 		mr->pages = NULL;
593 	}
594 }
595 
596 int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
597 {
598 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
599 	int ret;
600 
601 	mlx4_free_priv_pages(mr);
602 
603 	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
604 	if (ret)
605 		return ret;
606 	if (mr->umem)
607 		ib_umem_release(mr->umem);
608 	kfree(mr);
609 
610 	return 0;
611 }
612 
613 int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
614 {
615 	struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
616 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
617 	int err;
618 
619 	err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
620 			    to_mlx4_type(ibmw->type), &mw->mmw);
621 	if (err)
622 		return err;
623 
624 	err = mlx4_mw_enable(dev->dev, &mw->mmw);
625 	if (err)
626 		goto err_mw;
627 
628 	ibmw->rkey = mw->mmw.key;
629 	return 0;
630 
631 err_mw:
632 	mlx4_mw_free(dev->dev, &mw->mmw);
633 	return err;
634 }
635 
636 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
637 {
638 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
639 
640 	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
641 	return 0;
642 }
643 
644 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
645 			       u32 max_num_sg)
646 {
647 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
648 	struct mlx4_ib_mr *mr;
649 	int err;
650 
651 	if (mr_type != IB_MR_TYPE_MEM_REG ||
652 	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
653 		return ERR_PTR(-EINVAL);
654 
655 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
656 	if (!mr)
657 		return ERR_PTR(-ENOMEM);
658 
659 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
660 			    max_num_sg, 0, &mr->mmr);
661 	if (err)
662 		goto err_free;
663 
664 	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
665 	if (err)
666 		goto err_free_mr;
667 
668 	mr->max_pages = max_num_sg;
669 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
670 	if (err)
671 		goto err_free_pl;
672 
673 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
674 	mr->umem = NULL;
675 
676 	return &mr->ibmr;
677 
678 err_free_pl:
679 	mr->ibmr.device = pd->device;
680 	mlx4_free_priv_pages(mr);
681 err_free_mr:
682 	(void) mlx4_mr_free(dev->dev, &mr->mmr);
683 err_free:
684 	kfree(mr);
685 	return ERR_PTR(err);
686 }
687 
688 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
689 {
690 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
691 
692 	if (unlikely(mr->npages == mr->max_pages))
693 		return -ENOMEM;
694 
695 	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
696 
697 	return 0;
698 }
699 
700 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
701 		      unsigned int *sg_offset)
702 {
703 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
704 	int rc;
705 
706 	mr->npages = 0;
707 
708 	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
709 				   mr->page_map_size, DMA_TO_DEVICE);
710 
711 	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
712 
713 	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
714 				      mr->page_map_size, DMA_TO_DEVICE);
715 
716 	return rc;
717 }
718