xref: /openbmc/linux/drivers/infiniband/hw/mlx4/mr.c (revision 137c0118)
1 /*
2  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
36 
37 #include "mlx4_ib.h"
38 
39 static u32 convert_access(int acc)
40 {
41 	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
42 	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
43 	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
44 	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
45 	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
46 	       MLX4_PERM_LOCAL_READ;
47 }
48 
49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50 {
51 	switch (type) {
52 	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
53 	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
54 	default:		return -1;
55 	}
56 }
57 
58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59 {
60 	struct mlx4_ib_mr *mr;
61 	int err;
62 
63 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64 	if (!mr)
65 		return ERR_PTR(-ENOMEM);
66 
67 	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68 			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69 	if (err)
70 		goto err_free;
71 
72 	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73 	if (err)
74 		goto err_mr;
75 
76 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77 	mr->umem = NULL;
78 
79 	return &mr->ibmr;
80 
81 err_mr:
82 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83 
84 err_free:
85 	kfree(mr);
86 
87 	return ERR_PTR(err);
88 }
89 
90 enum {
91 	MLX4_MAX_MTT_SHIFT = 31
92 };
93 
94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
95 					struct mlx4_mtt *mtt,
96 					u64 mtt_size, u64 mtt_shift, u64 len,
97 					u64 cur_start_addr, u64 *pages,
98 					int *start_index, int *npages)
99 {
100 	u64 cur_end_addr = cur_start_addr + len;
101 	u64 cur_end_addr_aligned = 0;
102 	u64 mtt_entries;
103 	int err = 0;
104 	int k;
105 
106 	len += (cur_start_addr & (mtt_size - 1ULL));
107 	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108 	len += (cur_end_addr_aligned - cur_end_addr);
109 	if (len & (mtt_size - 1ULL)) {
110 		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111 			len, mtt_size);
112 		return -EINVAL;
113 	}
114 
115 	mtt_entries = (len >> mtt_shift);
116 
117 	/*
118 	 * Align the MTT start address to the mtt_size.
119 	 * Required to handle cases when the MR starts in the middle of an MTT
120 	 * record. Was not required in old code since the physical addresses
121 	 * provided by the dma subsystem were page aligned, which was also the
122 	 * MTT size.
123 	 */
124 	cur_start_addr = round_down(cur_start_addr, mtt_size);
125 	/* A new block is started ... */
126 	for (k = 0; k < mtt_entries; ++k) {
127 		pages[*npages] = cur_start_addr + (mtt_size * k);
128 		(*npages)++;
129 		/*
130 		 * Be friendly to mlx4_write_mtt() and pass it chunks of
131 		 * appropriate size.
132 		 */
133 		if (*npages == PAGE_SIZE / sizeof(u64)) {
134 			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135 					     *npages, pages);
136 			if (err)
137 				return err;
138 
139 			(*start_index) += *npages;
140 			*npages = 0;
141 		}
142 	}
143 
144 	return 0;
145 }
146 
147 static inline u64 alignment_of(u64 ptr)
148 {
149 	return ilog2(ptr & (~(ptr - 1)));
150 }
151 
152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153 				       u64 current_block_end,
154 				       u64 block_shift)
155 {
156 	/* Check whether the alignment of the new block is aligned as well as
157 	 * the previous block.
158 	 * Block address must start with zeros till size of entity_size.
159 	 */
160 	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161 		/*
162 		 * It is not as well aligned as the previous block-reduce the
163 		 * mtt size accordingly. Here we take the last right bit which
164 		 * is 1.
165 		 */
166 		block_shift = alignment_of(next_block_start);
167 
168 	/*
169 	 * Check whether the alignment of the end of previous block - is it
170 	 * aligned as well as the start of the block
171 	 */
172 	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173 		/*
174 		 * It is not as well aligned as the start of the block -
175 		 * reduce the mtt size accordingly.
176 		 */
177 		block_shift = alignment_of(current_block_end);
178 
179 	return block_shift;
180 }
181 
182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183 			   struct ib_umem *umem)
184 {
185 	u64 *pages;
186 	u64 len = 0;
187 	int err = 0;
188 	u64 mtt_size;
189 	u64 cur_start_addr = 0;
190 	u64 mtt_shift;
191 	int start_index = 0;
192 	int npages = 0;
193 	struct scatterlist *sg;
194 	int i;
195 
196 	pages = (u64 *) __get_free_page(GFP_KERNEL);
197 	if (!pages)
198 		return -ENOMEM;
199 
200 	mtt_shift = mtt->page_shift;
201 	mtt_size = 1ULL << mtt_shift;
202 
203 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
204 		if (cur_start_addr + len == sg_dma_address(sg)) {
205 			/* still the same block */
206 			len += sg_dma_len(sg);
207 			continue;
208 		}
209 		/*
210 		 * A new block is started ...
211 		 * If len is malaligned, write an extra mtt entry to cover the
212 		 * misaligned area (round up the division)
213 		 */
214 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215 						   mtt_shift, len,
216 						   cur_start_addr,
217 						   pages, &start_index,
218 						   &npages);
219 		if (err)
220 			goto out;
221 
222 		cur_start_addr = sg_dma_address(sg);
223 		len = sg_dma_len(sg);
224 	}
225 
226 	/* Handle the last block */
227 	if (len > 0) {
228 		/*
229 		 * If len is malaligned, write an extra mtt entry to cover
230 		 * the misaligned area (round up the division)
231 		 */
232 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233 						   mtt_shift, len,
234 						   cur_start_addr, pages,
235 						   &start_index, &npages);
236 		if (err)
237 			goto out;
238 	}
239 
240 	if (npages)
241 		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242 
243 out:
244 	free_page((unsigned long) pages);
245 	return err;
246 }
247 
248 /*
249  * Calculate optimal mtt size based on contiguous pages.
250  * Function will return also the number of pages that are not aligned to the
251  * calculated mtt_size to be added to total number of pages. For that we should
252  * check the first chunk length & last chunk length and if not aligned to
253  * mtt_size we should increment the non_aligned_pages number. All chunks in the
254  * middle already handled as part of mtt shift calculation for both their start
255  * & end addresses.
256  */
257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258 				       int *num_of_mtts)
259 {
260 	u64 block_shift = MLX4_MAX_MTT_SHIFT;
261 	u64 min_shift = umem->page_shift;
262 	u64 last_block_aligned_end = 0;
263 	u64 current_block_start = 0;
264 	u64 first_block_start = 0;
265 	u64 current_block_len = 0;
266 	u64 last_block_end = 0;
267 	struct scatterlist *sg;
268 	u64 current_block_end;
269 	u64 misalignment_bits;
270 	u64 next_block_start;
271 	u64 total_len = 0;
272 	int i;
273 
274 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
275 		/*
276 		 * Initialization - save the first chunk start as the
277 		 * current_block_start - block means contiguous pages.
278 		 */
279 		if (current_block_len == 0 && current_block_start == 0) {
280 			current_block_start = sg_dma_address(sg);
281 			first_block_start = current_block_start;
282 			/*
283 			 * Find the bits that are different between the physical
284 			 * address and the virtual address for the start of the
285 			 * MR.
286 			 * umem_get aligned the start_va to a page boundary.
287 			 * Therefore, we need to align the start va to the same
288 			 * boundary.
289 			 * misalignment_bits is needed to handle the  case of a
290 			 * single memory region. In this case, the rest of the
291 			 * logic will not reduce the block size.  If we use a
292 			 * block size which is bigger than the alignment of the
293 			 * misalignment bits, we might use the virtual page
294 			 * number instead of the physical page number, resulting
295 			 * in access to the wrong data.
296 			 */
297 			misalignment_bits =
298 			(start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL)))
299 			^ current_block_start;
300 			block_shift = min(alignment_of(misalignment_bits),
301 					  block_shift);
302 		}
303 
304 		/*
305 		 * Go over the scatter entries and check if they continue the
306 		 * previous scatter entry.
307 		 */
308 		next_block_start = sg_dma_address(sg);
309 		current_block_end = current_block_start	+ current_block_len;
310 		/* If we have a split (non-contig.) between two blocks */
311 		if (current_block_end != next_block_start) {
312 			block_shift = mlx4_ib_umem_calc_block_mtt
313 					(next_block_start,
314 					 current_block_end,
315 					 block_shift);
316 
317 			/*
318 			 * If we reached the minimum shift for 4k page we stop
319 			 * the loop.
320 			 */
321 			if (block_shift <= min_shift)
322 				goto end;
323 
324 			/*
325 			 * If not saved yet we are in first block - we save the
326 			 * length of first block to calculate the
327 			 * non_aligned_pages number at the end.
328 			 */
329 			total_len += current_block_len;
330 
331 			/* Start a new block */
332 			current_block_start = next_block_start;
333 			current_block_len = sg_dma_len(sg);
334 			continue;
335 		}
336 		/* The scatter entry is another part of the current block,
337 		 * increase the block size.
338 		 * An entry in the scatter can be larger than 4k (page) as of
339 		 * dma mapping which merge some blocks together.
340 		 */
341 		current_block_len += sg_dma_len(sg);
342 	}
343 
344 	/* Account for the last block in the total len */
345 	total_len += current_block_len;
346 	/* Add to the first block the misalignment that it suffers from. */
347 	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
348 	last_block_end = current_block_start + current_block_len;
349 	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
350 	total_len += (last_block_aligned_end - last_block_end);
351 
352 	if (total_len & ((1ULL << block_shift) - 1ULL))
353 		pr_warn("misaligned total length detected (%llu, %llu)!",
354 			total_len, block_shift);
355 
356 	*num_of_mtts = total_len >> block_shift;
357 end:
358 	if (block_shift < min_shift) {
359 		/*
360 		 * If shift is less than the min we set a warning and return the
361 		 * min shift.
362 		 */
363 		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
364 
365 		block_shift = min_shift;
366 	}
367 	return block_shift;
368 }
369 
370 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
371 				  u64 virt_addr, int access_flags,
372 				  struct ib_udata *udata)
373 {
374 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
375 	struct mlx4_ib_mr *mr;
376 	int shift;
377 	int err;
378 	int n;
379 
380 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
381 	if (!mr)
382 		return ERR_PTR(-ENOMEM);
383 
384 	/* Force registering the memory as writable. */
385 	/* Used for memory re-registeration. HCA protects the access */
386 	mr->umem = ib_umem_get(pd->uobject->context, start, length,
387 			       access_flags | IB_ACCESS_LOCAL_WRITE, 0);
388 	if (IS_ERR(mr->umem)) {
389 		err = PTR_ERR(mr->umem);
390 		goto err_free;
391 	}
392 
393 	n = ib_umem_page_count(mr->umem);
394 	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
395 
396 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
397 			    convert_access(access_flags), n, shift, &mr->mmr);
398 	if (err)
399 		goto err_umem;
400 
401 	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
402 	if (err)
403 		goto err_mr;
404 
405 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
406 	if (err)
407 		goto err_mr;
408 
409 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
410 	mr->ibmr.length = length;
411 	mr->ibmr.iova = virt_addr;
412 	mr->ibmr.page_size = 1U << shift;
413 
414 	return &mr->ibmr;
415 
416 err_mr:
417 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
418 
419 err_umem:
420 	ib_umem_release(mr->umem);
421 
422 err_free:
423 	kfree(mr);
424 
425 	return ERR_PTR(err);
426 }
427 
428 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
429 			  u64 start, u64 length, u64 virt_addr,
430 			  int mr_access_flags, struct ib_pd *pd,
431 			  struct ib_udata *udata)
432 {
433 	struct mlx4_ib_dev *dev = to_mdev(mr->device);
434 	struct mlx4_ib_mr *mmr = to_mmr(mr);
435 	struct mlx4_mpt_entry *mpt_entry;
436 	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
437 	int err;
438 
439 	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
440 	 * we assume that the calls can't run concurrently. Otherwise, a
441 	 * race exists.
442 	 */
443 	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
444 
445 	if (err)
446 		return err;
447 
448 	if (flags & IB_MR_REREG_PD) {
449 		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
450 					   to_mpd(pd)->pdn);
451 
452 		if (err)
453 			goto release_mpt_entry;
454 	}
455 
456 	if (flags & IB_MR_REREG_ACCESS) {
457 		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
458 					       convert_access(mr_access_flags));
459 
460 		if (err)
461 			goto release_mpt_entry;
462 	}
463 
464 	if (flags & IB_MR_REREG_TRANS) {
465 		int shift;
466 		int n;
467 
468 		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
469 		ib_umem_release(mmr->umem);
470 		mmr->umem = ib_umem_get(mr->uobject->context, start, length,
471 					mr_access_flags |
472 					IB_ACCESS_LOCAL_WRITE,
473 					0);
474 		if (IS_ERR(mmr->umem)) {
475 			err = PTR_ERR(mmr->umem);
476 			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
477 			mmr->umem = NULL;
478 			goto release_mpt_entry;
479 		}
480 		n = ib_umem_page_count(mmr->umem);
481 		shift = mmr->umem->page_shift;
482 
483 		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
484 					      virt_addr, length, n, shift,
485 					      *pmpt_entry);
486 		if (err) {
487 			ib_umem_release(mmr->umem);
488 			goto release_mpt_entry;
489 		}
490 		mmr->mmr.iova       = virt_addr;
491 		mmr->mmr.size       = length;
492 
493 		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
494 		if (err) {
495 			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
496 			ib_umem_release(mmr->umem);
497 			goto release_mpt_entry;
498 		}
499 	}
500 
501 	/* If we couldn't transfer the MR to the HCA, just remember to
502 	 * return a failure. But dereg_mr will free the resources.
503 	 */
504 	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
505 	if (!err && flags & IB_MR_REREG_ACCESS)
506 		mmr->mmr.access = mr_access_flags;
507 
508 release_mpt_entry:
509 	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
510 
511 	return err;
512 }
513 
514 static int
515 mlx4_alloc_priv_pages(struct ib_device *device,
516 		      struct mlx4_ib_mr *mr,
517 		      int max_pages)
518 {
519 	int ret;
520 
521 	/* Ensure that size is aligned to DMA cacheline
522 	 * requirements.
523 	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
524 	 * so page_map_size will never cross PAGE_SIZE.
525 	 */
526 	mr->page_map_size = roundup(max_pages * sizeof(u64),
527 				    MLX4_MR_PAGES_ALIGN);
528 
529 	/* Prevent cross page boundary allocation. */
530 	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
531 	if (!mr->pages)
532 		return -ENOMEM;
533 
534 	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
535 				      mr->page_map_size, DMA_TO_DEVICE);
536 
537 	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
538 		ret = -ENOMEM;
539 		goto err;
540 	}
541 
542 	return 0;
543 
544 err:
545 	free_page((unsigned long)mr->pages);
546 	return ret;
547 }
548 
549 static void
550 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
551 {
552 	if (mr->pages) {
553 		struct ib_device *device = mr->ibmr.device;
554 
555 		dma_unmap_single(device->dev.parent, mr->page_map,
556 				 mr->page_map_size, DMA_TO_DEVICE);
557 		free_page((unsigned long)mr->pages);
558 		mr->pages = NULL;
559 	}
560 }
561 
562 int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
563 {
564 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
565 	int ret;
566 
567 	mlx4_free_priv_pages(mr);
568 
569 	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
570 	if (ret)
571 		return ret;
572 	if (mr->umem)
573 		ib_umem_release(mr->umem);
574 	kfree(mr);
575 
576 	return 0;
577 }
578 
579 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
580 			       struct ib_udata *udata)
581 {
582 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
583 	struct mlx4_ib_mw *mw;
584 	int err;
585 
586 	mw = kmalloc(sizeof(*mw), GFP_KERNEL);
587 	if (!mw)
588 		return ERR_PTR(-ENOMEM);
589 
590 	err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
591 			    to_mlx4_type(type), &mw->mmw);
592 	if (err)
593 		goto err_free;
594 
595 	err = mlx4_mw_enable(dev->dev, &mw->mmw);
596 	if (err)
597 		goto err_mw;
598 
599 	mw->ibmw.rkey = mw->mmw.key;
600 
601 	return &mw->ibmw;
602 
603 err_mw:
604 	mlx4_mw_free(dev->dev, &mw->mmw);
605 
606 err_free:
607 	kfree(mw);
608 
609 	return ERR_PTR(err);
610 }
611 
612 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
613 {
614 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
615 
616 	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
617 	kfree(mw);
618 
619 	return 0;
620 }
621 
622 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd,
623 			       enum ib_mr_type mr_type,
624 			       u32 max_num_sg)
625 {
626 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
627 	struct mlx4_ib_mr *mr;
628 	int err;
629 
630 	if (mr_type != IB_MR_TYPE_MEM_REG ||
631 	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
632 		return ERR_PTR(-EINVAL);
633 
634 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
635 	if (!mr)
636 		return ERR_PTR(-ENOMEM);
637 
638 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
639 			    max_num_sg, 0, &mr->mmr);
640 	if (err)
641 		goto err_free;
642 
643 	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
644 	if (err)
645 		goto err_free_mr;
646 
647 	mr->max_pages = max_num_sg;
648 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
649 	if (err)
650 		goto err_free_pl;
651 
652 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
653 	mr->umem = NULL;
654 
655 	return &mr->ibmr;
656 
657 err_free_pl:
658 	mr->ibmr.device = pd->device;
659 	mlx4_free_priv_pages(mr);
660 err_free_mr:
661 	(void) mlx4_mr_free(dev->dev, &mr->mmr);
662 err_free:
663 	kfree(mr);
664 	return ERR_PTR(err);
665 }
666 
667 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
668 				 struct ib_fmr_attr *fmr_attr)
669 {
670 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
671 	struct mlx4_ib_fmr *fmr;
672 	int err = -ENOMEM;
673 
674 	fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
675 	if (!fmr)
676 		return ERR_PTR(-ENOMEM);
677 
678 	err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
679 			     fmr_attr->max_pages, fmr_attr->max_maps,
680 			     fmr_attr->page_shift, &fmr->mfmr);
681 	if (err)
682 		goto err_free;
683 
684 	err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
685 	if (err)
686 		goto err_mr;
687 
688 	fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
689 
690 	return &fmr->ibfmr;
691 
692 err_mr:
693 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
694 
695 err_free:
696 	kfree(fmr);
697 
698 	return ERR_PTR(err);
699 }
700 
701 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
702 		      int npages, u64 iova)
703 {
704 	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
705 	struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
706 
707 	return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
708 				 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
709 }
710 
711 int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
712 {
713 	struct ib_fmr *ibfmr;
714 	int err;
715 	struct mlx4_dev *mdev = NULL;
716 
717 	list_for_each_entry(ibfmr, fmr_list, list) {
718 		if (mdev && to_mdev(ibfmr->device)->dev != mdev)
719 			return -EINVAL;
720 		mdev = to_mdev(ibfmr->device)->dev;
721 	}
722 
723 	if (!mdev)
724 		return 0;
725 
726 	list_for_each_entry(ibfmr, fmr_list, list) {
727 		struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
728 
729 		mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
730 	}
731 
732 	/*
733 	 * Make sure all MPT status updates are visible before issuing
734 	 * SYNC_TPT firmware command.
735 	 */
736 	wmb();
737 
738 	err = mlx4_SYNC_TPT(mdev);
739 	if (err)
740 		pr_warn("SYNC_TPT error %d when "
741 		       "unmapping FMRs\n", err);
742 
743 	return 0;
744 }
745 
746 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
747 {
748 	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
749 	struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
750 	int err;
751 
752 	err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
753 
754 	if (!err)
755 		kfree(ifmr);
756 
757 	return err;
758 }
759 
760 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
761 {
762 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
763 
764 	if (unlikely(mr->npages == mr->max_pages))
765 		return -ENOMEM;
766 
767 	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
768 
769 	return 0;
770 }
771 
772 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
773 		      unsigned int *sg_offset)
774 {
775 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
776 	int rc;
777 
778 	mr->npages = 0;
779 
780 	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
781 				   mr->page_map_size, DMA_TO_DEVICE);
782 
783 	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
784 
785 	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
786 				      mr->page_map_size, DMA_TO_DEVICE);
787 
788 	return rc;
789 }
790