1 // SPDX-License-Identifier: GPL-2.0 or Linux-OpenIB 2 /* Copyright (c) 2015 - 2021 Intel Corporation */ 3 #include "main.h" 4 5 /** 6 * irdma_arp_table -manage arp table 7 * @rf: RDMA PCI function 8 * @ip_addr: ip address for device 9 * @ipv4: IPv4 flag 10 * @mac_addr: mac address ptr 11 * @action: modify, delete or add 12 */ 13 int irdma_arp_table(struct irdma_pci_f *rf, u32 *ip_addr, bool ipv4, 14 const u8 *mac_addr, u32 action) 15 { 16 unsigned long flags; 17 int arp_index; 18 u32 ip[4] = {}; 19 20 if (ipv4) 21 ip[0] = *ip_addr; 22 else 23 memcpy(ip, ip_addr, sizeof(ip)); 24 25 spin_lock_irqsave(&rf->arp_lock, flags); 26 for (arp_index = 0; (u32)arp_index < rf->arp_table_size; arp_index++) { 27 if (!memcmp(rf->arp_table[arp_index].ip_addr, ip, sizeof(ip))) 28 break; 29 } 30 31 switch (action) { 32 case IRDMA_ARP_ADD: 33 if (arp_index != rf->arp_table_size) { 34 arp_index = -1; 35 break; 36 } 37 38 arp_index = 0; 39 if (irdma_alloc_rsrc(rf, rf->allocated_arps, rf->arp_table_size, 40 (u32 *)&arp_index, &rf->next_arp_index)) { 41 arp_index = -1; 42 break; 43 } 44 45 memcpy(rf->arp_table[arp_index].ip_addr, ip, 46 sizeof(rf->arp_table[arp_index].ip_addr)); 47 ether_addr_copy(rf->arp_table[arp_index].mac_addr, mac_addr); 48 break; 49 case IRDMA_ARP_RESOLVE: 50 if (arp_index == rf->arp_table_size) 51 arp_index = -1; 52 break; 53 case IRDMA_ARP_DELETE: 54 if (arp_index == rf->arp_table_size) { 55 arp_index = -1; 56 break; 57 } 58 59 memset(rf->arp_table[arp_index].ip_addr, 0, 60 sizeof(rf->arp_table[arp_index].ip_addr)); 61 eth_zero_addr(rf->arp_table[arp_index].mac_addr); 62 irdma_free_rsrc(rf, rf->allocated_arps, arp_index); 63 break; 64 default: 65 arp_index = -1; 66 break; 67 } 68 69 spin_unlock_irqrestore(&rf->arp_lock, flags); 70 return arp_index; 71 } 72 73 /** 74 * irdma_add_arp - add a new arp entry if needed 75 * @rf: RDMA function 76 * @ip: IP address 77 * @ipv4: IPv4 flag 78 * @mac: MAC address 79 */ 80 int irdma_add_arp(struct irdma_pci_f *rf, u32 *ip, bool ipv4, const u8 *mac) 81 { 82 int arpidx; 83 84 arpidx = irdma_arp_table(rf, &ip[0], ipv4, NULL, IRDMA_ARP_RESOLVE); 85 if (arpidx >= 0) { 86 if (ether_addr_equal(rf->arp_table[arpidx].mac_addr, mac)) 87 return arpidx; 88 89 irdma_manage_arp_cache(rf, rf->arp_table[arpidx].mac_addr, ip, 90 ipv4, IRDMA_ARP_DELETE); 91 } 92 93 irdma_manage_arp_cache(rf, mac, ip, ipv4, IRDMA_ARP_ADD); 94 95 return irdma_arp_table(rf, ip, ipv4, NULL, IRDMA_ARP_RESOLVE); 96 } 97 98 /** 99 * wr32 - write 32 bits to hw register 100 * @hw: hardware information including registers 101 * @reg: register offset 102 * @val: value to write to register 103 */ 104 inline void wr32(struct irdma_hw *hw, u32 reg, u32 val) 105 { 106 writel(val, hw->hw_addr + reg); 107 } 108 109 /** 110 * rd32 - read a 32 bit hw register 111 * @hw: hardware information including registers 112 * @reg: register offset 113 * 114 * Return value of register content 115 */ 116 inline u32 rd32(struct irdma_hw *hw, u32 reg) 117 { 118 return readl(hw->hw_addr + reg); 119 } 120 121 /** 122 * rd64 - read a 64 bit hw register 123 * @hw: hardware information including registers 124 * @reg: register offset 125 * 126 * Return value of register content 127 */ 128 inline u64 rd64(struct irdma_hw *hw, u32 reg) 129 { 130 return readq(hw->hw_addr + reg); 131 } 132 133 static void irdma_gid_change_event(struct ib_device *ibdev) 134 { 135 struct ib_event ib_event; 136 137 ib_event.event = IB_EVENT_GID_CHANGE; 138 ib_event.device = ibdev; 139 ib_event.element.port_num = 1; 140 ib_dispatch_event(&ib_event); 141 } 142 143 /** 144 * irdma_inetaddr_event - system notifier for ipv4 addr events 145 * @notifier: not used 146 * @event: event for notifier 147 * @ptr: if address 148 */ 149 int irdma_inetaddr_event(struct notifier_block *notifier, unsigned long event, 150 void *ptr) 151 { 152 struct in_ifaddr *ifa = ptr; 153 struct net_device *real_dev, *netdev = ifa->ifa_dev->dev; 154 struct irdma_device *iwdev; 155 struct ib_device *ibdev; 156 u32 local_ipaddr; 157 158 real_dev = rdma_vlan_dev_real_dev(netdev); 159 if (!real_dev) 160 real_dev = netdev; 161 162 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 163 if (!ibdev) 164 return NOTIFY_DONE; 165 166 iwdev = to_iwdev(ibdev); 167 local_ipaddr = ntohl(ifa->ifa_address); 168 ibdev_dbg(&iwdev->ibdev, 169 "DEV: netdev %p event %lu local_ip=%pI4 MAC=%pM\n", real_dev, 170 event, &local_ipaddr, real_dev->dev_addr); 171 switch (event) { 172 case NETDEV_DOWN: 173 irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr, 174 &local_ipaddr, true, IRDMA_ARP_DELETE); 175 irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, false); 176 irdma_gid_change_event(&iwdev->ibdev); 177 break; 178 case NETDEV_UP: 179 case NETDEV_CHANGEADDR: 180 irdma_add_arp(iwdev->rf, &local_ipaddr, true, real_dev->dev_addr); 181 irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, true); 182 irdma_gid_change_event(&iwdev->ibdev); 183 break; 184 default: 185 break; 186 } 187 188 ib_device_put(ibdev); 189 190 return NOTIFY_DONE; 191 } 192 193 /** 194 * irdma_inet6addr_event - system notifier for ipv6 addr events 195 * @notifier: not used 196 * @event: event for notifier 197 * @ptr: if address 198 */ 199 int irdma_inet6addr_event(struct notifier_block *notifier, unsigned long event, 200 void *ptr) 201 { 202 struct inet6_ifaddr *ifa = ptr; 203 struct net_device *real_dev, *netdev = ifa->idev->dev; 204 struct irdma_device *iwdev; 205 struct ib_device *ibdev; 206 u32 local_ipaddr6[4]; 207 208 real_dev = rdma_vlan_dev_real_dev(netdev); 209 if (!real_dev) 210 real_dev = netdev; 211 212 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 213 if (!ibdev) 214 return NOTIFY_DONE; 215 216 iwdev = to_iwdev(ibdev); 217 irdma_copy_ip_ntohl(local_ipaddr6, ifa->addr.in6_u.u6_addr32); 218 ibdev_dbg(&iwdev->ibdev, 219 "DEV: netdev %p event %lu local_ip=%pI6 MAC=%pM\n", real_dev, 220 event, local_ipaddr6, real_dev->dev_addr); 221 switch (event) { 222 case NETDEV_DOWN: 223 irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr, 224 local_ipaddr6, false, IRDMA_ARP_DELETE); 225 irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, false); 226 irdma_gid_change_event(&iwdev->ibdev); 227 break; 228 case NETDEV_UP: 229 case NETDEV_CHANGEADDR: 230 irdma_add_arp(iwdev->rf, local_ipaddr6, false, 231 real_dev->dev_addr); 232 irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, true); 233 irdma_gid_change_event(&iwdev->ibdev); 234 break; 235 default: 236 break; 237 } 238 239 ib_device_put(ibdev); 240 241 return NOTIFY_DONE; 242 } 243 244 /** 245 * irdma_net_event - system notifier for net events 246 * @notifier: not used 247 * @event: event for notifier 248 * @ptr: neighbor 249 */ 250 int irdma_net_event(struct notifier_block *notifier, unsigned long event, 251 void *ptr) 252 { 253 struct neighbour *neigh = ptr; 254 struct net_device *real_dev, *netdev = (struct net_device *)neigh->dev; 255 struct irdma_device *iwdev; 256 struct ib_device *ibdev; 257 __be32 *p; 258 u32 local_ipaddr[4] = {}; 259 bool ipv4 = true; 260 261 switch (event) { 262 case NETEVENT_NEIGH_UPDATE: 263 real_dev = rdma_vlan_dev_real_dev(netdev); 264 if (!real_dev) 265 real_dev = netdev; 266 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 267 if (!ibdev) 268 return NOTIFY_DONE; 269 270 iwdev = to_iwdev(ibdev); 271 p = (__be32 *)neigh->primary_key; 272 if (neigh->tbl->family == AF_INET6) { 273 ipv4 = false; 274 irdma_copy_ip_ntohl(local_ipaddr, p); 275 } else { 276 local_ipaddr[0] = ntohl(*p); 277 } 278 279 ibdev_dbg(&iwdev->ibdev, 280 "DEV: netdev %p state %d local_ip=%pI4 MAC=%pM\n", 281 iwdev->netdev, neigh->nud_state, local_ipaddr, 282 neigh->ha); 283 284 if (neigh->nud_state & NUD_VALID) 285 irdma_add_arp(iwdev->rf, local_ipaddr, ipv4, neigh->ha); 286 287 else 288 irdma_manage_arp_cache(iwdev->rf, neigh->ha, 289 local_ipaddr, ipv4, 290 IRDMA_ARP_DELETE); 291 ib_device_put(ibdev); 292 break; 293 default: 294 break; 295 } 296 297 return NOTIFY_DONE; 298 } 299 300 /** 301 * irdma_netdevice_event - system notifier for netdev events 302 * @notifier: not used 303 * @event: event for notifier 304 * @ptr: netdev 305 */ 306 int irdma_netdevice_event(struct notifier_block *notifier, unsigned long event, 307 void *ptr) 308 { 309 struct irdma_device *iwdev; 310 struct ib_device *ibdev; 311 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 312 313 ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_IRDMA); 314 if (!ibdev) 315 return NOTIFY_DONE; 316 317 iwdev = to_iwdev(ibdev); 318 iwdev->iw_status = 1; 319 switch (event) { 320 case NETDEV_DOWN: 321 iwdev->iw_status = 0; 322 fallthrough; 323 case NETDEV_UP: 324 irdma_port_ibevent(iwdev); 325 break; 326 default: 327 break; 328 } 329 ib_device_put(ibdev); 330 331 return NOTIFY_DONE; 332 } 333 334 /** 335 * irdma_add_ipv6_addr - add ipv6 address to the hw arp table 336 * @iwdev: irdma device 337 */ 338 static void irdma_add_ipv6_addr(struct irdma_device *iwdev) 339 { 340 struct net_device *ip_dev; 341 struct inet6_dev *idev; 342 struct inet6_ifaddr *ifp, *tmp; 343 u32 local_ipaddr6[4]; 344 345 rcu_read_lock(); 346 for_each_netdev_rcu (&init_net, ip_dev) { 347 if (((rdma_vlan_dev_vlan_id(ip_dev) < 0xFFFF && 348 rdma_vlan_dev_real_dev(ip_dev) == iwdev->netdev) || 349 ip_dev == iwdev->netdev) && 350 (READ_ONCE(ip_dev->flags) & IFF_UP)) { 351 idev = __in6_dev_get(ip_dev); 352 if (!idev) { 353 ibdev_err(&iwdev->ibdev, "ipv6 inet device not found\n"); 354 break; 355 } 356 list_for_each_entry_safe (ifp, tmp, &idev->addr_list, 357 if_list) { 358 ibdev_dbg(&iwdev->ibdev, 359 "INIT: IP=%pI6, vlan_id=%d, MAC=%pM\n", 360 &ifp->addr, 361 rdma_vlan_dev_vlan_id(ip_dev), 362 ip_dev->dev_addr); 363 364 irdma_copy_ip_ntohl(local_ipaddr6, 365 ifp->addr.in6_u.u6_addr32); 366 irdma_manage_arp_cache(iwdev->rf, 367 ip_dev->dev_addr, 368 local_ipaddr6, false, 369 IRDMA_ARP_ADD); 370 } 371 } 372 } 373 rcu_read_unlock(); 374 } 375 376 /** 377 * irdma_add_ipv4_addr - add ipv4 address to the hw arp table 378 * @iwdev: irdma device 379 */ 380 static void irdma_add_ipv4_addr(struct irdma_device *iwdev) 381 { 382 struct net_device *dev; 383 struct in_device *idev; 384 u32 ip_addr; 385 386 rcu_read_lock(); 387 for_each_netdev_rcu (&init_net, dev) { 388 if (((rdma_vlan_dev_vlan_id(dev) < 0xFFFF && 389 rdma_vlan_dev_real_dev(dev) == iwdev->netdev) || 390 dev == iwdev->netdev) && (READ_ONCE(dev->flags) & IFF_UP)) { 391 const struct in_ifaddr *ifa; 392 393 idev = __in_dev_get_rcu(dev); 394 if (!idev) 395 continue; 396 397 in_dev_for_each_ifa_rcu(ifa, idev) { 398 ibdev_dbg(&iwdev->ibdev, "CM: IP=%pI4, vlan_id=%d, MAC=%pM\n", 399 &ifa->ifa_address, rdma_vlan_dev_vlan_id(dev), 400 dev->dev_addr); 401 402 ip_addr = ntohl(ifa->ifa_address); 403 irdma_manage_arp_cache(iwdev->rf, dev->dev_addr, 404 &ip_addr, true, 405 IRDMA_ARP_ADD); 406 } 407 } 408 } 409 rcu_read_unlock(); 410 } 411 412 /** 413 * irdma_add_ip - add ip addresses 414 * @iwdev: irdma device 415 * 416 * Add ipv4/ipv6 addresses to the arp cache 417 */ 418 void irdma_add_ip(struct irdma_device *iwdev) 419 { 420 irdma_add_ipv4_addr(iwdev); 421 irdma_add_ipv6_addr(iwdev); 422 } 423 424 /** 425 * irdma_alloc_and_get_cqp_request - get cqp struct 426 * @cqp: device cqp ptr 427 * @wait: cqp to be used in wait mode 428 */ 429 struct irdma_cqp_request *irdma_alloc_and_get_cqp_request(struct irdma_cqp *cqp, 430 bool wait) 431 { 432 struct irdma_cqp_request *cqp_request = NULL; 433 unsigned long flags; 434 435 spin_lock_irqsave(&cqp->req_lock, flags); 436 if (!list_empty(&cqp->cqp_avail_reqs)) { 437 cqp_request = list_first_entry(&cqp->cqp_avail_reqs, 438 struct irdma_cqp_request, list); 439 list_del_init(&cqp_request->list); 440 } 441 spin_unlock_irqrestore(&cqp->req_lock, flags); 442 if (!cqp_request) { 443 cqp_request = kzalloc(sizeof(*cqp_request), GFP_ATOMIC); 444 if (cqp_request) { 445 cqp_request->dynamic = true; 446 if (wait) 447 init_waitqueue_head(&cqp_request->waitq); 448 } 449 } 450 if (!cqp_request) { 451 ibdev_dbg(to_ibdev(cqp->sc_cqp.dev), "ERR: CQP Request Fail: No Memory"); 452 return NULL; 453 } 454 455 cqp_request->waiting = wait; 456 refcount_set(&cqp_request->refcnt, 1); 457 memset(&cqp_request->compl_info, 0, sizeof(cqp_request->compl_info)); 458 459 return cqp_request; 460 } 461 462 /** 463 * irdma_get_cqp_request - increase refcount for cqp_request 464 * @cqp_request: pointer to cqp_request instance 465 */ 466 static inline void irdma_get_cqp_request(struct irdma_cqp_request *cqp_request) 467 { 468 refcount_inc(&cqp_request->refcnt); 469 } 470 471 /** 472 * irdma_free_cqp_request - free cqp request 473 * @cqp: cqp ptr 474 * @cqp_request: to be put back in cqp list 475 */ 476 void irdma_free_cqp_request(struct irdma_cqp *cqp, 477 struct irdma_cqp_request *cqp_request) 478 { 479 unsigned long flags; 480 481 if (cqp_request->dynamic) { 482 kfree(cqp_request); 483 } else { 484 cqp_request->request_done = false; 485 cqp_request->callback_fcn = NULL; 486 cqp_request->waiting = false; 487 488 spin_lock_irqsave(&cqp->req_lock, flags); 489 list_add_tail(&cqp_request->list, &cqp->cqp_avail_reqs); 490 spin_unlock_irqrestore(&cqp->req_lock, flags); 491 } 492 wake_up(&cqp->remove_wq); 493 } 494 495 /** 496 * irdma_put_cqp_request - dec ref count and free if 0 497 * @cqp: cqp ptr 498 * @cqp_request: to be put back in cqp list 499 */ 500 void irdma_put_cqp_request(struct irdma_cqp *cqp, 501 struct irdma_cqp_request *cqp_request) 502 { 503 if (refcount_dec_and_test(&cqp_request->refcnt)) 504 irdma_free_cqp_request(cqp, cqp_request); 505 } 506 507 /** 508 * irdma_free_pending_cqp_request -free pending cqp request objs 509 * @cqp: cqp ptr 510 * @cqp_request: to be put back in cqp list 511 */ 512 static void 513 irdma_free_pending_cqp_request(struct irdma_cqp *cqp, 514 struct irdma_cqp_request *cqp_request) 515 { 516 if (cqp_request->waiting) { 517 cqp_request->compl_info.error = true; 518 cqp_request->request_done = true; 519 wake_up(&cqp_request->waitq); 520 } 521 wait_event_timeout(cqp->remove_wq, 522 refcount_read(&cqp_request->refcnt) == 1, 1000); 523 irdma_put_cqp_request(cqp, cqp_request); 524 } 525 526 /** 527 * irdma_cleanup_pending_cqp_op - clean-up cqp with no 528 * completions 529 * @rf: RDMA PCI function 530 */ 531 void irdma_cleanup_pending_cqp_op(struct irdma_pci_f *rf) 532 { 533 struct irdma_sc_dev *dev = &rf->sc_dev; 534 struct irdma_cqp *cqp = &rf->cqp; 535 struct irdma_cqp_request *cqp_request = NULL; 536 struct cqp_cmds_info *pcmdinfo = NULL; 537 u32 i, pending_work, wqe_idx; 538 539 pending_work = IRDMA_RING_USED_QUANTA(cqp->sc_cqp.sq_ring); 540 wqe_idx = IRDMA_RING_CURRENT_TAIL(cqp->sc_cqp.sq_ring); 541 for (i = 0; i < pending_work; i++) { 542 cqp_request = (struct irdma_cqp_request *)(unsigned long) 543 cqp->scratch_array[wqe_idx]; 544 if (cqp_request) 545 irdma_free_pending_cqp_request(cqp, cqp_request); 546 wqe_idx = (wqe_idx + 1) % IRDMA_RING_SIZE(cqp->sc_cqp.sq_ring); 547 } 548 549 while (!list_empty(&dev->cqp_cmd_head)) { 550 pcmdinfo = irdma_remove_cqp_head(dev); 551 cqp_request = 552 container_of(pcmdinfo, struct irdma_cqp_request, info); 553 if (cqp_request) 554 irdma_free_pending_cqp_request(cqp, cqp_request); 555 } 556 } 557 558 /** 559 * irdma_wait_event - wait for completion 560 * @rf: RDMA PCI function 561 * @cqp_request: cqp request to wait 562 */ 563 static int irdma_wait_event(struct irdma_pci_f *rf, 564 struct irdma_cqp_request *cqp_request) 565 { 566 struct irdma_cqp_timeout cqp_timeout = {}; 567 bool cqp_error = false; 568 int err_code = 0; 569 570 cqp_timeout.compl_cqp_cmds = rf->sc_dev.cqp_cmd_stats[IRDMA_OP_CMPL_CMDS]; 571 do { 572 irdma_cqp_ce_handler(rf, &rf->ccq.sc_cq); 573 if (wait_event_timeout(cqp_request->waitq, 574 cqp_request->request_done, 575 msecs_to_jiffies(CQP_COMPL_WAIT_TIME_MS))) 576 break; 577 578 irdma_check_cqp_progress(&cqp_timeout, &rf->sc_dev); 579 580 if (cqp_timeout.count < CQP_TIMEOUT_THRESHOLD) 581 continue; 582 583 if (!rf->reset) { 584 rf->reset = true; 585 rf->gen_ops.request_reset(rf); 586 } 587 return -ETIMEDOUT; 588 } while (1); 589 590 cqp_error = cqp_request->compl_info.error; 591 if (cqp_error) { 592 err_code = -EIO; 593 if (cqp_request->compl_info.maj_err_code == 0xFFFF) { 594 if (cqp_request->compl_info.min_err_code == 0x8002) 595 err_code = -EBUSY; 596 else if (cqp_request->compl_info.min_err_code == 0x8029) { 597 if (!rf->reset) { 598 rf->reset = true; 599 rf->gen_ops.request_reset(rf); 600 } 601 } 602 } 603 } 604 605 return err_code; 606 } 607 608 static const char *const irdma_cqp_cmd_names[IRDMA_MAX_CQP_OPS] = { 609 [IRDMA_OP_CEQ_DESTROY] = "Destroy CEQ Cmd", 610 [IRDMA_OP_AEQ_DESTROY] = "Destroy AEQ Cmd", 611 [IRDMA_OP_DELETE_ARP_CACHE_ENTRY] = "Delete ARP Cache Cmd", 612 [IRDMA_OP_MANAGE_APBVT_ENTRY] = "Manage APBV Table Entry Cmd", 613 [IRDMA_OP_CEQ_CREATE] = "CEQ Create Cmd", 614 [IRDMA_OP_AEQ_CREATE] = "AEQ Destroy Cmd", 615 [IRDMA_OP_MANAGE_QHASH_TABLE_ENTRY] = "Manage Quad Hash Table Entry Cmd", 616 [IRDMA_OP_QP_MODIFY] = "Modify QP Cmd", 617 [IRDMA_OP_QP_UPLOAD_CONTEXT] = "Upload Context Cmd", 618 [IRDMA_OP_CQ_CREATE] = "Create CQ Cmd", 619 [IRDMA_OP_CQ_DESTROY] = "Destroy CQ Cmd", 620 [IRDMA_OP_QP_CREATE] = "Create QP Cmd", 621 [IRDMA_OP_QP_DESTROY] = "Destroy QP Cmd", 622 [IRDMA_OP_ALLOC_STAG] = "Allocate STag Cmd", 623 [IRDMA_OP_MR_REG_NON_SHARED] = "Register Non-Shared MR Cmd", 624 [IRDMA_OP_DEALLOC_STAG] = "Deallocate STag Cmd", 625 [IRDMA_OP_MW_ALLOC] = "Allocate Memory Window Cmd", 626 [IRDMA_OP_QP_FLUSH_WQES] = "Flush QP Cmd", 627 [IRDMA_OP_ADD_ARP_CACHE_ENTRY] = "Add ARP Cache Cmd", 628 [IRDMA_OP_MANAGE_PUSH_PAGE] = "Manage Push Page Cmd", 629 [IRDMA_OP_UPDATE_PE_SDS] = "Update PE SDs Cmd", 630 [IRDMA_OP_MANAGE_HMC_PM_FUNC_TABLE] = "Manage HMC PM Function Table Cmd", 631 [IRDMA_OP_SUSPEND] = "Suspend QP Cmd", 632 [IRDMA_OP_RESUME] = "Resume QP Cmd", 633 [IRDMA_OP_MANAGE_VF_PBLE_BP] = "Manage VF PBLE Backing Pages Cmd", 634 [IRDMA_OP_QUERY_FPM_VAL] = "Query FPM Values Cmd", 635 [IRDMA_OP_COMMIT_FPM_VAL] = "Commit FPM Values Cmd", 636 [IRDMA_OP_AH_CREATE] = "Create Address Handle Cmd", 637 [IRDMA_OP_AH_MODIFY] = "Modify Address Handle Cmd", 638 [IRDMA_OP_AH_DESTROY] = "Destroy Address Handle Cmd", 639 [IRDMA_OP_MC_CREATE] = "Create Multicast Group Cmd", 640 [IRDMA_OP_MC_DESTROY] = "Destroy Multicast Group Cmd", 641 [IRDMA_OP_MC_MODIFY] = "Modify Multicast Group Cmd", 642 [IRDMA_OP_STATS_ALLOCATE] = "Add Statistics Instance Cmd", 643 [IRDMA_OP_STATS_FREE] = "Free Statistics Instance Cmd", 644 [IRDMA_OP_STATS_GATHER] = "Gather Statistics Cmd", 645 [IRDMA_OP_WS_ADD_NODE] = "Add Work Scheduler Node Cmd", 646 [IRDMA_OP_WS_MODIFY_NODE] = "Modify Work Scheduler Node Cmd", 647 [IRDMA_OP_WS_DELETE_NODE] = "Delete Work Scheduler Node Cmd", 648 [IRDMA_OP_SET_UP_MAP] = "Set UP-UP Mapping Cmd", 649 [IRDMA_OP_GEN_AE] = "Generate AE Cmd", 650 [IRDMA_OP_QUERY_RDMA_FEATURES] = "RDMA Get Features Cmd", 651 [IRDMA_OP_ALLOC_LOCAL_MAC_ENTRY] = "Allocate Local MAC Entry Cmd", 652 [IRDMA_OP_ADD_LOCAL_MAC_ENTRY] = "Add Local MAC Entry Cmd", 653 [IRDMA_OP_DELETE_LOCAL_MAC_ENTRY] = "Delete Local MAC Entry Cmd", 654 [IRDMA_OP_CQ_MODIFY] = "CQ Modify Cmd", 655 }; 656 657 static const struct irdma_cqp_err_info irdma_noncrit_err_list[] = { 658 {0xffff, 0x8002, "Invalid State"}, 659 {0xffff, 0x8006, "Flush No Wqe Pending"}, 660 {0xffff, 0x8007, "Modify QP Bad Close"}, 661 {0xffff, 0x8009, "LLP Closed"}, 662 {0xffff, 0x800a, "Reset Not Sent"} 663 }; 664 665 /** 666 * irdma_cqp_crit_err - check if CQP error is critical 667 * @dev: pointer to dev structure 668 * @cqp_cmd: code for last CQP operation 669 * @maj_err_code: major error code 670 * @min_err_code: minot error code 671 */ 672 bool irdma_cqp_crit_err(struct irdma_sc_dev *dev, u8 cqp_cmd, 673 u16 maj_err_code, u16 min_err_code) 674 { 675 int i; 676 677 for (i = 0; i < ARRAY_SIZE(irdma_noncrit_err_list); ++i) { 678 if (maj_err_code == irdma_noncrit_err_list[i].maj && 679 min_err_code == irdma_noncrit_err_list[i].min) { 680 ibdev_dbg(to_ibdev(dev), 681 "CQP: [%s Error][%s] maj=0x%x min=0x%x\n", 682 irdma_noncrit_err_list[i].desc, 683 irdma_cqp_cmd_names[cqp_cmd], maj_err_code, 684 min_err_code); 685 return false; 686 } 687 } 688 return true; 689 } 690 691 /** 692 * irdma_handle_cqp_op - process cqp command 693 * @rf: RDMA PCI function 694 * @cqp_request: cqp request to process 695 */ 696 int irdma_handle_cqp_op(struct irdma_pci_f *rf, 697 struct irdma_cqp_request *cqp_request) 698 { 699 struct irdma_sc_dev *dev = &rf->sc_dev; 700 struct cqp_cmds_info *info = &cqp_request->info; 701 int status; 702 bool put_cqp_request = true; 703 704 if (rf->reset) 705 return -EBUSY; 706 707 irdma_get_cqp_request(cqp_request); 708 status = irdma_process_cqp_cmd(dev, info); 709 if (status) 710 goto err; 711 712 if (cqp_request->waiting) { 713 put_cqp_request = false; 714 status = irdma_wait_event(rf, cqp_request); 715 if (status) 716 goto err; 717 } 718 719 return 0; 720 721 err: 722 if (irdma_cqp_crit_err(dev, info->cqp_cmd, 723 cqp_request->compl_info.maj_err_code, 724 cqp_request->compl_info.min_err_code)) 725 ibdev_err(&rf->iwdev->ibdev, 726 "[%s Error][op_code=%d] status=%d waiting=%d completion_err=%d maj=0x%x min=0x%x\n", 727 irdma_cqp_cmd_names[info->cqp_cmd], info->cqp_cmd, status, cqp_request->waiting, 728 cqp_request->compl_info.error, cqp_request->compl_info.maj_err_code, 729 cqp_request->compl_info.min_err_code); 730 731 if (put_cqp_request) 732 irdma_put_cqp_request(&rf->cqp, cqp_request); 733 734 return status; 735 } 736 737 void irdma_qp_add_ref(struct ib_qp *ibqp) 738 { 739 struct irdma_qp *iwqp = (struct irdma_qp *)ibqp; 740 741 refcount_inc(&iwqp->refcnt); 742 } 743 744 void irdma_qp_rem_ref(struct ib_qp *ibqp) 745 { 746 struct irdma_qp *iwqp = to_iwqp(ibqp); 747 struct irdma_device *iwdev = iwqp->iwdev; 748 u32 qp_num; 749 unsigned long flags; 750 751 spin_lock_irqsave(&iwdev->rf->qptable_lock, flags); 752 if (!refcount_dec_and_test(&iwqp->refcnt)) { 753 spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags); 754 return; 755 } 756 757 qp_num = iwqp->ibqp.qp_num; 758 iwdev->rf->qp_table[qp_num] = NULL; 759 spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags); 760 complete(&iwqp->free_qp); 761 } 762 763 struct ib_device *to_ibdev(struct irdma_sc_dev *dev) 764 { 765 return &(container_of(dev, struct irdma_pci_f, sc_dev))->iwdev->ibdev; 766 } 767 768 /** 769 * irdma_get_qp - get qp address 770 * @device: iwarp device 771 * @qpn: qp number 772 */ 773 struct ib_qp *irdma_get_qp(struct ib_device *device, int qpn) 774 { 775 struct irdma_device *iwdev = to_iwdev(device); 776 777 if (qpn < IW_FIRST_QPN || qpn >= iwdev->rf->max_qp) 778 return NULL; 779 780 return &iwdev->rf->qp_table[qpn]->ibqp; 781 } 782 783 /** 784 * irdma_remove_cqp_head - return head entry and remove 785 * @dev: device 786 */ 787 void *irdma_remove_cqp_head(struct irdma_sc_dev *dev) 788 { 789 struct list_head *entry; 790 struct list_head *list = &dev->cqp_cmd_head; 791 792 if (list_empty(list)) 793 return NULL; 794 795 entry = list->next; 796 list_del(entry); 797 798 return entry; 799 } 800 801 /** 802 * irdma_cqp_sds_cmd - create cqp command for sd 803 * @dev: hardware control device structure 804 * @sdinfo: information for sd cqp 805 * 806 */ 807 int irdma_cqp_sds_cmd(struct irdma_sc_dev *dev, 808 struct irdma_update_sds_info *sdinfo) 809 { 810 struct irdma_cqp_request *cqp_request; 811 struct cqp_cmds_info *cqp_info; 812 struct irdma_pci_f *rf = dev_to_rf(dev); 813 int status; 814 815 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 816 if (!cqp_request) 817 return -ENOMEM; 818 819 cqp_info = &cqp_request->info; 820 memcpy(&cqp_info->in.u.update_pe_sds.info, sdinfo, 821 sizeof(cqp_info->in.u.update_pe_sds.info)); 822 cqp_info->cqp_cmd = IRDMA_OP_UPDATE_PE_SDS; 823 cqp_info->post_sq = 1; 824 cqp_info->in.u.update_pe_sds.dev = dev; 825 cqp_info->in.u.update_pe_sds.scratch = (uintptr_t)cqp_request; 826 827 status = irdma_handle_cqp_op(rf, cqp_request); 828 irdma_put_cqp_request(&rf->cqp, cqp_request); 829 830 return status; 831 } 832 833 /** 834 * irdma_cqp_qp_suspend_resume - cqp command for suspend/resume 835 * @qp: hardware control qp 836 * @op: suspend or resume 837 */ 838 int irdma_cqp_qp_suspend_resume(struct irdma_sc_qp *qp, u8 op) 839 { 840 struct irdma_sc_dev *dev = qp->dev; 841 struct irdma_cqp_request *cqp_request; 842 struct irdma_sc_cqp *cqp = dev->cqp; 843 struct cqp_cmds_info *cqp_info; 844 struct irdma_pci_f *rf = dev_to_rf(dev); 845 int status; 846 847 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false); 848 if (!cqp_request) 849 return -ENOMEM; 850 851 cqp_info = &cqp_request->info; 852 cqp_info->cqp_cmd = op; 853 cqp_info->in.u.suspend_resume.cqp = cqp; 854 cqp_info->in.u.suspend_resume.qp = qp; 855 cqp_info->in.u.suspend_resume.scratch = (uintptr_t)cqp_request; 856 857 status = irdma_handle_cqp_op(rf, cqp_request); 858 irdma_put_cqp_request(&rf->cqp, cqp_request); 859 860 return status; 861 } 862 863 /** 864 * irdma_term_modify_qp - modify qp for term message 865 * @qp: hardware control qp 866 * @next_state: qp's next state 867 * @term: terminate code 868 * @term_len: length 869 */ 870 void irdma_term_modify_qp(struct irdma_sc_qp *qp, u8 next_state, u8 term, 871 u8 term_len) 872 { 873 struct irdma_qp *iwqp; 874 875 iwqp = qp->qp_uk.back_qp; 876 irdma_next_iw_state(iwqp, next_state, 0, term, term_len); 877 }; 878 879 /** 880 * irdma_terminate_done - after terminate is completed 881 * @qp: hardware control qp 882 * @timeout_occurred: indicates if terminate timer expired 883 */ 884 void irdma_terminate_done(struct irdma_sc_qp *qp, int timeout_occurred) 885 { 886 struct irdma_qp *iwqp; 887 u8 hte = 0; 888 bool first_time; 889 unsigned long flags; 890 891 iwqp = qp->qp_uk.back_qp; 892 spin_lock_irqsave(&iwqp->lock, flags); 893 if (iwqp->hte_added) { 894 iwqp->hte_added = 0; 895 hte = 1; 896 } 897 first_time = !(qp->term_flags & IRDMA_TERM_DONE); 898 qp->term_flags |= IRDMA_TERM_DONE; 899 spin_unlock_irqrestore(&iwqp->lock, flags); 900 if (first_time) { 901 if (!timeout_occurred) 902 irdma_terminate_del_timer(qp); 903 904 irdma_next_iw_state(iwqp, IRDMA_QP_STATE_ERROR, hte, 0, 0); 905 irdma_cm_disconn(iwqp); 906 } 907 } 908 909 static void irdma_terminate_timeout(struct timer_list *t) 910 { 911 struct irdma_qp *iwqp = from_timer(iwqp, t, terminate_timer); 912 struct irdma_sc_qp *qp = &iwqp->sc_qp; 913 914 irdma_terminate_done(qp, 1); 915 irdma_qp_rem_ref(&iwqp->ibqp); 916 } 917 918 /** 919 * irdma_terminate_start_timer - start terminate timeout 920 * @qp: hardware control qp 921 */ 922 void irdma_terminate_start_timer(struct irdma_sc_qp *qp) 923 { 924 struct irdma_qp *iwqp; 925 926 iwqp = qp->qp_uk.back_qp; 927 irdma_qp_add_ref(&iwqp->ibqp); 928 timer_setup(&iwqp->terminate_timer, irdma_terminate_timeout, 0); 929 iwqp->terminate_timer.expires = jiffies + HZ; 930 931 add_timer(&iwqp->terminate_timer); 932 } 933 934 /** 935 * irdma_terminate_del_timer - delete terminate timeout 936 * @qp: hardware control qp 937 */ 938 void irdma_terminate_del_timer(struct irdma_sc_qp *qp) 939 { 940 struct irdma_qp *iwqp; 941 int ret; 942 943 iwqp = qp->qp_uk.back_qp; 944 ret = del_timer(&iwqp->terminate_timer); 945 if (ret) 946 irdma_qp_rem_ref(&iwqp->ibqp); 947 } 948 949 /** 950 * irdma_cqp_query_fpm_val_cmd - send cqp command for fpm 951 * @dev: function device struct 952 * @val_mem: buffer for fpm 953 * @hmc_fn_id: function id for fpm 954 */ 955 int irdma_cqp_query_fpm_val_cmd(struct irdma_sc_dev *dev, 956 struct irdma_dma_mem *val_mem, u8 hmc_fn_id) 957 { 958 struct irdma_cqp_request *cqp_request; 959 struct cqp_cmds_info *cqp_info; 960 struct irdma_pci_f *rf = dev_to_rf(dev); 961 int status; 962 963 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 964 if (!cqp_request) 965 return -ENOMEM; 966 967 cqp_info = &cqp_request->info; 968 cqp_request->param = NULL; 969 cqp_info->in.u.query_fpm_val.cqp = dev->cqp; 970 cqp_info->in.u.query_fpm_val.fpm_val_pa = val_mem->pa; 971 cqp_info->in.u.query_fpm_val.fpm_val_va = val_mem->va; 972 cqp_info->in.u.query_fpm_val.hmc_fn_id = hmc_fn_id; 973 cqp_info->cqp_cmd = IRDMA_OP_QUERY_FPM_VAL; 974 cqp_info->post_sq = 1; 975 cqp_info->in.u.query_fpm_val.scratch = (uintptr_t)cqp_request; 976 977 status = irdma_handle_cqp_op(rf, cqp_request); 978 irdma_put_cqp_request(&rf->cqp, cqp_request); 979 980 return status; 981 } 982 983 /** 984 * irdma_cqp_commit_fpm_val_cmd - commit fpm values in hw 985 * @dev: hardware control device structure 986 * @val_mem: buffer with fpm values 987 * @hmc_fn_id: function id for fpm 988 */ 989 int irdma_cqp_commit_fpm_val_cmd(struct irdma_sc_dev *dev, 990 struct irdma_dma_mem *val_mem, u8 hmc_fn_id) 991 { 992 struct irdma_cqp_request *cqp_request; 993 struct cqp_cmds_info *cqp_info; 994 struct irdma_pci_f *rf = dev_to_rf(dev); 995 int status; 996 997 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 998 if (!cqp_request) 999 return -ENOMEM; 1000 1001 cqp_info = &cqp_request->info; 1002 cqp_request->param = NULL; 1003 cqp_info->in.u.commit_fpm_val.cqp = dev->cqp; 1004 cqp_info->in.u.commit_fpm_val.fpm_val_pa = val_mem->pa; 1005 cqp_info->in.u.commit_fpm_val.fpm_val_va = val_mem->va; 1006 cqp_info->in.u.commit_fpm_val.hmc_fn_id = hmc_fn_id; 1007 cqp_info->cqp_cmd = IRDMA_OP_COMMIT_FPM_VAL; 1008 cqp_info->post_sq = 1; 1009 cqp_info->in.u.commit_fpm_val.scratch = (uintptr_t)cqp_request; 1010 1011 status = irdma_handle_cqp_op(rf, cqp_request); 1012 irdma_put_cqp_request(&rf->cqp, cqp_request); 1013 1014 return status; 1015 } 1016 1017 /** 1018 * irdma_cqp_cq_create_cmd - create a cq for the cqp 1019 * @dev: device pointer 1020 * @cq: pointer to created cq 1021 */ 1022 int irdma_cqp_cq_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq) 1023 { 1024 struct irdma_pci_f *rf = dev_to_rf(dev); 1025 struct irdma_cqp *iwcqp = &rf->cqp; 1026 struct irdma_cqp_request *cqp_request; 1027 struct cqp_cmds_info *cqp_info; 1028 int status; 1029 1030 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1031 if (!cqp_request) 1032 return -ENOMEM; 1033 1034 cqp_info = &cqp_request->info; 1035 cqp_info->cqp_cmd = IRDMA_OP_CQ_CREATE; 1036 cqp_info->post_sq = 1; 1037 cqp_info->in.u.cq_create.cq = cq; 1038 cqp_info->in.u.cq_create.scratch = (uintptr_t)cqp_request; 1039 1040 status = irdma_handle_cqp_op(rf, cqp_request); 1041 irdma_put_cqp_request(iwcqp, cqp_request); 1042 1043 return status; 1044 } 1045 1046 /** 1047 * irdma_cqp_qp_create_cmd - create a qp for the cqp 1048 * @dev: device pointer 1049 * @qp: pointer to created qp 1050 */ 1051 int irdma_cqp_qp_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1052 { 1053 struct irdma_pci_f *rf = dev_to_rf(dev); 1054 struct irdma_cqp *iwcqp = &rf->cqp; 1055 struct irdma_cqp_request *cqp_request; 1056 struct cqp_cmds_info *cqp_info; 1057 struct irdma_create_qp_info *qp_info; 1058 int status; 1059 1060 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1061 if (!cqp_request) 1062 return -ENOMEM; 1063 1064 cqp_info = &cqp_request->info; 1065 qp_info = &cqp_request->info.in.u.qp_create.info; 1066 memset(qp_info, 0, sizeof(*qp_info)); 1067 qp_info->cq_num_valid = true; 1068 qp_info->next_iwarp_state = IRDMA_QP_STATE_RTS; 1069 cqp_info->cqp_cmd = IRDMA_OP_QP_CREATE; 1070 cqp_info->post_sq = 1; 1071 cqp_info->in.u.qp_create.qp = qp; 1072 cqp_info->in.u.qp_create.scratch = (uintptr_t)cqp_request; 1073 1074 status = irdma_handle_cqp_op(rf, cqp_request); 1075 irdma_put_cqp_request(iwcqp, cqp_request); 1076 1077 return status; 1078 } 1079 1080 /** 1081 * irdma_dealloc_push_page - free a push page for qp 1082 * @rf: RDMA PCI function 1083 * @qp: hardware control qp 1084 */ 1085 static void irdma_dealloc_push_page(struct irdma_pci_f *rf, 1086 struct irdma_sc_qp *qp) 1087 { 1088 struct irdma_cqp_request *cqp_request; 1089 struct cqp_cmds_info *cqp_info; 1090 int status; 1091 1092 if (qp->push_idx == IRDMA_INVALID_PUSH_PAGE_INDEX) 1093 return; 1094 1095 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false); 1096 if (!cqp_request) 1097 return; 1098 1099 cqp_info = &cqp_request->info; 1100 cqp_info->cqp_cmd = IRDMA_OP_MANAGE_PUSH_PAGE; 1101 cqp_info->post_sq = 1; 1102 cqp_info->in.u.manage_push_page.info.push_idx = qp->push_idx; 1103 cqp_info->in.u.manage_push_page.info.qs_handle = qp->qs_handle; 1104 cqp_info->in.u.manage_push_page.info.free_page = 1; 1105 cqp_info->in.u.manage_push_page.info.push_page_type = 0; 1106 cqp_info->in.u.manage_push_page.cqp = &rf->cqp.sc_cqp; 1107 cqp_info->in.u.manage_push_page.scratch = (uintptr_t)cqp_request; 1108 status = irdma_handle_cqp_op(rf, cqp_request); 1109 if (!status) 1110 qp->push_idx = IRDMA_INVALID_PUSH_PAGE_INDEX; 1111 irdma_put_cqp_request(&rf->cqp, cqp_request); 1112 } 1113 1114 /** 1115 * irdma_free_qp_rsrc - free up memory resources for qp 1116 * @iwqp: qp ptr (user or kernel) 1117 */ 1118 void irdma_free_qp_rsrc(struct irdma_qp *iwqp) 1119 { 1120 struct irdma_device *iwdev = iwqp->iwdev; 1121 struct irdma_pci_f *rf = iwdev->rf; 1122 u32 qp_num = iwqp->ibqp.qp_num; 1123 1124 irdma_ieq_cleanup_qp(iwdev->vsi.ieq, &iwqp->sc_qp); 1125 irdma_dealloc_push_page(rf, &iwqp->sc_qp); 1126 if (iwqp->sc_qp.vsi) { 1127 irdma_qp_rem_qos(&iwqp->sc_qp); 1128 iwqp->sc_qp.dev->ws_remove(iwqp->sc_qp.vsi, 1129 iwqp->sc_qp.user_pri); 1130 } 1131 1132 if (qp_num > 2) 1133 irdma_free_rsrc(rf, rf->allocated_qps, qp_num); 1134 dma_free_coherent(rf->sc_dev.hw->device, iwqp->q2_ctx_mem.size, 1135 iwqp->q2_ctx_mem.va, iwqp->q2_ctx_mem.pa); 1136 iwqp->q2_ctx_mem.va = NULL; 1137 dma_free_coherent(rf->sc_dev.hw->device, iwqp->kqp.dma_mem.size, 1138 iwqp->kqp.dma_mem.va, iwqp->kqp.dma_mem.pa); 1139 iwqp->kqp.dma_mem.va = NULL; 1140 kfree(iwqp->kqp.sq_wrid_mem); 1141 kfree(iwqp->kqp.rq_wrid_mem); 1142 } 1143 1144 /** 1145 * irdma_cq_wq_destroy - send cq destroy cqp 1146 * @rf: RDMA PCI function 1147 * @cq: hardware control cq 1148 */ 1149 void irdma_cq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_cq *cq) 1150 { 1151 struct irdma_cqp_request *cqp_request; 1152 struct cqp_cmds_info *cqp_info; 1153 1154 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1155 if (!cqp_request) 1156 return; 1157 1158 cqp_info = &cqp_request->info; 1159 cqp_info->cqp_cmd = IRDMA_OP_CQ_DESTROY; 1160 cqp_info->post_sq = 1; 1161 cqp_info->in.u.cq_destroy.cq = cq; 1162 cqp_info->in.u.cq_destroy.scratch = (uintptr_t)cqp_request; 1163 1164 irdma_handle_cqp_op(rf, cqp_request); 1165 irdma_put_cqp_request(&rf->cqp, cqp_request); 1166 } 1167 1168 /** 1169 * irdma_hw_modify_qp_callback - handle state for modifyQPs that don't wait 1170 * @cqp_request: modify QP completion 1171 */ 1172 static void irdma_hw_modify_qp_callback(struct irdma_cqp_request *cqp_request) 1173 { 1174 struct cqp_cmds_info *cqp_info; 1175 struct irdma_qp *iwqp; 1176 1177 cqp_info = &cqp_request->info; 1178 iwqp = cqp_info->in.u.qp_modify.qp->qp_uk.back_qp; 1179 atomic_dec(&iwqp->hw_mod_qp_pend); 1180 wake_up(&iwqp->mod_qp_waitq); 1181 } 1182 1183 /** 1184 * irdma_hw_modify_qp - setup cqp for modify qp 1185 * @iwdev: RDMA device 1186 * @iwqp: qp ptr (user or kernel) 1187 * @info: info for modify qp 1188 * @wait: flag to wait or not for modify qp completion 1189 */ 1190 int irdma_hw_modify_qp(struct irdma_device *iwdev, struct irdma_qp *iwqp, 1191 struct irdma_modify_qp_info *info, bool wait) 1192 { 1193 int status; 1194 struct irdma_pci_f *rf = iwdev->rf; 1195 struct irdma_cqp_request *cqp_request; 1196 struct cqp_cmds_info *cqp_info; 1197 struct irdma_modify_qp_info *m_info; 1198 1199 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait); 1200 if (!cqp_request) 1201 return -ENOMEM; 1202 1203 if (!wait) { 1204 cqp_request->callback_fcn = irdma_hw_modify_qp_callback; 1205 atomic_inc(&iwqp->hw_mod_qp_pend); 1206 } 1207 cqp_info = &cqp_request->info; 1208 m_info = &cqp_info->in.u.qp_modify.info; 1209 memcpy(m_info, info, sizeof(*m_info)); 1210 cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY; 1211 cqp_info->post_sq = 1; 1212 cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp; 1213 cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request; 1214 status = irdma_handle_cqp_op(rf, cqp_request); 1215 irdma_put_cqp_request(&rf->cqp, cqp_request); 1216 if (status) { 1217 if (rdma_protocol_roce(&iwdev->ibdev, 1)) 1218 return status; 1219 1220 switch (m_info->next_iwarp_state) { 1221 struct irdma_gen_ae_info ae_info; 1222 1223 case IRDMA_QP_STATE_RTS: 1224 case IRDMA_QP_STATE_IDLE: 1225 case IRDMA_QP_STATE_TERMINATE: 1226 case IRDMA_QP_STATE_CLOSING: 1227 if (info->curr_iwarp_state == IRDMA_QP_STATE_IDLE) 1228 irdma_send_reset(iwqp->cm_node); 1229 else 1230 iwqp->sc_qp.term_flags = IRDMA_TERM_DONE; 1231 if (!wait) { 1232 ae_info.ae_code = IRDMA_AE_BAD_CLOSE; 1233 ae_info.ae_src = 0; 1234 irdma_gen_ae(rf, &iwqp->sc_qp, &ae_info, false); 1235 } else { 1236 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, 1237 wait); 1238 if (!cqp_request) 1239 return -ENOMEM; 1240 1241 cqp_info = &cqp_request->info; 1242 m_info = &cqp_info->in.u.qp_modify.info; 1243 memcpy(m_info, info, sizeof(*m_info)); 1244 cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY; 1245 cqp_info->post_sq = 1; 1246 cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp; 1247 cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request; 1248 m_info->next_iwarp_state = IRDMA_QP_STATE_ERROR; 1249 m_info->reset_tcp_conn = true; 1250 irdma_handle_cqp_op(rf, cqp_request); 1251 irdma_put_cqp_request(&rf->cqp, cqp_request); 1252 } 1253 break; 1254 case IRDMA_QP_STATE_ERROR: 1255 default: 1256 break; 1257 } 1258 } 1259 1260 return status; 1261 } 1262 1263 /** 1264 * irdma_cqp_cq_destroy_cmd - destroy the cqp cq 1265 * @dev: device pointer 1266 * @cq: pointer to cq 1267 */ 1268 void irdma_cqp_cq_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq) 1269 { 1270 struct irdma_pci_f *rf = dev_to_rf(dev); 1271 1272 irdma_cq_wq_destroy(rf, cq); 1273 } 1274 1275 /** 1276 * irdma_cqp_qp_destroy_cmd - destroy the cqp 1277 * @dev: device pointer 1278 * @qp: pointer to qp 1279 */ 1280 int irdma_cqp_qp_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1281 { 1282 struct irdma_pci_f *rf = dev_to_rf(dev); 1283 struct irdma_cqp *iwcqp = &rf->cqp; 1284 struct irdma_cqp_request *cqp_request; 1285 struct cqp_cmds_info *cqp_info; 1286 int status; 1287 1288 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1289 if (!cqp_request) 1290 return -ENOMEM; 1291 1292 cqp_info = &cqp_request->info; 1293 memset(cqp_info, 0, sizeof(*cqp_info)); 1294 cqp_info->cqp_cmd = IRDMA_OP_QP_DESTROY; 1295 cqp_info->post_sq = 1; 1296 cqp_info->in.u.qp_destroy.qp = qp; 1297 cqp_info->in.u.qp_destroy.scratch = (uintptr_t)cqp_request; 1298 cqp_info->in.u.qp_destroy.remove_hash_idx = true; 1299 1300 status = irdma_handle_cqp_op(rf, cqp_request); 1301 irdma_put_cqp_request(&rf->cqp, cqp_request); 1302 1303 return status; 1304 } 1305 1306 /** 1307 * irdma_ieq_mpa_crc_ae - generate AE for crc error 1308 * @dev: hardware control device structure 1309 * @qp: hardware control qp 1310 */ 1311 void irdma_ieq_mpa_crc_ae(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1312 { 1313 struct irdma_gen_ae_info info = {}; 1314 struct irdma_pci_f *rf = dev_to_rf(dev); 1315 1316 ibdev_dbg(&rf->iwdev->ibdev, "AEQ: Generate MPA CRC AE\n"); 1317 info.ae_code = IRDMA_AE_LLP_RECEIVED_MPA_CRC_ERROR; 1318 info.ae_src = IRDMA_AE_SOURCE_RQ; 1319 irdma_gen_ae(rf, qp, &info, false); 1320 } 1321 1322 /** 1323 * irdma_init_hash_desc - initialize hash for crc calculation 1324 * @desc: cryption type 1325 */ 1326 int irdma_init_hash_desc(struct shash_desc **desc) 1327 { 1328 struct crypto_shash *tfm; 1329 struct shash_desc *tdesc; 1330 1331 tfm = crypto_alloc_shash("crc32c", 0, 0); 1332 if (IS_ERR(tfm)) 1333 return -EINVAL; 1334 1335 tdesc = kzalloc(sizeof(*tdesc) + crypto_shash_descsize(tfm), 1336 GFP_KERNEL); 1337 if (!tdesc) { 1338 crypto_free_shash(tfm); 1339 return -EINVAL; 1340 } 1341 1342 tdesc->tfm = tfm; 1343 *desc = tdesc; 1344 1345 return 0; 1346 } 1347 1348 /** 1349 * irdma_free_hash_desc - free hash desc 1350 * @desc: to be freed 1351 */ 1352 void irdma_free_hash_desc(struct shash_desc *desc) 1353 { 1354 if (desc) { 1355 crypto_free_shash(desc->tfm); 1356 kfree(desc); 1357 } 1358 } 1359 1360 /** 1361 * irdma_ieq_check_mpacrc - check if mpa crc is OK 1362 * @desc: desc for hash 1363 * @addr: address of buffer for crc 1364 * @len: length of buffer 1365 * @val: value to be compared 1366 */ 1367 int irdma_ieq_check_mpacrc(struct shash_desc *desc, void *addr, u32 len, 1368 u32 val) 1369 { 1370 u32 crc = 0; 1371 int ret; 1372 int ret_code = 0; 1373 1374 crypto_shash_init(desc); 1375 ret = crypto_shash_update(desc, addr, len); 1376 if (!ret) 1377 crypto_shash_final(desc, (u8 *)&crc); 1378 if (crc != val) 1379 ret_code = -EINVAL; 1380 1381 return ret_code; 1382 } 1383 1384 /** 1385 * irdma_ieq_get_qp - get qp based on quad in puda buffer 1386 * @dev: hardware control device structure 1387 * @buf: receive puda buffer on exception q 1388 */ 1389 struct irdma_sc_qp *irdma_ieq_get_qp(struct irdma_sc_dev *dev, 1390 struct irdma_puda_buf *buf) 1391 { 1392 struct irdma_qp *iwqp; 1393 struct irdma_cm_node *cm_node; 1394 struct irdma_device *iwdev = buf->vsi->back_vsi; 1395 u32 loc_addr[4] = {}; 1396 u32 rem_addr[4] = {}; 1397 u16 loc_port, rem_port; 1398 struct ipv6hdr *ip6h; 1399 struct iphdr *iph = (struct iphdr *)buf->iph; 1400 struct tcphdr *tcph = (struct tcphdr *)buf->tcph; 1401 1402 if (iph->version == 4) { 1403 loc_addr[0] = ntohl(iph->daddr); 1404 rem_addr[0] = ntohl(iph->saddr); 1405 } else { 1406 ip6h = (struct ipv6hdr *)buf->iph; 1407 irdma_copy_ip_ntohl(loc_addr, ip6h->daddr.in6_u.u6_addr32); 1408 irdma_copy_ip_ntohl(rem_addr, ip6h->saddr.in6_u.u6_addr32); 1409 } 1410 loc_port = ntohs(tcph->dest); 1411 rem_port = ntohs(tcph->source); 1412 cm_node = irdma_find_node(&iwdev->cm_core, rem_port, rem_addr, loc_port, 1413 loc_addr, buf->vlan_valid ? buf->vlan_id : 0xFFFF); 1414 if (!cm_node) 1415 return NULL; 1416 1417 iwqp = cm_node->iwqp; 1418 irdma_rem_ref_cm_node(cm_node); 1419 1420 return &iwqp->sc_qp; 1421 } 1422 1423 /** 1424 * irdma_send_ieq_ack - ACKs for duplicate or OOO partials FPDUs 1425 * @qp: qp ptr 1426 */ 1427 void irdma_send_ieq_ack(struct irdma_sc_qp *qp) 1428 { 1429 struct irdma_cm_node *cm_node = ((struct irdma_qp *)qp->qp_uk.back_qp)->cm_node; 1430 struct irdma_puda_buf *buf = qp->pfpdu.lastrcv_buf; 1431 struct tcphdr *tcph = (struct tcphdr *)buf->tcph; 1432 1433 cm_node->tcp_cntxt.rcv_nxt = qp->pfpdu.nextseqnum; 1434 cm_node->tcp_cntxt.loc_seq_num = ntohl(tcph->ack_seq); 1435 1436 irdma_send_ack(cm_node); 1437 } 1438 1439 /** 1440 * irdma_puda_ieq_get_ah_info - get AH info from IEQ buffer 1441 * @qp: qp pointer 1442 * @ah_info: AH info pointer 1443 */ 1444 void irdma_puda_ieq_get_ah_info(struct irdma_sc_qp *qp, 1445 struct irdma_ah_info *ah_info) 1446 { 1447 struct irdma_puda_buf *buf = qp->pfpdu.ah_buf; 1448 struct iphdr *iph; 1449 struct ipv6hdr *ip6h; 1450 1451 memset(ah_info, 0, sizeof(*ah_info)); 1452 ah_info->do_lpbk = true; 1453 ah_info->vlan_tag = buf->vlan_id; 1454 ah_info->insert_vlan_tag = buf->vlan_valid; 1455 ah_info->ipv4_valid = buf->ipv4; 1456 ah_info->vsi = qp->vsi; 1457 1458 if (buf->smac_valid) 1459 ether_addr_copy(ah_info->mac_addr, buf->smac); 1460 1461 if (buf->ipv4) { 1462 ah_info->ipv4_valid = true; 1463 iph = (struct iphdr *)buf->iph; 1464 ah_info->hop_ttl = iph->ttl; 1465 ah_info->tc_tos = iph->tos; 1466 ah_info->dest_ip_addr[0] = ntohl(iph->daddr); 1467 ah_info->src_ip_addr[0] = ntohl(iph->saddr); 1468 } else { 1469 ip6h = (struct ipv6hdr *)buf->iph; 1470 ah_info->hop_ttl = ip6h->hop_limit; 1471 ah_info->tc_tos = ip6h->priority; 1472 irdma_copy_ip_ntohl(ah_info->dest_ip_addr, 1473 ip6h->daddr.in6_u.u6_addr32); 1474 irdma_copy_ip_ntohl(ah_info->src_ip_addr, 1475 ip6h->saddr.in6_u.u6_addr32); 1476 } 1477 1478 ah_info->dst_arpindex = irdma_arp_table(dev_to_rf(qp->dev), 1479 ah_info->dest_ip_addr, 1480 ah_info->ipv4_valid, 1481 NULL, IRDMA_ARP_RESOLVE); 1482 } 1483 1484 /** 1485 * irdma_gen1_ieq_update_tcpip_info - update tcpip in the buffer 1486 * @buf: puda to update 1487 * @len: length of buffer 1488 * @seqnum: seq number for tcp 1489 */ 1490 static void irdma_gen1_ieq_update_tcpip_info(struct irdma_puda_buf *buf, 1491 u16 len, u32 seqnum) 1492 { 1493 struct tcphdr *tcph; 1494 struct iphdr *iph; 1495 u16 iphlen; 1496 u16 pktsize; 1497 u8 *addr = buf->mem.va; 1498 1499 iphlen = (buf->ipv4) ? 20 : 40; 1500 iph = (struct iphdr *)(addr + buf->maclen); 1501 tcph = (struct tcphdr *)(addr + buf->maclen + iphlen); 1502 pktsize = len + buf->tcphlen + iphlen; 1503 iph->tot_len = htons(pktsize); 1504 tcph->seq = htonl(seqnum); 1505 } 1506 1507 /** 1508 * irdma_ieq_update_tcpip_info - update tcpip in the buffer 1509 * @buf: puda to update 1510 * @len: length of buffer 1511 * @seqnum: seq number for tcp 1512 */ 1513 void irdma_ieq_update_tcpip_info(struct irdma_puda_buf *buf, u16 len, 1514 u32 seqnum) 1515 { 1516 struct tcphdr *tcph; 1517 u8 *addr; 1518 1519 if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1) 1520 return irdma_gen1_ieq_update_tcpip_info(buf, len, seqnum); 1521 1522 addr = buf->mem.va; 1523 tcph = (struct tcphdr *)addr; 1524 tcph->seq = htonl(seqnum); 1525 } 1526 1527 /** 1528 * irdma_gen1_puda_get_tcpip_info - get tcpip info from puda 1529 * buffer 1530 * @info: to get information 1531 * @buf: puda buffer 1532 */ 1533 static int irdma_gen1_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info, 1534 struct irdma_puda_buf *buf) 1535 { 1536 struct iphdr *iph; 1537 struct ipv6hdr *ip6h; 1538 struct tcphdr *tcph; 1539 u16 iphlen; 1540 u16 pkt_len; 1541 u8 *mem = buf->mem.va; 1542 struct ethhdr *ethh = buf->mem.va; 1543 1544 if (ethh->h_proto == htons(0x8100)) { 1545 info->vlan_valid = true; 1546 buf->vlan_id = ntohs(((struct vlan_ethhdr *)ethh)->h_vlan_TCI) & 1547 VLAN_VID_MASK; 1548 } 1549 1550 buf->maclen = (info->vlan_valid) ? 18 : 14; 1551 iphlen = (info->l3proto) ? 40 : 20; 1552 buf->ipv4 = (info->l3proto) ? false : true; 1553 buf->iph = mem + buf->maclen; 1554 iph = (struct iphdr *)buf->iph; 1555 buf->tcph = buf->iph + iphlen; 1556 tcph = (struct tcphdr *)buf->tcph; 1557 1558 if (buf->ipv4) { 1559 pkt_len = ntohs(iph->tot_len); 1560 } else { 1561 ip6h = (struct ipv6hdr *)buf->iph; 1562 pkt_len = ntohs(ip6h->payload_len) + iphlen; 1563 } 1564 1565 buf->totallen = pkt_len + buf->maclen; 1566 1567 if (info->payload_len < buf->totallen) { 1568 ibdev_dbg(to_ibdev(buf->vsi->dev), 1569 "ERR: payload_len = 0x%x totallen expected0x%x\n", 1570 info->payload_len, buf->totallen); 1571 return -EINVAL; 1572 } 1573 1574 buf->tcphlen = tcph->doff << 2; 1575 buf->datalen = pkt_len - iphlen - buf->tcphlen; 1576 buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL; 1577 buf->hdrlen = buf->maclen + iphlen + buf->tcphlen; 1578 buf->seqnum = ntohl(tcph->seq); 1579 1580 return 0; 1581 } 1582 1583 /** 1584 * irdma_puda_get_tcpip_info - get tcpip info from puda buffer 1585 * @info: to get information 1586 * @buf: puda buffer 1587 */ 1588 int irdma_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info, 1589 struct irdma_puda_buf *buf) 1590 { 1591 struct tcphdr *tcph; 1592 u32 pkt_len; 1593 u8 *mem; 1594 1595 if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1) 1596 return irdma_gen1_puda_get_tcpip_info(info, buf); 1597 1598 mem = buf->mem.va; 1599 buf->vlan_valid = info->vlan_valid; 1600 if (info->vlan_valid) 1601 buf->vlan_id = info->vlan; 1602 1603 buf->ipv4 = info->ipv4; 1604 if (buf->ipv4) 1605 buf->iph = mem + IRDMA_IPV4_PAD; 1606 else 1607 buf->iph = mem; 1608 1609 buf->tcph = mem + IRDMA_TCP_OFFSET; 1610 tcph = (struct tcphdr *)buf->tcph; 1611 pkt_len = info->payload_len; 1612 buf->totallen = pkt_len; 1613 buf->tcphlen = tcph->doff << 2; 1614 buf->datalen = pkt_len - IRDMA_TCP_OFFSET - buf->tcphlen; 1615 buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL; 1616 buf->hdrlen = IRDMA_TCP_OFFSET + buf->tcphlen; 1617 buf->seqnum = ntohl(tcph->seq); 1618 1619 if (info->smac_valid) { 1620 ether_addr_copy(buf->smac, info->smac); 1621 buf->smac_valid = true; 1622 } 1623 1624 return 0; 1625 } 1626 1627 /** 1628 * irdma_hw_stats_timeout - Stats timer-handler which updates all HW stats 1629 * @t: timer_list pointer 1630 */ 1631 static void irdma_hw_stats_timeout(struct timer_list *t) 1632 { 1633 struct irdma_vsi_pestat *pf_devstat = 1634 from_timer(pf_devstat, t, stats_timer); 1635 struct irdma_sc_vsi *sc_vsi = pf_devstat->vsi; 1636 1637 if (sc_vsi->dev->hw_attrs.uk_attrs.hw_rev >= IRDMA_GEN_2) 1638 irdma_cqp_gather_stats_cmd(sc_vsi->dev, sc_vsi->pestat, false); 1639 else 1640 irdma_cqp_gather_stats_gen1(sc_vsi->dev, sc_vsi->pestat); 1641 1642 mod_timer(&pf_devstat->stats_timer, 1643 jiffies + msecs_to_jiffies(STATS_TIMER_DELAY)); 1644 } 1645 1646 /** 1647 * irdma_hw_stats_start_timer - Start periodic stats timer 1648 * @vsi: vsi structure pointer 1649 */ 1650 void irdma_hw_stats_start_timer(struct irdma_sc_vsi *vsi) 1651 { 1652 struct irdma_vsi_pestat *devstat = vsi->pestat; 1653 1654 timer_setup(&devstat->stats_timer, irdma_hw_stats_timeout, 0); 1655 mod_timer(&devstat->stats_timer, 1656 jiffies + msecs_to_jiffies(STATS_TIMER_DELAY)); 1657 } 1658 1659 /** 1660 * irdma_hw_stats_stop_timer - Delete periodic stats timer 1661 * @vsi: pointer to vsi structure 1662 */ 1663 void irdma_hw_stats_stop_timer(struct irdma_sc_vsi *vsi) 1664 { 1665 struct irdma_vsi_pestat *devstat = vsi->pestat; 1666 1667 del_timer_sync(&devstat->stats_timer); 1668 } 1669 1670 /** 1671 * irdma_process_stats - Checking for wrap and update stats 1672 * @pestat: stats structure pointer 1673 */ 1674 static inline void irdma_process_stats(struct irdma_vsi_pestat *pestat) 1675 { 1676 sc_vsi_update_stats(pestat->vsi); 1677 } 1678 1679 /** 1680 * irdma_cqp_gather_stats_gen1 - Gather stats 1681 * @dev: pointer to device structure 1682 * @pestat: statistics structure 1683 */ 1684 void irdma_cqp_gather_stats_gen1(struct irdma_sc_dev *dev, 1685 struct irdma_vsi_pestat *pestat) 1686 { 1687 struct irdma_gather_stats *gather_stats = 1688 pestat->gather_info.gather_stats_va; 1689 const struct irdma_hw_stat_map *map = dev->hw_stats_map; 1690 u16 max_stats_idx = dev->hw_attrs.max_stat_idx; 1691 u32 stats_inst_offset_32; 1692 u32 stats_inst_offset_64; 1693 u64 new_val; 1694 u16 i; 1695 1696 stats_inst_offset_32 = (pestat->gather_info.use_stats_inst) ? 1697 pestat->gather_info.stats_inst_index : 1698 pestat->hw->hmc.hmc_fn_id; 1699 stats_inst_offset_32 *= 4; 1700 stats_inst_offset_64 = stats_inst_offset_32 * 2; 1701 1702 for (i = 0; i < max_stats_idx; i++) { 1703 if (map[i].bitmask <= IRDMA_MAX_STATS_32) 1704 new_val = rd32(dev->hw, 1705 dev->hw_stats_regs[i] + stats_inst_offset_32); 1706 else 1707 new_val = rd64(dev->hw, 1708 dev->hw_stats_regs[i] + stats_inst_offset_64); 1709 gather_stats->val[map[i].byteoff / sizeof(u64)] = new_val; 1710 } 1711 1712 irdma_process_stats(pestat); 1713 } 1714 1715 /** 1716 * irdma_process_cqp_stats - Checking for wrap and update stats 1717 * @cqp_request: cqp_request structure pointer 1718 */ 1719 static void irdma_process_cqp_stats(struct irdma_cqp_request *cqp_request) 1720 { 1721 struct irdma_vsi_pestat *pestat = cqp_request->param; 1722 1723 irdma_process_stats(pestat); 1724 } 1725 1726 /** 1727 * irdma_cqp_gather_stats_cmd - Gather stats 1728 * @dev: pointer to device structure 1729 * @pestat: pointer to stats info 1730 * @wait: flag to wait or not wait for stats 1731 */ 1732 int irdma_cqp_gather_stats_cmd(struct irdma_sc_dev *dev, 1733 struct irdma_vsi_pestat *pestat, bool wait) 1734 1735 { 1736 struct irdma_pci_f *rf = dev_to_rf(dev); 1737 struct irdma_cqp *iwcqp = &rf->cqp; 1738 struct irdma_cqp_request *cqp_request; 1739 struct cqp_cmds_info *cqp_info; 1740 int status; 1741 1742 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait); 1743 if (!cqp_request) 1744 return -ENOMEM; 1745 1746 cqp_info = &cqp_request->info; 1747 memset(cqp_info, 0, sizeof(*cqp_info)); 1748 cqp_info->cqp_cmd = IRDMA_OP_STATS_GATHER; 1749 cqp_info->post_sq = 1; 1750 cqp_info->in.u.stats_gather.info = pestat->gather_info; 1751 cqp_info->in.u.stats_gather.scratch = (uintptr_t)cqp_request; 1752 cqp_info->in.u.stats_gather.cqp = &rf->cqp.sc_cqp; 1753 cqp_request->param = pestat; 1754 if (!wait) 1755 cqp_request->callback_fcn = irdma_process_cqp_stats; 1756 status = irdma_handle_cqp_op(rf, cqp_request); 1757 if (wait) 1758 irdma_process_stats(pestat); 1759 irdma_put_cqp_request(&rf->cqp, cqp_request); 1760 1761 return status; 1762 } 1763 1764 /** 1765 * irdma_cqp_stats_inst_cmd - Allocate/free stats instance 1766 * @vsi: pointer to vsi structure 1767 * @cmd: command to allocate or free 1768 * @stats_info: pointer to allocate stats info 1769 */ 1770 int irdma_cqp_stats_inst_cmd(struct irdma_sc_vsi *vsi, u8 cmd, 1771 struct irdma_stats_inst_info *stats_info) 1772 { 1773 struct irdma_pci_f *rf = dev_to_rf(vsi->dev); 1774 struct irdma_cqp *iwcqp = &rf->cqp; 1775 struct irdma_cqp_request *cqp_request; 1776 struct cqp_cmds_info *cqp_info; 1777 int status; 1778 bool wait = false; 1779 1780 if (cmd == IRDMA_OP_STATS_ALLOCATE) 1781 wait = true; 1782 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait); 1783 if (!cqp_request) 1784 return -ENOMEM; 1785 1786 cqp_info = &cqp_request->info; 1787 memset(cqp_info, 0, sizeof(*cqp_info)); 1788 cqp_info->cqp_cmd = cmd; 1789 cqp_info->post_sq = 1; 1790 cqp_info->in.u.stats_manage.info = *stats_info; 1791 cqp_info->in.u.stats_manage.scratch = (uintptr_t)cqp_request; 1792 cqp_info->in.u.stats_manage.cqp = &rf->cqp.sc_cqp; 1793 status = irdma_handle_cqp_op(rf, cqp_request); 1794 if (wait) 1795 stats_info->stats_idx = cqp_request->compl_info.op_ret_val; 1796 irdma_put_cqp_request(iwcqp, cqp_request); 1797 1798 return status; 1799 } 1800 1801 /** 1802 * irdma_cqp_ceq_cmd - Create/Destroy CEQ's after CEQ 0 1803 * @dev: pointer to device info 1804 * @sc_ceq: pointer to ceq structure 1805 * @op: Create or Destroy 1806 */ 1807 int irdma_cqp_ceq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_ceq *sc_ceq, 1808 u8 op) 1809 { 1810 struct irdma_cqp_request *cqp_request; 1811 struct cqp_cmds_info *cqp_info; 1812 struct irdma_pci_f *rf = dev_to_rf(dev); 1813 int status; 1814 1815 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1816 if (!cqp_request) 1817 return -ENOMEM; 1818 1819 cqp_info = &cqp_request->info; 1820 cqp_info->post_sq = 1; 1821 cqp_info->cqp_cmd = op; 1822 cqp_info->in.u.ceq_create.ceq = sc_ceq; 1823 cqp_info->in.u.ceq_create.scratch = (uintptr_t)cqp_request; 1824 1825 status = irdma_handle_cqp_op(rf, cqp_request); 1826 irdma_put_cqp_request(&rf->cqp, cqp_request); 1827 1828 return status; 1829 } 1830 1831 /** 1832 * irdma_cqp_aeq_cmd - Create/Destroy AEQ 1833 * @dev: pointer to device info 1834 * @sc_aeq: pointer to aeq structure 1835 * @op: Create or Destroy 1836 */ 1837 int irdma_cqp_aeq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_aeq *sc_aeq, 1838 u8 op) 1839 { 1840 struct irdma_cqp_request *cqp_request; 1841 struct cqp_cmds_info *cqp_info; 1842 struct irdma_pci_f *rf = dev_to_rf(dev); 1843 int status; 1844 1845 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1846 if (!cqp_request) 1847 return -ENOMEM; 1848 1849 cqp_info = &cqp_request->info; 1850 cqp_info->post_sq = 1; 1851 cqp_info->cqp_cmd = op; 1852 cqp_info->in.u.aeq_create.aeq = sc_aeq; 1853 cqp_info->in.u.aeq_create.scratch = (uintptr_t)cqp_request; 1854 1855 status = irdma_handle_cqp_op(rf, cqp_request); 1856 irdma_put_cqp_request(&rf->cqp, cqp_request); 1857 1858 return status; 1859 } 1860 1861 /** 1862 * irdma_cqp_ws_node_cmd - Add/modify/delete ws node 1863 * @dev: pointer to device structure 1864 * @cmd: Add, modify or delete 1865 * @node_info: pointer to ws node info 1866 */ 1867 int irdma_cqp_ws_node_cmd(struct irdma_sc_dev *dev, u8 cmd, 1868 struct irdma_ws_node_info *node_info) 1869 { 1870 struct irdma_pci_f *rf = dev_to_rf(dev); 1871 struct irdma_cqp *iwcqp = &rf->cqp; 1872 struct irdma_sc_cqp *cqp = &iwcqp->sc_cqp; 1873 struct irdma_cqp_request *cqp_request; 1874 struct cqp_cmds_info *cqp_info; 1875 int status; 1876 bool poll; 1877 1878 if (!rf->sc_dev.ceq_valid) 1879 poll = true; 1880 else 1881 poll = false; 1882 1883 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, !poll); 1884 if (!cqp_request) 1885 return -ENOMEM; 1886 1887 cqp_info = &cqp_request->info; 1888 memset(cqp_info, 0, sizeof(*cqp_info)); 1889 cqp_info->cqp_cmd = cmd; 1890 cqp_info->post_sq = 1; 1891 cqp_info->in.u.ws_node.info = *node_info; 1892 cqp_info->in.u.ws_node.cqp = cqp; 1893 cqp_info->in.u.ws_node.scratch = (uintptr_t)cqp_request; 1894 status = irdma_handle_cqp_op(rf, cqp_request); 1895 if (status) 1896 goto exit; 1897 1898 if (poll) { 1899 struct irdma_ccq_cqe_info compl_info; 1900 1901 status = irdma_sc_poll_for_cqp_op_done(cqp, IRDMA_CQP_OP_WORK_SCHED_NODE, 1902 &compl_info); 1903 node_info->qs_handle = compl_info.op_ret_val; 1904 ibdev_dbg(&rf->iwdev->ibdev, "DCB: opcode=%d, compl_info.retval=%d\n", 1905 compl_info.op_code, compl_info.op_ret_val); 1906 } else { 1907 node_info->qs_handle = cqp_request->compl_info.op_ret_val; 1908 } 1909 1910 exit: 1911 irdma_put_cqp_request(&rf->cqp, cqp_request); 1912 1913 return status; 1914 } 1915 1916 /** 1917 * irdma_ah_cqp_op - perform an AH cqp operation 1918 * @rf: RDMA PCI function 1919 * @sc_ah: address handle 1920 * @cmd: AH operation 1921 * @wait: wait if true 1922 * @callback_fcn: Callback function on CQP op completion 1923 * @cb_param: parameter for callback function 1924 * 1925 * returns errno 1926 */ 1927 int irdma_ah_cqp_op(struct irdma_pci_f *rf, struct irdma_sc_ah *sc_ah, u8 cmd, 1928 bool wait, 1929 void (*callback_fcn)(struct irdma_cqp_request *), 1930 void *cb_param) 1931 { 1932 struct irdma_cqp_request *cqp_request; 1933 struct cqp_cmds_info *cqp_info; 1934 int status; 1935 1936 if (cmd != IRDMA_OP_AH_CREATE && cmd != IRDMA_OP_AH_DESTROY) 1937 return -EINVAL; 1938 1939 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait); 1940 if (!cqp_request) 1941 return -ENOMEM; 1942 1943 cqp_info = &cqp_request->info; 1944 cqp_info->cqp_cmd = cmd; 1945 cqp_info->post_sq = 1; 1946 if (cmd == IRDMA_OP_AH_CREATE) { 1947 cqp_info->in.u.ah_create.info = sc_ah->ah_info; 1948 cqp_info->in.u.ah_create.scratch = (uintptr_t)cqp_request; 1949 cqp_info->in.u.ah_create.cqp = &rf->cqp.sc_cqp; 1950 } else if (cmd == IRDMA_OP_AH_DESTROY) { 1951 cqp_info->in.u.ah_destroy.info = sc_ah->ah_info; 1952 cqp_info->in.u.ah_destroy.scratch = (uintptr_t)cqp_request; 1953 cqp_info->in.u.ah_destroy.cqp = &rf->cqp.sc_cqp; 1954 } 1955 1956 if (!wait) { 1957 cqp_request->callback_fcn = callback_fcn; 1958 cqp_request->param = cb_param; 1959 } 1960 status = irdma_handle_cqp_op(rf, cqp_request); 1961 irdma_put_cqp_request(&rf->cqp, cqp_request); 1962 1963 if (status) 1964 return -ENOMEM; 1965 1966 if (wait) 1967 sc_ah->ah_info.ah_valid = (cmd == IRDMA_OP_AH_CREATE); 1968 1969 return 0; 1970 } 1971 1972 /** 1973 * irdma_ieq_ah_cb - callback after creation of AH for IEQ 1974 * @cqp_request: pointer to cqp_request of create AH 1975 */ 1976 static void irdma_ieq_ah_cb(struct irdma_cqp_request *cqp_request) 1977 { 1978 struct irdma_sc_qp *qp = cqp_request->param; 1979 struct irdma_sc_ah *sc_ah = qp->pfpdu.ah; 1980 unsigned long flags; 1981 1982 spin_lock_irqsave(&qp->pfpdu.lock, flags); 1983 if (!cqp_request->compl_info.op_ret_val) { 1984 sc_ah->ah_info.ah_valid = true; 1985 irdma_ieq_process_fpdus(qp, qp->vsi->ieq); 1986 } else { 1987 sc_ah->ah_info.ah_valid = false; 1988 irdma_ieq_cleanup_qp(qp->vsi->ieq, qp); 1989 } 1990 spin_unlock_irqrestore(&qp->pfpdu.lock, flags); 1991 } 1992 1993 /** 1994 * irdma_ilq_ah_cb - callback after creation of AH for ILQ 1995 * @cqp_request: pointer to cqp_request of create AH 1996 */ 1997 static void irdma_ilq_ah_cb(struct irdma_cqp_request *cqp_request) 1998 { 1999 struct irdma_cm_node *cm_node = cqp_request->param; 2000 struct irdma_sc_ah *sc_ah = cm_node->ah; 2001 2002 sc_ah->ah_info.ah_valid = !cqp_request->compl_info.op_ret_val; 2003 irdma_add_conn_est_qh(cm_node); 2004 } 2005 2006 /** 2007 * irdma_puda_create_ah - create AH for ILQ/IEQ qp's 2008 * @dev: device pointer 2009 * @ah_info: Address handle info 2010 * @wait: When true will wait for operation to complete 2011 * @type: ILQ/IEQ 2012 * @cb_param: Callback param when not waiting 2013 * @ah_ret: Returned pointer to address handle if created 2014 * 2015 */ 2016 int irdma_puda_create_ah(struct irdma_sc_dev *dev, 2017 struct irdma_ah_info *ah_info, bool wait, 2018 enum puda_rsrc_type type, void *cb_param, 2019 struct irdma_sc_ah **ah_ret) 2020 { 2021 struct irdma_sc_ah *ah; 2022 struct irdma_pci_f *rf = dev_to_rf(dev); 2023 int err; 2024 2025 ah = kzalloc(sizeof(*ah), GFP_ATOMIC); 2026 *ah_ret = ah; 2027 if (!ah) 2028 return -ENOMEM; 2029 2030 err = irdma_alloc_rsrc(rf, rf->allocated_ahs, rf->max_ah, 2031 &ah_info->ah_idx, &rf->next_ah); 2032 if (err) 2033 goto err_free; 2034 2035 ah->dev = dev; 2036 ah->ah_info = *ah_info; 2037 2038 if (type == IRDMA_PUDA_RSRC_TYPE_ILQ) 2039 err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait, 2040 irdma_ilq_ah_cb, cb_param); 2041 else 2042 err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait, 2043 irdma_ieq_ah_cb, cb_param); 2044 2045 if (err) 2046 goto error; 2047 return 0; 2048 2049 error: 2050 irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx); 2051 err_free: 2052 kfree(ah); 2053 *ah_ret = NULL; 2054 return -ENOMEM; 2055 } 2056 2057 /** 2058 * irdma_puda_free_ah - free a puda address handle 2059 * @dev: device pointer 2060 * @ah: The address handle to free 2061 */ 2062 void irdma_puda_free_ah(struct irdma_sc_dev *dev, struct irdma_sc_ah *ah) 2063 { 2064 struct irdma_pci_f *rf = dev_to_rf(dev); 2065 2066 if (!ah) 2067 return; 2068 2069 if (ah->ah_info.ah_valid) { 2070 irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_DESTROY, false, NULL, NULL); 2071 irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx); 2072 } 2073 2074 kfree(ah); 2075 } 2076 2077 /** 2078 * irdma_gsi_ud_qp_ah_cb - callback after creation of AH for GSI/ID QP 2079 * @cqp_request: pointer to cqp_request of create AH 2080 */ 2081 void irdma_gsi_ud_qp_ah_cb(struct irdma_cqp_request *cqp_request) 2082 { 2083 struct irdma_sc_ah *sc_ah = cqp_request->param; 2084 2085 if (!cqp_request->compl_info.op_ret_val) 2086 sc_ah->ah_info.ah_valid = true; 2087 else 2088 sc_ah->ah_info.ah_valid = false; 2089 } 2090 2091 /** 2092 * irdma_prm_add_pble_mem - add moemory to pble resources 2093 * @pprm: pble resource manager 2094 * @pchunk: chunk of memory to add 2095 */ 2096 int irdma_prm_add_pble_mem(struct irdma_pble_prm *pprm, 2097 struct irdma_chunk *pchunk) 2098 { 2099 u64 sizeofbitmap; 2100 2101 if (pchunk->size & 0xfff) 2102 return -EINVAL; 2103 2104 sizeofbitmap = (u64)pchunk->size >> pprm->pble_shift; 2105 2106 pchunk->bitmapbuf = bitmap_zalloc(sizeofbitmap, GFP_KERNEL); 2107 if (!pchunk->bitmapbuf) 2108 return -ENOMEM; 2109 2110 pchunk->sizeofbitmap = sizeofbitmap; 2111 /* each pble is 8 bytes hence shift by 3 */ 2112 pprm->total_pble_alloc += pchunk->size >> 3; 2113 pprm->free_pble_cnt += pchunk->size >> 3; 2114 2115 return 0; 2116 } 2117 2118 /** 2119 * irdma_prm_get_pbles - get pble's from prm 2120 * @pprm: pble resource manager 2121 * @chunkinfo: nformation about chunk where pble's were acquired 2122 * @mem_size: size of pble memory needed 2123 * @vaddr: returns virtual address of pble memory 2124 * @fpm_addr: returns fpm address of pble memory 2125 */ 2126 int irdma_prm_get_pbles(struct irdma_pble_prm *pprm, 2127 struct irdma_pble_chunkinfo *chunkinfo, u64 mem_size, 2128 u64 **vaddr, u64 *fpm_addr) 2129 { 2130 u64 bits_needed; 2131 u64 bit_idx = PBLE_INVALID_IDX; 2132 struct irdma_chunk *pchunk = NULL; 2133 struct list_head *chunk_entry = pprm->clist.next; 2134 u32 offset; 2135 unsigned long flags; 2136 *vaddr = NULL; 2137 *fpm_addr = 0; 2138 2139 bits_needed = DIV_ROUND_UP_ULL(mem_size, BIT_ULL(pprm->pble_shift)); 2140 2141 spin_lock_irqsave(&pprm->prm_lock, flags); 2142 while (chunk_entry != &pprm->clist) { 2143 pchunk = (struct irdma_chunk *)chunk_entry; 2144 bit_idx = bitmap_find_next_zero_area(pchunk->bitmapbuf, 2145 pchunk->sizeofbitmap, 0, 2146 bits_needed, 0); 2147 if (bit_idx < pchunk->sizeofbitmap) 2148 break; 2149 2150 /* list.next used macro */ 2151 chunk_entry = pchunk->list.next; 2152 } 2153 2154 if (!pchunk || bit_idx >= pchunk->sizeofbitmap) { 2155 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2156 return -ENOMEM; 2157 } 2158 2159 bitmap_set(pchunk->bitmapbuf, bit_idx, bits_needed); 2160 offset = bit_idx << pprm->pble_shift; 2161 *vaddr = pchunk->vaddr + offset; 2162 *fpm_addr = pchunk->fpm_addr + offset; 2163 2164 chunkinfo->pchunk = pchunk; 2165 chunkinfo->bit_idx = bit_idx; 2166 chunkinfo->bits_used = bits_needed; 2167 /* 3 is sizeof pble divide */ 2168 pprm->free_pble_cnt -= chunkinfo->bits_used << (pprm->pble_shift - 3); 2169 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2170 2171 return 0; 2172 } 2173 2174 /** 2175 * irdma_prm_return_pbles - return pbles back to prm 2176 * @pprm: pble resource manager 2177 * @chunkinfo: chunk where pble's were acquired and to be freed 2178 */ 2179 void irdma_prm_return_pbles(struct irdma_pble_prm *pprm, 2180 struct irdma_pble_chunkinfo *chunkinfo) 2181 { 2182 unsigned long flags; 2183 2184 spin_lock_irqsave(&pprm->prm_lock, flags); 2185 pprm->free_pble_cnt += chunkinfo->bits_used << (pprm->pble_shift - 3); 2186 bitmap_clear(chunkinfo->pchunk->bitmapbuf, chunkinfo->bit_idx, 2187 chunkinfo->bits_used); 2188 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2189 } 2190 2191 int irdma_map_vm_page_list(struct irdma_hw *hw, void *va, dma_addr_t *pg_dma, 2192 u32 pg_cnt) 2193 { 2194 struct page *vm_page; 2195 int i; 2196 u8 *addr; 2197 2198 addr = (u8 *)(uintptr_t)va; 2199 for (i = 0; i < pg_cnt; i++) { 2200 vm_page = vmalloc_to_page(addr); 2201 if (!vm_page) 2202 goto err; 2203 2204 pg_dma[i] = dma_map_page(hw->device, vm_page, 0, PAGE_SIZE, 2205 DMA_BIDIRECTIONAL); 2206 if (dma_mapping_error(hw->device, pg_dma[i])) 2207 goto err; 2208 2209 addr += PAGE_SIZE; 2210 } 2211 2212 return 0; 2213 2214 err: 2215 irdma_unmap_vm_page_list(hw, pg_dma, i); 2216 return -ENOMEM; 2217 } 2218 2219 void irdma_unmap_vm_page_list(struct irdma_hw *hw, dma_addr_t *pg_dma, u32 pg_cnt) 2220 { 2221 int i; 2222 2223 for (i = 0; i < pg_cnt; i++) 2224 dma_unmap_page(hw->device, pg_dma[i], PAGE_SIZE, DMA_BIDIRECTIONAL); 2225 } 2226 2227 /** 2228 * irdma_pble_free_paged_mem - free virtual paged memory 2229 * @chunk: chunk to free with paged memory 2230 */ 2231 void irdma_pble_free_paged_mem(struct irdma_chunk *chunk) 2232 { 2233 if (!chunk->pg_cnt) 2234 goto done; 2235 2236 irdma_unmap_vm_page_list(chunk->dev->hw, chunk->dmainfo.dmaaddrs, 2237 chunk->pg_cnt); 2238 2239 done: 2240 kfree(chunk->dmainfo.dmaaddrs); 2241 chunk->dmainfo.dmaaddrs = NULL; 2242 vfree(chunk->vaddr); 2243 chunk->vaddr = NULL; 2244 chunk->type = 0; 2245 } 2246 2247 /** 2248 * irdma_pble_get_paged_mem -allocate paged memory for pbles 2249 * @chunk: chunk to add for paged memory 2250 * @pg_cnt: number of pages needed 2251 */ 2252 int irdma_pble_get_paged_mem(struct irdma_chunk *chunk, u32 pg_cnt) 2253 { 2254 u32 size; 2255 void *va; 2256 2257 chunk->dmainfo.dmaaddrs = kzalloc(pg_cnt << 3, GFP_KERNEL); 2258 if (!chunk->dmainfo.dmaaddrs) 2259 return -ENOMEM; 2260 2261 size = PAGE_SIZE * pg_cnt; 2262 va = vmalloc(size); 2263 if (!va) 2264 goto err; 2265 2266 if (irdma_map_vm_page_list(chunk->dev->hw, va, chunk->dmainfo.dmaaddrs, 2267 pg_cnt)) { 2268 vfree(va); 2269 goto err; 2270 } 2271 chunk->vaddr = va; 2272 chunk->size = size; 2273 chunk->pg_cnt = pg_cnt; 2274 chunk->type = PBLE_SD_PAGED; 2275 2276 return 0; 2277 err: 2278 kfree(chunk->dmainfo.dmaaddrs); 2279 chunk->dmainfo.dmaaddrs = NULL; 2280 2281 return -ENOMEM; 2282 } 2283 2284 /** 2285 * irdma_alloc_ws_node_id - Allocate a tx scheduler node ID 2286 * @dev: device pointer 2287 */ 2288 u16 irdma_alloc_ws_node_id(struct irdma_sc_dev *dev) 2289 { 2290 struct irdma_pci_f *rf = dev_to_rf(dev); 2291 u32 next = 1; 2292 u32 node_id; 2293 2294 if (irdma_alloc_rsrc(rf, rf->allocated_ws_nodes, rf->max_ws_node_id, 2295 &node_id, &next)) 2296 return IRDMA_WS_NODE_INVALID; 2297 2298 return (u16)node_id; 2299 } 2300 2301 /** 2302 * irdma_free_ws_node_id - Free a tx scheduler node ID 2303 * @dev: device pointer 2304 * @node_id: Work scheduler node ID 2305 */ 2306 void irdma_free_ws_node_id(struct irdma_sc_dev *dev, u16 node_id) 2307 { 2308 struct irdma_pci_f *rf = dev_to_rf(dev); 2309 2310 irdma_free_rsrc(rf, rf->allocated_ws_nodes, (u32)node_id); 2311 } 2312 2313 /** 2314 * irdma_modify_qp_to_err - Modify a QP to error 2315 * @sc_qp: qp structure 2316 */ 2317 void irdma_modify_qp_to_err(struct irdma_sc_qp *sc_qp) 2318 { 2319 struct irdma_qp *qp = sc_qp->qp_uk.back_qp; 2320 struct ib_qp_attr attr; 2321 2322 if (qp->iwdev->rf->reset) 2323 return; 2324 attr.qp_state = IB_QPS_ERR; 2325 2326 if (rdma_protocol_roce(qp->ibqp.device, 1)) 2327 irdma_modify_qp_roce(&qp->ibqp, &attr, IB_QP_STATE, NULL); 2328 else 2329 irdma_modify_qp(&qp->ibqp, &attr, IB_QP_STATE, NULL); 2330 } 2331 2332 void irdma_ib_qp_event(struct irdma_qp *iwqp, enum irdma_qp_event_type event) 2333 { 2334 struct ib_event ibevent; 2335 2336 if (!iwqp->ibqp.event_handler) 2337 return; 2338 2339 switch (event) { 2340 case IRDMA_QP_EVENT_CATASTROPHIC: 2341 ibevent.event = IB_EVENT_QP_FATAL; 2342 break; 2343 case IRDMA_QP_EVENT_ACCESS_ERR: 2344 ibevent.event = IB_EVENT_QP_ACCESS_ERR; 2345 break; 2346 case IRDMA_QP_EVENT_REQ_ERR: 2347 ibevent.event = IB_EVENT_QP_REQ_ERR; 2348 break; 2349 } 2350 ibevent.device = iwqp->ibqp.device; 2351 ibevent.element.qp = &iwqp->ibqp; 2352 iwqp->ibqp.event_handler(&ibevent, iwqp->ibqp.qp_context); 2353 } 2354 2355 bool irdma_cq_empty(struct irdma_cq *iwcq) 2356 { 2357 struct irdma_cq_uk *ukcq; 2358 u64 qword3; 2359 __le64 *cqe; 2360 u8 polarity; 2361 2362 ukcq = &iwcq->sc_cq.cq_uk; 2363 cqe = IRDMA_GET_CURRENT_CQ_ELEM(ukcq); 2364 get_64bit_val(cqe, 24, &qword3); 2365 polarity = (u8)FIELD_GET(IRDMA_CQ_VALID, qword3); 2366 2367 return polarity != ukcq->polarity; 2368 } 2369 2370 void irdma_remove_cmpls_list(struct irdma_cq *iwcq) 2371 { 2372 struct irdma_cmpl_gen *cmpl_node; 2373 struct list_head *tmp_node, *list_node; 2374 2375 list_for_each_safe (list_node, tmp_node, &iwcq->cmpl_generated) { 2376 cmpl_node = list_entry(list_node, struct irdma_cmpl_gen, list); 2377 list_del(&cmpl_node->list); 2378 kfree(cmpl_node); 2379 } 2380 } 2381 2382 int irdma_generated_cmpls(struct irdma_cq *iwcq, struct irdma_cq_poll_info *cq_poll_info) 2383 { 2384 struct irdma_cmpl_gen *cmpl; 2385 2386 if (list_empty(&iwcq->cmpl_generated)) 2387 return -ENOENT; 2388 cmpl = list_first_entry_or_null(&iwcq->cmpl_generated, struct irdma_cmpl_gen, list); 2389 list_del(&cmpl->list); 2390 memcpy(cq_poll_info, &cmpl->cpi, sizeof(*cq_poll_info)); 2391 kfree(cmpl); 2392 2393 ibdev_dbg(iwcq->ibcq.device, 2394 "VERBS: %s: Poll artificially generated completion for QP 0x%X, op %u, wr_id=0x%llx\n", 2395 __func__, cq_poll_info->qp_id, cq_poll_info->op_type, 2396 cq_poll_info->wr_id); 2397 2398 return 0; 2399 } 2400 2401 /** 2402 * irdma_set_cpi_common_values - fill in values for polling info struct 2403 * @cpi: resulting structure of cq_poll_info type 2404 * @qp: QPair 2405 * @qp_num: id of the QP 2406 */ 2407 static void irdma_set_cpi_common_values(struct irdma_cq_poll_info *cpi, 2408 struct irdma_qp_uk *qp, u32 qp_num) 2409 { 2410 cpi->comp_status = IRDMA_COMPL_STATUS_FLUSHED; 2411 cpi->error = true; 2412 cpi->major_err = IRDMA_FLUSH_MAJOR_ERR; 2413 cpi->minor_err = FLUSH_GENERAL_ERR; 2414 cpi->qp_handle = (irdma_qp_handle)(uintptr_t)qp; 2415 cpi->qp_id = qp_num; 2416 } 2417 2418 static inline void irdma_comp_handler(struct irdma_cq *cq) 2419 { 2420 if (!cq->ibcq.comp_handler) 2421 return; 2422 if (atomic_cmpxchg(&cq->armed, 1, 0)) 2423 cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context); 2424 } 2425 2426 void irdma_generate_flush_completions(struct irdma_qp *iwqp) 2427 { 2428 struct irdma_qp_uk *qp = &iwqp->sc_qp.qp_uk; 2429 struct irdma_ring *sq_ring = &qp->sq_ring; 2430 struct irdma_ring *rq_ring = &qp->rq_ring; 2431 struct irdma_cmpl_gen *cmpl; 2432 __le64 *sw_wqe; 2433 u64 wqe_qword; 2434 u32 wqe_idx; 2435 bool compl_generated = false; 2436 unsigned long flags1; 2437 2438 spin_lock_irqsave(&iwqp->iwscq->lock, flags1); 2439 if (irdma_cq_empty(iwqp->iwscq)) { 2440 unsigned long flags2; 2441 2442 spin_lock_irqsave(&iwqp->lock, flags2); 2443 while (IRDMA_RING_MORE_WORK(*sq_ring)) { 2444 cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC); 2445 if (!cmpl) { 2446 spin_unlock_irqrestore(&iwqp->lock, flags2); 2447 spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1); 2448 return; 2449 } 2450 2451 wqe_idx = sq_ring->tail; 2452 irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id); 2453 2454 cmpl->cpi.wr_id = qp->sq_wrtrk_array[wqe_idx].wrid; 2455 sw_wqe = qp->sq_base[wqe_idx].elem; 2456 get_64bit_val(sw_wqe, 24, &wqe_qword); 2457 cmpl->cpi.op_type = (u8)FIELD_GET(IRDMAQPSQ_OPCODE, IRDMAQPSQ_OPCODE); 2458 cmpl->cpi.q_type = IRDMA_CQE_QTYPE_SQ; 2459 /* remove the SQ WR by moving SQ tail*/ 2460 IRDMA_RING_SET_TAIL(*sq_ring, 2461 sq_ring->tail + qp->sq_wrtrk_array[sq_ring->tail].quanta); 2462 if (cmpl->cpi.op_type == IRDMAQP_OP_NOP) { 2463 kfree(cmpl); 2464 continue; 2465 } 2466 ibdev_dbg(iwqp->iwscq->ibcq.device, 2467 "DEV: %s: adding wr_id = 0x%llx SQ Completion to list qp_id=%d\n", 2468 __func__, cmpl->cpi.wr_id, qp->qp_id); 2469 list_add_tail(&cmpl->list, &iwqp->iwscq->cmpl_generated); 2470 compl_generated = true; 2471 } 2472 spin_unlock_irqrestore(&iwqp->lock, flags2); 2473 spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1); 2474 if (compl_generated) 2475 irdma_comp_handler(iwqp->iwscq); 2476 } else { 2477 spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1); 2478 mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush, 2479 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS)); 2480 } 2481 2482 spin_lock_irqsave(&iwqp->iwrcq->lock, flags1); 2483 if (irdma_cq_empty(iwqp->iwrcq)) { 2484 unsigned long flags2; 2485 2486 spin_lock_irqsave(&iwqp->lock, flags2); 2487 while (IRDMA_RING_MORE_WORK(*rq_ring)) { 2488 cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC); 2489 if (!cmpl) { 2490 spin_unlock_irqrestore(&iwqp->lock, flags2); 2491 spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1); 2492 return; 2493 } 2494 2495 wqe_idx = rq_ring->tail; 2496 irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id); 2497 2498 cmpl->cpi.wr_id = qp->rq_wrid_array[wqe_idx]; 2499 cmpl->cpi.op_type = IRDMA_OP_TYPE_REC; 2500 cmpl->cpi.q_type = IRDMA_CQE_QTYPE_RQ; 2501 /* remove the RQ WR by moving RQ tail */ 2502 IRDMA_RING_SET_TAIL(*rq_ring, rq_ring->tail + 1); 2503 ibdev_dbg(iwqp->iwrcq->ibcq.device, 2504 "DEV: %s: adding wr_id = 0x%llx RQ Completion to list qp_id=%d, wqe_idx=%d\n", 2505 __func__, cmpl->cpi.wr_id, qp->qp_id, 2506 wqe_idx); 2507 list_add_tail(&cmpl->list, &iwqp->iwrcq->cmpl_generated); 2508 2509 compl_generated = true; 2510 } 2511 spin_unlock_irqrestore(&iwqp->lock, flags2); 2512 spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1); 2513 if (compl_generated) 2514 irdma_comp_handler(iwqp->iwrcq); 2515 } else { 2516 spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1); 2517 mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush, 2518 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS)); 2519 } 2520 } 2521