1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <rdma/ib_umem.h> 36 #include <linux/math.h> 37 #include "hns_roce_device.h" 38 #include "hns_roce_cmd.h" 39 #include "hns_roce_hem.h" 40 41 static u32 hw_index_to_key(int ind) 42 { 43 return ((u32)ind >> 24) | ((u32)ind << 8); 44 } 45 46 unsigned long key_to_hw_index(u32 key) 47 { 48 return (key << 24) | (key >> 8); 49 } 50 51 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 52 { 53 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 54 struct ib_device *ibdev = &hr_dev->ib_dev; 55 int err; 56 int id; 57 58 /* Allocate a key for mr from mr_table */ 59 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 60 GFP_KERNEL); 61 if (id < 0) { 62 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 63 return -ENOMEM; 64 } 65 66 mr->key = hw_index_to_key(id); /* MR key */ 67 68 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 69 (unsigned long)id); 70 if (err) { 71 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 72 goto err_free_bitmap; 73 } 74 75 return 0; 76 err_free_bitmap: 77 ida_free(&mtpt_ida->ida, id); 78 return err; 79 } 80 81 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 82 { 83 unsigned long obj = key_to_hw_index(mr->key); 84 85 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 86 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 87 } 88 89 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 90 struct ib_udata *udata, u64 start) 91 { 92 struct ib_device *ibdev = &hr_dev->ib_dev; 93 bool is_fast = mr->type == MR_TYPE_FRMR; 94 struct hns_roce_buf_attr buf_attr = {}; 95 int err; 96 97 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 98 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 99 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 100 buf_attr.region[0].size = mr->size; 101 buf_attr.region[0].hopnum = mr->pbl_hop_num; 102 buf_attr.region_count = 1; 103 buf_attr.user_access = mr->access; 104 /* fast MR's buffer is alloced before mapping, not at creation */ 105 buf_attr.mtt_only = is_fast; 106 107 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 108 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 109 udata, start); 110 if (err) 111 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 112 else 113 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 114 115 return err; 116 } 117 118 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 119 { 120 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 121 } 122 123 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 124 { 125 struct ib_device *ibdev = &hr_dev->ib_dev; 126 int ret; 127 128 if (mr->enabled) { 129 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 130 key_to_hw_index(mr->key) & 131 (hr_dev->caps.num_mtpts - 1)); 132 if (ret) 133 ibdev_warn_ratelimited(ibdev, "failed to destroy mpt, ret = %d.\n", 134 ret); 135 } 136 137 free_mr_pbl(hr_dev, mr); 138 free_mr_key(hr_dev, mr); 139 } 140 141 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 142 struct hns_roce_mr *mr) 143 { 144 unsigned long mtpt_idx = key_to_hw_index(mr->key); 145 struct hns_roce_cmd_mailbox *mailbox; 146 struct device *dev = hr_dev->dev; 147 int ret; 148 149 /* Allocate mailbox memory */ 150 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 151 if (IS_ERR(mailbox)) 152 return PTR_ERR(mailbox); 153 154 if (mr->type != MR_TYPE_FRMR) 155 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 156 else 157 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 158 if (ret) { 159 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 160 goto err_page; 161 } 162 163 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 164 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 165 if (ret) { 166 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 167 goto err_page; 168 } 169 170 mr->enabled = 1; 171 172 err_page: 173 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 174 175 return ret; 176 } 177 178 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 179 { 180 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 181 182 ida_init(&mtpt_ida->ida); 183 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 184 mtpt_ida->min = hr_dev->caps.reserved_mrws; 185 } 186 187 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 188 { 189 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 190 struct hns_roce_mr *mr; 191 int ret; 192 193 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 194 if (!mr) 195 return ERR_PTR(-ENOMEM); 196 197 mr->type = MR_TYPE_DMA; 198 mr->pd = to_hr_pd(pd)->pdn; 199 mr->access = acc; 200 201 /* Allocate memory region key */ 202 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 203 ret = alloc_mr_key(hr_dev, mr); 204 if (ret) 205 goto err_free; 206 207 ret = hns_roce_mr_enable(hr_dev, mr); 208 if (ret) 209 goto err_mr; 210 211 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 212 213 return &mr->ibmr; 214 err_mr: 215 free_mr_key(hr_dev, mr); 216 217 err_free: 218 kfree(mr); 219 return ERR_PTR(ret); 220 } 221 222 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 223 u64 virt_addr, int access_flags, 224 struct ib_udata *udata) 225 { 226 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 227 struct hns_roce_mr *mr; 228 int ret; 229 230 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 231 if (!mr) 232 return ERR_PTR(-ENOMEM); 233 234 mr->iova = virt_addr; 235 mr->size = length; 236 mr->pd = to_hr_pd(pd)->pdn; 237 mr->access = access_flags; 238 mr->type = MR_TYPE_MR; 239 240 ret = alloc_mr_key(hr_dev, mr); 241 if (ret) 242 goto err_alloc_mr; 243 244 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 245 if (ret) 246 goto err_alloc_key; 247 248 ret = hns_roce_mr_enable(hr_dev, mr); 249 if (ret) 250 goto err_alloc_pbl; 251 252 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 253 254 return &mr->ibmr; 255 256 err_alloc_pbl: 257 free_mr_pbl(hr_dev, mr); 258 err_alloc_key: 259 free_mr_key(hr_dev, mr); 260 err_alloc_mr: 261 kfree(mr); 262 return ERR_PTR(ret); 263 } 264 265 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 266 u64 length, u64 virt_addr, 267 int mr_access_flags, struct ib_pd *pd, 268 struct ib_udata *udata) 269 { 270 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 271 struct ib_device *ib_dev = &hr_dev->ib_dev; 272 struct hns_roce_mr *mr = to_hr_mr(ibmr); 273 struct hns_roce_cmd_mailbox *mailbox; 274 unsigned long mtpt_idx; 275 int ret; 276 277 if (!mr->enabled) 278 return ERR_PTR(-EINVAL); 279 280 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 281 if (IS_ERR(mailbox)) 282 return ERR_CAST(mailbox); 283 284 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 285 286 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 287 mtpt_idx); 288 if (ret) 289 goto free_cmd_mbox; 290 291 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 292 mtpt_idx); 293 if (ret) 294 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 295 296 mr->enabled = 0; 297 mr->iova = virt_addr; 298 mr->size = length; 299 300 if (flags & IB_MR_REREG_PD) 301 mr->pd = to_hr_pd(pd)->pdn; 302 303 if (flags & IB_MR_REREG_ACCESS) 304 mr->access = mr_access_flags; 305 306 if (flags & IB_MR_REREG_TRANS) { 307 free_mr_pbl(hr_dev, mr); 308 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 309 if (ret) { 310 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 311 ret); 312 goto free_cmd_mbox; 313 } 314 } 315 316 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 317 if (ret) { 318 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 319 goto free_cmd_mbox; 320 } 321 322 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 323 mtpt_idx); 324 if (ret) { 325 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 326 goto free_cmd_mbox; 327 } 328 329 mr->enabled = 1; 330 331 free_cmd_mbox: 332 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 333 334 if (ret) 335 return ERR_PTR(ret); 336 return NULL; 337 } 338 339 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 340 { 341 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 342 struct hns_roce_mr *mr = to_hr_mr(ibmr); 343 344 if (hr_dev->hw->dereg_mr) 345 hr_dev->hw->dereg_mr(hr_dev); 346 347 hns_roce_mr_free(hr_dev, mr); 348 kfree(mr); 349 350 return 0; 351 } 352 353 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 354 u32 max_num_sg) 355 { 356 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 357 struct device *dev = hr_dev->dev; 358 struct hns_roce_mr *mr; 359 int ret; 360 361 if (mr_type != IB_MR_TYPE_MEM_REG) 362 return ERR_PTR(-EINVAL); 363 364 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 365 dev_err(dev, "max_num_sg larger than %d\n", 366 HNS_ROCE_FRMR_MAX_PA); 367 return ERR_PTR(-EINVAL); 368 } 369 370 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 371 if (!mr) 372 return ERR_PTR(-ENOMEM); 373 374 mr->type = MR_TYPE_FRMR; 375 mr->pd = to_hr_pd(pd)->pdn; 376 mr->size = max_num_sg * (1 << PAGE_SHIFT); 377 378 /* Allocate memory region key */ 379 ret = alloc_mr_key(hr_dev, mr); 380 if (ret) 381 goto err_free; 382 383 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 384 if (ret) 385 goto err_key; 386 387 ret = hns_roce_mr_enable(hr_dev, mr); 388 if (ret) 389 goto err_pbl; 390 391 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 392 mr->ibmr.length = mr->size; 393 394 return &mr->ibmr; 395 396 err_pbl: 397 free_mr_pbl(hr_dev, mr); 398 err_key: 399 free_mr_key(hr_dev, mr); 400 err_free: 401 kfree(mr); 402 return ERR_PTR(ret); 403 } 404 405 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 406 { 407 struct hns_roce_mr *mr = to_hr_mr(ibmr); 408 409 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 410 mr->page_list[mr->npages++] = addr; 411 return 0; 412 } 413 414 return -ENOBUFS; 415 } 416 417 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 418 unsigned int *sg_offset_p) 419 { 420 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 421 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 422 struct ib_device *ibdev = &hr_dev->ib_dev; 423 struct hns_roce_mr *mr = to_hr_mr(ibmr); 424 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 425 int ret, sg_num = 0; 426 427 if (!IS_ALIGNED(sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) || 428 ibmr->page_size < HNS_HW_PAGE_SIZE || 429 ibmr->page_size > HNS_HW_MAX_PAGE_SIZE) 430 return sg_num; 431 432 mr->npages = 0; 433 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 434 sizeof(dma_addr_t), GFP_KERNEL); 435 if (!mr->page_list) 436 return sg_num; 437 438 sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset_p, hns_roce_set_page); 439 if (sg_num < 1) { 440 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 441 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num); 442 goto err_page_list; 443 } 444 445 mtr->hem_cfg.region[0].offset = 0; 446 mtr->hem_cfg.region[0].count = mr->npages; 447 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 448 mtr->hem_cfg.region_count = 1; 449 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 450 if (ret) { 451 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 452 sg_num = 0; 453 } else { 454 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 455 } 456 457 err_page_list: 458 kvfree(mr->page_list); 459 mr->page_list = NULL; 460 461 return sg_num; 462 } 463 464 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 465 struct hns_roce_mw *mw) 466 { 467 struct device *dev = hr_dev->dev; 468 int ret; 469 470 if (mw->enabled) { 471 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 472 key_to_hw_index(mw->rkey) & 473 (hr_dev->caps.num_mtpts - 1)); 474 if (ret) 475 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 476 477 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 478 key_to_hw_index(mw->rkey)); 479 } 480 481 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 482 (int)key_to_hw_index(mw->rkey)); 483 } 484 485 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 486 struct hns_roce_mw *mw) 487 { 488 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 489 struct hns_roce_cmd_mailbox *mailbox; 490 struct device *dev = hr_dev->dev; 491 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 492 int ret; 493 494 /* prepare HEM entry memory */ 495 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 496 if (ret) 497 return ret; 498 499 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 500 if (IS_ERR(mailbox)) { 501 ret = PTR_ERR(mailbox); 502 goto err_table; 503 } 504 505 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 506 if (ret) { 507 dev_err(dev, "MW write mtpt fail!\n"); 508 goto err_page; 509 } 510 511 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 512 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 513 if (ret) { 514 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 515 goto err_page; 516 } 517 518 mw->enabled = 1; 519 520 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 521 522 return 0; 523 524 err_page: 525 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 526 527 err_table: 528 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 529 530 return ret; 531 } 532 533 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 534 { 535 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 536 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 537 struct ib_device *ibdev = &hr_dev->ib_dev; 538 struct hns_roce_mw *mw = to_hr_mw(ibmw); 539 int ret; 540 int id; 541 542 /* Allocate a key for mw from mr_table */ 543 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 544 GFP_KERNEL); 545 if (id < 0) { 546 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 547 return -ENOMEM; 548 } 549 550 mw->rkey = hw_index_to_key(id); 551 552 ibmw->rkey = mw->rkey; 553 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 554 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 555 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 556 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 557 558 ret = hns_roce_mw_enable(hr_dev, mw); 559 if (ret) 560 goto err_mw; 561 562 return 0; 563 564 err_mw: 565 hns_roce_mw_free(hr_dev, mw); 566 return ret; 567 } 568 569 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 570 { 571 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 572 struct hns_roce_mw *mw = to_hr_mw(ibmw); 573 574 hns_roce_mw_free(hr_dev, mw); 575 return 0; 576 } 577 578 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 579 struct hns_roce_buf_region *region, dma_addr_t *pages, 580 int max_count) 581 { 582 int count, npage; 583 int offset, end; 584 __le64 *mtts; 585 u64 addr; 586 int i; 587 588 offset = region->offset; 589 end = offset + region->count; 590 npage = 0; 591 while (offset < end && npage < max_count) { 592 count = 0; 593 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 594 offset, &count); 595 if (!mtts) 596 return -ENOBUFS; 597 598 for (i = 0; i < count && npage < max_count; i++) { 599 addr = pages[npage]; 600 601 mtts[i] = cpu_to_le64(addr); 602 npage++; 603 } 604 offset += count; 605 } 606 607 return npage; 608 } 609 610 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 611 { 612 int i; 613 614 for (i = 0; i < attr->region_count; i++) 615 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 616 attr->region[i].hopnum > 0) 617 return true; 618 619 /* because the mtr only one root base address, when hopnum is 0 means 620 * root base address equals the first buffer address, thus all alloced 621 * memory must in a continuous space accessed by direct mode. 622 */ 623 return false; 624 } 625 626 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 627 { 628 size_t size = 0; 629 int i; 630 631 for (i = 0; i < attr->region_count; i++) 632 size += attr->region[i].size; 633 634 return size; 635 } 636 637 /* 638 * check the given pages in continuous address space 639 * Returns 0 on success, or the error page num. 640 */ 641 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 642 unsigned int page_shift) 643 { 644 size_t page_size = 1 << page_shift; 645 int i; 646 647 for (i = 1; i < page_count; i++) 648 if (pages[i] - pages[i - 1] != page_size) 649 return i; 650 651 return 0; 652 } 653 654 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 655 { 656 /* release user buffers */ 657 if (mtr->umem) { 658 ib_umem_release(mtr->umem); 659 mtr->umem = NULL; 660 } 661 662 /* release kernel buffers */ 663 if (mtr->kmem) { 664 hns_roce_buf_free(hr_dev, mtr->kmem); 665 mtr->kmem = NULL; 666 } 667 } 668 669 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 670 struct hns_roce_buf_attr *buf_attr, 671 struct ib_udata *udata, unsigned long user_addr) 672 { 673 struct ib_device *ibdev = &hr_dev->ib_dev; 674 size_t total_size; 675 676 total_size = mtr_bufs_size(buf_attr); 677 678 if (udata) { 679 mtr->kmem = NULL; 680 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 681 buf_attr->user_access); 682 if (IS_ERR_OR_NULL(mtr->umem)) { 683 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 684 PTR_ERR(mtr->umem)); 685 return -ENOMEM; 686 } 687 } else { 688 mtr->umem = NULL; 689 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 690 buf_attr->page_shift, 691 mtr->hem_cfg.is_direct ? 692 HNS_ROCE_BUF_DIRECT : 0); 693 if (IS_ERR(mtr->kmem)) { 694 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 695 PTR_ERR(mtr->kmem)); 696 return PTR_ERR(mtr->kmem); 697 } 698 } 699 700 return 0; 701 } 702 703 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 704 int page_count, unsigned int page_shift) 705 { 706 struct ib_device *ibdev = &hr_dev->ib_dev; 707 dma_addr_t *pages; 708 int npage; 709 int ret; 710 711 /* alloc a tmp array to store buffer's dma address */ 712 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 713 if (!pages) 714 return -ENOMEM; 715 716 if (mtr->umem) 717 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 718 mtr->umem, page_shift); 719 else 720 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 721 mtr->kmem, page_shift); 722 723 if (npage != page_count) { 724 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 725 page_count); 726 ret = -ENOBUFS; 727 goto err_alloc_list; 728 } 729 730 if (mtr->hem_cfg.is_direct && npage > 1) { 731 ret = mtr_check_direct_pages(pages, npage, page_shift); 732 if (ret) { 733 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 734 mtr->umem ? "umtr" : "kmtr", ret, npage); 735 ret = -ENOBUFS; 736 goto err_alloc_list; 737 } 738 } 739 740 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 741 if (ret) 742 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 743 744 err_alloc_list: 745 kvfree(pages); 746 747 return ret; 748 } 749 750 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 751 dma_addr_t *pages, unsigned int page_cnt) 752 { 753 struct ib_device *ibdev = &hr_dev->ib_dev; 754 struct hns_roce_buf_region *r; 755 unsigned int i, mapped_cnt; 756 int ret = 0; 757 758 /* 759 * Only use the first page address as root ba when hopnum is 0, this 760 * is because the addresses of all pages are consecutive in this case. 761 */ 762 if (mtr->hem_cfg.is_direct) { 763 mtr->hem_cfg.root_ba = pages[0]; 764 return 0; 765 } 766 767 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 768 mapped_cnt < page_cnt; i++) { 769 r = &mtr->hem_cfg.region[i]; 770 /* if hopnum is 0, no need to map pages in this region */ 771 if (!r->hopnum) { 772 mapped_cnt += r->count; 773 continue; 774 } 775 776 if (r->offset + r->count > page_cnt) { 777 ret = -EINVAL; 778 ibdev_err(ibdev, 779 "failed to check mtr%u count %u + %u > %u.\n", 780 i, r->offset, r->count, page_cnt); 781 return ret; 782 } 783 784 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 785 page_cnt - mapped_cnt); 786 if (ret < 0) { 787 ibdev_err(ibdev, 788 "failed to map mtr%u offset %u, ret = %d.\n", 789 i, r->offset, ret); 790 return ret; 791 } 792 mapped_cnt += ret; 793 ret = 0; 794 } 795 796 if (mapped_cnt < page_cnt) { 797 ret = -ENOBUFS; 798 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 799 mapped_cnt, page_cnt); 800 } 801 802 return ret; 803 } 804 805 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 806 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 807 { 808 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 809 int mtt_count, left; 810 u32 start_index; 811 int total = 0; 812 __le64 *mtts; 813 u32 npage; 814 u64 addr; 815 816 if (!mtt_buf || mtt_max < 1) 817 goto done; 818 819 /* no mtt memory in direct mode, so just return the buffer address */ 820 if (cfg->is_direct) { 821 start_index = offset >> HNS_HW_PAGE_SHIFT; 822 for (mtt_count = 0; mtt_count < cfg->region_count && 823 total < mtt_max; mtt_count++) { 824 npage = cfg->region[mtt_count].offset; 825 if (npage < start_index) 826 continue; 827 828 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 829 mtt_buf[total] = addr; 830 831 total++; 832 } 833 834 goto done; 835 } 836 837 start_index = offset >> cfg->buf_pg_shift; 838 left = mtt_max; 839 while (left > 0) { 840 mtt_count = 0; 841 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 842 start_index + total, 843 &mtt_count); 844 if (!mtts || !mtt_count) 845 goto done; 846 847 npage = min(mtt_count, left); 848 left -= npage; 849 for (mtt_count = 0; mtt_count < npage; mtt_count++) 850 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 851 } 852 853 done: 854 if (base_addr) 855 *base_addr = cfg->root_ba; 856 857 return total; 858 } 859 860 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 861 struct hns_roce_buf_attr *attr, 862 struct hns_roce_hem_cfg *cfg, 863 unsigned int *buf_page_shift, u64 unalinged_size) 864 { 865 struct hns_roce_buf_region *r; 866 u64 first_region_padding; 867 int page_cnt, region_cnt; 868 unsigned int page_shift; 869 size_t buf_size; 870 871 /* If mtt is disabled, all pages must be within a continuous range */ 872 cfg->is_direct = !mtr_has_mtt(attr); 873 buf_size = mtr_bufs_size(attr); 874 if (cfg->is_direct) { 875 /* When HEM buffer uses 0-level addressing, the page size is 876 * equal to the whole buffer size, and we split the buffer into 877 * small pages which is used to check whether the adjacent 878 * units are in the continuous space and its size is fixed to 879 * 4K based on hns ROCEE's requirement. 880 */ 881 page_shift = HNS_HW_PAGE_SHIFT; 882 883 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 884 cfg->buf_pg_count = 1; 885 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 886 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 887 first_region_padding = 0; 888 } else { 889 page_shift = attr->page_shift; 890 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 891 1 << page_shift); 892 cfg->buf_pg_shift = page_shift; 893 first_region_padding = unalinged_size; 894 } 895 896 /* Convert buffer size to page index and page count for each region and 897 * the buffer's offset needs to be appended to the first region. 898 */ 899 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 900 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 901 r = &cfg->region[region_cnt]; 902 r->offset = page_cnt; 903 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 904 first_region_padding); 905 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 906 first_region_padding = 0; 907 page_cnt += r->count; 908 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 909 r->count); 910 } 911 912 cfg->region_count = region_cnt; 913 *buf_page_shift = page_shift; 914 915 return page_cnt; 916 } 917 918 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum) 919 { 920 return int_pow(ba_per_bt, hopnum - 1); 921 } 922 923 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev, 924 struct hns_roce_mtr *mtr, 925 unsigned int pg_shift) 926 { 927 unsigned long cap = hr_dev->caps.page_size_cap; 928 struct hns_roce_buf_region *re; 929 unsigned int pgs_per_l1ba; 930 unsigned int ba_per_bt; 931 unsigned int ba_num; 932 int i; 933 934 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) { 935 if (!(BIT(pg_shift) & cap)) 936 continue; 937 938 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN; 939 ba_num = 0; 940 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 941 re = &mtr->hem_cfg.region[i]; 942 if (re->hopnum == 0) 943 continue; 944 945 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum); 946 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba); 947 } 948 949 if (ba_num <= ba_per_bt) 950 return pg_shift; 951 } 952 953 return 0; 954 } 955 956 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 957 unsigned int ba_page_shift) 958 { 959 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 960 int ret; 961 962 hns_roce_hem_list_init(&mtr->hem_list); 963 if (!cfg->is_direct) { 964 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift); 965 if (!ba_page_shift) 966 return -ERANGE; 967 968 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 969 cfg->region, cfg->region_count, 970 ba_page_shift); 971 if (ret) 972 return ret; 973 cfg->root_ba = mtr->hem_list.root_ba; 974 cfg->ba_pg_shift = ba_page_shift; 975 } else { 976 cfg->ba_pg_shift = cfg->buf_pg_shift; 977 } 978 979 return 0; 980 } 981 982 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 983 { 984 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 985 } 986 987 /** 988 * hns_roce_mtr_create - Create hns memory translate region. 989 * 990 * @hr_dev: RoCE device struct pointer 991 * @mtr: memory translate region 992 * @buf_attr: buffer attribute for creating mtr 993 * @ba_page_shift: page shift for multi-hop base address table 994 * @udata: user space context, if it's NULL, means kernel space 995 * @user_addr: userspace virtual address to start at 996 */ 997 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 998 struct hns_roce_buf_attr *buf_attr, 999 unsigned int ba_page_shift, struct ib_udata *udata, 1000 unsigned long user_addr) 1001 { 1002 struct ib_device *ibdev = &hr_dev->ib_dev; 1003 unsigned int buf_page_shift = 0; 1004 int buf_page_cnt; 1005 int ret; 1006 1007 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 1008 &buf_page_shift, 1009 udata ? user_addr & ~PAGE_MASK : 0); 1010 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 1011 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 1012 buf_page_cnt, buf_page_shift); 1013 return -EINVAL; 1014 } 1015 1016 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 1017 if (ret) { 1018 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1019 return ret; 1020 } 1021 1022 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1023 * to finish the MTT configuration. 1024 */ 1025 if (buf_attr->mtt_only) { 1026 mtr->umem = NULL; 1027 mtr->kmem = NULL; 1028 return 0; 1029 } 1030 1031 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1032 if (ret) { 1033 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 1034 goto err_alloc_mtt; 1035 } 1036 1037 /* Write buffer's dma address to MTT */ 1038 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 1039 if (ret) 1040 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1041 else 1042 return 0; 1043 1044 mtr_free_bufs(hr_dev, mtr); 1045 err_alloc_mtt: 1046 mtr_free_mtt(hr_dev, mtr); 1047 return ret; 1048 } 1049 1050 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1051 { 1052 /* release multi-hop addressing resource */ 1053 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1054 1055 /* free buffers */ 1056 mtr_free_bufs(hr_dev, mtr); 1057 } 1058