xref: /openbmc/linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/platform_device.h>
35 #include <linux/vmalloc.h>
36 #include <rdma/ib_umem.h>
37 #include "hns_roce_device.h"
38 #include "hns_roce_cmd.h"
39 #include "hns_roce_hem.h"
40 
41 static u32 hw_index_to_key(unsigned long ind)
42 {
43 	return (u32)(ind >> 24) | (ind << 8);
44 }
45 
46 unsigned long key_to_hw_index(u32 key)
47 {
48 	return (key << 24) | (key >> 8);
49 }
50 
51 static int hns_roce_hw_create_mpt(struct hns_roce_dev *hr_dev,
52 				  struct hns_roce_cmd_mailbox *mailbox,
53 				  unsigned long mpt_index)
54 {
55 	return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
56 				 HNS_ROCE_CMD_CREATE_MPT,
57 				 HNS_ROCE_CMD_TIMEOUT_MSECS);
58 }
59 
60 int hns_roce_hw_destroy_mpt(struct hns_roce_dev *hr_dev,
61 			    struct hns_roce_cmd_mailbox *mailbox,
62 			    unsigned long mpt_index)
63 {
64 	return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
65 				 mpt_index, !mailbox, HNS_ROCE_CMD_DESTROY_MPT,
66 				 HNS_ROCE_CMD_TIMEOUT_MSECS);
67 }
68 
69 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
70 {
71 	struct ib_device *ibdev = &hr_dev->ib_dev;
72 	unsigned long obj = 0;
73 	int err;
74 
75 	/* Allocate a key for mr from mr_table */
76 	err = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &obj);
77 	if (err) {
78 		ibdev_err(ibdev,
79 			  "failed to alloc bitmap for MR key, ret = %d.\n",
80 			  err);
81 		return -ENOMEM;
82 	}
83 
84 	mr->key = hw_index_to_key(obj);		/* MR key */
85 
86 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
87 	if (err) {
88 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
89 		goto err_free_bitmap;
90 	}
91 
92 	return 0;
93 err_free_bitmap:
94 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap, obj, BITMAP_NO_RR);
95 	return err;
96 }
97 
98 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
99 {
100 	unsigned long obj = key_to_hw_index(mr->key);
101 
102 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
103 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap, obj, BITMAP_NO_RR);
104 }
105 
106 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
107 			struct ib_udata *udata, u64 start)
108 {
109 	struct ib_device *ibdev = &hr_dev->ib_dev;
110 	bool is_fast = mr->type == MR_TYPE_FRMR;
111 	struct hns_roce_buf_attr buf_attr = {};
112 	int err;
113 
114 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
115 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
116 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
117 	buf_attr.region[0].size = mr->size;
118 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
119 	buf_attr.region_count = 1;
120 	buf_attr.user_access = mr->access;
121 	/* fast MR's buffer is alloced before mapping, not at creation */
122 	buf_attr.mtt_only = is_fast;
123 
124 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
125 				  hr_dev->caps.pbl_ba_pg_sz + HNS_HW_PAGE_SHIFT,
126 				  udata, start);
127 	if (err)
128 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
129 	else
130 		mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
131 
132 	return err;
133 }
134 
135 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
136 {
137 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
138 }
139 
140 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
141 			     struct hns_roce_mr *mr)
142 {
143 	struct ib_device *ibdev = &hr_dev->ib_dev;
144 	int ret;
145 
146 	if (mr->enabled) {
147 		ret = hns_roce_hw_destroy_mpt(hr_dev, NULL,
148 					      key_to_hw_index(mr->key) &
149 					      (hr_dev->caps.num_mtpts - 1));
150 		if (ret)
151 			ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
152 				   ret);
153 	}
154 
155 	free_mr_pbl(hr_dev, mr);
156 	free_mr_key(hr_dev, mr);
157 }
158 
159 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
160 			      struct hns_roce_mr *mr)
161 {
162 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
163 	struct hns_roce_cmd_mailbox *mailbox;
164 	struct device *dev = hr_dev->dev;
165 	int ret;
166 
167 	/* Allocate mailbox memory */
168 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
169 	if (IS_ERR(mailbox)) {
170 		ret = PTR_ERR(mailbox);
171 		return ret;
172 	}
173 
174 	if (mr->type != MR_TYPE_FRMR)
175 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr,
176 					     mtpt_idx);
177 	else
178 		ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
179 	if (ret) {
180 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
181 		goto err_page;
182 	}
183 
184 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox,
185 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
186 	if (ret) {
187 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
188 		goto err_page;
189 	}
190 
191 	mr->enabled = 1;
192 
193 err_page:
194 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
195 
196 	return ret;
197 }
198 
199 int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
200 {
201 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
202 	int ret;
203 
204 	ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
205 				   hr_dev->caps.num_mtpts,
206 				   hr_dev->caps.num_mtpts - 1,
207 				   hr_dev->caps.reserved_mrws, 0);
208 	return ret;
209 }
210 
211 void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
212 {
213 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
214 
215 	hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
216 }
217 
218 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
219 {
220 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
221 	struct hns_roce_mr *mr;
222 	int ret;
223 
224 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
225 	if (mr == NULL)
226 		return  ERR_PTR(-ENOMEM);
227 
228 	mr->type = MR_TYPE_DMA;
229 	mr->pd = to_hr_pd(pd)->pdn;
230 	mr->access = acc;
231 
232 	/* Allocate memory region key */
233 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
234 	ret = alloc_mr_key(hr_dev, mr);
235 	if (ret)
236 		goto err_free;
237 
238 	ret = hns_roce_mr_enable(hr_dev, mr);
239 	if (ret)
240 		goto err_mr;
241 
242 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
243 
244 	return &mr->ibmr;
245 err_mr:
246 	free_mr_key(hr_dev, mr);
247 
248 err_free:
249 	kfree(mr);
250 	return ERR_PTR(ret);
251 }
252 
253 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
254 				   u64 virt_addr, int access_flags,
255 				   struct ib_udata *udata)
256 {
257 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
258 	struct hns_roce_mr *mr;
259 	int ret;
260 
261 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
262 	if (!mr)
263 		return ERR_PTR(-ENOMEM);
264 
265 	mr->iova = virt_addr;
266 	mr->size = length;
267 	mr->pd = to_hr_pd(pd)->pdn;
268 	mr->access = access_flags;
269 	mr->type = MR_TYPE_MR;
270 
271 	ret = alloc_mr_key(hr_dev, mr);
272 	if (ret)
273 		goto err_alloc_mr;
274 
275 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
276 	if (ret)
277 		goto err_alloc_key;
278 
279 	ret = hns_roce_mr_enable(hr_dev, mr);
280 	if (ret)
281 		goto err_alloc_pbl;
282 
283 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
284 	mr->ibmr.length = length;
285 
286 	return &mr->ibmr;
287 
288 err_alloc_pbl:
289 	free_mr_pbl(hr_dev, mr);
290 err_alloc_key:
291 	free_mr_key(hr_dev, mr);
292 err_alloc_mr:
293 	kfree(mr);
294 	return ERR_PTR(ret);
295 }
296 
297 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
298 				     u64 length, u64 virt_addr,
299 				     int mr_access_flags, struct ib_pd *pd,
300 				     struct ib_udata *udata)
301 {
302 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
303 	struct ib_device *ib_dev = &hr_dev->ib_dev;
304 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
305 	struct hns_roce_cmd_mailbox *mailbox;
306 	unsigned long mtpt_idx;
307 	int ret;
308 
309 	if (!mr->enabled)
310 		return ERR_PTR(-EINVAL);
311 
312 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
313 	if (IS_ERR(mailbox))
314 		return ERR_CAST(mailbox);
315 
316 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
317 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0,
318 				HNS_ROCE_CMD_QUERY_MPT,
319 				HNS_ROCE_CMD_TIMEOUT_MSECS);
320 	if (ret)
321 		goto free_cmd_mbox;
322 
323 	ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, mtpt_idx);
324 	if (ret)
325 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
326 
327 	mr->enabled = 0;
328 	mr->iova = virt_addr;
329 	mr->size = length;
330 
331 	if (flags & IB_MR_REREG_PD)
332 		mr->pd = to_hr_pd(pd)->pdn;
333 
334 	if (flags & IB_MR_REREG_ACCESS)
335 		mr->access = mr_access_flags;
336 
337 	if (flags & IB_MR_REREG_TRANS) {
338 		free_mr_pbl(hr_dev, mr);
339 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
340 		if (ret) {
341 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
342 				  ret);
343 			goto free_cmd_mbox;
344 		}
345 	}
346 
347 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
348 	if (ret) {
349 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
350 		goto free_cmd_mbox;
351 	}
352 
353 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox, mtpt_idx);
354 	if (ret) {
355 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
356 		goto free_cmd_mbox;
357 	}
358 
359 	mr->enabled = 1;
360 
361 free_cmd_mbox:
362 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
363 
364 	return ERR_PTR(ret);
365 }
366 
367 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
368 {
369 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
370 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
371 	int ret = 0;
372 
373 	if (hr_dev->hw->dereg_mr) {
374 		ret = hr_dev->hw->dereg_mr(hr_dev, mr, udata);
375 	} else {
376 		hns_roce_mr_free(hr_dev, mr);
377 		kfree(mr);
378 	}
379 
380 	return ret;
381 }
382 
383 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
384 				u32 max_num_sg)
385 {
386 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
387 	struct device *dev = hr_dev->dev;
388 	struct hns_roce_mr *mr;
389 	int ret;
390 
391 	if (mr_type != IB_MR_TYPE_MEM_REG)
392 		return ERR_PTR(-EINVAL);
393 
394 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
395 		dev_err(dev, "max_num_sg larger than %d\n",
396 			HNS_ROCE_FRMR_MAX_PA);
397 		return ERR_PTR(-EINVAL);
398 	}
399 
400 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
401 	if (!mr)
402 		return ERR_PTR(-ENOMEM);
403 
404 	mr->type = MR_TYPE_FRMR;
405 	mr->pd = to_hr_pd(pd)->pdn;
406 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
407 
408 	/* Allocate memory region key */
409 	ret = alloc_mr_key(hr_dev, mr);
410 	if (ret)
411 		goto err_free;
412 
413 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
414 	if (ret)
415 		goto err_key;
416 
417 	ret = hns_roce_mr_enable(hr_dev, mr);
418 	if (ret)
419 		goto err_pbl;
420 
421 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
422 	mr->ibmr.length = mr->size;
423 
424 	return &mr->ibmr;
425 
426 err_key:
427 	free_mr_key(hr_dev, mr);
428 err_pbl:
429 	free_mr_pbl(hr_dev, mr);
430 err_free:
431 	kfree(mr);
432 	return ERR_PTR(ret);
433 }
434 
435 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
436 {
437 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
438 
439 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
440 		mr->page_list[mr->npages++] = addr;
441 		return 0;
442 	}
443 
444 	return -ENOBUFS;
445 }
446 
447 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
448 		       unsigned int *sg_offset)
449 {
450 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
451 	struct ib_device *ibdev = &hr_dev->ib_dev;
452 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
453 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
454 	int ret = 0;
455 
456 	mr->npages = 0;
457 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
458 				 sizeof(dma_addr_t), GFP_KERNEL);
459 	if (!mr->page_list)
460 		return ret;
461 
462 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
463 	if (ret < 1) {
464 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
465 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
466 		goto err_page_list;
467 	}
468 
469 	mtr->hem_cfg.region[0].offset = 0;
470 	mtr->hem_cfg.region[0].count = mr->npages;
471 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
472 	mtr->hem_cfg.region_count = 1;
473 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
474 	if (ret) {
475 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
476 		ret = 0;
477 	} else {
478 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
479 		ret = mr->npages;
480 	}
481 
482 err_page_list:
483 	kvfree(mr->page_list);
484 	mr->page_list = NULL;
485 
486 	return ret;
487 }
488 
489 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
490 			     struct hns_roce_mw *mw)
491 {
492 	struct device *dev = hr_dev->dev;
493 	int ret;
494 
495 	if (mw->enabled) {
496 		ret = hns_roce_hw_destroy_mpt(hr_dev, NULL,
497 					      key_to_hw_index(mw->rkey) &
498 					      (hr_dev->caps.num_mtpts - 1));
499 		if (ret)
500 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
501 
502 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
503 				   key_to_hw_index(mw->rkey));
504 	}
505 
506 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
507 			     key_to_hw_index(mw->rkey), BITMAP_NO_RR);
508 }
509 
510 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
511 			      struct hns_roce_mw *mw)
512 {
513 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
514 	struct hns_roce_cmd_mailbox *mailbox;
515 	struct device *dev = hr_dev->dev;
516 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
517 	int ret;
518 
519 	/* prepare HEM entry memory */
520 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
521 	if (ret)
522 		return ret;
523 
524 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
525 	if (IS_ERR(mailbox)) {
526 		ret = PTR_ERR(mailbox);
527 		goto err_table;
528 	}
529 
530 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
531 	if (ret) {
532 		dev_err(dev, "MW write mtpt fail!\n");
533 		goto err_page;
534 	}
535 
536 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox,
537 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
538 	if (ret) {
539 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
540 		goto err_page;
541 	}
542 
543 	mw->enabled = 1;
544 
545 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
546 
547 	return 0;
548 
549 err_page:
550 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
551 
552 err_table:
553 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
554 
555 	return ret;
556 }
557 
558 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
559 {
560 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
561 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
562 	unsigned long index = 0;
563 	int ret;
564 
565 	/* Allocate a key for mw from bitmap */
566 	ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
567 	if (ret)
568 		return ret;
569 
570 	mw->rkey = hw_index_to_key(index);
571 
572 	ibmw->rkey = mw->rkey;
573 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
574 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
575 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
576 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
577 
578 	ret = hns_roce_mw_enable(hr_dev, mw);
579 	if (ret)
580 		goto err_mw;
581 
582 	return 0;
583 
584 err_mw:
585 	hns_roce_mw_free(hr_dev, mw);
586 	return ret;
587 }
588 
589 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
590 {
591 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
592 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
593 
594 	hns_roce_mw_free(hr_dev, mw);
595 	return 0;
596 }
597 
598 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
599 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
600 			  int max_count)
601 {
602 	int count, npage;
603 	int offset, end;
604 	__le64 *mtts;
605 	u64 addr;
606 	int i;
607 
608 	offset = region->offset;
609 	end = offset + region->count;
610 	npage = 0;
611 	while (offset < end && npage < max_count) {
612 		count = 0;
613 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
614 						  offset, &count, NULL);
615 		if (!mtts)
616 			return -ENOBUFS;
617 
618 		for (i = 0; i < count && npage < max_count; i++) {
619 			if (hr_dev->hw_rev == HNS_ROCE_HW_VER1)
620 				addr = to_hr_hw_page_addr(pages[npage]);
621 			else
622 				addr = pages[npage];
623 
624 			mtts[i] = cpu_to_le64(addr);
625 			npage++;
626 		}
627 		offset += count;
628 	}
629 
630 	return npage;
631 }
632 
633 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
634 {
635 	int i;
636 
637 	for (i = 0; i < attr->region_count; i++)
638 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
639 		    attr->region[i].hopnum > 0)
640 			return true;
641 
642 	/* because the mtr only one root base address, when hopnum is 0 means
643 	 * root base address equals the first buffer address, thus all alloced
644 	 * memory must in a continuous space accessed by direct mode.
645 	 */
646 	return false;
647 }
648 
649 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
650 {
651 	size_t size = 0;
652 	int i;
653 
654 	for (i = 0; i < attr->region_count; i++)
655 		size += attr->region[i].size;
656 
657 	return size;
658 }
659 
660 /*
661  * check the given pages in continuous address space
662  * Returns 0 on success, or the error page num.
663  */
664 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
665 					 unsigned int page_shift)
666 {
667 	size_t page_size = 1 << page_shift;
668 	int i;
669 
670 	for (i = 1; i < page_count; i++)
671 		if (pages[i] - pages[i - 1] != page_size)
672 			return i;
673 
674 	return 0;
675 }
676 
677 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
678 {
679 	/* release user buffers */
680 	if (mtr->umem) {
681 		ib_umem_release(mtr->umem);
682 		mtr->umem = NULL;
683 	}
684 
685 	/* release kernel buffers */
686 	if (mtr->kmem) {
687 		hns_roce_buf_free(hr_dev, mtr->kmem);
688 		mtr->kmem = NULL;
689 	}
690 }
691 
692 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
693 			  struct hns_roce_buf_attr *buf_attr,
694 			  struct ib_udata *udata, unsigned long user_addr)
695 {
696 	struct ib_device *ibdev = &hr_dev->ib_dev;
697 	size_t total_size;
698 
699 	total_size = mtr_bufs_size(buf_attr);
700 
701 	if (udata) {
702 		mtr->kmem = NULL;
703 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
704 					buf_attr->user_access);
705 		if (IS_ERR_OR_NULL(mtr->umem)) {
706 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
707 				  PTR_ERR(mtr->umem));
708 			return -ENOMEM;
709 		}
710 	} else {
711 		mtr->umem = NULL;
712 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
713 					       buf_attr->page_shift,
714 					       mtr->hem_cfg.is_direct ?
715 					       HNS_ROCE_BUF_DIRECT : 0);
716 		if (IS_ERR(mtr->kmem)) {
717 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
718 				  PTR_ERR(mtr->kmem));
719 			return PTR_ERR(mtr->kmem);
720 		}
721 	}
722 
723 	return 0;
724 }
725 
726 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
727 			int page_count, unsigned int page_shift)
728 {
729 	struct ib_device *ibdev = &hr_dev->ib_dev;
730 	dma_addr_t *pages;
731 	int npage;
732 	int ret;
733 
734 	/* alloc a tmp array to store buffer's dma address */
735 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
736 	if (!pages)
737 		return -ENOMEM;
738 
739 	if (mtr->umem)
740 		npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 0,
741 					       mtr->umem, page_shift);
742 	else
743 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 0,
744 					       mtr->kmem);
745 
746 	if (npage != page_count) {
747 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
748 			  page_count);
749 		ret = -ENOBUFS;
750 		goto err_alloc_list;
751 	}
752 
753 	if (mtr->hem_cfg.is_direct && npage > 1) {
754 		ret = mtr_check_direct_pages(pages, npage, page_shift);
755 		if (ret) {
756 			ibdev_err(ibdev, "failed to check %s mtr, idx = %d.\n",
757 				  mtr->umem ? "user" : "kernel", ret);
758 			ret = -ENOBUFS;
759 			goto err_alloc_list;
760 		}
761 	}
762 
763 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
764 	if (ret)
765 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
766 
767 err_alloc_list:
768 	kvfree(pages);
769 
770 	return ret;
771 }
772 
773 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
774 		     dma_addr_t *pages, unsigned int page_cnt)
775 {
776 	struct ib_device *ibdev = &hr_dev->ib_dev;
777 	struct hns_roce_buf_region *r;
778 	unsigned int i, mapped_cnt;
779 	int ret;
780 
781 	/*
782 	 * Only use the first page address as root ba when hopnum is 0, this
783 	 * is because the addresses of all pages are consecutive in this case.
784 	 */
785 	if (mtr->hem_cfg.is_direct) {
786 		mtr->hem_cfg.root_ba = pages[0];
787 		return 0;
788 	}
789 
790 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
791 	     mapped_cnt < page_cnt; i++) {
792 		r = &mtr->hem_cfg.region[i];
793 		/* if hopnum is 0, no need to map pages in this region */
794 		if (!r->hopnum) {
795 			mapped_cnt += r->count;
796 			continue;
797 		}
798 
799 		if (r->offset + r->count > page_cnt) {
800 			ret = -EINVAL;
801 			ibdev_err(ibdev,
802 				  "failed to check mtr%u end %u + %u, max %u.\n",
803 				  i, r->offset, r->count, page_cnt);
804 			return ret;
805 		}
806 
807 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
808 				     page_cnt - mapped_cnt);
809 		if (ret < 0) {
810 			ibdev_err(ibdev,
811 				  "failed to map mtr%u offset %u, ret = %d.\n",
812 				  i, r->offset, ret);
813 			return ret;
814 		}
815 		mapped_cnt += ret;
816 		ret = 0;
817 	}
818 
819 	if (mapped_cnt < page_cnt) {
820 		ret = -ENOBUFS;
821 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
822 			  mapped_cnt, page_cnt);
823 	}
824 
825 	return ret;
826 }
827 
828 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
829 		      int offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
830 {
831 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
832 	int mtt_count, left;
833 	int start_index;
834 	int total = 0;
835 	__le64 *mtts;
836 	u32 npage;
837 	u64 addr;
838 
839 	if (!mtt_buf || mtt_max < 1)
840 		goto done;
841 
842 	/* no mtt memory in direct mode, so just return the buffer address */
843 	if (cfg->is_direct) {
844 		start_index = offset >> HNS_HW_PAGE_SHIFT;
845 		for (mtt_count = 0; mtt_count < cfg->region_count &&
846 		     total < mtt_max; mtt_count++) {
847 			npage = cfg->region[mtt_count].offset;
848 			if (npage < start_index)
849 				continue;
850 
851 			addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
852 			if (hr_dev->hw_rev == HNS_ROCE_HW_VER1)
853 				mtt_buf[total] = to_hr_hw_page_addr(addr);
854 			else
855 				mtt_buf[total] = addr;
856 
857 			total++;
858 		}
859 
860 		goto done;
861 	}
862 
863 	start_index = offset >> cfg->buf_pg_shift;
864 	left = mtt_max;
865 	while (left > 0) {
866 		mtt_count = 0;
867 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
868 						  start_index + total,
869 						  &mtt_count, NULL);
870 		if (!mtts || !mtt_count)
871 			goto done;
872 
873 		npage = min(mtt_count, left);
874 		left -= npage;
875 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
876 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
877 	}
878 
879 done:
880 	if (base_addr)
881 		*base_addr = cfg->root_ba;
882 
883 	return total;
884 }
885 
886 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
887 			    struct hns_roce_buf_attr *attr,
888 			    struct hns_roce_hem_cfg *cfg,
889 			    unsigned int *buf_page_shift, int unalinged_size)
890 {
891 	struct hns_roce_buf_region *r;
892 	int first_region_padding;
893 	int page_cnt, region_cnt;
894 	unsigned int page_shift;
895 	size_t buf_size;
896 
897 	/* If mtt is disabled, all pages must be within a continuous range */
898 	cfg->is_direct = !mtr_has_mtt(attr);
899 	buf_size = mtr_bufs_size(attr);
900 	if (cfg->is_direct) {
901 		/* When HEM buffer uses 0-level addressing, the page size is
902 		 * equal to the whole buffer size, and we split the buffer into
903 		 * small pages which is used to check whether the adjacent
904 		 * units are in the continuous space and its size is fixed to
905 		 * 4K based on hns ROCEE's requirement.
906 		 */
907 		page_shift = HNS_HW_PAGE_SHIFT;
908 
909 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
910 		cfg->buf_pg_count = 1;
911 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
912 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
913 		first_region_padding = 0;
914 	} else {
915 		page_shift = attr->page_shift;
916 		cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
917 						 1 << page_shift);
918 		cfg->buf_pg_shift = page_shift;
919 		first_region_padding = unalinged_size;
920 	}
921 
922 	/* Convert buffer size to page index and page count for each region and
923 	 * the buffer's offset needs to be appended to the first region.
924 	 */
925 	for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
926 	     region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
927 		r = &cfg->region[region_cnt];
928 		r->offset = page_cnt;
929 		buf_size = hr_hw_page_align(attr->region[region_cnt].size +
930 					    first_region_padding);
931 		r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
932 		first_region_padding = 0;
933 		page_cnt += r->count;
934 		r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
935 					     r->count);
936 	}
937 
938 	cfg->region_count = region_cnt;
939 	*buf_page_shift = page_shift;
940 
941 	return page_cnt;
942 }
943 
944 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
945 			 unsigned int ba_page_shift)
946 {
947 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
948 	int ret;
949 
950 	hns_roce_hem_list_init(&mtr->hem_list);
951 	if (!cfg->is_direct) {
952 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
953 						cfg->region, cfg->region_count,
954 						ba_page_shift);
955 		if (ret)
956 			return ret;
957 		cfg->root_ba = mtr->hem_list.root_ba;
958 		cfg->ba_pg_shift = ba_page_shift;
959 	} else {
960 		cfg->ba_pg_shift = cfg->buf_pg_shift;
961 	}
962 
963 	return 0;
964 }
965 
966 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
967 {
968 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
969 }
970 
971 /**
972  * hns_roce_mtr_create - Create hns memory translate region.
973  *
974  * @hr_dev: RoCE device struct pointer
975  * @mtr: memory translate region
976  * @buf_attr: buffer attribute for creating mtr
977  * @ba_page_shift: page shift for multi-hop base address table
978  * @udata: user space context, if it's NULL, means kernel space
979  * @user_addr: userspace virtual address to start at
980  */
981 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
982 			struct hns_roce_buf_attr *buf_attr,
983 			unsigned int ba_page_shift, struct ib_udata *udata,
984 			unsigned long user_addr)
985 {
986 	struct ib_device *ibdev = &hr_dev->ib_dev;
987 	unsigned int buf_page_shift = 0;
988 	int buf_page_cnt;
989 	int ret;
990 
991 	buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
992 					&buf_page_shift,
993 					udata ? user_addr & ~PAGE_MASK : 0);
994 	if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
995 		ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %d.\n",
996 			  buf_page_cnt, buf_page_shift);
997 		return -EINVAL;
998 	}
999 
1000 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1001 	if (ret) {
1002 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1003 		return ret;
1004 	}
1005 
1006 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1007 	 * to finish the MTT configuration.
1008 	 */
1009 	if (buf_attr->mtt_only) {
1010 		mtr->umem = NULL;
1011 		mtr->kmem = NULL;
1012 		return 0;
1013 	}
1014 
1015 	ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1016 	if (ret) {
1017 		ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
1018 		goto err_alloc_mtt;
1019 	}
1020 
1021 	/* Write buffer's dma address to MTT */
1022 	ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
1023 	if (ret)
1024 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1025 	else
1026 		return 0;
1027 
1028 	mtr_free_bufs(hr_dev, mtr);
1029 err_alloc_mtt:
1030 	mtr_free_mtt(hr_dev, mtr);
1031 	return ret;
1032 }
1033 
1034 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1035 {
1036 	/* release multi-hop addressing resource */
1037 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1038 
1039 	/* free buffers */
1040 	mtr_free_bufs(hr_dev, mtr);
1041 }
1042