1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <rdma/ib_umem.h> 36 #include "hns_roce_device.h" 37 #include "hns_roce_cmd.h" 38 #include "hns_roce_hem.h" 39 40 static u32 hw_index_to_key(int ind) 41 { 42 return ((u32)ind >> 24) | ((u32)ind << 8); 43 } 44 45 unsigned long key_to_hw_index(u32 key) 46 { 47 return (key << 24) | (key >> 8); 48 } 49 50 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 51 { 52 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 53 struct ib_device *ibdev = &hr_dev->ib_dev; 54 int err; 55 int id; 56 57 /* Allocate a key for mr from mr_table */ 58 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 59 GFP_KERNEL); 60 if (id < 0) { 61 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 62 return -ENOMEM; 63 } 64 65 mr->key = hw_index_to_key(id); /* MR key */ 66 67 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 68 (unsigned long)id); 69 if (err) { 70 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 71 goto err_free_bitmap; 72 } 73 74 return 0; 75 err_free_bitmap: 76 ida_free(&mtpt_ida->ida, id); 77 return err; 78 } 79 80 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 81 { 82 unsigned long obj = key_to_hw_index(mr->key); 83 84 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 85 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 86 } 87 88 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 89 struct ib_udata *udata, u64 start) 90 { 91 struct ib_device *ibdev = &hr_dev->ib_dev; 92 bool is_fast = mr->type == MR_TYPE_FRMR; 93 struct hns_roce_buf_attr buf_attr = {}; 94 int err; 95 96 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 97 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 98 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 99 buf_attr.region[0].size = mr->size; 100 buf_attr.region[0].hopnum = mr->pbl_hop_num; 101 buf_attr.region_count = 1; 102 buf_attr.user_access = mr->access; 103 /* fast MR's buffer is alloced before mapping, not at creation */ 104 buf_attr.mtt_only = is_fast; 105 106 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 107 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 108 udata, start); 109 if (err) 110 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 111 else 112 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 113 114 return err; 115 } 116 117 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 118 { 119 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 120 } 121 122 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 123 { 124 struct ib_device *ibdev = &hr_dev->ib_dev; 125 int ret; 126 127 if (mr->enabled) { 128 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 129 key_to_hw_index(mr->key) & 130 (hr_dev->caps.num_mtpts - 1)); 131 if (ret) 132 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 133 ret); 134 } 135 136 free_mr_pbl(hr_dev, mr); 137 free_mr_key(hr_dev, mr); 138 } 139 140 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 141 struct hns_roce_mr *mr) 142 { 143 unsigned long mtpt_idx = key_to_hw_index(mr->key); 144 struct hns_roce_cmd_mailbox *mailbox; 145 struct device *dev = hr_dev->dev; 146 int ret; 147 148 /* Allocate mailbox memory */ 149 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 150 if (IS_ERR(mailbox)) 151 return PTR_ERR(mailbox); 152 153 if (mr->type != MR_TYPE_FRMR) 154 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 155 else 156 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 157 if (ret) { 158 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 159 goto err_page; 160 } 161 162 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 163 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 164 if (ret) { 165 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 166 goto err_page; 167 } 168 169 mr->enabled = 1; 170 171 err_page: 172 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 173 174 return ret; 175 } 176 177 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 178 { 179 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 180 181 ida_init(&mtpt_ida->ida); 182 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 183 mtpt_ida->min = hr_dev->caps.reserved_mrws; 184 } 185 186 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 187 { 188 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 189 struct hns_roce_mr *mr; 190 int ret; 191 192 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 193 if (!mr) 194 return ERR_PTR(-ENOMEM); 195 196 mr->type = MR_TYPE_DMA; 197 mr->pd = to_hr_pd(pd)->pdn; 198 mr->access = acc; 199 200 /* Allocate memory region key */ 201 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 202 ret = alloc_mr_key(hr_dev, mr); 203 if (ret) 204 goto err_free; 205 206 ret = hns_roce_mr_enable(hr_dev, mr); 207 if (ret) 208 goto err_mr; 209 210 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 211 212 return &mr->ibmr; 213 err_mr: 214 free_mr_key(hr_dev, mr); 215 216 err_free: 217 kfree(mr); 218 return ERR_PTR(ret); 219 } 220 221 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 222 u64 virt_addr, int access_flags, 223 struct ib_udata *udata) 224 { 225 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 226 struct hns_roce_mr *mr; 227 int ret; 228 229 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 230 if (!mr) 231 return ERR_PTR(-ENOMEM); 232 233 mr->iova = virt_addr; 234 mr->size = length; 235 mr->pd = to_hr_pd(pd)->pdn; 236 mr->access = access_flags; 237 mr->type = MR_TYPE_MR; 238 239 ret = alloc_mr_key(hr_dev, mr); 240 if (ret) 241 goto err_alloc_mr; 242 243 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 244 if (ret) 245 goto err_alloc_key; 246 247 ret = hns_roce_mr_enable(hr_dev, mr); 248 if (ret) 249 goto err_alloc_pbl; 250 251 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 252 253 return &mr->ibmr; 254 255 err_alloc_pbl: 256 free_mr_pbl(hr_dev, mr); 257 err_alloc_key: 258 free_mr_key(hr_dev, mr); 259 err_alloc_mr: 260 kfree(mr); 261 return ERR_PTR(ret); 262 } 263 264 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 265 u64 length, u64 virt_addr, 266 int mr_access_flags, struct ib_pd *pd, 267 struct ib_udata *udata) 268 { 269 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 270 struct ib_device *ib_dev = &hr_dev->ib_dev; 271 struct hns_roce_mr *mr = to_hr_mr(ibmr); 272 struct hns_roce_cmd_mailbox *mailbox; 273 unsigned long mtpt_idx; 274 int ret; 275 276 if (!mr->enabled) 277 return ERR_PTR(-EINVAL); 278 279 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 280 if (IS_ERR(mailbox)) 281 return ERR_CAST(mailbox); 282 283 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 284 285 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 286 mtpt_idx); 287 if (ret) 288 goto free_cmd_mbox; 289 290 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 291 mtpt_idx); 292 if (ret) 293 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 294 295 mr->enabled = 0; 296 mr->iova = virt_addr; 297 mr->size = length; 298 299 if (flags & IB_MR_REREG_PD) 300 mr->pd = to_hr_pd(pd)->pdn; 301 302 if (flags & IB_MR_REREG_ACCESS) 303 mr->access = mr_access_flags; 304 305 if (flags & IB_MR_REREG_TRANS) { 306 free_mr_pbl(hr_dev, mr); 307 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 308 if (ret) { 309 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 310 ret); 311 goto free_cmd_mbox; 312 } 313 } 314 315 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 316 if (ret) { 317 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 318 goto free_cmd_mbox; 319 } 320 321 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 322 mtpt_idx); 323 if (ret) { 324 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 325 goto free_cmd_mbox; 326 } 327 328 mr->enabled = 1; 329 330 free_cmd_mbox: 331 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 332 333 if (ret) 334 return ERR_PTR(ret); 335 return NULL; 336 } 337 338 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 339 { 340 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 341 struct hns_roce_mr *mr = to_hr_mr(ibmr); 342 343 if (hr_dev->hw->dereg_mr) 344 hr_dev->hw->dereg_mr(hr_dev); 345 346 hns_roce_mr_free(hr_dev, mr); 347 kfree(mr); 348 349 return 0; 350 } 351 352 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 353 u32 max_num_sg) 354 { 355 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 356 struct device *dev = hr_dev->dev; 357 struct hns_roce_mr *mr; 358 int ret; 359 360 if (mr_type != IB_MR_TYPE_MEM_REG) 361 return ERR_PTR(-EINVAL); 362 363 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 364 dev_err(dev, "max_num_sg larger than %d\n", 365 HNS_ROCE_FRMR_MAX_PA); 366 return ERR_PTR(-EINVAL); 367 } 368 369 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 370 if (!mr) 371 return ERR_PTR(-ENOMEM); 372 373 mr->type = MR_TYPE_FRMR; 374 mr->pd = to_hr_pd(pd)->pdn; 375 mr->size = max_num_sg * (1 << PAGE_SHIFT); 376 377 /* Allocate memory region key */ 378 ret = alloc_mr_key(hr_dev, mr); 379 if (ret) 380 goto err_free; 381 382 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 383 if (ret) 384 goto err_key; 385 386 ret = hns_roce_mr_enable(hr_dev, mr); 387 if (ret) 388 goto err_pbl; 389 390 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 391 mr->ibmr.length = mr->size; 392 393 return &mr->ibmr; 394 395 err_key: 396 free_mr_key(hr_dev, mr); 397 err_pbl: 398 free_mr_pbl(hr_dev, mr); 399 err_free: 400 kfree(mr); 401 return ERR_PTR(ret); 402 } 403 404 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 405 { 406 struct hns_roce_mr *mr = to_hr_mr(ibmr); 407 408 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 409 mr->page_list[mr->npages++] = addr; 410 return 0; 411 } 412 413 return -ENOBUFS; 414 } 415 416 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 417 unsigned int *sg_offset) 418 { 419 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 420 struct ib_device *ibdev = &hr_dev->ib_dev; 421 struct hns_roce_mr *mr = to_hr_mr(ibmr); 422 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 423 int ret = 0; 424 425 mr->npages = 0; 426 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 427 sizeof(dma_addr_t), GFP_KERNEL); 428 if (!mr->page_list) 429 return ret; 430 431 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 432 if (ret < 1) { 433 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 434 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); 435 goto err_page_list; 436 } 437 438 mtr->hem_cfg.region[0].offset = 0; 439 mtr->hem_cfg.region[0].count = mr->npages; 440 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 441 mtr->hem_cfg.region_count = 1; 442 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 443 if (ret) { 444 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 445 ret = 0; 446 } else { 447 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 448 ret = mr->npages; 449 } 450 451 err_page_list: 452 kvfree(mr->page_list); 453 mr->page_list = NULL; 454 455 return ret; 456 } 457 458 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 459 struct hns_roce_mw *mw) 460 { 461 struct device *dev = hr_dev->dev; 462 int ret; 463 464 if (mw->enabled) { 465 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 466 key_to_hw_index(mw->rkey) & 467 (hr_dev->caps.num_mtpts - 1)); 468 if (ret) 469 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 470 471 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 472 key_to_hw_index(mw->rkey)); 473 } 474 475 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 476 (int)key_to_hw_index(mw->rkey)); 477 } 478 479 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 480 struct hns_roce_mw *mw) 481 { 482 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 483 struct hns_roce_cmd_mailbox *mailbox; 484 struct device *dev = hr_dev->dev; 485 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 486 int ret; 487 488 /* prepare HEM entry memory */ 489 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 490 if (ret) 491 return ret; 492 493 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 494 if (IS_ERR(mailbox)) { 495 ret = PTR_ERR(mailbox); 496 goto err_table; 497 } 498 499 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 500 if (ret) { 501 dev_err(dev, "MW write mtpt fail!\n"); 502 goto err_page; 503 } 504 505 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 506 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 507 if (ret) { 508 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 509 goto err_page; 510 } 511 512 mw->enabled = 1; 513 514 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 515 516 return 0; 517 518 err_page: 519 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 520 521 err_table: 522 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 523 524 return ret; 525 } 526 527 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 528 { 529 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 530 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 531 struct ib_device *ibdev = &hr_dev->ib_dev; 532 struct hns_roce_mw *mw = to_hr_mw(ibmw); 533 int ret; 534 int id; 535 536 /* Allocate a key for mw from mr_table */ 537 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 538 GFP_KERNEL); 539 if (id < 0) { 540 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 541 return -ENOMEM; 542 } 543 544 mw->rkey = hw_index_to_key(id); 545 546 ibmw->rkey = mw->rkey; 547 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 548 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 549 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 550 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 551 552 ret = hns_roce_mw_enable(hr_dev, mw); 553 if (ret) 554 goto err_mw; 555 556 return 0; 557 558 err_mw: 559 hns_roce_mw_free(hr_dev, mw); 560 return ret; 561 } 562 563 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 564 { 565 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 566 struct hns_roce_mw *mw = to_hr_mw(ibmw); 567 568 hns_roce_mw_free(hr_dev, mw); 569 return 0; 570 } 571 572 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 573 struct hns_roce_buf_region *region, dma_addr_t *pages, 574 int max_count) 575 { 576 int count, npage; 577 int offset, end; 578 __le64 *mtts; 579 u64 addr; 580 int i; 581 582 offset = region->offset; 583 end = offset + region->count; 584 npage = 0; 585 while (offset < end && npage < max_count) { 586 count = 0; 587 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 588 offset, &count); 589 if (!mtts) 590 return -ENOBUFS; 591 592 for (i = 0; i < count && npage < max_count; i++) { 593 addr = pages[npage]; 594 595 mtts[i] = cpu_to_le64(addr); 596 npage++; 597 } 598 offset += count; 599 } 600 601 return npage; 602 } 603 604 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 605 { 606 int i; 607 608 for (i = 0; i < attr->region_count; i++) 609 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 610 attr->region[i].hopnum > 0) 611 return true; 612 613 /* because the mtr only one root base address, when hopnum is 0 means 614 * root base address equals the first buffer address, thus all alloced 615 * memory must in a continuous space accessed by direct mode. 616 */ 617 return false; 618 } 619 620 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 621 { 622 size_t size = 0; 623 int i; 624 625 for (i = 0; i < attr->region_count; i++) 626 size += attr->region[i].size; 627 628 return size; 629 } 630 631 /* 632 * check the given pages in continuous address space 633 * Returns 0 on success, or the error page num. 634 */ 635 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 636 unsigned int page_shift) 637 { 638 size_t page_size = 1 << page_shift; 639 int i; 640 641 for (i = 1; i < page_count; i++) 642 if (pages[i] - pages[i - 1] != page_size) 643 return i; 644 645 return 0; 646 } 647 648 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 649 { 650 /* release user buffers */ 651 if (mtr->umem) { 652 ib_umem_release(mtr->umem); 653 mtr->umem = NULL; 654 } 655 656 /* release kernel buffers */ 657 if (mtr->kmem) { 658 hns_roce_buf_free(hr_dev, mtr->kmem); 659 mtr->kmem = NULL; 660 } 661 } 662 663 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 664 struct hns_roce_buf_attr *buf_attr, 665 struct ib_udata *udata, unsigned long user_addr) 666 { 667 struct ib_device *ibdev = &hr_dev->ib_dev; 668 size_t total_size; 669 670 total_size = mtr_bufs_size(buf_attr); 671 672 if (udata) { 673 mtr->kmem = NULL; 674 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 675 buf_attr->user_access); 676 if (IS_ERR_OR_NULL(mtr->umem)) { 677 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 678 PTR_ERR(mtr->umem)); 679 return -ENOMEM; 680 } 681 } else { 682 mtr->umem = NULL; 683 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 684 buf_attr->page_shift, 685 mtr->hem_cfg.is_direct ? 686 HNS_ROCE_BUF_DIRECT : 0); 687 if (IS_ERR(mtr->kmem)) { 688 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 689 PTR_ERR(mtr->kmem)); 690 return PTR_ERR(mtr->kmem); 691 } 692 } 693 694 return 0; 695 } 696 697 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 698 int page_count, unsigned int page_shift) 699 { 700 struct ib_device *ibdev = &hr_dev->ib_dev; 701 dma_addr_t *pages; 702 int npage; 703 int ret; 704 705 /* alloc a tmp array to store buffer's dma address */ 706 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 707 if (!pages) 708 return -ENOMEM; 709 710 if (mtr->umem) 711 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 712 mtr->umem, page_shift); 713 else 714 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 715 mtr->kmem, page_shift); 716 717 if (npage != page_count) { 718 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 719 page_count); 720 ret = -ENOBUFS; 721 goto err_alloc_list; 722 } 723 724 if (mtr->hem_cfg.is_direct && npage > 1) { 725 ret = mtr_check_direct_pages(pages, npage, page_shift); 726 if (ret) { 727 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 728 mtr->umem ? "umtr" : "kmtr", ret, npage); 729 ret = -ENOBUFS; 730 goto err_alloc_list; 731 } 732 } 733 734 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 735 if (ret) 736 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 737 738 err_alloc_list: 739 kvfree(pages); 740 741 return ret; 742 } 743 744 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 745 dma_addr_t *pages, unsigned int page_cnt) 746 { 747 struct ib_device *ibdev = &hr_dev->ib_dev; 748 struct hns_roce_buf_region *r; 749 unsigned int i, mapped_cnt; 750 int ret = 0; 751 752 /* 753 * Only use the first page address as root ba when hopnum is 0, this 754 * is because the addresses of all pages are consecutive in this case. 755 */ 756 if (mtr->hem_cfg.is_direct) { 757 mtr->hem_cfg.root_ba = pages[0]; 758 return 0; 759 } 760 761 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 762 mapped_cnt < page_cnt; i++) { 763 r = &mtr->hem_cfg.region[i]; 764 /* if hopnum is 0, no need to map pages in this region */ 765 if (!r->hopnum) { 766 mapped_cnt += r->count; 767 continue; 768 } 769 770 if (r->offset + r->count > page_cnt) { 771 ret = -EINVAL; 772 ibdev_err(ibdev, 773 "failed to check mtr%u count %u + %u > %u.\n", 774 i, r->offset, r->count, page_cnt); 775 return ret; 776 } 777 778 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 779 page_cnt - mapped_cnt); 780 if (ret < 0) { 781 ibdev_err(ibdev, 782 "failed to map mtr%u offset %u, ret = %d.\n", 783 i, r->offset, ret); 784 return ret; 785 } 786 mapped_cnt += ret; 787 ret = 0; 788 } 789 790 if (mapped_cnt < page_cnt) { 791 ret = -ENOBUFS; 792 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 793 mapped_cnt, page_cnt); 794 } 795 796 return ret; 797 } 798 799 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 800 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 801 { 802 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 803 int mtt_count, left; 804 u32 start_index; 805 int total = 0; 806 __le64 *mtts; 807 u32 npage; 808 u64 addr; 809 810 if (!mtt_buf || mtt_max < 1) 811 goto done; 812 813 /* no mtt memory in direct mode, so just return the buffer address */ 814 if (cfg->is_direct) { 815 start_index = offset >> HNS_HW_PAGE_SHIFT; 816 for (mtt_count = 0; mtt_count < cfg->region_count && 817 total < mtt_max; mtt_count++) { 818 npage = cfg->region[mtt_count].offset; 819 if (npage < start_index) 820 continue; 821 822 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 823 mtt_buf[total] = addr; 824 825 total++; 826 } 827 828 goto done; 829 } 830 831 start_index = offset >> cfg->buf_pg_shift; 832 left = mtt_max; 833 while (left > 0) { 834 mtt_count = 0; 835 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 836 start_index + total, 837 &mtt_count); 838 if (!mtts || !mtt_count) 839 goto done; 840 841 npage = min(mtt_count, left); 842 left -= npage; 843 for (mtt_count = 0; mtt_count < npage; mtt_count++) 844 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 845 } 846 847 done: 848 if (base_addr) 849 *base_addr = cfg->root_ba; 850 851 return total; 852 } 853 854 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 855 struct hns_roce_buf_attr *attr, 856 struct hns_roce_hem_cfg *cfg, 857 unsigned int *buf_page_shift, u64 unalinged_size) 858 { 859 struct hns_roce_buf_region *r; 860 u64 first_region_padding; 861 int page_cnt, region_cnt; 862 unsigned int page_shift; 863 size_t buf_size; 864 865 /* If mtt is disabled, all pages must be within a continuous range */ 866 cfg->is_direct = !mtr_has_mtt(attr); 867 buf_size = mtr_bufs_size(attr); 868 if (cfg->is_direct) { 869 /* When HEM buffer uses 0-level addressing, the page size is 870 * equal to the whole buffer size, and we split the buffer into 871 * small pages which is used to check whether the adjacent 872 * units are in the continuous space and its size is fixed to 873 * 4K based on hns ROCEE's requirement. 874 */ 875 page_shift = HNS_HW_PAGE_SHIFT; 876 877 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 878 cfg->buf_pg_count = 1; 879 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 880 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 881 first_region_padding = 0; 882 } else { 883 page_shift = attr->page_shift; 884 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 885 1 << page_shift); 886 cfg->buf_pg_shift = page_shift; 887 first_region_padding = unalinged_size; 888 } 889 890 /* Convert buffer size to page index and page count for each region and 891 * the buffer's offset needs to be appended to the first region. 892 */ 893 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 894 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 895 r = &cfg->region[region_cnt]; 896 r->offset = page_cnt; 897 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 898 first_region_padding); 899 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 900 first_region_padding = 0; 901 page_cnt += r->count; 902 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 903 r->count); 904 } 905 906 cfg->region_count = region_cnt; 907 *buf_page_shift = page_shift; 908 909 return page_cnt; 910 } 911 912 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 913 unsigned int ba_page_shift) 914 { 915 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 916 int ret; 917 918 hns_roce_hem_list_init(&mtr->hem_list); 919 if (!cfg->is_direct) { 920 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 921 cfg->region, cfg->region_count, 922 ba_page_shift); 923 if (ret) 924 return ret; 925 cfg->root_ba = mtr->hem_list.root_ba; 926 cfg->ba_pg_shift = ba_page_shift; 927 } else { 928 cfg->ba_pg_shift = cfg->buf_pg_shift; 929 } 930 931 return 0; 932 } 933 934 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 935 { 936 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 937 } 938 939 /** 940 * hns_roce_mtr_create - Create hns memory translate region. 941 * 942 * @hr_dev: RoCE device struct pointer 943 * @mtr: memory translate region 944 * @buf_attr: buffer attribute for creating mtr 945 * @ba_page_shift: page shift for multi-hop base address table 946 * @udata: user space context, if it's NULL, means kernel space 947 * @user_addr: userspace virtual address to start at 948 */ 949 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 950 struct hns_roce_buf_attr *buf_attr, 951 unsigned int ba_page_shift, struct ib_udata *udata, 952 unsigned long user_addr) 953 { 954 struct ib_device *ibdev = &hr_dev->ib_dev; 955 unsigned int buf_page_shift = 0; 956 int buf_page_cnt; 957 int ret; 958 959 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 960 &buf_page_shift, 961 udata ? user_addr & ~PAGE_MASK : 0); 962 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 963 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 964 buf_page_cnt, buf_page_shift); 965 return -EINVAL; 966 } 967 968 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 969 if (ret) { 970 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 971 return ret; 972 } 973 974 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 975 * to finish the MTT configuration. 976 */ 977 if (buf_attr->mtt_only) { 978 mtr->umem = NULL; 979 mtr->kmem = NULL; 980 return 0; 981 } 982 983 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 984 if (ret) { 985 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 986 goto err_alloc_mtt; 987 } 988 989 /* Write buffer's dma address to MTT */ 990 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 991 if (ret) 992 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 993 else 994 return 0; 995 996 mtr_free_bufs(hr_dev, mtr); 997 err_alloc_mtt: 998 mtr_free_mtt(hr_dev, mtr); 999 return ret; 1000 } 1001 1002 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1003 { 1004 /* release multi-hop addressing resource */ 1005 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1006 1007 /* free buffers */ 1008 mtr_free_bufs(hr_dev, mtr); 1009 } 1010