xref: /openbmc/linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/vmalloc.h>
35 #include <rdma/ib_umem.h>
36 #include "hns_roce_device.h"
37 #include "hns_roce_cmd.h"
38 #include "hns_roce_hem.h"
39 
40 static u32 hw_index_to_key(int ind)
41 {
42 	return ((u32)ind >> 24) | ((u32)ind << 8);
43 }
44 
45 unsigned long key_to_hw_index(u32 key)
46 {
47 	return (key << 24) | (key >> 8);
48 }
49 
50 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
51 {
52 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
53 	struct ib_device *ibdev = &hr_dev->ib_dev;
54 	int err;
55 	int id;
56 
57 	/* Allocate a key for mr from mr_table */
58 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
59 			     GFP_KERNEL);
60 	if (id < 0) {
61 		ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
62 		return -ENOMEM;
63 	}
64 
65 	mr->key = hw_index_to_key(id); /* MR key */
66 
67 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
68 				 (unsigned long)id);
69 	if (err) {
70 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
71 		goto err_free_bitmap;
72 	}
73 
74 	return 0;
75 err_free_bitmap:
76 	ida_free(&mtpt_ida->ida, id);
77 	return err;
78 }
79 
80 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
81 {
82 	unsigned long obj = key_to_hw_index(mr->key);
83 
84 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
85 	ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
86 }
87 
88 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
89 			struct ib_udata *udata, u64 start)
90 {
91 	struct ib_device *ibdev = &hr_dev->ib_dev;
92 	bool is_fast = mr->type == MR_TYPE_FRMR;
93 	struct hns_roce_buf_attr buf_attr = {};
94 	int err;
95 
96 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
97 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
98 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
99 	buf_attr.region[0].size = mr->size;
100 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
101 	buf_attr.region_count = 1;
102 	buf_attr.user_access = mr->access;
103 	/* fast MR's buffer is alloced before mapping, not at creation */
104 	buf_attr.mtt_only = is_fast;
105 
106 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
107 				  hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
108 				  udata, start);
109 	if (err)
110 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
111 	else
112 		mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
113 
114 	return err;
115 }
116 
117 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
118 {
119 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
120 }
121 
122 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
123 {
124 	struct ib_device *ibdev = &hr_dev->ib_dev;
125 	int ret;
126 
127 	if (mr->enabled) {
128 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
129 					      key_to_hw_index(mr->key) &
130 					      (hr_dev->caps.num_mtpts - 1));
131 		if (ret)
132 			ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
133 				   ret);
134 	}
135 
136 	free_mr_pbl(hr_dev, mr);
137 	free_mr_key(hr_dev, mr);
138 }
139 
140 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
141 			      struct hns_roce_mr *mr)
142 {
143 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
144 	struct hns_roce_cmd_mailbox *mailbox;
145 	struct device *dev = hr_dev->dev;
146 	int ret;
147 
148 	/* Allocate mailbox memory */
149 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
150 	if (IS_ERR(mailbox))
151 		return PTR_ERR(mailbox);
152 
153 	if (mr->type != MR_TYPE_FRMR)
154 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
155 	else
156 		ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
157 	if (ret) {
158 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
159 		goto err_page;
160 	}
161 
162 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
163 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
164 	if (ret) {
165 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
166 		goto err_page;
167 	}
168 
169 	mr->enabled = 1;
170 
171 err_page:
172 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
173 
174 	return ret;
175 }
176 
177 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
178 {
179 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
180 
181 	ida_init(&mtpt_ida->ida);
182 	mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
183 	mtpt_ida->min = hr_dev->caps.reserved_mrws;
184 }
185 
186 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
187 {
188 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
189 	struct hns_roce_mr *mr;
190 	int ret;
191 
192 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
193 	if (!mr)
194 		return  ERR_PTR(-ENOMEM);
195 
196 	mr->type = MR_TYPE_DMA;
197 	mr->pd = to_hr_pd(pd)->pdn;
198 	mr->access = acc;
199 
200 	/* Allocate memory region key */
201 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
202 	ret = alloc_mr_key(hr_dev, mr);
203 	if (ret)
204 		goto err_free;
205 
206 	ret = hns_roce_mr_enable(hr_dev, mr);
207 	if (ret)
208 		goto err_mr;
209 
210 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
211 
212 	return &mr->ibmr;
213 err_mr:
214 	free_mr_key(hr_dev, mr);
215 
216 err_free:
217 	kfree(mr);
218 	return ERR_PTR(ret);
219 }
220 
221 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
222 				   u64 virt_addr, int access_flags,
223 				   struct ib_udata *udata)
224 {
225 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
226 	struct hns_roce_mr *mr;
227 	int ret;
228 
229 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
230 	if (!mr)
231 		return ERR_PTR(-ENOMEM);
232 
233 	mr->iova = virt_addr;
234 	mr->size = length;
235 	mr->pd = to_hr_pd(pd)->pdn;
236 	mr->access = access_flags;
237 	mr->type = MR_TYPE_MR;
238 
239 	ret = alloc_mr_key(hr_dev, mr);
240 	if (ret)
241 		goto err_alloc_mr;
242 
243 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
244 	if (ret)
245 		goto err_alloc_key;
246 
247 	ret = hns_roce_mr_enable(hr_dev, mr);
248 	if (ret)
249 		goto err_alloc_pbl;
250 
251 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
252 
253 	return &mr->ibmr;
254 
255 err_alloc_pbl:
256 	free_mr_pbl(hr_dev, mr);
257 err_alloc_key:
258 	free_mr_key(hr_dev, mr);
259 err_alloc_mr:
260 	kfree(mr);
261 	return ERR_PTR(ret);
262 }
263 
264 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
265 				     u64 length, u64 virt_addr,
266 				     int mr_access_flags, struct ib_pd *pd,
267 				     struct ib_udata *udata)
268 {
269 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
270 	struct ib_device *ib_dev = &hr_dev->ib_dev;
271 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
272 	struct hns_roce_cmd_mailbox *mailbox;
273 	unsigned long mtpt_idx;
274 	int ret;
275 
276 	if (!mr->enabled)
277 		return ERR_PTR(-EINVAL);
278 
279 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
280 	if (IS_ERR(mailbox))
281 		return ERR_CAST(mailbox);
282 
283 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
284 
285 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
286 				mtpt_idx);
287 	if (ret)
288 		goto free_cmd_mbox;
289 
290 	ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
291 				      mtpt_idx);
292 	if (ret)
293 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
294 
295 	mr->enabled = 0;
296 	mr->iova = virt_addr;
297 	mr->size = length;
298 
299 	if (flags & IB_MR_REREG_PD)
300 		mr->pd = to_hr_pd(pd)->pdn;
301 
302 	if (flags & IB_MR_REREG_ACCESS)
303 		mr->access = mr_access_flags;
304 
305 	if (flags & IB_MR_REREG_TRANS) {
306 		free_mr_pbl(hr_dev, mr);
307 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
308 		if (ret) {
309 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
310 				  ret);
311 			goto free_cmd_mbox;
312 		}
313 	}
314 
315 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
316 	if (ret) {
317 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
318 		goto free_cmd_mbox;
319 	}
320 
321 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
322 				     mtpt_idx);
323 	if (ret) {
324 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
325 		goto free_cmd_mbox;
326 	}
327 
328 	mr->enabled = 1;
329 
330 free_cmd_mbox:
331 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
332 
333 	if (ret)
334 		return ERR_PTR(ret);
335 	return NULL;
336 }
337 
338 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
339 {
340 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
341 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
342 
343 	if (hr_dev->hw->dereg_mr)
344 		hr_dev->hw->dereg_mr(hr_dev);
345 
346 	hns_roce_mr_free(hr_dev, mr);
347 	kfree(mr);
348 
349 	return 0;
350 }
351 
352 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
353 				u32 max_num_sg)
354 {
355 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
356 	struct device *dev = hr_dev->dev;
357 	struct hns_roce_mr *mr;
358 	int ret;
359 
360 	if (mr_type != IB_MR_TYPE_MEM_REG)
361 		return ERR_PTR(-EINVAL);
362 
363 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
364 		dev_err(dev, "max_num_sg larger than %d\n",
365 			HNS_ROCE_FRMR_MAX_PA);
366 		return ERR_PTR(-EINVAL);
367 	}
368 
369 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
370 	if (!mr)
371 		return ERR_PTR(-ENOMEM);
372 
373 	mr->type = MR_TYPE_FRMR;
374 	mr->pd = to_hr_pd(pd)->pdn;
375 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
376 
377 	/* Allocate memory region key */
378 	ret = alloc_mr_key(hr_dev, mr);
379 	if (ret)
380 		goto err_free;
381 
382 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
383 	if (ret)
384 		goto err_key;
385 
386 	ret = hns_roce_mr_enable(hr_dev, mr);
387 	if (ret)
388 		goto err_pbl;
389 
390 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
391 	mr->ibmr.length = mr->size;
392 
393 	return &mr->ibmr;
394 
395 err_pbl:
396 	free_mr_pbl(hr_dev, mr);
397 err_key:
398 	free_mr_key(hr_dev, mr);
399 err_free:
400 	kfree(mr);
401 	return ERR_PTR(ret);
402 }
403 
404 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
405 {
406 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
407 
408 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
409 		mr->page_list[mr->npages++] = addr;
410 		return 0;
411 	}
412 
413 	return -ENOBUFS;
414 }
415 
416 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
417 		       unsigned int *sg_offset)
418 {
419 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
420 	struct ib_device *ibdev = &hr_dev->ib_dev;
421 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
422 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
423 	int ret = 0;
424 
425 	mr->npages = 0;
426 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
427 				 sizeof(dma_addr_t), GFP_KERNEL);
428 	if (!mr->page_list)
429 		return ret;
430 
431 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
432 	if (ret < 1) {
433 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
434 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
435 		goto err_page_list;
436 	}
437 
438 	mtr->hem_cfg.region[0].offset = 0;
439 	mtr->hem_cfg.region[0].count = mr->npages;
440 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
441 	mtr->hem_cfg.region_count = 1;
442 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
443 	if (ret) {
444 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
445 		ret = 0;
446 	} else {
447 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
448 		ret = mr->npages;
449 	}
450 
451 err_page_list:
452 	kvfree(mr->page_list);
453 	mr->page_list = NULL;
454 
455 	return ret;
456 }
457 
458 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
459 			     struct hns_roce_mw *mw)
460 {
461 	struct device *dev = hr_dev->dev;
462 	int ret;
463 
464 	if (mw->enabled) {
465 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
466 					      key_to_hw_index(mw->rkey) &
467 					      (hr_dev->caps.num_mtpts - 1));
468 		if (ret)
469 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
470 
471 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
472 				   key_to_hw_index(mw->rkey));
473 	}
474 
475 	ida_free(&hr_dev->mr_table.mtpt_ida.ida,
476 		 (int)key_to_hw_index(mw->rkey));
477 }
478 
479 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
480 			      struct hns_roce_mw *mw)
481 {
482 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
483 	struct hns_roce_cmd_mailbox *mailbox;
484 	struct device *dev = hr_dev->dev;
485 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
486 	int ret;
487 
488 	/* prepare HEM entry memory */
489 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
490 	if (ret)
491 		return ret;
492 
493 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
494 	if (IS_ERR(mailbox)) {
495 		ret = PTR_ERR(mailbox);
496 		goto err_table;
497 	}
498 
499 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
500 	if (ret) {
501 		dev_err(dev, "MW write mtpt fail!\n");
502 		goto err_page;
503 	}
504 
505 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
506 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
507 	if (ret) {
508 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
509 		goto err_page;
510 	}
511 
512 	mw->enabled = 1;
513 
514 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
515 
516 	return 0;
517 
518 err_page:
519 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
520 
521 err_table:
522 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
523 
524 	return ret;
525 }
526 
527 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
528 {
529 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
530 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
531 	struct ib_device *ibdev = &hr_dev->ib_dev;
532 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
533 	int ret;
534 	int id;
535 
536 	/* Allocate a key for mw from mr_table */
537 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
538 			     GFP_KERNEL);
539 	if (id < 0) {
540 		ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
541 		return -ENOMEM;
542 	}
543 
544 	mw->rkey = hw_index_to_key(id);
545 
546 	ibmw->rkey = mw->rkey;
547 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
548 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
549 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
550 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
551 
552 	ret = hns_roce_mw_enable(hr_dev, mw);
553 	if (ret)
554 		goto err_mw;
555 
556 	return 0;
557 
558 err_mw:
559 	hns_roce_mw_free(hr_dev, mw);
560 	return ret;
561 }
562 
563 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
564 {
565 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
566 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
567 
568 	hns_roce_mw_free(hr_dev, mw);
569 	return 0;
570 }
571 
572 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
573 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
574 			  int max_count)
575 {
576 	int count, npage;
577 	int offset, end;
578 	__le64 *mtts;
579 	u64 addr;
580 	int i;
581 
582 	offset = region->offset;
583 	end = offset + region->count;
584 	npage = 0;
585 	while (offset < end && npage < max_count) {
586 		count = 0;
587 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
588 						  offset, &count);
589 		if (!mtts)
590 			return -ENOBUFS;
591 
592 		for (i = 0; i < count && npage < max_count; i++) {
593 			addr = pages[npage];
594 
595 			mtts[i] = cpu_to_le64(addr);
596 			npage++;
597 		}
598 		offset += count;
599 	}
600 
601 	return npage;
602 }
603 
604 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
605 {
606 	int i;
607 
608 	for (i = 0; i < attr->region_count; i++)
609 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
610 		    attr->region[i].hopnum > 0)
611 			return true;
612 
613 	/* because the mtr only one root base address, when hopnum is 0 means
614 	 * root base address equals the first buffer address, thus all alloced
615 	 * memory must in a continuous space accessed by direct mode.
616 	 */
617 	return false;
618 }
619 
620 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
621 {
622 	size_t size = 0;
623 	int i;
624 
625 	for (i = 0; i < attr->region_count; i++)
626 		size += attr->region[i].size;
627 
628 	return size;
629 }
630 
631 /*
632  * check the given pages in continuous address space
633  * Returns 0 on success, or the error page num.
634  */
635 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
636 					 unsigned int page_shift)
637 {
638 	size_t page_size = 1 << page_shift;
639 	int i;
640 
641 	for (i = 1; i < page_count; i++)
642 		if (pages[i] - pages[i - 1] != page_size)
643 			return i;
644 
645 	return 0;
646 }
647 
648 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
649 {
650 	/* release user buffers */
651 	if (mtr->umem) {
652 		ib_umem_release(mtr->umem);
653 		mtr->umem = NULL;
654 	}
655 
656 	/* release kernel buffers */
657 	if (mtr->kmem) {
658 		hns_roce_buf_free(hr_dev, mtr->kmem);
659 		mtr->kmem = NULL;
660 	}
661 }
662 
663 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
664 			  struct hns_roce_buf_attr *buf_attr,
665 			  struct ib_udata *udata, unsigned long user_addr)
666 {
667 	struct ib_device *ibdev = &hr_dev->ib_dev;
668 	size_t total_size;
669 
670 	total_size = mtr_bufs_size(buf_attr);
671 
672 	if (udata) {
673 		mtr->kmem = NULL;
674 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
675 					buf_attr->user_access);
676 		if (IS_ERR_OR_NULL(mtr->umem)) {
677 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
678 				  PTR_ERR(mtr->umem));
679 			return -ENOMEM;
680 		}
681 	} else {
682 		mtr->umem = NULL;
683 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
684 					       buf_attr->page_shift,
685 					       mtr->hem_cfg.is_direct ?
686 					       HNS_ROCE_BUF_DIRECT : 0);
687 		if (IS_ERR(mtr->kmem)) {
688 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
689 				  PTR_ERR(mtr->kmem));
690 			return PTR_ERR(mtr->kmem);
691 		}
692 	}
693 
694 	return 0;
695 }
696 
697 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
698 			int page_count, unsigned int page_shift)
699 {
700 	struct ib_device *ibdev = &hr_dev->ib_dev;
701 	dma_addr_t *pages;
702 	int npage;
703 	int ret;
704 
705 	/* alloc a tmp array to store buffer's dma address */
706 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
707 	if (!pages)
708 		return -ENOMEM;
709 
710 	if (mtr->umem)
711 		npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
712 					       mtr->umem, page_shift);
713 	else
714 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
715 					       mtr->kmem, page_shift);
716 
717 	if (npage != page_count) {
718 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
719 			  page_count);
720 		ret = -ENOBUFS;
721 		goto err_alloc_list;
722 	}
723 
724 	if (mtr->hem_cfg.is_direct && npage > 1) {
725 		ret = mtr_check_direct_pages(pages, npage, page_shift);
726 		if (ret) {
727 			ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
728 				  mtr->umem ? "umtr" : "kmtr", ret, npage);
729 			ret = -ENOBUFS;
730 			goto err_alloc_list;
731 		}
732 	}
733 
734 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
735 	if (ret)
736 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
737 
738 err_alloc_list:
739 	kvfree(pages);
740 
741 	return ret;
742 }
743 
744 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
745 		     dma_addr_t *pages, unsigned int page_cnt)
746 {
747 	struct ib_device *ibdev = &hr_dev->ib_dev;
748 	struct hns_roce_buf_region *r;
749 	unsigned int i, mapped_cnt;
750 	int ret = 0;
751 
752 	/*
753 	 * Only use the first page address as root ba when hopnum is 0, this
754 	 * is because the addresses of all pages are consecutive in this case.
755 	 */
756 	if (mtr->hem_cfg.is_direct) {
757 		mtr->hem_cfg.root_ba = pages[0];
758 		return 0;
759 	}
760 
761 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
762 	     mapped_cnt < page_cnt; i++) {
763 		r = &mtr->hem_cfg.region[i];
764 		/* if hopnum is 0, no need to map pages in this region */
765 		if (!r->hopnum) {
766 			mapped_cnt += r->count;
767 			continue;
768 		}
769 
770 		if (r->offset + r->count > page_cnt) {
771 			ret = -EINVAL;
772 			ibdev_err(ibdev,
773 				  "failed to check mtr%u count %u + %u > %u.\n",
774 				  i, r->offset, r->count, page_cnt);
775 			return ret;
776 		}
777 
778 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
779 				     page_cnt - mapped_cnt);
780 		if (ret < 0) {
781 			ibdev_err(ibdev,
782 				  "failed to map mtr%u offset %u, ret = %d.\n",
783 				  i, r->offset, ret);
784 			return ret;
785 		}
786 		mapped_cnt += ret;
787 		ret = 0;
788 	}
789 
790 	if (mapped_cnt < page_cnt) {
791 		ret = -ENOBUFS;
792 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
793 			  mapped_cnt, page_cnt);
794 	}
795 
796 	return ret;
797 }
798 
799 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
800 		      u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
801 {
802 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
803 	int mtt_count, left;
804 	u32 start_index;
805 	int total = 0;
806 	__le64 *mtts;
807 	u32 npage;
808 	u64 addr;
809 
810 	if (!mtt_buf || mtt_max < 1)
811 		goto done;
812 
813 	/* no mtt memory in direct mode, so just return the buffer address */
814 	if (cfg->is_direct) {
815 		start_index = offset >> HNS_HW_PAGE_SHIFT;
816 		for (mtt_count = 0; mtt_count < cfg->region_count &&
817 		     total < mtt_max; mtt_count++) {
818 			npage = cfg->region[mtt_count].offset;
819 			if (npage < start_index)
820 				continue;
821 
822 			addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
823 			mtt_buf[total] = addr;
824 
825 			total++;
826 		}
827 
828 		goto done;
829 	}
830 
831 	start_index = offset >> cfg->buf_pg_shift;
832 	left = mtt_max;
833 	while (left > 0) {
834 		mtt_count = 0;
835 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
836 						  start_index + total,
837 						  &mtt_count);
838 		if (!mtts || !mtt_count)
839 			goto done;
840 
841 		npage = min(mtt_count, left);
842 		left -= npage;
843 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
844 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
845 	}
846 
847 done:
848 	if (base_addr)
849 		*base_addr = cfg->root_ba;
850 
851 	return total;
852 }
853 
854 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
855 			    struct hns_roce_buf_attr *attr,
856 			    struct hns_roce_hem_cfg *cfg,
857 			    unsigned int *buf_page_shift, u64 unalinged_size)
858 {
859 	struct hns_roce_buf_region *r;
860 	u64 first_region_padding;
861 	int page_cnt, region_cnt;
862 	unsigned int page_shift;
863 	size_t buf_size;
864 
865 	/* If mtt is disabled, all pages must be within a continuous range */
866 	cfg->is_direct = !mtr_has_mtt(attr);
867 	buf_size = mtr_bufs_size(attr);
868 	if (cfg->is_direct) {
869 		/* When HEM buffer uses 0-level addressing, the page size is
870 		 * equal to the whole buffer size, and we split the buffer into
871 		 * small pages which is used to check whether the adjacent
872 		 * units are in the continuous space and its size is fixed to
873 		 * 4K based on hns ROCEE's requirement.
874 		 */
875 		page_shift = HNS_HW_PAGE_SHIFT;
876 
877 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
878 		cfg->buf_pg_count = 1;
879 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
880 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
881 		first_region_padding = 0;
882 	} else {
883 		page_shift = attr->page_shift;
884 		cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
885 						 1 << page_shift);
886 		cfg->buf_pg_shift = page_shift;
887 		first_region_padding = unalinged_size;
888 	}
889 
890 	/* Convert buffer size to page index and page count for each region and
891 	 * the buffer's offset needs to be appended to the first region.
892 	 */
893 	for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
894 	     region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
895 		r = &cfg->region[region_cnt];
896 		r->offset = page_cnt;
897 		buf_size = hr_hw_page_align(attr->region[region_cnt].size +
898 					    first_region_padding);
899 		r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
900 		first_region_padding = 0;
901 		page_cnt += r->count;
902 		r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
903 					     r->count);
904 	}
905 
906 	cfg->region_count = region_cnt;
907 	*buf_page_shift = page_shift;
908 
909 	return page_cnt;
910 }
911 
912 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
913 			 unsigned int ba_page_shift)
914 {
915 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
916 	int ret;
917 
918 	hns_roce_hem_list_init(&mtr->hem_list);
919 	if (!cfg->is_direct) {
920 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
921 						cfg->region, cfg->region_count,
922 						ba_page_shift);
923 		if (ret)
924 			return ret;
925 		cfg->root_ba = mtr->hem_list.root_ba;
926 		cfg->ba_pg_shift = ba_page_shift;
927 	} else {
928 		cfg->ba_pg_shift = cfg->buf_pg_shift;
929 	}
930 
931 	return 0;
932 }
933 
934 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
935 {
936 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
937 }
938 
939 /**
940  * hns_roce_mtr_create - Create hns memory translate region.
941  *
942  * @hr_dev: RoCE device struct pointer
943  * @mtr: memory translate region
944  * @buf_attr: buffer attribute for creating mtr
945  * @ba_page_shift: page shift for multi-hop base address table
946  * @udata: user space context, if it's NULL, means kernel space
947  * @user_addr: userspace virtual address to start at
948  */
949 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
950 			struct hns_roce_buf_attr *buf_attr,
951 			unsigned int ba_page_shift, struct ib_udata *udata,
952 			unsigned long user_addr)
953 {
954 	struct ib_device *ibdev = &hr_dev->ib_dev;
955 	unsigned int buf_page_shift = 0;
956 	int buf_page_cnt;
957 	int ret;
958 
959 	buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
960 					&buf_page_shift,
961 					udata ? user_addr & ~PAGE_MASK : 0);
962 	if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
963 		ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
964 			  buf_page_cnt, buf_page_shift);
965 		return -EINVAL;
966 	}
967 
968 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
969 	if (ret) {
970 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
971 		return ret;
972 	}
973 
974 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
975 	 * to finish the MTT configuration.
976 	 */
977 	if (buf_attr->mtt_only) {
978 		mtr->umem = NULL;
979 		mtr->kmem = NULL;
980 		return 0;
981 	}
982 
983 	ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
984 	if (ret) {
985 		ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
986 		goto err_alloc_mtt;
987 	}
988 
989 	/* Write buffer's dma address to MTT */
990 	ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
991 	if (ret)
992 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
993 	else
994 		return 0;
995 
996 	mtr_free_bufs(hr_dev, mtr);
997 err_alloc_mtt:
998 	mtr_free_mtt(hr_dev, mtr);
999 	return ret;
1000 }
1001 
1002 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1003 {
1004 	/* release multi-hop addressing resource */
1005 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1006 
1007 	/* free buffers */
1008 	mtr_free_bufs(hr_dev, mtr);
1009 }
1010