1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/platform_device.h> 35 #include <linux/vmalloc.h> 36 #include <rdma/ib_umem.h> 37 #include "hns_roce_device.h" 38 #include "hns_roce_cmd.h" 39 #include "hns_roce_hem.h" 40 41 static u32 hw_index_to_key(int ind) 42 { 43 return ((u32)ind >> 24) | ((u32)ind << 8); 44 } 45 46 unsigned long key_to_hw_index(u32 key) 47 { 48 return (key << 24) | (key >> 8); 49 } 50 51 static int hns_roce_hw_create_mpt(struct hns_roce_dev *hr_dev, 52 struct hns_roce_cmd_mailbox *mailbox, 53 unsigned long mpt_index) 54 { 55 return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0, 56 HNS_ROCE_CMD_CREATE_MPT, 57 HNS_ROCE_CMD_TIMEOUT_MSECS); 58 } 59 60 int hns_roce_hw_destroy_mpt(struct hns_roce_dev *hr_dev, 61 struct hns_roce_cmd_mailbox *mailbox, 62 unsigned long mpt_index) 63 { 64 return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0, 65 mpt_index, !mailbox, HNS_ROCE_CMD_DESTROY_MPT, 66 HNS_ROCE_CMD_TIMEOUT_MSECS); 67 } 68 69 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 70 { 71 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 72 struct ib_device *ibdev = &hr_dev->ib_dev; 73 int err; 74 int id; 75 76 /* Allocate a key for mr from mr_table */ 77 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 78 GFP_KERNEL); 79 if (id < 0) { 80 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 81 return -ENOMEM; 82 } 83 84 mr->key = hw_index_to_key(id); /* MR key */ 85 86 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 87 (unsigned long)id); 88 if (err) { 89 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 90 goto err_free_bitmap; 91 } 92 93 return 0; 94 err_free_bitmap: 95 ida_free(&mtpt_ida->ida, id); 96 return err; 97 } 98 99 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 100 { 101 unsigned long obj = key_to_hw_index(mr->key); 102 103 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 104 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 105 } 106 107 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 108 struct ib_udata *udata, u64 start) 109 { 110 struct ib_device *ibdev = &hr_dev->ib_dev; 111 bool is_fast = mr->type == MR_TYPE_FRMR; 112 struct hns_roce_buf_attr buf_attr = {}; 113 int err; 114 115 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 116 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 117 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 118 buf_attr.region[0].size = mr->size; 119 buf_attr.region[0].hopnum = mr->pbl_hop_num; 120 buf_attr.region_count = 1; 121 buf_attr.user_access = mr->access; 122 /* fast MR's buffer is alloced before mapping, not at creation */ 123 buf_attr.mtt_only = is_fast; 124 125 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 126 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 127 udata, start); 128 if (err) 129 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 130 else 131 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 132 133 return err; 134 } 135 136 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 137 { 138 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 139 } 140 141 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, 142 struct hns_roce_mr *mr) 143 { 144 struct ib_device *ibdev = &hr_dev->ib_dev; 145 int ret; 146 147 if (mr->enabled) { 148 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, 149 key_to_hw_index(mr->key) & 150 (hr_dev->caps.num_mtpts - 1)); 151 if (ret) 152 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 153 ret); 154 } 155 156 free_mr_pbl(hr_dev, mr); 157 free_mr_key(hr_dev, mr); 158 } 159 160 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 161 struct hns_roce_mr *mr) 162 { 163 unsigned long mtpt_idx = key_to_hw_index(mr->key); 164 struct hns_roce_cmd_mailbox *mailbox; 165 struct device *dev = hr_dev->dev; 166 int ret; 167 168 /* Allocate mailbox memory */ 169 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 170 if (IS_ERR(mailbox)) { 171 ret = PTR_ERR(mailbox); 172 return ret; 173 } 174 175 if (mr->type != MR_TYPE_FRMR) 176 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr, 177 mtpt_idx); 178 else 179 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 180 if (ret) { 181 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 182 goto err_page; 183 } 184 185 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, 186 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 187 if (ret) { 188 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 189 goto err_page; 190 } 191 192 mr->enabled = 1; 193 194 err_page: 195 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 196 197 return ret; 198 } 199 200 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 201 { 202 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 203 204 ida_init(&mtpt_ida->ida); 205 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 206 mtpt_ida->min = hr_dev->caps.reserved_mrws; 207 } 208 209 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 210 { 211 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 212 struct hns_roce_mr *mr; 213 int ret; 214 215 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 216 if (mr == NULL) 217 return ERR_PTR(-ENOMEM); 218 219 mr->type = MR_TYPE_DMA; 220 mr->pd = to_hr_pd(pd)->pdn; 221 mr->access = acc; 222 223 /* Allocate memory region key */ 224 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 225 ret = alloc_mr_key(hr_dev, mr); 226 if (ret) 227 goto err_free; 228 229 ret = hns_roce_mr_enable(hr_dev, mr); 230 if (ret) 231 goto err_mr; 232 233 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 234 235 return &mr->ibmr; 236 err_mr: 237 free_mr_key(hr_dev, mr); 238 239 err_free: 240 kfree(mr); 241 return ERR_PTR(ret); 242 } 243 244 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 245 u64 virt_addr, int access_flags, 246 struct ib_udata *udata) 247 { 248 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 249 struct hns_roce_mr *mr; 250 int ret; 251 252 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 253 if (!mr) 254 return ERR_PTR(-ENOMEM); 255 256 mr->iova = virt_addr; 257 mr->size = length; 258 mr->pd = to_hr_pd(pd)->pdn; 259 mr->access = access_flags; 260 mr->type = MR_TYPE_MR; 261 262 ret = alloc_mr_key(hr_dev, mr); 263 if (ret) 264 goto err_alloc_mr; 265 266 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 267 if (ret) 268 goto err_alloc_key; 269 270 ret = hns_roce_mr_enable(hr_dev, mr); 271 if (ret) 272 goto err_alloc_pbl; 273 274 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 275 mr->ibmr.length = length; 276 277 return &mr->ibmr; 278 279 err_alloc_pbl: 280 free_mr_pbl(hr_dev, mr); 281 err_alloc_key: 282 free_mr_key(hr_dev, mr); 283 err_alloc_mr: 284 kfree(mr); 285 return ERR_PTR(ret); 286 } 287 288 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 289 u64 length, u64 virt_addr, 290 int mr_access_flags, struct ib_pd *pd, 291 struct ib_udata *udata) 292 { 293 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 294 struct ib_device *ib_dev = &hr_dev->ib_dev; 295 struct hns_roce_mr *mr = to_hr_mr(ibmr); 296 struct hns_roce_cmd_mailbox *mailbox; 297 unsigned long mtpt_idx; 298 int ret; 299 300 if (!mr->enabled) 301 return ERR_PTR(-EINVAL); 302 303 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 304 if (IS_ERR(mailbox)) 305 return ERR_CAST(mailbox); 306 307 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 308 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0, 309 HNS_ROCE_CMD_QUERY_MPT, 310 HNS_ROCE_CMD_TIMEOUT_MSECS); 311 if (ret) 312 goto free_cmd_mbox; 313 314 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, mtpt_idx); 315 if (ret) 316 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 317 318 mr->enabled = 0; 319 mr->iova = virt_addr; 320 mr->size = length; 321 322 if (flags & IB_MR_REREG_PD) 323 mr->pd = to_hr_pd(pd)->pdn; 324 325 if (flags & IB_MR_REREG_ACCESS) 326 mr->access = mr_access_flags; 327 328 if (flags & IB_MR_REREG_TRANS) { 329 free_mr_pbl(hr_dev, mr); 330 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 331 if (ret) { 332 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 333 ret); 334 goto free_cmd_mbox; 335 } 336 } 337 338 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 339 if (ret) { 340 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 341 goto free_cmd_mbox; 342 } 343 344 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, mtpt_idx); 345 if (ret) { 346 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 347 goto free_cmd_mbox; 348 } 349 350 mr->enabled = 1; 351 352 free_cmd_mbox: 353 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 354 355 if (ret) 356 return ERR_PTR(ret); 357 return NULL; 358 } 359 360 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 361 { 362 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 363 struct hns_roce_mr *mr = to_hr_mr(ibmr); 364 int ret = 0; 365 366 if (hr_dev->hw->dereg_mr) { 367 ret = hr_dev->hw->dereg_mr(hr_dev, mr, udata); 368 } else { 369 hns_roce_mr_free(hr_dev, mr); 370 kfree(mr); 371 } 372 373 return ret; 374 } 375 376 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 377 u32 max_num_sg) 378 { 379 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 380 struct device *dev = hr_dev->dev; 381 struct hns_roce_mr *mr; 382 int ret; 383 384 if (mr_type != IB_MR_TYPE_MEM_REG) 385 return ERR_PTR(-EINVAL); 386 387 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 388 dev_err(dev, "max_num_sg larger than %d\n", 389 HNS_ROCE_FRMR_MAX_PA); 390 return ERR_PTR(-EINVAL); 391 } 392 393 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 394 if (!mr) 395 return ERR_PTR(-ENOMEM); 396 397 mr->type = MR_TYPE_FRMR; 398 mr->pd = to_hr_pd(pd)->pdn; 399 mr->size = max_num_sg * (1 << PAGE_SHIFT); 400 401 /* Allocate memory region key */ 402 ret = alloc_mr_key(hr_dev, mr); 403 if (ret) 404 goto err_free; 405 406 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 407 if (ret) 408 goto err_key; 409 410 ret = hns_roce_mr_enable(hr_dev, mr); 411 if (ret) 412 goto err_pbl; 413 414 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 415 mr->ibmr.length = mr->size; 416 417 return &mr->ibmr; 418 419 err_key: 420 free_mr_key(hr_dev, mr); 421 err_pbl: 422 free_mr_pbl(hr_dev, mr); 423 err_free: 424 kfree(mr); 425 return ERR_PTR(ret); 426 } 427 428 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 429 { 430 struct hns_roce_mr *mr = to_hr_mr(ibmr); 431 432 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 433 mr->page_list[mr->npages++] = addr; 434 return 0; 435 } 436 437 return -ENOBUFS; 438 } 439 440 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 441 unsigned int *sg_offset) 442 { 443 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 444 struct ib_device *ibdev = &hr_dev->ib_dev; 445 struct hns_roce_mr *mr = to_hr_mr(ibmr); 446 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 447 int ret = 0; 448 449 mr->npages = 0; 450 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 451 sizeof(dma_addr_t), GFP_KERNEL); 452 if (!mr->page_list) 453 return ret; 454 455 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 456 if (ret < 1) { 457 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 458 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); 459 goto err_page_list; 460 } 461 462 mtr->hem_cfg.region[0].offset = 0; 463 mtr->hem_cfg.region[0].count = mr->npages; 464 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 465 mtr->hem_cfg.region_count = 1; 466 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 467 if (ret) { 468 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 469 ret = 0; 470 } else { 471 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 472 ret = mr->npages; 473 } 474 475 err_page_list: 476 kvfree(mr->page_list); 477 mr->page_list = NULL; 478 479 return ret; 480 } 481 482 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 483 struct hns_roce_mw *mw) 484 { 485 struct device *dev = hr_dev->dev; 486 int ret; 487 488 if (mw->enabled) { 489 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, 490 key_to_hw_index(mw->rkey) & 491 (hr_dev->caps.num_mtpts - 1)); 492 if (ret) 493 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 494 495 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 496 key_to_hw_index(mw->rkey)); 497 } 498 499 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 500 (int)key_to_hw_index(mw->rkey)); 501 } 502 503 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 504 struct hns_roce_mw *mw) 505 { 506 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 507 struct hns_roce_cmd_mailbox *mailbox; 508 struct device *dev = hr_dev->dev; 509 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 510 int ret; 511 512 /* prepare HEM entry memory */ 513 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 514 if (ret) 515 return ret; 516 517 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 518 if (IS_ERR(mailbox)) { 519 ret = PTR_ERR(mailbox); 520 goto err_table; 521 } 522 523 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 524 if (ret) { 525 dev_err(dev, "MW write mtpt fail!\n"); 526 goto err_page; 527 } 528 529 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, 530 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 531 if (ret) { 532 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 533 goto err_page; 534 } 535 536 mw->enabled = 1; 537 538 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 539 540 return 0; 541 542 err_page: 543 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 544 545 err_table: 546 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 547 548 return ret; 549 } 550 551 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 552 { 553 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 554 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 555 struct ib_device *ibdev = &hr_dev->ib_dev; 556 struct hns_roce_mw *mw = to_hr_mw(ibmw); 557 int ret; 558 int id; 559 560 /* Allocate a key for mw from mr_table */ 561 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 562 GFP_KERNEL); 563 if (id < 0) { 564 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 565 return -ENOMEM; 566 } 567 568 mw->rkey = hw_index_to_key(id); 569 570 ibmw->rkey = mw->rkey; 571 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 572 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 573 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 574 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 575 576 ret = hns_roce_mw_enable(hr_dev, mw); 577 if (ret) 578 goto err_mw; 579 580 return 0; 581 582 err_mw: 583 hns_roce_mw_free(hr_dev, mw); 584 return ret; 585 } 586 587 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 588 { 589 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 590 struct hns_roce_mw *mw = to_hr_mw(ibmw); 591 592 hns_roce_mw_free(hr_dev, mw); 593 return 0; 594 } 595 596 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 597 struct hns_roce_buf_region *region, dma_addr_t *pages, 598 int max_count) 599 { 600 int count, npage; 601 int offset, end; 602 __le64 *mtts; 603 u64 addr; 604 int i; 605 606 offset = region->offset; 607 end = offset + region->count; 608 npage = 0; 609 while (offset < end && npage < max_count) { 610 count = 0; 611 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 612 offset, &count, NULL); 613 if (!mtts) 614 return -ENOBUFS; 615 616 for (i = 0; i < count && npage < max_count; i++) { 617 if (hr_dev->hw_rev == HNS_ROCE_HW_VER1) 618 addr = to_hr_hw_page_addr(pages[npage]); 619 else 620 addr = pages[npage]; 621 622 mtts[i] = cpu_to_le64(addr); 623 npage++; 624 } 625 offset += count; 626 } 627 628 return npage; 629 } 630 631 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 632 { 633 int i; 634 635 for (i = 0; i < attr->region_count; i++) 636 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 637 attr->region[i].hopnum > 0) 638 return true; 639 640 /* because the mtr only one root base address, when hopnum is 0 means 641 * root base address equals the first buffer address, thus all alloced 642 * memory must in a continuous space accessed by direct mode. 643 */ 644 return false; 645 } 646 647 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 648 { 649 size_t size = 0; 650 int i; 651 652 for (i = 0; i < attr->region_count; i++) 653 size += attr->region[i].size; 654 655 return size; 656 } 657 658 /* 659 * check the given pages in continuous address space 660 * Returns 0 on success, or the error page num. 661 */ 662 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 663 unsigned int page_shift) 664 { 665 size_t page_size = 1 << page_shift; 666 int i; 667 668 for (i = 1; i < page_count; i++) 669 if (pages[i] - pages[i - 1] != page_size) 670 return i; 671 672 return 0; 673 } 674 675 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 676 { 677 /* release user buffers */ 678 if (mtr->umem) { 679 ib_umem_release(mtr->umem); 680 mtr->umem = NULL; 681 } 682 683 /* release kernel buffers */ 684 if (mtr->kmem) { 685 hns_roce_buf_free(hr_dev, mtr->kmem); 686 mtr->kmem = NULL; 687 } 688 } 689 690 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 691 struct hns_roce_buf_attr *buf_attr, 692 struct ib_udata *udata, unsigned long user_addr) 693 { 694 struct ib_device *ibdev = &hr_dev->ib_dev; 695 size_t total_size; 696 697 total_size = mtr_bufs_size(buf_attr); 698 699 if (udata) { 700 mtr->kmem = NULL; 701 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 702 buf_attr->user_access); 703 if (IS_ERR_OR_NULL(mtr->umem)) { 704 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 705 PTR_ERR(mtr->umem)); 706 return -ENOMEM; 707 } 708 } else { 709 mtr->umem = NULL; 710 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 711 buf_attr->page_shift, 712 mtr->hem_cfg.is_direct ? 713 HNS_ROCE_BUF_DIRECT : 0); 714 if (IS_ERR(mtr->kmem)) { 715 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 716 PTR_ERR(mtr->kmem)); 717 return PTR_ERR(mtr->kmem); 718 } 719 } 720 721 return 0; 722 } 723 724 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 725 int page_count, unsigned int page_shift) 726 { 727 struct ib_device *ibdev = &hr_dev->ib_dev; 728 dma_addr_t *pages; 729 int npage; 730 int ret; 731 732 /* alloc a tmp array to store buffer's dma address */ 733 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 734 if (!pages) 735 return -ENOMEM; 736 737 if (mtr->umem) 738 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 739 mtr->umem, page_shift); 740 else 741 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 742 mtr->kmem, page_shift); 743 744 if (npage != page_count) { 745 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 746 page_count); 747 ret = -ENOBUFS; 748 goto err_alloc_list; 749 } 750 751 if (mtr->hem_cfg.is_direct && npage > 1) { 752 ret = mtr_check_direct_pages(pages, npage, page_shift); 753 if (ret) { 754 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 755 mtr->umem ? "umtr" : "kmtr", ret, npage); 756 ret = -ENOBUFS; 757 goto err_alloc_list; 758 } 759 } 760 761 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 762 if (ret) 763 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 764 765 err_alloc_list: 766 kvfree(pages); 767 768 return ret; 769 } 770 771 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 772 dma_addr_t *pages, unsigned int page_cnt) 773 { 774 struct ib_device *ibdev = &hr_dev->ib_dev; 775 struct hns_roce_buf_region *r; 776 unsigned int i, mapped_cnt; 777 int ret = 0; 778 779 /* 780 * Only use the first page address as root ba when hopnum is 0, this 781 * is because the addresses of all pages are consecutive in this case. 782 */ 783 if (mtr->hem_cfg.is_direct) { 784 mtr->hem_cfg.root_ba = pages[0]; 785 return 0; 786 } 787 788 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 789 mapped_cnt < page_cnt; i++) { 790 r = &mtr->hem_cfg.region[i]; 791 /* if hopnum is 0, no need to map pages in this region */ 792 if (!r->hopnum) { 793 mapped_cnt += r->count; 794 continue; 795 } 796 797 if (r->offset + r->count > page_cnt) { 798 ret = -EINVAL; 799 ibdev_err(ibdev, 800 "failed to check mtr%u count %u + %u > %u.\n", 801 i, r->offset, r->count, page_cnt); 802 return ret; 803 } 804 805 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 806 page_cnt - mapped_cnt); 807 if (ret < 0) { 808 ibdev_err(ibdev, 809 "failed to map mtr%u offset %u, ret = %d.\n", 810 i, r->offset, ret); 811 return ret; 812 } 813 mapped_cnt += ret; 814 ret = 0; 815 } 816 817 if (mapped_cnt < page_cnt) { 818 ret = -ENOBUFS; 819 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 820 mapped_cnt, page_cnt); 821 } 822 823 return ret; 824 } 825 826 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 827 int offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 828 { 829 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 830 int mtt_count, left; 831 int start_index; 832 int total = 0; 833 __le64 *mtts; 834 u32 npage; 835 u64 addr; 836 837 if (!mtt_buf || mtt_max < 1) 838 goto done; 839 840 /* no mtt memory in direct mode, so just return the buffer address */ 841 if (cfg->is_direct) { 842 start_index = offset >> HNS_HW_PAGE_SHIFT; 843 for (mtt_count = 0; mtt_count < cfg->region_count && 844 total < mtt_max; mtt_count++) { 845 npage = cfg->region[mtt_count].offset; 846 if (npage < start_index) 847 continue; 848 849 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 850 if (hr_dev->hw_rev == HNS_ROCE_HW_VER1) 851 mtt_buf[total] = to_hr_hw_page_addr(addr); 852 else 853 mtt_buf[total] = addr; 854 855 total++; 856 } 857 858 goto done; 859 } 860 861 start_index = offset >> cfg->buf_pg_shift; 862 left = mtt_max; 863 while (left > 0) { 864 mtt_count = 0; 865 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 866 start_index + total, 867 &mtt_count, NULL); 868 if (!mtts || !mtt_count) 869 goto done; 870 871 npage = min(mtt_count, left); 872 left -= npage; 873 for (mtt_count = 0; mtt_count < npage; mtt_count++) 874 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 875 } 876 877 done: 878 if (base_addr) 879 *base_addr = cfg->root_ba; 880 881 return total; 882 } 883 884 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 885 struct hns_roce_buf_attr *attr, 886 struct hns_roce_hem_cfg *cfg, 887 unsigned int *buf_page_shift, int unalinged_size) 888 { 889 struct hns_roce_buf_region *r; 890 int first_region_padding; 891 int page_cnt, region_cnt; 892 unsigned int page_shift; 893 size_t buf_size; 894 895 /* If mtt is disabled, all pages must be within a continuous range */ 896 cfg->is_direct = !mtr_has_mtt(attr); 897 buf_size = mtr_bufs_size(attr); 898 if (cfg->is_direct) { 899 /* When HEM buffer uses 0-level addressing, the page size is 900 * equal to the whole buffer size, and we split the buffer into 901 * small pages which is used to check whether the adjacent 902 * units are in the continuous space and its size is fixed to 903 * 4K based on hns ROCEE's requirement. 904 */ 905 page_shift = HNS_HW_PAGE_SHIFT; 906 907 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 908 cfg->buf_pg_count = 1; 909 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 910 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 911 first_region_padding = 0; 912 } else { 913 page_shift = attr->page_shift; 914 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 915 1 << page_shift); 916 cfg->buf_pg_shift = page_shift; 917 first_region_padding = unalinged_size; 918 } 919 920 /* Convert buffer size to page index and page count for each region and 921 * the buffer's offset needs to be appended to the first region. 922 */ 923 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 924 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 925 r = &cfg->region[region_cnt]; 926 r->offset = page_cnt; 927 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 928 first_region_padding); 929 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 930 first_region_padding = 0; 931 page_cnt += r->count; 932 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 933 r->count); 934 } 935 936 cfg->region_count = region_cnt; 937 *buf_page_shift = page_shift; 938 939 return page_cnt; 940 } 941 942 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 943 unsigned int ba_page_shift) 944 { 945 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 946 int ret; 947 948 hns_roce_hem_list_init(&mtr->hem_list); 949 if (!cfg->is_direct) { 950 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 951 cfg->region, cfg->region_count, 952 ba_page_shift); 953 if (ret) 954 return ret; 955 cfg->root_ba = mtr->hem_list.root_ba; 956 cfg->ba_pg_shift = ba_page_shift; 957 } else { 958 cfg->ba_pg_shift = cfg->buf_pg_shift; 959 } 960 961 return 0; 962 } 963 964 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 965 { 966 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 967 } 968 969 /** 970 * hns_roce_mtr_create - Create hns memory translate region. 971 * 972 * @hr_dev: RoCE device struct pointer 973 * @mtr: memory translate region 974 * @buf_attr: buffer attribute for creating mtr 975 * @ba_page_shift: page shift for multi-hop base address table 976 * @udata: user space context, if it's NULL, means kernel space 977 * @user_addr: userspace virtual address to start at 978 */ 979 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 980 struct hns_roce_buf_attr *buf_attr, 981 unsigned int ba_page_shift, struct ib_udata *udata, 982 unsigned long user_addr) 983 { 984 struct ib_device *ibdev = &hr_dev->ib_dev; 985 unsigned int buf_page_shift = 0; 986 int buf_page_cnt; 987 int ret; 988 989 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 990 &buf_page_shift, 991 udata ? user_addr & ~PAGE_MASK : 0); 992 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 993 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 994 buf_page_cnt, buf_page_shift); 995 return -EINVAL; 996 } 997 998 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 999 if (ret) { 1000 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1001 return ret; 1002 } 1003 1004 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1005 * to finish the MTT configuration. 1006 */ 1007 if (buf_attr->mtt_only) { 1008 mtr->umem = NULL; 1009 mtr->kmem = NULL; 1010 return 0; 1011 } 1012 1013 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1014 if (ret) { 1015 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 1016 goto err_alloc_mtt; 1017 } 1018 1019 /* Write buffer's dma address to MTT */ 1020 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 1021 if (ret) 1022 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1023 else 1024 return 0; 1025 1026 mtr_free_bufs(hr_dev, mtr); 1027 err_alloc_mtt: 1028 mtr_free_mtt(hr_dev, mtr); 1029 return ret; 1030 } 1031 1032 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1033 { 1034 /* release multi-hop addressing resource */ 1035 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1036 1037 /* free buffers */ 1038 mtr_free_bufs(hr_dev, mtr); 1039 } 1040