xref: /openbmc/linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/platform_device.h>
35 #include <linux/vmalloc.h>
36 #include <rdma/ib_umem.h>
37 #include "hns_roce_device.h"
38 #include "hns_roce_cmd.h"
39 #include "hns_roce_hem.h"
40 
41 static u32 hw_index_to_key(unsigned long ind)
42 {
43 	return (u32)(ind >> 24) | (ind << 8);
44 }
45 
46 unsigned long key_to_hw_index(u32 key)
47 {
48 	return (key << 24) | (key >> 8);
49 }
50 
51 static int hns_roce_hw_create_mpt(struct hns_roce_dev *hr_dev,
52 				  struct hns_roce_cmd_mailbox *mailbox,
53 				  unsigned long mpt_index)
54 {
55 	return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
56 				 HNS_ROCE_CMD_CREATE_MPT,
57 				 HNS_ROCE_CMD_TIMEOUT_MSECS);
58 }
59 
60 int hns_roce_hw_destroy_mpt(struct hns_roce_dev *hr_dev,
61 			    struct hns_roce_cmd_mailbox *mailbox,
62 			    unsigned long mpt_index)
63 {
64 	return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
65 				 mpt_index, !mailbox, HNS_ROCE_CMD_DESTROY_MPT,
66 				 HNS_ROCE_CMD_TIMEOUT_MSECS);
67 }
68 
69 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
70 			u32 pd, u64 iova, u64 size, u32 access)
71 {
72 	struct ib_device *ibdev = &hr_dev->ib_dev;
73 	unsigned long obj = 0;
74 	int err;
75 
76 	/* Allocate a key for mr from mr_table */
77 	err = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &obj);
78 	if (err) {
79 		ibdev_err(ibdev,
80 			  "failed to alloc bitmap for MR key, ret = %d.\n",
81 			  err);
82 		return -ENOMEM;
83 	}
84 
85 	mr->iova = iova;			/* MR va starting addr */
86 	mr->size = size;			/* MR addr range */
87 	mr->pd = pd;				/* MR num */
88 	mr->access = access;			/* MR access permit */
89 	mr->enabled = 0;			/* MR active status */
90 	mr->key = hw_index_to_key(obj);		/* MR key */
91 
92 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
93 	if (err) {
94 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
95 		goto err_free_bitmap;
96 	}
97 
98 	return 0;
99 err_free_bitmap:
100 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap, obj, BITMAP_NO_RR);
101 	return err;
102 }
103 
104 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
105 {
106 	unsigned long obj = key_to_hw_index(mr->key);
107 
108 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
109 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap, obj, BITMAP_NO_RR);
110 }
111 
112 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
113 			size_t length, struct ib_udata *udata, u64 start,
114 			int access)
115 {
116 	struct ib_device *ibdev = &hr_dev->ib_dev;
117 	bool is_fast = mr->type == MR_TYPE_FRMR;
118 	struct hns_roce_buf_attr buf_attr = {};
119 	int err;
120 
121 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
122 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
123 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
124 	buf_attr.region[0].size = length;
125 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
126 	buf_attr.region_count = 1;
127 	buf_attr.fixed_page = true;
128 	buf_attr.user_access = access;
129 	/* fast MR's buffer is alloced before mapping, not at creation */
130 	buf_attr.mtt_only = is_fast;
131 
132 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
133 				  hr_dev->caps.pbl_ba_pg_sz + HNS_HW_PAGE_SHIFT,
134 				  udata, start);
135 	if (err)
136 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
137 	else
138 		mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
139 
140 	return err;
141 }
142 
143 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
144 {
145 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
146 }
147 
148 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
149 			     struct hns_roce_mr *mr)
150 {
151 	struct ib_device *ibdev = &hr_dev->ib_dev;
152 	int ret;
153 
154 	if (mr->enabled) {
155 		ret = hns_roce_hw_destroy_mpt(hr_dev, NULL,
156 					      key_to_hw_index(mr->key) &
157 					      (hr_dev->caps.num_mtpts - 1));
158 		if (ret)
159 			ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
160 				   ret);
161 	}
162 
163 	free_mr_pbl(hr_dev, mr);
164 	free_mr_key(hr_dev, mr);
165 }
166 
167 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
168 			      struct hns_roce_mr *mr)
169 {
170 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
171 	struct hns_roce_cmd_mailbox *mailbox;
172 	struct device *dev = hr_dev->dev;
173 	int ret;
174 
175 	/* Allocate mailbox memory */
176 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
177 	if (IS_ERR(mailbox)) {
178 		ret = PTR_ERR(mailbox);
179 		return ret;
180 	}
181 
182 	if (mr->type != MR_TYPE_FRMR)
183 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr,
184 					     mtpt_idx);
185 	else
186 		ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
187 	if (ret) {
188 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
189 		goto err_page;
190 	}
191 
192 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox,
193 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
194 	if (ret) {
195 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
196 		goto err_page;
197 	}
198 
199 	mr->enabled = 1;
200 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
201 
202 	return 0;
203 
204 err_page:
205 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
206 
207 	return ret;
208 }
209 
210 int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
211 {
212 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
213 	int ret;
214 
215 	ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
216 				   hr_dev->caps.num_mtpts,
217 				   hr_dev->caps.num_mtpts - 1,
218 				   hr_dev->caps.reserved_mrws, 0);
219 	return ret;
220 }
221 
222 void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
223 {
224 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
225 
226 	hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
227 }
228 
229 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
230 {
231 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
232 	struct hns_roce_mr *mr;
233 	int ret;
234 
235 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
236 	if (mr == NULL)
237 		return  ERR_PTR(-ENOMEM);
238 
239 	mr->type = MR_TYPE_DMA;
240 
241 	/* Allocate memory region key */
242 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
243 	ret = alloc_mr_key(hr_dev, mr, to_hr_pd(pd)->pdn, 0, 0, acc);
244 	if (ret)
245 		goto err_free;
246 
247 	ret = hns_roce_mr_enable(to_hr_dev(pd->device), mr);
248 	if (ret)
249 		goto err_mr;
250 
251 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
252 
253 	return &mr->ibmr;
254 err_mr:
255 	free_mr_key(hr_dev, mr);
256 
257 err_free:
258 	kfree(mr);
259 	return ERR_PTR(ret);
260 }
261 
262 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
263 				   u64 virt_addr, int access_flags,
264 				   struct ib_udata *udata)
265 {
266 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
267 	struct hns_roce_mr *mr;
268 	int ret;
269 
270 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
271 	if (!mr)
272 		return ERR_PTR(-ENOMEM);
273 
274 	mr->type = MR_TYPE_MR;
275 	ret = alloc_mr_key(hr_dev, mr, to_hr_pd(pd)->pdn, virt_addr, length,
276 			   access_flags);
277 	if (ret)
278 		goto err_alloc_mr;
279 
280 	ret = alloc_mr_pbl(hr_dev, mr, length, udata, start, access_flags);
281 	if (ret)
282 		goto err_alloc_key;
283 
284 	ret = hns_roce_mr_enable(hr_dev, mr);
285 	if (ret)
286 		goto err_alloc_pbl;
287 
288 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
289 	mr->ibmr.length = length;
290 
291 	return &mr->ibmr;
292 
293 err_alloc_pbl:
294 	free_mr_pbl(hr_dev, mr);
295 err_alloc_key:
296 	free_mr_key(hr_dev, mr);
297 err_alloc_mr:
298 	kfree(mr);
299 	return ERR_PTR(ret);
300 }
301 
302 static int rereg_mr_trans(struct ib_mr *ibmr, int flags,
303 			  u64 start, u64 length,
304 			  u64 virt_addr, int mr_access_flags,
305 			  struct hns_roce_cmd_mailbox *mailbox,
306 			  u32 pdn, struct ib_udata *udata)
307 {
308 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
309 	struct ib_device *ibdev = &hr_dev->ib_dev;
310 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
311 	int ret;
312 
313 	free_mr_pbl(hr_dev, mr);
314 	ret = alloc_mr_pbl(hr_dev, mr, length, udata, start, mr_access_flags);
315 	if (ret) {
316 		ibdev_err(ibdev, "failed to create mr PBL, ret = %d.\n", ret);
317 		return ret;
318 	}
319 
320 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, pdn,
321 					   mr_access_flags, virt_addr,
322 					   length, mailbox->buf);
323 	if (ret) {
324 		ibdev_err(ibdev, "failed to write mtpt, ret = %d.\n", ret);
325 		free_mr_pbl(hr_dev, mr);
326 	}
327 
328 	return ret;
329 }
330 
331 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
332 				     u64 length, u64 virt_addr,
333 				     int mr_access_flags, struct ib_pd *pd,
334 				     struct ib_udata *udata)
335 {
336 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
337 	struct ib_device *ib_dev = &hr_dev->ib_dev;
338 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
339 	struct hns_roce_cmd_mailbox *mailbox;
340 	unsigned long mtpt_idx;
341 	u32 pdn = 0;
342 	int ret;
343 
344 	if (!mr->enabled)
345 		return ERR_PTR(-EINVAL);
346 
347 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
348 	if (IS_ERR(mailbox))
349 		return ERR_CAST(mailbox);
350 
351 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
352 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0,
353 				HNS_ROCE_CMD_QUERY_MPT,
354 				HNS_ROCE_CMD_TIMEOUT_MSECS);
355 	if (ret)
356 		goto free_cmd_mbox;
357 
358 	ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, mtpt_idx);
359 	if (ret)
360 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
361 
362 	mr->enabled = 0;
363 
364 	if (flags & IB_MR_REREG_PD)
365 		pdn = to_hr_pd(pd)->pdn;
366 
367 	if (flags & IB_MR_REREG_TRANS) {
368 		ret = rereg_mr_trans(ibmr, flags,
369 				     start, length,
370 				     virt_addr, mr_access_flags,
371 				     mailbox, pdn, udata);
372 		if (ret)
373 			goto free_cmd_mbox;
374 	} else {
375 		ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, pdn,
376 						   mr_access_flags, virt_addr,
377 						   length, mailbox->buf);
378 		if (ret)
379 			goto free_cmd_mbox;
380 	}
381 
382 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox, mtpt_idx);
383 	if (ret) {
384 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
385 		goto free_cmd_mbox;
386 	}
387 
388 	mr->enabled = 1;
389 	if (flags & IB_MR_REREG_ACCESS)
390 		mr->access = mr_access_flags;
391 
392 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
393 
394 	return NULL;
395 
396 free_cmd_mbox:
397 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
398 
399 	return ERR_PTR(ret);
400 }
401 
402 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
403 {
404 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
405 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
406 	int ret = 0;
407 
408 	if (hr_dev->hw->dereg_mr) {
409 		ret = hr_dev->hw->dereg_mr(hr_dev, mr, udata);
410 	} else {
411 		hns_roce_mr_free(hr_dev, mr);
412 		kfree(mr);
413 	}
414 
415 	return ret;
416 }
417 
418 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
419 				u32 max_num_sg)
420 {
421 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
422 	struct device *dev = hr_dev->dev;
423 	struct hns_roce_mr *mr;
424 	u64 length;
425 	int ret;
426 
427 	if (mr_type != IB_MR_TYPE_MEM_REG)
428 		return ERR_PTR(-EINVAL);
429 
430 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
431 		dev_err(dev, "max_num_sg larger than %d\n",
432 			HNS_ROCE_FRMR_MAX_PA);
433 		return ERR_PTR(-EINVAL);
434 	}
435 
436 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
437 	if (!mr)
438 		return ERR_PTR(-ENOMEM);
439 
440 	mr->type = MR_TYPE_FRMR;
441 
442 	/* Allocate memory region key */
443 	length = max_num_sg * (1 << PAGE_SHIFT);
444 	ret = alloc_mr_key(hr_dev, mr, to_hr_pd(pd)->pdn, 0, length, 0);
445 	if (ret)
446 		goto err_free;
447 
448 	ret = alloc_mr_pbl(hr_dev, mr, length, NULL, 0, 0);
449 	if (ret)
450 		goto err_key;
451 
452 	ret = hns_roce_mr_enable(hr_dev, mr);
453 	if (ret)
454 		goto err_pbl;
455 
456 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
457 	mr->ibmr.length = length;
458 
459 	return &mr->ibmr;
460 
461 err_key:
462 	free_mr_key(hr_dev, mr);
463 err_pbl:
464 	free_mr_pbl(hr_dev, mr);
465 err_free:
466 	kfree(mr);
467 	return ERR_PTR(ret);
468 }
469 
470 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
471 {
472 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
473 
474 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
475 		mr->page_list[mr->npages++] = addr;
476 		return 0;
477 	}
478 
479 	return -ENOBUFS;
480 }
481 
482 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
483 		       unsigned int *sg_offset)
484 {
485 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
486 	struct ib_device *ibdev = &hr_dev->ib_dev;
487 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
488 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
489 	int ret = 0;
490 
491 	mr->npages = 0;
492 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
493 				 sizeof(dma_addr_t), GFP_KERNEL);
494 	if (!mr->page_list)
495 		return ret;
496 
497 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
498 	if (ret < 1) {
499 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
500 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
501 		goto err_page_list;
502 	}
503 
504 	mtr->hem_cfg.region[0].offset = 0;
505 	mtr->hem_cfg.region[0].count = mr->npages;
506 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
507 	mtr->hem_cfg.region_count = 1;
508 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
509 	if (ret) {
510 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
511 		ret = 0;
512 	} else {
513 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
514 		ret = mr->npages;
515 	}
516 
517 err_page_list:
518 	kvfree(mr->page_list);
519 	mr->page_list = NULL;
520 
521 	return ret;
522 }
523 
524 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
525 			     struct hns_roce_mw *mw)
526 {
527 	struct device *dev = hr_dev->dev;
528 	int ret;
529 
530 	if (mw->enabled) {
531 		ret = hns_roce_hw_destroy_mpt(hr_dev, NULL,
532 					      key_to_hw_index(mw->rkey) &
533 					      (hr_dev->caps.num_mtpts - 1));
534 		if (ret)
535 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
536 
537 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
538 				   key_to_hw_index(mw->rkey));
539 	}
540 
541 	hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
542 			     key_to_hw_index(mw->rkey), BITMAP_NO_RR);
543 }
544 
545 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
546 			      struct hns_roce_mw *mw)
547 {
548 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
549 	struct hns_roce_cmd_mailbox *mailbox;
550 	struct device *dev = hr_dev->dev;
551 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
552 	int ret;
553 
554 	/* prepare HEM entry memory */
555 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
556 	if (ret)
557 		return ret;
558 
559 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
560 	if (IS_ERR(mailbox)) {
561 		ret = PTR_ERR(mailbox);
562 		goto err_table;
563 	}
564 
565 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
566 	if (ret) {
567 		dev_err(dev, "MW write mtpt fail!\n");
568 		goto err_page;
569 	}
570 
571 	ret = hns_roce_hw_create_mpt(hr_dev, mailbox,
572 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
573 	if (ret) {
574 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
575 		goto err_page;
576 	}
577 
578 	mw->enabled = 1;
579 
580 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
581 
582 	return 0;
583 
584 err_page:
585 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
586 
587 err_table:
588 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
589 
590 	return ret;
591 }
592 
593 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
594 {
595 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
596 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
597 	unsigned long index = 0;
598 	int ret;
599 
600 	/* Allocate a key for mw from bitmap */
601 	ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
602 	if (ret)
603 		return ret;
604 
605 	mw->rkey = hw_index_to_key(index);
606 
607 	ibmw->rkey = mw->rkey;
608 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
609 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
610 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
611 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
612 
613 	ret = hns_roce_mw_enable(hr_dev, mw);
614 	if (ret)
615 		goto err_mw;
616 
617 	return 0;
618 
619 err_mw:
620 	hns_roce_mw_free(hr_dev, mw);
621 	return ret;
622 }
623 
624 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
625 {
626 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
627 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
628 
629 	hns_roce_mw_free(hr_dev, mw);
630 	return 0;
631 }
632 
633 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
634 			  dma_addr_t *pages, struct hns_roce_buf_region *region)
635 {
636 	__le64 *mtts;
637 	int offset;
638 	int count;
639 	int npage;
640 	u64 addr;
641 	int end;
642 	int i;
643 
644 	/* if hopnum is 0, buffer cannot store BAs, so skip write mtt */
645 	if (!region->hopnum)
646 		return 0;
647 
648 	offset = region->offset;
649 	end = offset + region->count;
650 	npage = 0;
651 	while (offset < end) {
652 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
653 						  offset, &count, NULL);
654 		if (!mtts)
655 			return -ENOBUFS;
656 
657 		for (i = 0; i < count; i++) {
658 			if (hr_dev->hw_rev == HNS_ROCE_HW_VER1)
659 				addr = to_hr_hw_page_addr(pages[npage]);
660 			else
661 				addr = pages[npage];
662 
663 			mtts[i] = cpu_to_le64(addr);
664 			npage++;
665 		}
666 		offset += count;
667 	}
668 
669 	return 0;
670 }
671 
672 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
673 {
674 	int i;
675 
676 	for (i = 0; i < attr->region_count; i++)
677 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
678 		    attr->region[i].hopnum > 0)
679 			return true;
680 
681 	/* because the mtr only one root base address, when hopnum is 0 means
682 	 * root base address equals the first buffer address, thus all alloced
683 	 * memory must in a continuous space accessed by direct mode.
684 	 */
685 	return false;
686 }
687 
688 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
689 {
690 	size_t size = 0;
691 	int i;
692 
693 	for (i = 0; i < attr->region_count; i++)
694 		size += attr->region[i].size;
695 
696 	return size;
697 }
698 
699 /*
700  * check the given pages in continuous address space
701  * Returns 0 on success, or the error page num.
702  */
703 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
704 					 unsigned int page_shift)
705 {
706 	size_t page_size = 1 << page_shift;
707 	int i;
708 
709 	for (i = 1; i < page_count; i++)
710 		if (pages[i] - pages[i - 1] != page_size)
711 			return i;
712 
713 	return 0;
714 }
715 
716 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
717 {
718 	/* release user buffers */
719 	if (mtr->umem) {
720 		ib_umem_release(mtr->umem);
721 		mtr->umem = NULL;
722 	}
723 
724 	/* release kernel buffers */
725 	if (mtr->kmem) {
726 		hns_roce_buf_free(hr_dev, mtr->kmem);
727 		mtr->kmem = NULL;
728 	}
729 }
730 
731 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
732 			  struct hns_roce_buf_attr *buf_attr, bool is_direct,
733 			  struct ib_udata *udata, unsigned long user_addr)
734 {
735 	struct ib_device *ibdev = &hr_dev->ib_dev;
736 	unsigned int best_pg_shift;
737 	int all_pg_count = 0;
738 	size_t total_size;
739 	int ret;
740 
741 	total_size = mtr_bufs_size(buf_attr);
742 	if (total_size < 1) {
743 		ibdev_err(ibdev, "failed to check mtr size\n.");
744 		return -EINVAL;
745 	}
746 
747 	if (udata) {
748 		unsigned long pgsz_bitmap;
749 		unsigned long page_size;
750 
751 		mtr->kmem = NULL;
752 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
753 					buf_attr->user_access);
754 		if (IS_ERR_OR_NULL(mtr->umem)) {
755 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
756 				  PTR_ERR(mtr->umem));
757 			return -ENOMEM;
758 		}
759 		if (buf_attr->fixed_page)
760 			pgsz_bitmap = 1 << buf_attr->page_shift;
761 		else
762 			pgsz_bitmap = GENMASK(buf_attr->page_shift, PAGE_SHIFT);
763 
764 		page_size = ib_umem_find_best_pgsz(mtr->umem, pgsz_bitmap,
765 						   user_addr);
766 		if (!page_size)
767 			return -EINVAL;
768 		best_pg_shift = order_base_2(page_size);
769 		all_pg_count = ib_umem_num_dma_blocks(mtr->umem, page_size);
770 		ret = 0;
771 	} else {
772 		mtr->umem = NULL;
773 		mtr->kmem =
774 			hns_roce_buf_alloc(hr_dev, total_size,
775 					   buf_attr->page_shift,
776 					   is_direct ? HNS_ROCE_BUF_DIRECT : 0);
777 		if (IS_ERR(mtr->kmem)) {
778 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
779 				  PTR_ERR(mtr->kmem));
780 			return PTR_ERR(mtr->kmem);
781 		}
782 
783 		best_pg_shift = buf_attr->page_shift;
784 		all_pg_count = mtr->kmem->npages;
785 	}
786 
787 	/* must bigger than minimum hardware page shift */
788 	if (best_pg_shift < HNS_HW_PAGE_SHIFT || all_pg_count < 1) {
789 		ret = -EINVAL;
790 		ibdev_err(ibdev,
791 			  "failed to check mtr, page shift = %u count = %d.\n",
792 			  best_pg_shift, all_pg_count);
793 		goto err_alloc_mem;
794 	}
795 
796 	mtr->hem_cfg.buf_pg_shift = best_pg_shift;
797 	mtr->hem_cfg.buf_pg_count = all_pg_count;
798 
799 	return 0;
800 err_alloc_mem:
801 	mtr_free_bufs(hr_dev, mtr);
802 	return ret;
803 }
804 
805 static int mtr_get_pages(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
806 			 dma_addr_t *pages, int count, unsigned int page_shift)
807 {
808 	struct ib_device *ibdev = &hr_dev->ib_dev;
809 	int npage;
810 	int err;
811 
812 	if (mtr->umem)
813 		npage = hns_roce_get_umem_bufs(hr_dev, pages, count, 0,
814 					       mtr->umem, page_shift);
815 	else
816 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, count, 0,
817 					       mtr->kmem);
818 
819 	if (mtr->hem_cfg.is_direct && npage > 1) {
820 		err = mtr_check_direct_pages(pages, npage, page_shift);
821 		if (err) {
822 			ibdev_err(ibdev, "Failed to check %s direct page-%d\n",
823 				  mtr->umem ? "user" : "kernel", err);
824 			npage = err;
825 		}
826 	}
827 
828 	return npage;
829 }
830 
831 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
832 		     dma_addr_t *pages, unsigned int page_cnt)
833 {
834 	struct ib_device *ibdev = &hr_dev->ib_dev;
835 	struct hns_roce_buf_region *r;
836 	unsigned int i;
837 	int err;
838 
839 	/*
840 	 * Only use the first page address as root ba when hopnum is 0, this
841 	 * is because the addresses of all pages are consecutive in this case.
842 	 */
843 	if (mtr->hem_cfg.is_direct) {
844 		mtr->hem_cfg.root_ba = pages[0];
845 		return 0;
846 	}
847 
848 	for (i = 0; i < mtr->hem_cfg.region_count; i++) {
849 		r = &mtr->hem_cfg.region[i];
850 		if (r->offset + r->count > page_cnt) {
851 			err = -EINVAL;
852 			ibdev_err(ibdev,
853 				  "failed to check mtr%u end %u + %u, max %u.\n",
854 				  i, r->offset, r->count, page_cnt);
855 			return err;
856 		}
857 
858 		err = mtr_map_region(hr_dev, mtr, &pages[r->offset], r);
859 		if (err) {
860 			ibdev_err(ibdev,
861 				  "failed to map mtr%u offset %u, ret = %d.\n",
862 				  i, r->offset, err);
863 			return err;
864 		}
865 	}
866 
867 	return 0;
868 }
869 
870 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
871 		      int offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
872 {
873 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
874 	int mtt_count, left;
875 	int start_index;
876 	int total = 0;
877 	__le64 *mtts;
878 	u32 npage;
879 	u64 addr;
880 
881 	if (!mtt_buf || mtt_max < 1)
882 		goto done;
883 
884 	/* no mtt memory in direct mode, so just return the buffer address */
885 	if (cfg->is_direct) {
886 		start_index = offset >> HNS_HW_PAGE_SHIFT;
887 		for (mtt_count = 0; mtt_count < cfg->region_count &&
888 		     total < mtt_max; mtt_count++) {
889 			npage = cfg->region[mtt_count].offset;
890 			if (npage < start_index)
891 				continue;
892 
893 			addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
894 			if (hr_dev->hw_rev == HNS_ROCE_HW_VER1)
895 				mtt_buf[total] = to_hr_hw_page_addr(addr);
896 			else
897 				mtt_buf[total] = addr;
898 
899 			total++;
900 		}
901 
902 		goto done;
903 	}
904 
905 	start_index = offset >> cfg->buf_pg_shift;
906 	left = mtt_max;
907 	while (left > 0) {
908 		mtt_count = 0;
909 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
910 						  start_index + total,
911 						  &mtt_count, NULL);
912 		if (!mtts || !mtt_count)
913 			goto done;
914 
915 		npage = min(mtt_count, left);
916 		left -= npage;
917 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
918 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
919 	}
920 
921 done:
922 	if (base_addr)
923 		*base_addr = cfg->root_ba;
924 
925 	return total;
926 }
927 
928 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
929 			    struct hns_roce_buf_attr *attr,
930 			    struct hns_roce_hem_cfg *cfg,
931 			    unsigned int *buf_page_shift)
932 {
933 	struct hns_roce_buf_region *r;
934 	unsigned int page_shift;
935 	int page_cnt = 0;
936 	size_t buf_size;
937 	int region_cnt;
938 
939 	if (cfg->is_direct) {
940 		buf_size = cfg->buf_pg_count << cfg->buf_pg_shift;
941 		page_cnt = DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE);
942 		/*
943 		 * When HEM buffer use level-0 addressing, the page size equals
944 		 * the buffer size, and the the page size = 4K * 2^N.
945 		 */
946 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + order_base_2(page_cnt);
947 		if (attr->region_count > 1) {
948 			cfg->buf_pg_count = page_cnt;
949 			page_shift = HNS_HW_PAGE_SHIFT;
950 		} else {
951 			cfg->buf_pg_count = 1;
952 			page_shift = cfg->buf_pg_shift;
953 			if (buf_size != 1 << page_shift) {
954 				ibdev_err(&hr_dev->ib_dev,
955 					  "failed to check direct size %zu shift %d.\n",
956 					  buf_size, page_shift);
957 				return -EINVAL;
958 			}
959 		}
960 	} else {
961 		page_shift = cfg->buf_pg_shift;
962 	}
963 
964 	/* convert buffer size to page index and page count */
965 	for (page_cnt = 0, region_cnt = 0; page_cnt < cfg->buf_pg_count &&
966 	     region_cnt < attr->region_count &&
967 	     region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
968 		r = &cfg->region[region_cnt];
969 		r->offset = page_cnt;
970 		buf_size = hr_hw_page_align(attr->region[region_cnt].size);
971 		r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
972 		page_cnt += r->count;
973 		r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
974 					     r->count);
975 	}
976 
977 	if (region_cnt < 1) {
978 		ibdev_err(&hr_dev->ib_dev,
979 			  "failed to check mtr region count, pages = %d.\n",
980 			  cfg->buf_pg_count);
981 		return -ENOBUFS;
982 	}
983 
984 	cfg->region_count = region_cnt;
985 	*buf_page_shift = page_shift;
986 
987 	return page_cnt;
988 }
989 
990 /**
991  * hns_roce_mtr_create - Create hns memory translate region.
992  *
993  * @mtr: memory translate region
994  * @buf_attr: buffer attribute for creating mtr
995  * @ba_page_shift: page shift for multi-hop base address table
996  * @udata: user space context, if it's NULL, means kernel space
997  * @user_addr: userspace virtual address to start at
998  */
999 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1000 			struct hns_roce_buf_attr *buf_attr,
1001 			unsigned int ba_page_shift, struct ib_udata *udata,
1002 			unsigned long user_addr)
1003 {
1004 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1005 	struct ib_device *ibdev = &hr_dev->ib_dev;
1006 	unsigned int buf_page_shift = 0;
1007 	dma_addr_t *pages = NULL;
1008 	int all_pg_cnt;
1009 	int get_pg_cnt;
1010 	int ret = 0;
1011 
1012 	/* if disable mtt, all pages must in a continuous address range */
1013 	cfg->is_direct = !mtr_has_mtt(buf_attr);
1014 
1015 	/* if buffer only need mtt, just init the hem cfg */
1016 	if (buf_attr->mtt_only) {
1017 		cfg->buf_pg_shift = buf_attr->page_shift;
1018 		cfg->buf_pg_count = mtr_bufs_size(buf_attr) >>
1019 				    buf_attr->page_shift;
1020 		mtr->umem = NULL;
1021 		mtr->kmem = NULL;
1022 	} else {
1023 		ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, cfg->is_direct,
1024 				     udata, user_addr);
1025 		if (ret) {
1026 			ibdev_err(ibdev,
1027 				  "failed to alloc mtr bufs, ret = %d.\n", ret);
1028 			return ret;
1029 		}
1030 	}
1031 
1032 	all_pg_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, cfg, &buf_page_shift);
1033 	if (all_pg_cnt < 1) {
1034 		ret = -ENOBUFS;
1035 		ibdev_err(ibdev, "failed to init mtr buf cfg.\n");
1036 		goto err_alloc_bufs;
1037 	}
1038 
1039 	hns_roce_hem_list_init(&mtr->hem_list);
1040 	if (!cfg->is_direct) {
1041 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1042 						cfg->region, cfg->region_count,
1043 						ba_page_shift);
1044 		if (ret) {
1045 			ibdev_err(ibdev, "failed to request mtr hem, ret = %d.\n",
1046 				  ret);
1047 			goto err_alloc_bufs;
1048 		}
1049 		cfg->root_ba = mtr->hem_list.root_ba;
1050 		cfg->ba_pg_shift = ba_page_shift;
1051 	} else {
1052 		cfg->ba_pg_shift = cfg->buf_pg_shift;
1053 	}
1054 
1055 	/* no buffer to map */
1056 	if (buf_attr->mtt_only)
1057 		return 0;
1058 
1059 	/* alloc a tmp array to store buffer's dma address */
1060 	pages = kvcalloc(all_pg_cnt, sizeof(dma_addr_t), GFP_KERNEL);
1061 	if (!pages) {
1062 		ret = -ENOMEM;
1063 		ibdev_err(ibdev, "failed to alloc mtr page list %d.\n",
1064 			  all_pg_cnt);
1065 		goto err_alloc_hem_list;
1066 	}
1067 
1068 	get_pg_cnt = mtr_get_pages(hr_dev, mtr, pages, all_pg_cnt,
1069 				   buf_page_shift);
1070 	if (get_pg_cnt != all_pg_cnt) {
1071 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n",
1072 			  get_pg_cnt, all_pg_cnt);
1073 		ret = -ENOBUFS;
1074 		goto err_alloc_page_list;
1075 	}
1076 
1077 	/* write buffer's dma address to BA table */
1078 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, all_pg_cnt);
1079 	if (ret) {
1080 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
1081 		goto err_alloc_page_list;
1082 	}
1083 
1084 	/* drop tmp array */
1085 	kvfree(pages);
1086 	return 0;
1087 err_alloc_page_list:
1088 	kvfree(pages);
1089 err_alloc_hem_list:
1090 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1091 err_alloc_bufs:
1092 	mtr_free_bufs(hr_dev, mtr);
1093 	return ret;
1094 }
1095 
1096 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1097 {
1098 	/* release multi-hop addressing resource */
1099 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1100 
1101 	/* free buffers */
1102 	mtr_free_bufs(hr_dev, mtr);
1103 }
1104