1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <rdma/ib_umem.h> 36 #include <linux/math.h> 37 #include "hns_roce_device.h" 38 #include "hns_roce_cmd.h" 39 #include "hns_roce_hem.h" 40 41 static u32 hw_index_to_key(int ind) 42 { 43 return ((u32)ind >> 24) | ((u32)ind << 8); 44 } 45 46 unsigned long key_to_hw_index(u32 key) 47 { 48 return (key << 24) | (key >> 8); 49 } 50 51 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 52 { 53 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 54 struct ib_device *ibdev = &hr_dev->ib_dev; 55 int err; 56 int id; 57 58 /* Allocate a key for mr from mr_table */ 59 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 60 GFP_KERNEL); 61 if (id < 0) { 62 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 63 return -ENOMEM; 64 } 65 66 mr->key = hw_index_to_key(id); /* MR key */ 67 68 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 69 (unsigned long)id); 70 if (err) { 71 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 72 goto err_free_bitmap; 73 } 74 75 return 0; 76 err_free_bitmap: 77 ida_free(&mtpt_ida->ida, id); 78 return err; 79 } 80 81 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 82 { 83 unsigned long obj = key_to_hw_index(mr->key); 84 85 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 86 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 87 } 88 89 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 90 struct ib_udata *udata, u64 start) 91 { 92 struct ib_device *ibdev = &hr_dev->ib_dev; 93 bool is_fast = mr->type == MR_TYPE_FRMR; 94 struct hns_roce_buf_attr buf_attr = {}; 95 int err; 96 97 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 98 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 99 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 100 buf_attr.region[0].size = mr->size; 101 buf_attr.region[0].hopnum = mr->pbl_hop_num; 102 buf_attr.region_count = 1; 103 buf_attr.user_access = mr->access; 104 /* fast MR's buffer is alloced before mapping, not at creation */ 105 buf_attr.mtt_only = is_fast; 106 107 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 108 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 109 udata, start); 110 if (err) 111 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 112 else 113 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 114 115 return err; 116 } 117 118 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 119 { 120 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 121 } 122 123 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 124 { 125 struct ib_device *ibdev = &hr_dev->ib_dev; 126 int ret; 127 128 if (mr->enabled) { 129 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 130 key_to_hw_index(mr->key) & 131 (hr_dev->caps.num_mtpts - 1)); 132 if (ret) 133 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 134 ret); 135 } 136 137 free_mr_pbl(hr_dev, mr); 138 free_mr_key(hr_dev, mr); 139 } 140 141 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 142 struct hns_roce_mr *mr) 143 { 144 unsigned long mtpt_idx = key_to_hw_index(mr->key); 145 struct hns_roce_cmd_mailbox *mailbox; 146 struct device *dev = hr_dev->dev; 147 int ret; 148 149 /* Allocate mailbox memory */ 150 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 151 if (IS_ERR(mailbox)) 152 return PTR_ERR(mailbox); 153 154 if (mr->type != MR_TYPE_FRMR) 155 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 156 else 157 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 158 if (ret) { 159 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 160 goto err_page; 161 } 162 163 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 164 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 165 if (ret) { 166 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 167 goto err_page; 168 } 169 170 mr->enabled = 1; 171 172 err_page: 173 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 174 175 return ret; 176 } 177 178 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 179 { 180 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 181 182 ida_init(&mtpt_ida->ida); 183 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 184 mtpt_ida->min = hr_dev->caps.reserved_mrws; 185 } 186 187 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 188 { 189 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 190 struct hns_roce_mr *mr; 191 int ret; 192 193 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 194 if (!mr) 195 return ERR_PTR(-ENOMEM); 196 197 mr->type = MR_TYPE_DMA; 198 mr->pd = to_hr_pd(pd)->pdn; 199 mr->access = acc; 200 201 /* Allocate memory region key */ 202 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 203 ret = alloc_mr_key(hr_dev, mr); 204 if (ret) 205 goto err_free; 206 207 ret = hns_roce_mr_enable(hr_dev, mr); 208 if (ret) 209 goto err_mr; 210 211 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 212 213 return &mr->ibmr; 214 err_mr: 215 free_mr_key(hr_dev, mr); 216 217 err_free: 218 kfree(mr); 219 return ERR_PTR(ret); 220 } 221 222 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 223 u64 virt_addr, int access_flags, 224 struct ib_udata *udata) 225 { 226 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 227 struct hns_roce_mr *mr; 228 int ret; 229 230 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 231 if (!mr) 232 return ERR_PTR(-ENOMEM); 233 234 mr->iova = virt_addr; 235 mr->size = length; 236 mr->pd = to_hr_pd(pd)->pdn; 237 mr->access = access_flags; 238 mr->type = MR_TYPE_MR; 239 240 ret = alloc_mr_key(hr_dev, mr); 241 if (ret) 242 goto err_alloc_mr; 243 244 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 245 if (ret) 246 goto err_alloc_key; 247 248 ret = hns_roce_mr_enable(hr_dev, mr); 249 if (ret) 250 goto err_alloc_pbl; 251 252 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 253 254 return &mr->ibmr; 255 256 err_alloc_pbl: 257 free_mr_pbl(hr_dev, mr); 258 err_alloc_key: 259 free_mr_key(hr_dev, mr); 260 err_alloc_mr: 261 kfree(mr); 262 return ERR_PTR(ret); 263 } 264 265 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 266 u64 length, u64 virt_addr, 267 int mr_access_flags, struct ib_pd *pd, 268 struct ib_udata *udata) 269 { 270 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 271 struct ib_device *ib_dev = &hr_dev->ib_dev; 272 struct hns_roce_mr *mr = to_hr_mr(ibmr); 273 struct hns_roce_cmd_mailbox *mailbox; 274 unsigned long mtpt_idx; 275 int ret; 276 277 if (!mr->enabled) 278 return ERR_PTR(-EINVAL); 279 280 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 281 if (IS_ERR(mailbox)) 282 return ERR_CAST(mailbox); 283 284 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 285 286 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 287 mtpt_idx); 288 if (ret) 289 goto free_cmd_mbox; 290 291 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 292 mtpt_idx); 293 if (ret) 294 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 295 296 mr->enabled = 0; 297 mr->iova = virt_addr; 298 mr->size = length; 299 300 if (flags & IB_MR_REREG_PD) 301 mr->pd = to_hr_pd(pd)->pdn; 302 303 if (flags & IB_MR_REREG_ACCESS) 304 mr->access = mr_access_flags; 305 306 if (flags & IB_MR_REREG_TRANS) { 307 free_mr_pbl(hr_dev, mr); 308 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 309 if (ret) { 310 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 311 ret); 312 goto free_cmd_mbox; 313 } 314 } 315 316 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 317 if (ret) { 318 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 319 goto free_cmd_mbox; 320 } 321 322 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 323 mtpt_idx); 324 if (ret) { 325 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 326 goto free_cmd_mbox; 327 } 328 329 mr->enabled = 1; 330 331 free_cmd_mbox: 332 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 333 334 if (ret) 335 return ERR_PTR(ret); 336 return NULL; 337 } 338 339 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 340 { 341 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 342 struct hns_roce_mr *mr = to_hr_mr(ibmr); 343 344 if (hr_dev->hw->dereg_mr) 345 hr_dev->hw->dereg_mr(hr_dev); 346 347 hns_roce_mr_free(hr_dev, mr); 348 kfree(mr); 349 350 return 0; 351 } 352 353 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 354 u32 max_num_sg) 355 { 356 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 357 struct device *dev = hr_dev->dev; 358 struct hns_roce_mr *mr; 359 int ret; 360 361 if (mr_type != IB_MR_TYPE_MEM_REG) 362 return ERR_PTR(-EINVAL); 363 364 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 365 dev_err(dev, "max_num_sg larger than %d\n", 366 HNS_ROCE_FRMR_MAX_PA); 367 return ERR_PTR(-EINVAL); 368 } 369 370 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 371 if (!mr) 372 return ERR_PTR(-ENOMEM); 373 374 mr->type = MR_TYPE_FRMR; 375 mr->pd = to_hr_pd(pd)->pdn; 376 mr->size = max_num_sg * (1 << PAGE_SHIFT); 377 378 /* Allocate memory region key */ 379 ret = alloc_mr_key(hr_dev, mr); 380 if (ret) 381 goto err_free; 382 383 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 384 if (ret) 385 goto err_key; 386 387 ret = hns_roce_mr_enable(hr_dev, mr); 388 if (ret) 389 goto err_pbl; 390 391 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 392 mr->ibmr.length = mr->size; 393 394 return &mr->ibmr; 395 396 err_pbl: 397 free_mr_pbl(hr_dev, mr); 398 err_key: 399 free_mr_key(hr_dev, mr); 400 err_free: 401 kfree(mr); 402 return ERR_PTR(ret); 403 } 404 405 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 406 { 407 struct hns_roce_mr *mr = to_hr_mr(ibmr); 408 409 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 410 mr->page_list[mr->npages++] = addr; 411 return 0; 412 } 413 414 return -ENOBUFS; 415 } 416 417 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 418 unsigned int *sg_offset) 419 { 420 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 421 struct ib_device *ibdev = &hr_dev->ib_dev; 422 struct hns_roce_mr *mr = to_hr_mr(ibmr); 423 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 424 int ret = 0; 425 426 mr->npages = 0; 427 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 428 sizeof(dma_addr_t), GFP_KERNEL); 429 if (!mr->page_list) 430 return ret; 431 432 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 433 if (ret < 1) { 434 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 435 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); 436 goto err_page_list; 437 } 438 439 mtr->hem_cfg.region[0].offset = 0; 440 mtr->hem_cfg.region[0].count = mr->npages; 441 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 442 mtr->hem_cfg.region_count = 1; 443 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 444 if (ret) { 445 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 446 ret = 0; 447 } else { 448 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 449 ret = mr->npages; 450 } 451 452 err_page_list: 453 kvfree(mr->page_list); 454 mr->page_list = NULL; 455 456 return ret; 457 } 458 459 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 460 struct hns_roce_mw *mw) 461 { 462 struct device *dev = hr_dev->dev; 463 int ret; 464 465 if (mw->enabled) { 466 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 467 key_to_hw_index(mw->rkey) & 468 (hr_dev->caps.num_mtpts - 1)); 469 if (ret) 470 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 471 472 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 473 key_to_hw_index(mw->rkey)); 474 } 475 476 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 477 (int)key_to_hw_index(mw->rkey)); 478 } 479 480 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 481 struct hns_roce_mw *mw) 482 { 483 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 484 struct hns_roce_cmd_mailbox *mailbox; 485 struct device *dev = hr_dev->dev; 486 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 487 int ret; 488 489 /* prepare HEM entry memory */ 490 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 491 if (ret) 492 return ret; 493 494 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 495 if (IS_ERR(mailbox)) { 496 ret = PTR_ERR(mailbox); 497 goto err_table; 498 } 499 500 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 501 if (ret) { 502 dev_err(dev, "MW write mtpt fail!\n"); 503 goto err_page; 504 } 505 506 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 507 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 508 if (ret) { 509 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 510 goto err_page; 511 } 512 513 mw->enabled = 1; 514 515 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 516 517 return 0; 518 519 err_page: 520 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 521 522 err_table: 523 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 524 525 return ret; 526 } 527 528 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 529 { 530 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 531 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 532 struct ib_device *ibdev = &hr_dev->ib_dev; 533 struct hns_roce_mw *mw = to_hr_mw(ibmw); 534 int ret; 535 int id; 536 537 /* Allocate a key for mw from mr_table */ 538 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 539 GFP_KERNEL); 540 if (id < 0) { 541 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 542 return -ENOMEM; 543 } 544 545 mw->rkey = hw_index_to_key(id); 546 547 ibmw->rkey = mw->rkey; 548 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 549 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 550 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 551 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 552 553 ret = hns_roce_mw_enable(hr_dev, mw); 554 if (ret) 555 goto err_mw; 556 557 return 0; 558 559 err_mw: 560 hns_roce_mw_free(hr_dev, mw); 561 return ret; 562 } 563 564 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 565 { 566 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 567 struct hns_roce_mw *mw = to_hr_mw(ibmw); 568 569 hns_roce_mw_free(hr_dev, mw); 570 return 0; 571 } 572 573 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 574 struct hns_roce_buf_region *region, dma_addr_t *pages, 575 int max_count) 576 { 577 int count, npage; 578 int offset, end; 579 __le64 *mtts; 580 u64 addr; 581 int i; 582 583 offset = region->offset; 584 end = offset + region->count; 585 npage = 0; 586 while (offset < end && npage < max_count) { 587 count = 0; 588 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 589 offset, &count); 590 if (!mtts) 591 return -ENOBUFS; 592 593 for (i = 0; i < count && npage < max_count; i++) { 594 addr = pages[npage]; 595 596 mtts[i] = cpu_to_le64(addr); 597 npage++; 598 } 599 offset += count; 600 } 601 602 return npage; 603 } 604 605 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 606 { 607 int i; 608 609 for (i = 0; i < attr->region_count; i++) 610 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 611 attr->region[i].hopnum > 0) 612 return true; 613 614 /* because the mtr only one root base address, when hopnum is 0 means 615 * root base address equals the first buffer address, thus all alloced 616 * memory must in a continuous space accessed by direct mode. 617 */ 618 return false; 619 } 620 621 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 622 { 623 size_t size = 0; 624 int i; 625 626 for (i = 0; i < attr->region_count; i++) 627 size += attr->region[i].size; 628 629 return size; 630 } 631 632 /* 633 * check the given pages in continuous address space 634 * Returns 0 on success, or the error page num. 635 */ 636 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 637 unsigned int page_shift) 638 { 639 size_t page_size = 1 << page_shift; 640 int i; 641 642 for (i = 1; i < page_count; i++) 643 if (pages[i] - pages[i - 1] != page_size) 644 return i; 645 646 return 0; 647 } 648 649 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 650 { 651 /* release user buffers */ 652 if (mtr->umem) { 653 ib_umem_release(mtr->umem); 654 mtr->umem = NULL; 655 } 656 657 /* release kernel buffers */ 658 if (mtr->kmem) { 659 hns_roce_buf_free(hr_dev, mtr->kmem); 660 mtr->kmem = NULL; 661 } 662 } 663 664 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 665 struct hns_roce_buf_attr *buf_attr, 666 struct ib_udata *udata, unsigned long user_addr) 667 { 668 struct ib_device *ibdev = &hr_dev->ib_dev; 669 size_t total_size; 670 671 total_size = mtr_bufs_size(buf_attr); 672 673 if (udata) { 674 mtr->kmem = NULL; 675 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 676 buf_attr->user_access); 677 if (IS_ERR_OR_NULL(mtr->umem)) { 678 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 679 PTR_ERR(mtr->umem)); 680 return -ENOMEM; 681 } 682 } else { 683 mtr->umem = NULL; 684 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 685 buf_attr->page_shift, 686 mtr->hem_cfg.is_direct ? 687 HNS_ROCE_BUF_DIRECT : 0); 688 if (IS_ERR(mtr->kmem)) { 689 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 690 PTR_ERR(mtr->kmem)); 691 return PTR_ERR(mtr->kmem); 692 } 693 } 694 695 return 0; 696 } 697 698 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 699 int page_count, unsigned int page_shift) 700 { 701 struct ib_device *ibdev = &hr_dev->ib_dev; 702 dma_addr_t *pages; 703 int npage; 704 int ret; 705 706 /* alloc a tmp array to store buffer's dma address */ 707 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 708 if (!pages) 709 return -ENOMEM; 710 711 if (mtr->umem) 712 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 713 mtr->umem, page_shift); 714 else 715 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 716 mtr->kmem, page_shift); 717 718 if (npage != page_count) { 719 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 720 page_count); 721 ret = -ENOBUFS; 722 goto err_alloc_list; 723 } 724 725 if (mtr->hem_cfg.is_direct && npage > 1) { 726 ret = mtr_check_direct_pages(pages, npage, page_shift); 727 if (ret) { 728 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 729 mtr->umem ? "umtr" : "kmtr", ret, npage); 730 ret = -ENOBUFS; 731 goto err_alloc_list; 732 } 733 } 734 735 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 736 if (ret) 737 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 738 739 err_alloc_list: 740 kvfree(pages); 741 742 return ret; 743 } 744 745 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 746 dma_addr_t *pages, unsigned int page_cnt) 747 { 748 struct ib_device *ibdev = &hr_dev->ib_dev; 749 struct hns_roce_buf_region *r; 750 unsigned int i, mapped_cnt; 751 int ret = 0; 752 753 /* 754 * Only use the first page address as root ba when hopnum is 0, this 755 * is because the addresses of all pages are consecutive in this case. 756 */ 757 if (mtr->hem_cfg.is_direct) { 758 mtr->hem_cfg.root_ba = pages[0]; 759 return 0; 760 } 761 762 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 763 mapped_cnt < page_cnt; i++) { 764 r = &mtr->hem_cfg.region[i]; 765 /* if hopnum is 0, no need to map pages in this region */ 766 if (!r->hopnum) { 767 mapped_cnt += r->count; 768 continue; 769 } 770 771 if (r->offset + r->count > page_cnt) { 772 ret = -EINVAL; 773 ibdev_err(ibdev, 774 "failed to check mtr%u count %u + %u > %u.\n", 775 i, r->offset, r->count, page_cnt); 776 return ret; 777 } 778 779 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 780 page_cnt - mapped_cnt); 781 if (ret < 0) { 782 ibdev_err(ibdev, 783 "failed to map mtr%u offset %u, ret = %d.\n", 784 i, r->offset, ret); 785 return ret; 786 } 787 mapped_cnt += ret; 788 ret = 0; 789 } 790 791 if (mapped_cnt < page_cnt) { 792 ret = -ENOBUFS; 793 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 794 mapped_cnt, page_cnt); 795 } 796 797 return ret; 798 } 799 800 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 801 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 802 { 803 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 804 int mtt_count, left; 805 u32 start_index; 806 int total = 0; 807 __le64 *mtts; 808 u32 npage; 809 u64 addr; 810 811 if (!mtt_buf || mtt_max < 1) 812 goto done; 813 814 /* no mtt memory in direct mode, so just return the buffer address */ 815 if (cfg->is_direct) { 816 start_index = offset >> HNS_HW_PAGE_SHIFT; 817 for (mtt_count = 0; mtt_count < cfg->region_count && 818 total < mtt_max; mtt_count++) { 819 npage = cfg->region[mtt_count].offset; 820 if (npage < start_index) 821 continue; 822 823 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 824 mtt_buf[total] = addr; 825 826 total++; 827 } 828 829 goto done; 830 } 831 832 start_index = offset >> cfg->buf_pg_shift; 833 left = mtt_max; 834 while (left > 0) { 835 mtt_count = 0; 836 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 837 start_index + total, 838 &mtt_count); 839 if (!mtts || !mtt_count) 840 goto done; 841 842 npage = min(mtt_count, left); 843 left -= npage; 844 for (mtt_count = 0; mtt_count < npage; mtt_count++) 845 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 846 } 847 848 done: 849 if (base_addr) 850 *base_addr = cfg->root_ba; 851 852 return total; 853 } 854 855 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 856 struct hns_roce_buf_attr *attr, 857 struct hns_roce_hem_cfg *cfg, 858 unsigned int *buf_page_shift, u64 unalinged_size) 859 { 860 struct hns_roce_buf_region *r; 861 u64 first_region_padding; 862 int page_cnt, region_cnt; 863 unsigned int page_shift; 864 size_t buf_size; 865 866 /* If mtt is disabled, all pages must be within a continuous range */ 867 cfg->is_direct = !mtr_has_mtt(attr); 868 buf_size = mtr_bufs_size(attr); 869 if (cfg->is_direct) { 870 /* When HEM buffer uses 0-level addressing, the page size is 871 * equal to the whole buffer size, and we split the buffer into 872 * small pages which is used to check whether the adjacent 873 * units are in the continuous space and its size is fixed to 874 * 4K based on hns ROCEE's requirement. 875 */ 876 page_shift = HNS_HW_PAGE_SHIFT; 877 878 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 879 cfg->buf_pg_count = 1; 880 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 881 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 882 first_region_padding = 0; 883 } else { 884 page_shift = attr->page_shift; 885 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 886 1 << page_shift); 887 cfg->buf_pg_shift = page_shift; 888 first_region_padding = unalinged_size; 889 } 890 891 /* Convert buffer size to page index and page count for each region and 892 * the buffer's offset needs to be appended to the first region. 893 */ 894 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 895 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 896 r = &cfg->region[region_cnt]; 897 r->offset = page_cnt; 898 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 899 first_region_padding); 900 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 901 first_region_padding = 0; 902 page_cnt += r->count; 903 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 904 r->count); 905 } 906 907 cfg->region_count = region_cnt; 908 *buf_page_shift = page_shift; 909 910 return page_cnt; 911 } 912 913 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum) 914 { 915 return int_pow(ba_per_bt, hopnum - 1); 916 } 917 918 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev, 919 struct hns_roce_mtr *mtr, 920 unsigned int pg_shift) 921 { 922 unsigned long cap = hr_dev->caps.page_size_cap; 923 struct hns_roce_buf_region *re; 924 unsigned int pgs_per_l1ba; 925 unsigned int ba_per_bt; 926 unsigned int ba_num; 927 int i; 928 929 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) { 930 if (!(BIT(pg_shift) & cap)) 931 continue; 932 933 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN; 934 ba_num = 0; 935 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 936 re = &mtr->hem_cfg.region[i]; 937 if (re->hopnum == 0) 938 continue; 939 940 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum); 941 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba); 942 } 943 944 if (ba_num <= ba_per_bt) 945 return pg_shift; 946 } 947 948 return 0; 949 } 950 951 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 952 unsigned int ba_page_shift) 953 { 954 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 955 int ret; 956 957 hns_roce_hem_list_init(&mtr->hem_list); 958 if (!cfg->is_direct) { 959 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift); 960 if (!ba_page_shift) 961 return -ERANGE; 962 963 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 964 cfg->region, cfg->region_count, 965 ba_page_shift); 966 if (ret) 967 return ret; 968 cfg->root_ba = mtr->hem_list.root_ba; 969 cfg->ba_pg_shift = ba_page_shift; 970 } else { 971 cfg->ba_pg_shift = cfg->buf_pg_shift; 972 } 973 974 return 0; 975 } 976 977 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 978 { 979 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 980 } 981 982 /** 983 * hns_roce_mtr_create - Create hns memory translate region. 984 * 985 * @hr_dev: RoCE device struct pointer 986 * @mtr: memory translate region 987 * @buf_attr: buffer attribute for creating mtr 988 * @ba_page_shift: page shift for multi-hop base address table 989 * @udata: user space context, if it's NULL, means kernel space 990 * @user_addr: userspace virtual address to start at 991 */ 992 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 993 struct hns_roce_buf_attr *buf_attr, 994 unsigned int ba_page_shift, struct ib_udata *udata, 995 unsigned long user_addr) 996 { 997 struct ib_device *ibdev = &hr_dev->ib_dev; 998 unsigned int buf_page_shift = 0; 999 int buf_page_cnt; 1000 int ret; 1001 1002 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 1003 &buf_page_shift, 1004 udata ? user_addr & ~PAGE_MASK : 0); 1005 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 1006 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 1007 buf_page_cnt, buf_page_shift); 1008 return -EINVAL; 1009 } 1010 1011 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 1012 if (ret) { 1013 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1014 return ret; 1015 } 1016 1017 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1018 * to finish the MTT configuration. 1019 */ 1020 if (buf_attr->mtt_only) { 1021 mtr->umem = NULL; 1022 mtr->kmem = NULL; 1023 return 0; 1024 } 1025 1026 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1027 if (ret) { 1028 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 1029 goto err_alloc_mtt; 1030 } 1031 1032 /* Write buffer's dma address to MTT */ 1033 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 1034 if (ret) 1035 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1036 else 1037 return 0; 1038 1039 mtr_free_bufs(hr_dev, mtr); 1040 err_alloc_mtt: 1041 mtr_free_mtt(hr_dev, mtr); 1042 return ret; 1043 } 1044 1045 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1046 { 1047 /* release multi-hop addressing resource */ 1048 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1049 1050 /* free buffers */ 1051 mtr_free_bufs(hr_dev, mtr); 1052 } 1053