1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <rdma/ib_umem.h> 36 #include "hns_roce_device.h" 37 #include "hns_roce_cmd.h" 38 #include "hns_roce_hem.h" 39 40 static u32 hw_index_to_key(int ind) 41 { 42 return ((u32)ind >> 24) | ((u32)ind << 8); 43 } 44 45 unsigned long key_to_hw_index(u32 key) 46 { 47 return (key << 24) | (key >> 8); 48 } 49 50 static int hns_roce_hw_create_mpt(struct hns_roce_dev *hr_dev, 51 struct hns_roce_cmd_mailbox *mailbox, 52 unsigned long mpt_index) 53 { 54 return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0, 55 HNS_ROCE_CMD_CREATE_MPT, 56 HNS_ROCE_CMD_TIMEOUT_MSECS); 57 } 58 59 int hns_roce_hw_destroy_mpt(struct hns_roce_dev *hr_dev, 60 struct hns_roce_cmd_mailbox *mailbox, 61 unsigned long mpt_index) 62 { 63 return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0, 64 mpt_index, !mailbox, HNS_ROCE_CMD_DESTROY_MPT, 65 HNS_ROCE_CMD_TIMEOUT_MSECS); 66 } 67 68 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 69 { 70 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 71 struct ib_device *ibdev = &hr_dev->ib_dev; 72 int err; 73 int id; 74 75 /* Allocate a key for mr from mr_table */ 76 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 77 GFP_KERNEL); 78 if (id < 0) { 79 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 80 return -ENOMEM; 81 } 82 83 mr->key = hw_index_to_key(id); /* MR key */ 84 85 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 86 (unsigned long)id); 87 if (err) { 88 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 89 goto err_free_bitmap; 90 } 91 92 return 0; 93 err_free_bitmap: 94 ida_free(&mtpt_ida->ida, id); 95 return err; 96 } 97 98 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 99 { 100 unsigned long obj = key_to_hw_index(mr->key); 101 102 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 103 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 104 } 105 106 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 107 struct ib_udata *udata, u64 start) 108 { 109 struct ib_device *ibdev = &hr_dev->ib_dev; 110 bool is_fast = mr->type == MR_TYPE_FRMR; 111 struct hns_roce_buf_attr buf_attr = {}; 112 int err; 113 114 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 115 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 116 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 117 buf_attr.region[0].size = mr->size; 118 buf_attr.region[0].hopnum = mr->pbl_hop_num; 119 buf_attr.region_count = 1; 120 buf_attr.user_access = mr->access; 121 /* fast MR's buffer is alloced before mapping, not at creation */ 122 buf_attr.mtt_only = is_fast; 123 124 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 125 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 126 udata, start); 127 if (err) 128 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 129 else 130 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 131 132 return err; 133 } 134 135 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 136 { 137 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 138 } 139 140 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, 141 struct hns_roce_mr *mr) 142 { 143 struct ib_device *ibdev = &hr_dev->ib_dev; 144 int ret; 145 146 if (mr->enabled) { 147 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, 148 key_to_hw_index(mr->key) & 149 (hr_dev->caps.num_mtpts - 1)); 150 if (ret) 151 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 152 ret); 153 } 154 155 free_mr_pbl(hr_dev, mr); 156 free_mr_key(hr_dev, mr); 157 } 158 159 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 160 struct hns_roce_mr *mr) 161 { 162 unsigned long mtpt_idx = key_to_hw_index(mr->key); 163 struct hns_roce_cmd_mailbox *mailbox; 164 struct device *dev = hr_dev->dev; 165 int ret; 166 167 /* Allocate mailbox memory */ 168 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 169 if (IS_ERR(mailbox)) { 170 ret = PTR_ERR(mailbox); 171 return ret; 172 } 173 174 if (mr->type != MR_TYPE_FRMR) 175 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 176 else 177 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 178 if (ret) { 179 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 180 goto err_page; 181 } 182 183 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, 184 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 185 if (ret) { 186 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 187 goto err_page; 188 } 189 190 mr->enabled = 1; 191 192 err_page: 193 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 194 195 return ret; 196 } 197 198 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 199 { 200 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 201 202 ida_init(&mtpt_ida->ida); 203 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 204 mtpt_ida->min = hr_dev->caps.reserved_mrws; 205 } 206 207 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 208 { 209 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 210 struct hns_roce_mr *mr; 211 int ret; 212 213 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 214 if (mr == NULL) 215 return ERR_PTR(-ENOMEM); 216 217 mr->type = MR_TYPE_DMA; 218 mr->pd = to_hr_pd(pd)->pdn; 219 mr->access = acc; 220 221 /* Allocate memory region key */ 222 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 223 ret = alloc_mr_key(hr_dev, mr); 224 if (ret) 225 goto err_free; 226 227 ret = hns_roce_mr_enable(hr_dev, mr); 228 if (ret) 229 goto err_mr; 230 231 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 232 233 return &mr->ibmr; 234 err_mr: 235 free_mr_key(hr_dev, mr); 236 237 err_free: 238 kfree(mr); 239 return ERR_PTR(ret); 240 } 241 242 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 243 u64 virt_addr, int access_flags, 244 struct ib_udata *udata) 245 { 246 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 247 struct hns_roce_mr *mr; 248 int ret; 249 250 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 251 if (!mr) 252 return ERR_PTR(-ENOMEM); 253 254 mr->iova = virt_addr; 255 mr->size = length; 256 mr->pd = to_hr_pd(pd)->pdn; 257 mr->access = access_flags; 258 mr->type = MR_TYPE_MR; 259 260 ret = alloc_mr_key(hr_dev, mr); 261 if (ret) 262 goto err_alloc_mr; 263 264 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 265 if (ret) 266 goto err_alloc_key; 267 268 ret = hns_roce_mr_enable(hr_dev, mr); 269 if (ret) 270 goto err_alloc_pbl; 271 272 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 273 mr->ibmr.length = length; 274 275 return &mr->ibmr; 276 277 err_alloc_pbl: 278 free_mr_pbl(hr_dev, mr); 279 err_alloc_key: 280 free_mr_key(hr_dev, mr); 281 err_alloc_mr: 282 kfree(mr); 283 return ERR_PTR(ret); 284 } 285 286 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 287 u64 length, u64 virt_addr, 288 int mr_access_flags, struct ib_pd *pd, 289 struct ib_udata *udata) 290 { 291 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 292 struct ib_device *ib_dev = &hr_dev->ib_dev; 293 struct hns_roce_mr *mr = to_hr_mr(ibmr); 294 struct hns_roce_cmd_mailbox *mailbox; 295 unsigned long mtpt_idx; 296 int ret; 297 298 if (!mr->enabled) 299 return ERR_PTR(-EINVAL); 300 301 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 302 if (IS_ERR(mailbox)) 303 return ERR_CAST(mailbox); 304 305 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 306 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0, 307 HNS_ROCE_CMD_QUERY_MPT, 308 HNS_ROCE_CMD_TIMEOUT_MSECS); 309 if (ret) 310 goto free_cmd_mbox; 311 312 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, mtpt_idx); 313 if (ret) 314 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 315 316 mr->enabled = 0; 317 mr->iova = virt_addr; 318 mr->size = length; 319 320 if (flags & IB_MR_REREG_PD) 321 mr->pd = to_hr_pd(pd)->pdn; 322 323 if (flags & IB_MR_REREG_ACCESS) 324 mr->access = mr_access_flags; 325 326 if (flags & IB_MR_REREG_TRANS) { 327 free_mr_pbl(hr_dev, mr); 328 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 329 if (ret) { 330 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 331 ret); 332 goto free_cmd_mbox; 333 } 334 } 335 336 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 337 if (ret) { 338 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 339 goto free_cmd_mbox; 340 } 341 342 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, mtpt_idx); 343 if (ret) { 344 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 345 goto free_cmd_mbox; 346 } 347 348 mr->enabled = 1; 349 350 free_cmd_mbox: 351 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 352 353 if (ret) 354 return ERR_PTR(ret); 355 return NULL; 356 } 357 358 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 359 { 360 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 361 struct hns_roce_mr *mr = to_hr_mr(ibmr); 362 int ret = 0; 363 364 hns_roce_mr_free(hr_dev, mr); 365 kfree(mr); 366 367 return ret; 368 } 369 370 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 371 u32 max_num_sg) 372 { 373 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 374 struct device *dev = hr_dev->dev; 375 struct hns_roce_mr *mr; 376 int ret; 377 378 if (mr_type != IB_MR_TYPE_MEM_REG) 379 return ERR_PTR(-EINVAL); 380 381 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 382 dev_err(dev, "max_num_sg larger than %d\n", 383 HNS_ROCE_FRMR_MAX_PA); 384 return ERR_PTR(-EINVAL); 385 } 386 387 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 388 if (!mr) 389 return ERR_PTR(-ENOMEM); 390 391 mr->type = MR_TYPE_FRMR; 392 mr->pd = to_hr_pd(pd)->pdn; 393 mr->size = max_num_sg * (1 << PAGE_SHIFT); 394 395 /* Allocate memory region key */ 396 ret = alloc_mr_key(hr_dev, mr); 397 if (ret) 398 goto err_free; 399 400 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 401 if (ret) 402 goto err_key; 403 404 ret = hns_roce_mr_enable(hr_dev, mr); 405 if (ret) 406 goto err_pbl; 407 408 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 409 mr->ibmr.length = mr->size; 410 411 return &mr->ibmr; 412 413 err_key: 414 free_mr_key(hr_dev, mr); 415 err_pbl: 416 free_mr_pbl(hr_dev, mr); 417 err_free: 418 kfree(mr); 419 return ERR_PTR(ret); 420 } 421 422 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 423 { 424 struct hns_roce_mr *mr = to_hr_mr(ibmr); 425 426 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 427 mr->page_list[mr->npages++] = addr; 428 return 0; 429 } 430 431 return -ENOBUFS; 432 } 433 434 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 435 unsigned int *sg_offset) 436 { 437 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 438 struct ib_device *ibdev = &hr_dev->ib_dev; 439 struct hns_roce_mr *mr = to_hr_mr(ibmr); 440 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 441 int ret = 0; 442 443 mr->npages = 0; 444 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 445 sizeof(dma_addr_t), GFP_KERNEL); 446 if (!mr->page_list) 447 return ret; 448 449 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 450 if (ret < 1) { 451 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 452 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); 453 goto err_page_list; 454 } 455 456 mtr->hem_cfg.region[0].offset = 0; 457 mtr->hem_cfg.region[0].count = mr->npages; 458 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 459 mtr->hem_cfg.region_count = 1; 460 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 461 if (ret) { 462 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 463 ret = 0; 464 } else { 465 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 466 ret = mr->npages; 467 } 468 469 err_page_list: 470 kvfree(mr->page_list); 471 mr->page_list = NULL; 472 473 return ret; 474 } 475 476 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 477 struct hns_roce_mw *mw) 478 { 479 struct device *dev = hr_dev->dev; 480 int ret; 481 482 if (mw->enabled) { 483 ret = hns_roce_hw_destroy_mpt(hr_dev, NULL, 484 key_to_hw_index(mw->rkey) & 485 (hr_dev->caps.num_mtpts - 1)); 486 if (ret) 487 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 488 489 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 490 key_to_hw_index(mw->rkey)); 491 } 492 493 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 494 (int)key_to_hw_index(mw->rkey)); 495 } 496 497 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 498 struct hns_roce_mw *mw) 499 { 500 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 501 struct hns_roce_cmd_mailbox *mailbox; 502 struct device *dev = hr_dev->dev; 503 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 504 int ret; 505 506 /* prepare HEM entry memory */ 507 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 508 if (ret) 509 return ret; 510 511 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 512 if (IS_ERR(mailbox)) { 513 ret = PTR_ERR(mailbox); 514 goto err_table; 515 } 516 517 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 518 if (ret) { 519 dev_err(dev, "MW write mtpt fail!\n"); 520 goto err_page; 521 } 522 523 ret = hns_roce_hw_create_mpt(hr_dev, mailbox, 524 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 525 if (ret) { 526 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 527 goto err_page; 528 } 529 530 mw->enabled = 1; 531 532 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 533 534 return 0; 535 536 err_page: 537 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 538 539 err_table: 540 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 541 542 return ret; 543 } 544 545 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 546 { 547 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 548 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 549 struct ib_device *ibdev = &hr_dev->ib_dev; 550 struct hns_roce_mw *mw = to_hr_mw(ibmw); 551 int ret; 552 int id; 553 554 /* Allocate a key for mw from mr_table */ 555 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 556 GFP_KERNEL); 557 if (id < 0) { 558 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 559 return -ENOMEM; 560 } 561 562 mw->rkey = hw_index_to_key(id); 563 564 ibmw->rkey = mw->rkey; 565 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 566 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 567 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 568 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 569 570 ret = hns_roce_mw_enable(hr_dev, mw); 571 if (ret) 572 goto err_mw; 573 574 return 0; 575 576 err_mw: 577 hns_roce_mw_free(hr_dev, mw); 578 return ret; 579 } 580 581 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 582 { 583 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 584 struct hns_roce_mw *mw = to_hr_mw(ibmw); 585 586 hns_roce_mw_free(hr_dev, mw); 587 return 0; 588 } 589 590 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 591 struct hns_roce_buf_region *region, dma_addr_t *pages, 592 int max_count) 593 { 594 int count, npage; 595 int offset, end; 596 __le64 *mtts; 597 u64 addr; 598 int i; 599 600 offset = region->offset; 601 end = offset + region->count; 602 npage = 0; 603 while (offset < end && npage < max_count) { 604 count = 0; 605 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 606 offset, &count, NULL); 607 if (!mtts) 608 return -ENOBUFS; 609 610 for (i = 0; i < count && npage < max_count; i++) { 611 addr = pages[npage]; 612 613 mtts[i] = cpu_to_le64(addr); 614 npage++; 615 } 616 offset += count; 617 } 618 619 return npage; 620 } 621 622 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 623 { 624 int i; 625 626 for (i = 0; i < attr->region_count; i++) 627 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 628 attr->region[i].hopnum > 0) 629 return true; 630 631 /* because the mtr only one root base address, when hopnum is 0 means 632 * root base address equals the first buffer address, thus all alloced 633 * memory must in a continuous space accessed by direct mode. 634 */ 635 return false; 636 } 637 638 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 639 { 640 size_t size = 0; 641 int i; 642 643 for (i = 0; i < attr->region_count; i++) 644 size += attr->region[i].size; 645 646 return size; 647 } 648 649 /* 650 * check the given pages in continuous address space 651 * Returns 0 on success, or the error page num. 652 */ 653 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 654 unsigned int page_shift) 655 { 656 size_t page_size = 1 << page_shift; 657 int i; 658 659 for (i = 1; i < page_count; i++) 660 if (pages[i] - pages[i - 1] != page_size) 661 return i; 662 663 return 0; 664 } 665 666 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 667 { 668 /* release user buffers */ 669 if (mtr->umem) { 670 ib_umem_release(mtr->umem); 671 mtr->umem = NULL; 672 } 673 674 /* release kernel buffers */ 675 if (mtr->kmem) { 676 hns_roce_buf_free(hr_dev, mtr->kmem); 677 mtr->kmem = NULL; 678 } 679 } 680 681 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 682 struct hns_roce_buf_attr *buf_attr, 683 struct ib_udata *udata, unsigned long user_addr) 684 { 685 struct ib_device *ibdev = &hr_dev->ib_dev; 686 size_t total_size; 687 688 total_size = mtr_bufs_size(buf_attr); 689 690 if (udata) { 691 mtr->kmem = NULL; 692 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 693 buf_attr->user_access); 694 if (IS_ERR_OR_NULL(mtr->umem)) { 695 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 696 PTR_ERR(mtr->umem)); 697 return -ENOMEM; 698 } 699 } else { 700 mtr->umem = NULL; 701 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 702 buf_attr->page_shift, 703 mtr->hem_cfg.is_direct ? 704 HNS_ROCE_BUF_DIRECT : 0); 705 if (IS_ERR(mtr->kmem)) { 706 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 707 PTR_ERR(mtr->kmem)); 708 return PTR_ERR(mtr->kmem); 709 } 710 } 711 712 return 0; 713 } 714 715 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 716 int page_count, unsigned int page_shift) 717 { 718 struct ib_device *ibdev = &hr_dev->ib_dev; 719 dma_addr_t *pages; 720 int npage; 721 int ret; 722 723 /* alloc a tmp array to store buffer's dma address */ 724 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 725 if (!pages) 726 return -ENOMEM; 727 728 if (mtr->umem) 729 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 730 mtr->umem, page_shift); 731 else 732 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 733 mtr->kmem, page_shift); 734 735 if (npage != page_count) { 736 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 737 page_count); 738 ret = -ENOBUFS; 739 goto err_alloc_list; 740 } 741 742 if (mtr->hem_cfg.is_direct && npage > 1) { 743 ret = mtr_check_direct_pages(pages, npage, page_shift); 744 if (ret) { 745 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 746 mtr->umem ? "umtr" : "kmtr", ret, npage); 747 ret = -ENOBUFS; 748 goto err_alloc_list; 749 } 750 } 751 752 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 753 if (ret) 754 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 755 756 err_alloc_list: 757 kvfree(pages); 758 759 return ret; 760 } 761 762 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 763 dma_addr_t *pages, unsigned int page_cnt) 764 { 765 struct ib_device *ibdev = &hr_dev->ib_dev; 766 struct hns_roce_buf_region *r; 767 unsigned int i, mapped_cnt; 768 int ret = 0; 769 770 /* 771 * Only use the first page address as root ba when hopnum is 0, this 772 * is because the addresses of all pages are consecutive in this case. 773 */ 774 if (mtr->hem_cfg.is_direct) { 775 mtr->hem_cfg.root_ba = pages[0]; 776 return 0; 777 } 778 779 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 780 mapped_cnt < page_cnt; i++) { 781 r = &mtr->hem_cfg.region[i]; 782 /* if hopnum is 0, no need to map pages in this region */ 783 if (!r->hopnum) { 784 mapped_cnt += r->count; 785 continue; 786 } 787 788 if (r->offset + r->count > page_cnt) { 789 ret = -EINVAL; 790 ibdev_err(ibdev, 791 "failed to check mtr%u count %u + %u > %u.\n", 792 i, r->offset, r->count, page_cnt); 793 return ret; 794 } 795 796 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 797 page_cnt - mapped_cnt); 798 if (ret < 0) { 799 ibdev_err(ibdev, 800 "failed to map mtr%u offset %u, ret = %d.\n", 801 i, r->offset, ret); 802 return ret; 803 } 804 mapped_cnt += ret; 805 ret = 0; 806 } 807 808 if (mapped_cnt < page_cnt) { 809 ret = -ENOBUFS; 810 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 811 mapped_cnt, page_cnt); 812 } 813 814 return ret; 815 } 816 817 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 818 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 819 { 820 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 821 int mtt_count, left; 822 u32 start_index; 823 int total = 0; 824 __le64 *mtts; 825 u32 npage; 826 u64 addr; 827 828 if (!mtt_buf || mtt_max < 1) 829 goto done; 830 831 /* no mtt memory in direct mode, so just return the buffer address */ 832 if (cfg->is_direct) { 833 start_index = offset >> HNS_HW_PAGE_SHIFT; 834 for (mtt_count = 0; mtt_count < cfg->region_count && 835 total < mtt_max; mtt_count++) { 836 npage = cfg->region[mtt_count].offset; 837 if (npage < start_index) 838 continue; 839 840 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 841 mtt_buf[total] = addr; 842 843 total++; 844 } 845 846 goto done; 847 } 848 849 start_index = offset >> cfg->buf_pg_shift; 850 left = mtt_max; 851 while (left > 0) { 852 mtt_count = 0; 853 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 854 start_index + total, 855 &mtt_count, NULL); 856 if (!mtts || !mtt_count) 857 goto done; 858 859 npage = min(mtt_count, left); 860 left -= npage; 861 for (mtt_count = 0; mtt_count < npage; mtt_count++) 862 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 863 } 864 865 done: 866 if (base_addr) 867 *base_addr = cfg->root_ba; 868 869 return total; 870 } 871 872 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 873 struct hns_roce_buf_attr *attr, 874 struct hns_roce_hem_cfg *cfg, 875 unsigned int *buf_page_shift, u64 unalinged_size) 876 { 877 struct hns_roce_buf_region *r; 878 u64 first_region_padding; 879 int page_cnt, region_cnt; 880 unsigned int page_shift; 881 size_t buf_size; 882 883 /* If mtt is disabled, all pages must be within a continuous range */ 884 cfg->is_direct = !mtr_has_mtt(attr); 885 buf_size = mtr_bufs_size(attr); 886 if (cfg->is_direct) { 887 /* When HEM buffer uses 0-level addressing, the page size is 888 * equal to the whole buffer size, and we split the buffer into 889 * small pages which is used to check whether the adjacent 890 * units are in the continuous space and its size is fixed to 891 * 4K based on hns ROCEE's requirement. 892 */ 893 page_shift = HNS_HW_PAGE_SHIFT; 894 895 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 896 cfg->buf_pg_count = 1; 897 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 898 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 899 first_region_padding = 0; 900 } else { 901 page_shift = attr->page_shift; 902 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 903 1 << page_shift); 904 cfg->buf_pg_shift = page_shift; 905 first_region_padding = unalinged_size; 906 } 907 908 /* Convert buffer size to page index and page count for each region and 909 * the buffer's offset needs to be appended to the first region. 910 */ 911 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 912 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 913 r = &cfg->region[region_cnt]; 914 r->offset = page_cnt; 915 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 916 first_region_padding); 917 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 918 first_region_padding = 0; 919 page_cnt += r->count; 920 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 921 r->count); 922 } 923 924 cfg->region_count = region_cnt; 925 *buf_page_shift = page_shift; 926 927 return page_cnt; 928 } 929 930 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 931 unsigned int ba_page_shift) 932 { 933 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 934 int ret; 935 936 hns_roce_hem_list_init(&mtr->hem_list); 937 if (!cfg->is_direct) { 938 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 939 cfg->region, cfg->region_count, 940 ba_page_shift); 941 if (ret) 942 return ret; 943 cfg->root_ba = mtr->hem_list.root_ba; 944 cfg->ba_pg_shift = ba_page_shift; 945 } else { 946 cfg->ba_pg_shift = cfg->buf_pg_shift; 947 } 948 949 return 0; 950 } 951 952 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 953 { 954 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 955 } 956 957 /** 958 * hns_roce_mtr_create - Create hns memory translate region. 959 * 960 * @hr_dev: RoCE device struct pointer 961 * @mtr: memory translate region 962 * @buf_attr: buffer attribute for creating mtr 963 * @ba_page_shift: page shift for multi-hop base address table 964 * @udata: user space context, if it's NULL, means kernel space 965 * @user_addr: userspace virtual address to start at 966 */ 967 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 968 struct hns_roce_buf_attr *buf_attr, 969 unsigned int ba_page_shift, struct ib_udata *udata, 970 unsigned long user_addr) 971 { 972 struct ib_device *ibdev = &hr_dev->ib_dev; 973 unsigned int buf_page_shift = 0; 974 int buf_page_cnt; 975 int ret; 976 977 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 978 &buf_page_shift, 979 udata ? user_addr & ~PAGE_MASK : 0); 980 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 981 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 982 buf_page_cnt, buf_page_shift); 983 return -EINVAL; 984 } 985 986 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 987 if (ret) { 988 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 989 return ret; 990 } 991 992 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 993 * to finish the MTT configuration. 994 */ 995 if (buf_attr->mtt_only) { 996 mtr->umem = NULL; 997 mtr->kmem = NULL; 998 return 0; 999 } 1000 1001 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1002 if (ret) { 1003 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 1004 goto err_alloc_mtt; 1005 } 1006 1007 /* Write buffer's dma address to MTT */ 1008 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 1009 if (ret) 1010 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1011 else 1012 return 0; 1013 1014 mtr_free_bufs(hr_dev, mtr); 1015 err_alloc_mtt: 1016 mtr_free_mtt(hr_dev, mtr); 1017 return ret; 1018 } 1019 1020 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1021 { 1022 /* release multi-hop addressing resource */ 1023 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1024 1025 /* free buffers */ 1026 mtr_free_bufs(hr_dev, mtr); 1027 } 1028