xref: /openbmc/linux/drivers/infiniband/hw/hfi1/verbs.c (revision fcc8487d)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 #include "debugfs.h"
64 #include "vnic.h"
65 
66 static unsigned int hfi1_lkey_table_size = 16;
67 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
68 		   S_IRUGO);
69 MODULE_PARM_DESC(lkey_table_size,
70 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
71 
72 static unsigned int hfi1_max_pds = 0xFFFF;
73 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
74 MODULE_PARM_DESC(max_pds,
75 		 "Maximum number of protection domains to support");
76 
77 static unsigned int hfi1_max_ahs = 0xFFFF;
78 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
80 
81 unsigned int hfi1_max_cqes = 0x2FFFFF;
82 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_cqes,
84 		 "Maximum number of completion queue entries to support");
85 
86 unsigned int hfi1_max_cqs = 0x1FFFF;
87 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
88 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
89 
90 unsigned int hfi1_max_qp_wrs = 0x3FFF;
91 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
93 
94 unsigned int hfi1_max_qps = 32768;
95 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
97 
98 unsigned int hfi1_max_sges = 0x60;
99 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
101 
102 unsigned int hfi1_max_mcast_grps = 16384;
103 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_mcast_grps,
105 		 "Maximum number of multicast groups to support");
106 
107 unsigned int hfi1_max_mcast_qp_attached = 16;
108 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
109 		   uint, S_IRUGO);
110 MODULE_PARM_DESC(max_mcast_qp_attached,
111 		 "Maximum number of attached QPs to support");
112 
113 unsigned int hfi1_max_srqs = 1024;
114 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
115 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
116 
117 unsigned int hfi1_max_srq_sges = 128;
118 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
120 
121 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
122 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
124 
125 unsigned short piothreshold = 256;
126 module_param(piothreshold, ushort, S_IRUGO);
127 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
128 
129 #define COPY_CACHELESS 1
130 #define COPY_ADAPTIVE  2
131 static unsigned int sge_copy_mode;
132 module_param(sge_copy_mode, uint, S_IRUGO);
133 MODULE_PARM_DESC(sge_copy_mode,
134 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
135 
136 static void verbs_sdma_complete(
137 	struct sdma_txreq *cookie,
138 	int status);
139 
140 static int pio_wait(struct rvt_qp *qp,
141 		    struct send_context *sc,
142 		    struct hfi1_pkt_state *ps,
143 		    u32 flag);
144 
145 /* Length of buffer to create verbs txreq cache name */
146 #define TXREQ_NAME_LEN 24
147 
148 static uint wss_threshold;
149 module_param(wss_threshold, uint, S_IRUGO);
150 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
151 static uint wss_clean_period = 256;
152 module_param(wss_clean_period, uint, S_IRUGO);
153 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
154 
155 /* memory working set size */
156 struct hfi1_wss {
157 	unsigned long *entries;
158 	atomic_t total_count;
159 	atomic_t clean_counter;
160 	atomic_t clean_entry;
161 
162 	int threshold;
163 	int num_entries;
164 	long pages_mask;
165 };
166 
167 static struct hfi1_wss wss;
168 
169 int hfi1_wss_init(void)
170 {
171 	long llc_size;
172 	long llc_bits;
173 	long table_size;
174 	long table_bits;
175 
176 	/* check for a valid percent range - default to 80 if none or invalid */
177 	if (wss_threshold < 1 || wss_threshold > 100)
178 		wss_threshold = 80;
179 	/* reject a wildly large period */
180 	if (wss_clean_period > 1000000)
181 		wss_clean_period = 256;
182 	/* reject a zero period */
183 	if (wss_clean_period == 0)
184 		wss_clean_period = 1;
185 
186 	/*
187 	 * Calculate the table size - the next power of 2 larger than the
188 	 * LLC size.  LLC size is in KiB.
189 	 */
190 	llc_size = wss_llc_size() * 1024;
191 	table_size = roundup_pow_of_two(llc_size);
192 
193 	/* one bit per page in rounded up table */
194 	llc_bits = llc_size / PAGE_SIZE;
195 	table_bits = table_size / PAGE_SIZE;
196 	wss.pages_mask = table_bits - 1;
197 	wss.num_entries = table_bits / BITS_PER_LONG;
198 
199 	wss.threshold = (llc_bits * wss_threshold) / 100;
200 	if (wss.threshold == 0)
201 		wss.threshold = 1;
202 
203 	atomic_set(&wss.clean_counter, wss_clean_period);
204 
205 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
206 			      GFP_KERNEL);
207 	if (!wss.entries) {
208 		hfi1_wss_exit();
209 		return -ENOMEM;
210 	}
211 
212 	return 0;
213 }
214 
215 void hfi1_wss_exit(void)
216 {
217 	/* coded to handle partially initialized and repeat callers */
218 	kfree(wss.entries);
219 	wss.entries = NULL;
220 }
221 
222 /*
223  * Advance the clean counter.  When the clean period has expired,
224  * clean an entry.
225  *
226  * This is implemented in atomics to avoid locking.  Because multiple
227  * variables are involved, it can be racy which can lead to slightly
228  * inaccurate information.  Since this is only a heuristic, this is
229  * OK.  Any innaccuracies will clean themselves out as the counter
230  * advances.  That said, it is unlikely the entry clean operation will
231  * race - the next possible racer will not start until the next clean
232  * period.
233  *
234  * The clean counter is implemented as a decrement to zero.  When zero
235  * is reached an entry is cleaned.
236  */
237 static void wss_advance_clean_counter(void)
238 {
239 	int entry;
240 	int weight;
241 	unsigned long bits;
242 
243 	/* become the cleaner if we decrement the counter to zero */
244 	if (atomic_dec_and_test(&wss.clean_counter)) {
245 		/*
246 		 * Set, not add, the clean period.  This avoids an issue
247 		 * where the counter could decrement below the clean period.
248 		 * Doing a set can result in lost decrements, slowing the
249 		 * clean advance.  Since this a heuristic, this possible
250 		 * slowdown is OK.
251 		 *
252 		 * An alternative is to loop, advancing the counter by a
253 		 * clean period until the result is > 0. However, this could
254 		 * lead to several threads keeping another in the clean loop.
255 		 * This could be mitigated by limiting the number of times
256 		 * we stay in the loop.
257 		 */
258 		atomic_set(&wss.clean_counter, wss_clean_period);
259 
260 		/*
261 		 * Uniquely grab the entry to clean and move to next.
262 		 * The current entry is always the lower bits of
263 		 * wss.clean_entry.  The table size, wss.num_entries,
264 		 * is always a power-of-2.
265 		 */
266 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
267 			& (wss.num_entries - 1);
268 
269 		/* clear the entry and count the bits */
270 		bits = xchg(&wss.entries[entry], 0);
271 		weight = hweight64((u64)bits);
272 		/* only adjust the contended total count if needed */
273 		if (weight)
274 			atomic_sub(weight, &wss.total_count);
275 	}
276 }
277 
278 /*
279  * Insert the given address into the working set array.
280  */
281 static void wss_insert(void *address)
282 {
283 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
284 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
285 	u32 nr = page & (BITS_PER_LONG - 1);
286 
287 	if (!test_and_set_bit(nr, &wss.entries[entry]))
288 		atomic_inc(&wss.total_count);
289 
290 	wss_advance_clean_counter();
291 }
292 
293 /*
294  * Is the working set larger than the threshold?
295  */
296 static inline bool wss_exceeds_threshold(void)
297 {
298 	return atomic_read(&wss.total_count) >= wss.threshold;
299 }
300 
301 /*
302  * Translate ib_wr_opcode into ib_wc_opcode.
303  */
304 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
305 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
306 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
307 	[IB_WR_SEND] = IB_WC_SEND,
308 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
309 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
310 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
311 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
312 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
313 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
314 	[IB_WR_REG_MR] = IB_WC_REG_MR
315 };
316 
317 /*
318  * Length of header by opcode, 0 --> not supported
319  */
320 const u8 hdr_len_by_opcode[256] = {
321 	/* RC */
322 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
323 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
324 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
325 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
326 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
327 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
328 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
329 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
330 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
331 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
332 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
333 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
334 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
335 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
336 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
337 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
338 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
339 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
340 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
341 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
342 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
343 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
344 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
345 	/* UC */
346 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
347 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
348 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
349 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
350 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
351 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
352 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
353 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
354 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
355 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
356 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
357 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
358 	/* UD */
359 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
360 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
361 };
362 
363 static const opcode_handler opcode_handler_tbl[256] = {
364 	/* RC */
365 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
366 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
367 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
370 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
371 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
372 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
373 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
374 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
376 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
377 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
378 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
379 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
380 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
381 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
382 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
383 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
384 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
385 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
386 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
387 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
388 	/* UC */
389 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
390 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
391 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
392 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
394 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
395 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
396 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
397 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
398 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
400 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
401 	/* UD */
402 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
403 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
404 	/* CNP */
405 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
406 };
407 
408 #define OPMASK 0x1f
409 
410 static const u32 pio_opmask[BIT(3)] = {
411 	/* RC */
412 	[IB_OPCODE_RC >> 5] =
413 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
414 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
415 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
416 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
417 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
418 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
419 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
420 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
421 		BIT(RC_OP(FETCH_ADD) & OPMASK),
422 	/* UC */
423 	[IB_OPCODE_UC >> 5] =
424 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
425 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
426 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
427 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
428 };
429 
430 /*
431  * System image GUID.
432  */
433 __be64 ib_hfi1_sys_image_guid;
434 
435 /**
436  * hfi1_copy_sge - copy data to SGE memory
437  * @ss: the SGE state
438  * @data: the data to copy
439  * @length: the length of the data
440  * @release: boolean to release MR
441  * @copy_last: do a separate copy of the last 8 bytes
442  */
443 void hfi1_copy_sge(
444 	struct rvt_sge_state *ss,
445 	void *data, u32 length,
446 	bool release,
447 	bool copy_last)
448 {
449 	struct rvt_sge *sge = &ss->sge;
450 	int i;
451 	bool in_last = false;
452 	bool cacheless_copy = false;
453 
454 	if (sge_copy_mode == COPY_CACHELESS) {
455 		cacheless_copy = length >= PAGE_SIZE;
456 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
457 		if (length >= PAGE_SIZE) {
458 			/*
459 			 * NOTE: this *assumes*:
460 			 * o The first vaddr is the dest.
461 			 * o If multiple pages, then vaddr is sequential.
462 			 */
463 			wss_insert(sge->vaddr);
464 			if (length >= (2 * PAGE_SIZE))
465 				wss_insert(sge->vaddr + PAGE_SIZE);
466 
467 			cacheless_copy = wss_exceeds_threshold();
468 		} else {
469 			wss_advance_clean_counter();
470 		}
471 	}
472 	if (copy_last) {
473 		if (length > 8) {
474 			length -= 8;
475 		} else {
476 			copy_last = false;
477 			in_last = true;
478 		}
479 	}
480 
481 again:
482 	while (length) {
483 		u32 len = rvt_get_sge_length(sge, length);
484 
485 		WARN_ON_ONCE(len == 0);
486 		if (unlikely(in_last)) {
487 			/* enforce byte transfer ordering */
488 			for (i = 0; i < len; i++)
489 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
490 		} else if (cacheless_copy) {
491 			cacheless_memcpy(sge->vaddr, data, len);
492 		} else {
493 			memcpy(sge->vaddr, data, len);
494 		}
495 		rvt_update_sge(ss, len, release);
496 		data += len;
497 		length -= len;
498 	}
499 
500 	if (copy_last) {
501 		copy_last = false;
502 		in_last = true;
503 		length = 8;
504 		goto again;
505 	}
506 }
507 
508 /*
509  * Make sure the QP is ready and able to accept the given opcode.
510  */
511 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
512 {
513 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
514 		return NULL;
515 	if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
516 	    (opcode == IB_OPCODE_CNP))
517 		return opcode_handler_tbl[opcode];
518 
519 	return NULL;
520 }
521 
522 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
523 {
524 #ifdef CONFIG_FAULT_INJECTION
525 	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
526 		/*
527 		 * In order to drop non-IB traffic we
528 		 * set PbcInsertHrc to NONE (0x2).
529 		 * The packet will still be delivered
530 		 * to the receiving node but a
531 		 * KHdrHCRCErr (KDETH packet with a bad
532 		 * HCRC) will be triggered and the
533 		 * packet will not be delivered to the
534 		 * correct context.
535 		 */
536 		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
537 	else
538 		/*
539 		 * In order to drop regular verbs
540 		 * traffic we set the PbcTestEbp
541 		 * flag. The packet will still be
542 		 * delivered to the receiving node but
543 		 * a 'late ebp error' will be
544 		 * triggered and will be dropped.
545 		 */
546 		pbc |= PBC_TEST_EBP;
547 #endif
548 	return pbc;
549 }
550 
551 /**
552  * hfi1_ib_rcv - process an incoming packet
553  * @packet: data packet information
554  *
555  * This is called to process an incoming packet at interrupt level.
556  *
557  * Tlen is the length of the header + data + CRC in bytes.
558  */
559 void hfi1_ib_rcv(struct hfi1_packet *packet)
560 {
561 	struct hfi1_ctxtdata *rcd = packet->rcd;
562 	struct ib_header *hdr = packet->hdr;
563 	u32 tlen = packet->tlen;
564 	struct hfi1_pportdata *ppd = rcd->ppd;
565 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
566 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
567 	opcode_handler packet_handler;
568 	unsigned long flags;
569 	u32 qp_num;
570 	int lnh;
571 	u8 opcode;
572 	u16 lid;
573 
574 	/* Check for GRH */
575 	lnh = ib_get_lnh(hdr);
576 	if (lnh == HFI1_LRH_BTH) {
577 		packet->ohdr = &hdr->u.oth;
578 	} else if (lnh == HFI1_LRH_GRH) {
579 		u32 vtf;
580 
581 		packet->ohdr = &hdr->u.l.oth;
582 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
583 			goto drop;
584 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
585 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
586 			goto drop;
587 		packet->rcv_flags |= HFI1_HAS_GRH;
588 	} else {
589 		goto drop;
590 	}
591 
592 	trace_input_ibhdr(rcd->dd, hdr);
593 
594 	opcode = ib_bth_get_opcode(packet->ohdr);
595 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
596 
597 	/* Get the destination QP number. */
598 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
599 	lid = ib_get_dlid(hdr);
600 	if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
601 		     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
602 		struct rvt_mcast *mcast;
603 		struct rvt_mcast_qp *p;
604 
605 		if (lnh != HFI1_LRH_GRH)
606 			goto drop;
607 		mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid, lid);
608 		if (!mcast)
609 			goto drop;
610 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
611 			packet->qp = p->qp;
612 			spin_lock_irqsave(&packet->qp->r_lock, flags);
613 			packet_handler = qp_ok(opcode, packet);
614 			if (likely(packet_handler))
615 				packet_handler(packet);
616 			else
617 				ibp->rvp.n_pkt_drops++;
618 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
619 		}
620 		/*
621 		 * Notify rvt_multicast_detach() if it is waiting for us
622 		 * to finish.
623 		 */
624 		if (atomic_dec_return(&mcast->refcount) <= 1)
625 			wake_up(&mcast->wait);
626 	} else {
627 		rcu_read_lock();
628 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
629 		if (!packet->qp) {
630 			rcu_read_unlock();
631 			goto drop;
632 		}
633 		if (unlikely(hfi1_dbg_fault_opcode(packet->qp, opcode,
634 						   true))) {
635 			rcu_read_unlock();
636 			goto drop;
637 		}
638 		spin_lock_irqsave(&packet->qp->r_lock, flags);
639 		packet_handler = qp_ok(opcode, packet);
640 		if (likely(packet_handler))
641 			packet_handler(packet);
642 		else
643 			ibp->rvp.n_pkt_drops++;
644 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
645 		rcu_read_unlock();
646 	}
647 	return;
648 
649 drop:
650 	ibp->rvp.n_pkt_drops++;
651 }
652 
653 /*
654  * This is called from a timer to check for QPs
655  * which need kernel memory in order to send a packet.
656  */
657 static void mem_timer(unsigned long data)
658 {
659 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
660 	struct list_head *list = &dev->memwait;
661 	struct rvt_qp *qp = NULL;
662 	struct iowait *wait;
663 	unsigned long flags;
664 	struct hfi1_qp_priv *priv;
665 
666 	write_seqlock_irqsave(&dev->iowait_lock, flags);
667 	if (!list_empty(list)) {
668 		wait = list_first_entry(list, struct iowait, list);
669 		qp = iowait_to_qp(wait);
670 		priv = qp->priv;
671 		list_del_init(&priv->s_iowait.list);
672 		priv->s_iowait.lock = NULL;
673 		/* refcount held until actual wake up */
674 		if (!list_empty(list))
675 			mod_timer(&dev->mem_timer, jiffies + 1);
676 	}
677 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
678 
679 	if (qp)
680 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
681 }
682 
683 /*
684  * This is called with progress side lock held.
685  */
686 /* New API */
687 static void verbs_sdma_complete(
688 	struct sdma_txreq *cookie,
689 	int status)
690 {
691 	struct verbs_txreq *tx =
692 		container_of(cookie, struct verbs_txreq, txreq);
693 	struct rvt_qp *qp = tx->qp;
694 
695 	spin_lock(&qp->s_lock);
696 	if (tx->wqe) {
697 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
698 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
699 		struct ib_header *hdr;
700 
701 		hdr = &tx->phdr.hdr;
702 		hfi1_rc_send_complete(qp, hdr);
703 	}
704 	spin_unlock(&qp->s_lock);
705 
706 	hfi1_put_txreq(tx);
707 }
708 
709 static int wait_kmem(struct hfi1_ibdev *dev,
710 		     struct rvt_qp *qp,
711 		     struct hfi1_pkt_state *ps)
712 {
713 	struct hfi1_qp_priv *priv = qp->priv;
714 	unsigned long flags;
715 	int ret = 0;
716 
717 	spin_lock_irqsave(&qp->s_lock, flags);
718 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
719 		write_seqlock(&dev->iowait_lock);
720 		list_add_tail(&ps->s_txreq->txreq.list,
721 			      &priv->s_iowait.tx_head);
722 		if (list_empty(&priv->s_iowait.list)) {
723 			if (list_empty(&dev->memwait))
724 				mod_timer(&dev->mem_timer, jiffies + 1);
725 			qp->s_flags |= RVT_S_WAIT_KMEM;
726 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
727 			priv->s_iowait.lock = &dev->iowait_lock;
728 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
729 			rvt_get_qp(qp);
730 		}
731 		write_sequnlock(&dev->iowait_lock);
732 		qp->s_flags &= ~RVT_S_BUSY;
733 		ret = -EBUSY;
734 	}
735 	spin_unlock_irqrestore(&qp->s_lock, flags);
736 
737 	return ret;
738 }
739 
740 /*
741  * This routine calls txadds for each sg entry.
742  *
743  * Add failures will revert the sge cursor
744  */
745 static noinline int build_verbs_ulp_payload(
746 	struct sdma_engine *sde,
747 	u32 length,
748 	struct verbs_txreq *tx)
749 {
750 	struct rvt_sge_state *ss = tx->ss;
751 	struct rvt_sge *sg_list = ss->sg_list;
752 	struct rvt_sge sge = ss->sge;
753 	u8 num_sge = ss->num_sge;
754 	u32 len;
755 	int ret = 0;
756 
757 	while (length) {
758 		len = ss->sge.length;
759 		if (len > length)
760 			len = length;
761 		if (len > ss->sge.sge_length)
762 			len = ss->sge.sge_length;
763 		WARN_ON_ONCE(len == 0);
764 		ret = sdma_txadd_kvaddr(
765 			sde->dd,
766 			&tx->txreq,
767 			ss->sge.vaddr,
768 			len);
769 		if (ret)
770 			goto bail_txadd;
771 		rvt_update_sge(ss, len, false);
772 		length -= len;
773 	}
774 	return ret;
775 bail_txadd:
776 	/* unwind cursor */
777 	ss->sge = sge;
778 	ss->num_sge = num_sge;
779 	ss->sg_list = sg_list;
780 	return ret;
781 }
782 
783 /*
784  * Build the number of DMA descriptors needed to send length bytes of data.
785  *
786  * NOTE: DMA mapping is held in the tx until completed in the ring or
787  *       the tx desc is freed without having been submitted to the ring
788  *
789  * This routine ensures all the helper routine calls succeed.
790  */
791 /* New API */
792 static int build_verbs_tx_desc(
793 	struct sdma_engine *sde,
794 	u32 length,
795 	struct verbs_txreq *tx,
796 	struct hfi1_ahg_info *ahg_info,
797 	u64 pbc)
798 {
799 	int ret = 0;
800 	struct hfi1_sdma_header *phdr = &tx->phdr;
801 	u16 hdrbytes = tx->hdr_dwords << 2;
802 
803 	if (!ahg_info->ahgcount) {
804 		ret = sdma_txinit_ahg(
805 			&tx->txreq,
806 			ahg_info->tx_flags,
807 			hdrbytes + length,
808 			ahg_info->ahgidx,
809 			0,
810 			NULL,
811 			0,
812 			verbs_sdma_complete);
813 		if (ret)
814 			goto bail_txadd;
815 		phdr->pbc = cpu_to_le64(pbc);
816 		ret = sdma_txadd_kvaddr(
817 			sde->dd,
818 			&tx->txreq,
819 			phdr,
820 			hdrbytes);
821 		if (ret)
822 			goto bail_txadd;
823 	} else {
824 		ret = sdma_txinit_ahg(
825 			&tx->txreq,
826 			ahg_info->tx_flags,
827 			length,
828 			ahg_info->ahgidx,
829 			ahg_info->ahgcount,
830 			ahg_info->ahgdesc,
831 			hdrbytes,
832 			verbs_sdma_complete);
833 		if (ret)
834 			goto bail_txadd;
835 	}
836 	/* add the ulp payload - if any. tx->ss can be NULL for acks */
837 	if (tx->ss)
838 		ret = build_verbs_ulp_payload(sde, length, tx);
839 bail_txadd:
840 	return ret;
841 }
842 
843 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
844 			u64 pbc)
845 {
846 	struct hfi1_qp_priv *priv = qp->priv;
847 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
848 	u32 hdrwords = qp->s_hdrwords;
849 	u32 len = ps->s_txreq->s_cur_size;
850 	u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
851 	struct hfi1_ibdev *dev = ps->dev;
852 	struct hfi1_pportdata *ppd = ps->ppd;
853 	struct verbs_txreq *tx;
854 	u8 sc5 = priv->s_sc;
855 
856 	int ret;
857 
858 	tx = ps->s_txreq;
859 	if (!sdma_txreq_built(&tx->txreq)) {
860 		if (likely(pbc == 0)) {
861 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
862 			u8 opcode = get_opcode(&tx->phdr.hdr);
863 
864 			/* No vl15 here */
865 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
866 			pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
867 
868 			if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false)))
869 				pbc = hfi1_fault_tx(qp, opcode, pbc);
870 			pbc = create_pbc(ppd,
871 					 pbc,
872 					 qp->srate_mbps,
873 					 vl,
874 					 plen);
875 		}
876 		tx->wqe = qp->s_wqe;
877 		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
878 		if (unlikely(ret))
879 			goto bail_build;
880 	}
881 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
882 	if (unlikely(ret < 0)) {
883 		if (ret == -ECOMM)
884 			goto bail_ecomm;
885 		return ret;
886 	}
887 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
888 				&ps->s_txreq->phdr.hdr);
889 	return ret;
890 
891 bail_ecomm:
892 	/* The current one got "sent" */
893 	return 0;
894 bail_build:
895 	ret = wait_kmem(dev, qp, ps);
896 	if (!ret) {
897 		/* free txreq - bad state */
898 		hfi1_put_txreq(ps->s_txreq);
899 		ps->s_txreq = NULL;
900 	}
901 	return ret;
902 }
903 
904 /*
905  * If we are now in the error state, return zero to flush the
906  * send work request.
907  */
908 static int pio_wait(struct rvt_qp *qp,
909 		    struct send_context *sc,
910 		    struct hfi1_pkt_state *ps,
911 		    u32 flag)
912 {
913 	struct hfi1_qp_priv *priv = qp->priv;
914 	struct hfi1_devdata *dd = sc->dd;
915 	struct hfi1_ibdev *dev = &dd->verbs_dev;
916 	unsigned long flags;
917 	int ret = 0;
918 
919 	/*
920 	 * Note that as soon as want_buffer() is called and
921 	 * possibly before it returns, sc_piobufavail()
922 	 * could be called. Therefore, put QP on the I/O wait list before
923 	 * enabling the PIO avail interrupt.
924 	 */
925 	spin_lock_irqsave(&qp->s_lock, flags);
926 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
927 		write_seqlock(&dev->iowait_lock);
928 		list_add_tail(&ps->s_txreq->txreq.list,
929 			      &priv->s_iowait.tx_head);
930 		if (list_empty(&priv->s_iowait.list)) {
931 			struct hfi1_ibdev *dev = &dd->verbs_dev;
932 			int was_empty;
933 
934 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
935 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
936 			qp->s_flags |= flag;
937 			was_empty = list_empty(&sc->piowait);
938 			list_add_tail(&priv->s_iowait.list, &sc->piowait);
939 			priv->s_iowait.lock = &dev->iowait_lock;
940 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
941 			rvt_get_qp(qp);
942 			/* counting: only call wantpiobuf_intr if first user */
943 			if (was_empty)
944 				hfi1_sc_wantpiobuf_intr(sc, 1);
945 		}
946 		write_sequnlock(&dev->iowait_lock);
947 		qp->s_flags &= ~RVT_S_BUSY;
948 		ret = -EBUSY;
949 	}
950 	spin_unlock_irqrestore(&qp->s_lock, flags);
951 	return ret;
952 }
953 
954 static void verbs_pio_complete(void *arg, int code)
955 {
956 	struct rvt_qp *qp = (struct rvt_qp *)arg;
957 	struct hfi1_qp_priv *priv = qp->priv;
958 
959 	if (iowait_pio_dec(&priv->s_iowait))
960 		iowait_drain_wakeup(&priv->s_iowait);
961 }
962 
963 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
964 			u64 pbc)
965 {
966 	struct hfi1_qp_priv *priv = qp->priv;
967 	u32 hdrwords = qp->s_hdrwords;
968 	struct rvt_sge_state *ss = ps->s_txreq->ss;
969 	u32 len = ps->s_txreq->s_cur_size;
970 	u32 dwords = (len + 3) >> 2;
971 	u32 plen = hdrwords + dwords + 2; /* includes pbc */
972 	struct hfi1_pportdata *ppd = ps->ppd;
973 	u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
974 	u8 sc5;
975 	unsigned long flags = 0;
976 	struct send_context *sc;
977 	struct pio_buf *pbuf;
978 	int wc_status = IB_WC_SUCCESS;
979 	int ret = 0;
980 	pio_release_cb cb = NULL;
981 
982 	/* only RC/UC use complete */
983 	switch (qp->ibqp.qp_type) {
984 	case IB_QPT_RC:
985 	case IB_QPT_UC:
986 		cb = verbs_pio_complete;
987 		break;
988 	default:
989 		break;
990 	}
991 
992 	/* vl15 special case taken care of in ud.c */
993 	sc5 = priv->s_sc;
994 	sc = ps->s_txreq->psc;
995 
996 	if (likely(pbc == 0)) {
997 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
998 		struct verbs_txreq *tx = ps->s_txreq;
999 		u8 opcode = get_opcode(&tx->phdr.hdr);
1000 
1001 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1002 		pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1003 		if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false)))
1004 			pbc = hfi1_fault_tx(qp, opcode, pbc);
1005 		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1006 	}
1007 	if (cb)
1008 		iowait_pio_inc(&priv->s_iowait);
1009 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1010 	if (unlikely(!pbuf)) {
1011 		if (cb)
1012 			verbs_pio_complete(qp, 0);
1013 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1014 			/*
1015 			 * If we have filled the PIO buffers to capacity and are
1016 			 * not in an active state this request is not going to
1017 			 * go out to so just complete it with an error or else a
1018 			 * ULP or the core may be stuck waiting.
1019 			 */
1020 			hfi1_cdbg(
1021 				PIO,
1022 				"alloc failed. state not active, completing");
1023 			wc_status = IB_WC_GENERAL_ERR;
1024 			goto pio_bail;
1025 		} else {
1026 			/*
1027 			 * This is a normal occurrence. The PIO buffs are full
1028 			 * up but we are still happily sending, well we could be
1029 			 * so lets continue to queue the request.
1030 			 */
1031 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1032 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1033 			if (!ret)
1034 				/* txreq not queued - free */
1035 				goto bail;
1036 			/* tx consumed in wait */
1037 			return ret;
1038 		}
1039 	}
1040 
1041 	if (len == 0) {
1042 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1043 	} else {
1044 		if (ss) {
1045 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1046 			while (len) {
1047 				void *addr = ss->sge.vaddr;
1048 				u32 slen = ss->sge.length;
1049 
1050 				if (slen > len)
1051 					slen = len;
1052 				rvt_update_sge(ss, slen, false);
1053 				seg_pio_copy_mid(pbuf, addr, slen);
1054 				len -= slen;
1055 			}
1056 			seg_pio_copy_end(pbuf);
1057 		}
1058 	}
1059 
1060 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1061 			       &ps->s_txreq->phdr.hdr);
1062 
1063 pio_bail:
1064 	if (qp->s_wqe) {
1065 		spin_lock_irqsave(&qp->s_lock, flags);
1066 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1067 		spin_unlock_irqrestore(&qp->s_lock, flags);
1068 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1069 		spin_lock_irqsave(&qp->s_lock, flags);
1070 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1071 		spin_unlock_irqrestore(&qp->s_lock, flags);
1072 	}
1073 
1074 	ret = 0;
1075 
1076 bail:
1077 	hfi1_put_txreq(ps->s_txreq);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1083  * being an entry from the partition key table), return 0
1084  * otherwise. Use the matching criteria for egress partition keys
1085  * specified in the OPAv1 spec., section 9.1l.7.
1086  */
1087 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1088 {
1089 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1090 	u16 mentry = ent & PKEY_LOW_15_MASK;
1091 
1092 	if (mkey == mentry) {
1093 		/*
1094 		 * If pkey[15] is set (full partition member),
1095 		 * is bit 15 in the corresponding table element
1096 		 * clear (limited member)?
1097 		 */
1098 		if (pkey & PKEY_MEMBER_MASK)
1099 			return !!(ent & PKEY_MEMBER_MASK);
1100 		return 1;
1101 	}
1102 	return 0;
1103 }
1104 
1105 /**
1106  * egress_pkey_check - check P_KEY of a packet
1107  * @ppd:    Physical IB port data
1108  * @lrh: Local route header
1109  * @bth: Base transport header
1110  * @sc5:    SC for packet
1111  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1112  * only. If it is negative value, then it means user contexts is calling this
1113  * function.
1114  *
1115  * It checks if hdr's pkey is valid.
1116  *
1117  * Return: 0 on success, otherwise, 1
1118  */
1119 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1120 		      u8 sc5, int8_t s_pkey_index)
1121 {
1122 	struct hfi1_devdata *dd;
1123 	int i;
1124 	u16 pkey;
1125 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1126 
1127 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1128 		return 0;
1129 
1130 	pkey = (u16)be32_to_cpu(bth[0]);
1131 
1132 	/* If SC15, pkey[0:14] must be 0x7fff */
1133 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1134 		goto bad;
1135 
1136 	/* Is the pkey = 0x0, or 0x8000? */
1137 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1138 		goto bad;
1139 
1140 	/*
1141 	 * For the kernel contexts only, if a qp is passed into the function,
1142 	 * the most likely matching pkey has index qp->s_pkey_index
1143 	 */
1144 	if (!is_user_ctxt_mechanism &&
1145 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1146 		return 0;
1147 	}
1148 
1149 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1150 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1151 			return 0;
1152 	}
1153 bad:
1154 	/*
1155 	 * For the user-context mechanism, the P_KEY check would only happen
1156 	 * once per SDMA request, not once per packet.  Therefore, there's no
1157 	 * need to increment the counter for the user-context mechanism.
1158 	 */
1159 	if (!is_user_ctxt_mechanism) {
1160 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1161 		dd = ppd->dd;
1162 		if (!(dd->err_info_xmit_constraint.status &
1163 		      OPA_EI_STATUS_SMASK)) {
1164 			u16 slid = be16_to_cpu(lrh[3]);
1165 
1166 			dd->err_info_xmit_constraint.status |=
1167 				OPA_EI_STATUS_SMASK;
1168 			dd->err_info_xmit_constraint.slid = slid;
1169 			dd->err_info_xmit_constraint.pkey = pkey;
1170 		}
1171 	}
1172 	return 1;
1173 }
1174 
1175 /**
1176  * get_send_routine - choose an egress routine
1177  *
1178  * Choose an egress routine based on QP type
1179  * and size
1180  */
1181 static inline send_routine get_send_routine(struct rvt_qp *qp,
1182 					    struct verbs_txreq *tx)
1183 {
1184 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1185 	struct hfi1_qp_priv *priv = qp->priv;
1186 	struct ib_header *h = &tx->phdr.hdr;
1187 
1188 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1189 		return dd->process_pio_send;
1190 	switch (qp->ibqp.qp_type) {
1191 	case IB_QPT_SMI:
1192 		return dd->process_pio_send;
1193 	case IB_QPT_GSI:
1194 	case IB_QPT_UD:
1195 		break;
1196 	case IB_QPT_UC:
1197 	case IB_QPT_RC: {
1198 		u8 op = get_opcode(h);
1199 
1200 		if (piothreshold &&
1201 		    tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1202 		    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1203 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1204 		    !sdma_txreq_built(&tx->txreq))
1205 			return dd->process_pio_send;
1206 		break;
1207 	}
1208 	default:
1209 		break;
1210 	}
1211 	return dd->process_dma_send;
1212 }
1213 
1214 /**
1215  * hfi1_verbs_send - send a packet
1216  * @qp: the QP to send on
1217  * @ps: the state of the packet to send
1218  *
1219  * Return zero if packet is sent or queued OK.
1220  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1221  */
1222 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1223 {
1224 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1225 	struct hfi1_qp_priv *priv = qp->priv;
1226 	struct ib_other_headers *ohdr;
1227 	struct ib_header *hdr;
1228 	send_routine sr;
1229 	int ret;
1230 	u8 lnh;
1231 
1232 	hdr = &ps->s_txreq->phdr.hdr;
1233 	/* locate the pkey within the headers */
1234 	lnh = ib_get_lnh(hdr);
1235 	if (lnh == HFI1_LRH_GRH)
1236 		ohdr = &hdr->u.l.oth;
1237 	else
1238 		ohdr = &hdr->u.oth;
1239 
1240 	sr = get_send_routine(qp, ps->s_txreq);
1241 	ret = egress_pkey_check(dd->pport,
1242 				hdr->lrh,
1243 				ohdr->bth,
1244 				priv->s_sc,
1245 				qp->s_pkey_index);
1246 	if (unlikely(ret)) {
1247 		/*
1248 		 * The value we are returning here does not get propagated to
1249 		 * the verbs caller. Thus we need to complete the request with
1250 		 * error otherwise the caller could be sitting waiting on the
1251 		 * completion event. Only do this for PIO. SDMA has its own
1252 		 * mechanism for handling the errors. So for SDMA we can just
1253 		 * return.
1254 		 */
1255 		if (sr == dd->process_pio_send) {
1256 			unsigned long flags;
1257 
1258 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1259 				  __func__);
1260 			spin_lock_irqsave(&qp->s_lock, flags);
1261 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1262 			spin_unlock_irqrestore(&qp->s_lock, flags);
1263 		}
1264 		return -EINVAL;
1265 	}
1266 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1267 		return pio_wait(qp,
1268 				ps->s_txreq->psc,
1269 				ps,
1270 				RVT_S_WAIT_PIO_DRAIN);
1271 	return sr(qp, ps, 0);
1272 }
1273 
1274 /**
1275  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1276  * @dd: the device data structure
1277  */
1278 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1279 {
1280 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1281 	u32 ver = dd->dc8051_ver;
1282 
1283 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1284 
1285 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1286 		((u64)(dc8051_ver_min(ver)) << 16) |
1287 		(u64)dc8051_ver_patch(ver);
1288 
1289 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1290 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1291 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1292 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1293 			IB_DEVICE_MEM_MGT_EXTENSIONS |
1294 			IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1295 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1296 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1297 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1298 	rdi->dparms.props.hw_ver = dd->minrev;
1299 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1300 	rdi->dparms.props.max_mr_size = U64_MAX;
1301 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1302 	rdi->dparms.props.max_qp = hfi1_max_qps;
1303 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1304 	rdi->dparms.props.max_sge = hfi1_max_sges;
1305 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1306 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1307 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1308 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1309 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1310 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1311 	rdi->dparms.props.max_map_per_fmr = 32767;
1312 	rdi->dparms.props.max_pd = hfi1_max_pds;
1313 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1314 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1315 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1316 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1317 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1318 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1319 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1320 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1321 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1322 	rdi->dparms.props.max_total_mcast_qp_attach =
1323 					rdi->dparms.props.max_mcast_qp_attach *
1324 					rdi->dparms.props.max_mcast_grp;
1325 }
1326 
1327 static inline u16 opa_speed_to_ib(u16 in)
1328 {
1329 	u16 out = 0;
1330 
1331 	if (in & OPA_LINK_SPEED_25G)
1332 		out |= IB_SPEED_EDR;
1333 	if (in & OPA_LINK_SPEED_12_5G)
1334 		out |= IB_SPEED_FDR;
1335 
1336 	return out;
1337 }
1338 
1339 /*
1340  * Convert a single OPA link width (no multiple flags) to an IB value.
1341  * A zero OPA link width means link down, which means the IB width value
1342  * is a don't care.
1343  */
1344 static inline u16 opa_width_to_ib(u16 in)
1345 {
1346 	switch (in) {
1347 	case OPA_LINK_WIDTH_1X:
1348 	/* map 2x and 3x to 1x as they don't exist in IB */
1349 	case OPA_LINK_WIDTH_2X:
1350 	case OPA_LINK_WIDTH_3X:
1351 		return IB_WIDTH_1X;
1352 	default: /* link down or unknown, return our largest width */
1353 	case OPA_LINK_WIDTH_4X:
1354 		return IB_WIDTH_4X;
1355 	}
1356 }
1357 
1358 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1359 		      struct ib_port_attr *props)
1360 {
1361 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1362 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1363 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1364 	u16 lid = ppd->lid;
1365 
1366 	/* props being zeroed by the caller, avoid zeroing it here */
1367 	props->lid = lid ? lid : 0;
1368 	props->lmc = ppd->lmc;
1369 	/* OPA logical states match IB logical states */
1370 	props->state = driver_lstate(ppd);
1371 	props->phys_state = hfi1_ibphys_portstate(ppd);
1372 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1373 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1374 	/* see rate_show() in ib core/sysfs.c */
1375 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1376 	props->max_vl_num = ppd->vls_supported;
1377 
1378 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1379 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1380 	 * advertise only 4K.
1381 	 *
1382 	 * Those applications which are either OPA aware or pass the MTU enum
1383 	 * from the Path Records to us will get the new 8k MTU.  Those that
1384 	 * attempt to process the MTU enum may fail in various ways.
1385 	 */
1386 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1387 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1388 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1389 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1390 
1391 	return 0;
1392 }
1393 
1394 static int modify_device(struct ib_device *device,
1395 			 int device_modify_mask,
1396 			 struct ib_device_modify *device_modify)
1397 {
1398 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1399 	unsigned i;
1400 	int ret;
1401 
1402 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1403 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1404 		ret = -EOPNOTSUPP;
1405 		goto bail;
1406 	}
1407 
1408 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1409 		memcpy(device->node_desc, device_modify->node_desc,
1410 		       IB_DEVICE_NODE_DESC_MAX);
1411 		for (i = 0; i < dd->num_pports; i++) {
1412 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1413 
1414 			hfi1_node_desc_chg(ibp);
1415 		}
1416 	}
1417 
1418 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1419 		ib_hfi1_sys_image_guid =
1420 			cpu_to_be64(device_modify->sys_image_guid);
1421 		for (i = 0; i < dd->num_pports; i++) {
1422 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1423 
1424 			hfi1_sys_guid_chg(ibp);
1425 		}
1426 	}
1427 
1428 	ret = 0;
1429 
1430 bail:
1431 	return ret;
1432 }
1433 
1434 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1435 {
1436 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1437 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1438 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1439 	int ret;
1440 
1441 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1442 			     OPA_LINKDOWN_REASON_UNKNOWN);
1443 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1444 	return ret;
1445 }
1446 
1447 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1448 			    int guid_index, __be64 *guid)
1449 {
1450 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1451 
1452 	if (guid_index >= HFI1_GUIDS_PER_PORT)
1453 		return -EINVAL;
1454 
1455 	*guid = get_sguid(ibp, guid_index);
1456 	return 0;
1457 }
1458 
1459 /*
1460  * convert ah port,sl to sc
1461  */
1462 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1463 {
1464 	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1465 
1466 	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1467 }
1468 
1469 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1470 {
1471 	struct hfi1_ibport *ibp;
1472 	struct hfi1_pportdata *ppd;
1473 	struct hfi1_devdata *dd;
1474 	u8 sc5;
1475 
1476 	/* test the mapping for validity */
1477 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1478 	ppd = ppd_from_ibp(ibp);
1479 	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)];
1480 	dd = dd_from_ppd(ppd);
1481 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1482 		return -EINVAL;
1483 	return 0;
1484 }
1485 
1486 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1487 			       struct rdma_ah_attr *ah_attr,
1488 			       struct rvt_ah *ah)
1489 {
1490 	struct hfi1_ibport *ibp;
1491 	struct hfi1_pportdata *ppd;
1492 	struct hfi1_devdata *dd;
1493 	u8 sc5;
1494 
1495 	/*
1496 	 * Do not trust reading anything from rvt_ah at this point as it is not
1497 	 * done being setup. We can however modify things which we need to set.
1498 	 */
1499 
1500 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1501 	ppd = ppd_from_ibp(ibp);
1502 	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1503 	dd = dd_from_ppd(ppd);
1504 	ah->vl = sc_to_vlt(dd, sc5);
1505 	if (ah->vl < num_vls || ah->vl == 15)
1506 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1507 }
1508 
1509 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1510 {
1511 	struct rdma_ah_attr attr;
1512 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1513 	struct rvt_qp *qp0;
1514 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1515 	struct hfi1_devdata *dd = dd_from_ppd(ppd);
1516 	u8 port_num = ppd->port;
1517 
1518 	memset(&attr, 0, sizeof(attr));
1519 	attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num);
1520 	rdma_ah_set_dlid(&attr, dlid);
1521 	rdma_ah_set_port_num(&attr, ppd_from_ibp(ibp)->port);
1522 	rcu_read_lock();
1523 	qp0 = rcu_dereference(ibp->rvp.qp[0]);
1524 	if (qp0)
1525 		ah = rdma_create_ah(qp0->ibqp.pd, &attr);
1526 	rcu_read_unlock();
1527 	return ah;
1528 }
1529 
1530 /**
1531  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1532  * @dd: the hfi1_ib device
1533  */
1534 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1535 {
1536 	return ARRAY_SIZE(dd->pport[0].pkeys);
1537 }
1538 
1539 static void init_ibport(struct hfi1_pportdata *ppd)
1540 {
1541 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1542 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1543 	int i;
1544 
1545 	for (i = 0; i < sz; i++) {
1546 		ibp->sl_to_sc[i] = i;
1547 		ibp->sc_to_sl[i] = i;
1548 	}
1549 
1550 	spin_lock_init(&ibp->rvp.lock);
1551 	/* Set the prefix to the default value (see ch. 4.1.1) */
1552 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1553 	ibp->rvp.sm_lid = 0;
1554 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1555 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1556 		IB_PORT_CAP_MASK_NOTICE_SUP;
1557 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1558 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1559 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1560 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1561 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1562 
1563 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1564 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1565 }
1566 
1567 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1568 				size_t str_len)
1569 {
1570 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1571 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1572 	u32 ver = dd_from_dev(dev)->dc8051_ver;
1573 
1574 	snprintf(str, str_len, "%u.%u.%u", dc8051_ver_maj(ver),
1575 		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1576 }
1577 
1578 static const char * const driver_cntr_names[] = {
1579 	/* must be element 0*/
1580 	"DRIVER_KernIntr",
1581 	"DRIVER_ErrorIntr",
1582 	"DRIVER_Tx_Errs",
1583 	"DRIVER_Rcv_Errs",
1584 	"DRIVER_HW_Errs",
1585 	"DRIVER_NoPIOBufs",
1586 	"DRIVER_CtxtsOpen",
1587 	"DRIVER_RcvLen_Errs",
1588 	"DRIVER_EgrBufFull",
1589 	"DRIVER_EgrHdrFull"
1590 };
1591 
1592 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1593 static const char **dev_cntr_names;
1594 static const char **port_cntr_names;
1595 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1596 static int num_dev_cntrs;
1597 static int num_port_cntrs;
1598 static int cntr_names_initialized;
1599 
1600 /*
1601  * Convert a list of names separated by '\n' into an array of NULL terminated
1602  * strings. Optionally some entries can be reserved in the array to hold extra
1603  * external strings.
1604  */
1605 static int init_cntr_names(const char *names_in,
1606 			   const size_t names_len,
1607 			   int num_extra_names,
1608 			   int *num_cntrs,
1609 			   const char ***cntr_names)
1610 {
1611 	char *names_out, *p, **q;
1612 	int i, n;
1613 
1614 	n = 0;
1615 	for (i = 0; i < names_len; i++)
1616 		if (names_in[i] == '\n')
1617 			n++;
1618 
1619 	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1620 			    GFP_KERNEL);
1621 	if (!names_out) {
1622 		*num_cntrs = 0;
1623 		*cntr_names = NULL;
1624 		return -ENOMEM;
1625 	}
1626 
1627 	p = names_out + (n + num_extra_names) * sizeof(char *);
1628 	memcpy(p, names_in, names_len);
1629 
1630 	q = (char **)names_out;
1631 	for (i = 0; i < n; i++) {
1632 		q[i] = p;
1633 		p = strchr(p, '\n');
1634 		*p++ = '\0';
1635 	}
1636 
1637 	*num_cntrs = n;
1638 	*cntr_names = (const char **)names_out;
1639 	return 0;
1640 }
1641 
1642 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1643 					    u8 port_num)
1644 {
1645 	int i, err;
1646 
1647 	mutex_lock(&cntr_names_lock);
1648 	if (!cntr_names_initialized) {
1649 		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1650 
1651 		err = init_cntr_names(dd->cntrnames,
1652 				      dd->cntrnameslen,
1653 				      num_driver_cntrs,
1654 				      &num_dev_cntrs,
1655 				      &dev_cntr_names);
1656 		if (err) {
1657 			mutex_unlock(&cntr_names_lock);
1658 			return NULL;
1659 		}
1660 
1661 		for (i = 0; i < num_driver_cntrs; i++)
1662 			dev_cntr_names[num_dev_cntrs + i] =
1663 				driver_cntr_names[i];
1664 
1665 		err = init_cntr_names(dd->portcntrnames,
1666 				      dd->portcntrnameslen,
1667 				      0,
1668 				      &num_port_cntrs,
1669 				      &port_cntr_names);
1670 		if (err) {
1671 			kfree(dev_cntr_names);
1672 			dev_cntr_names = NULL;
1673 			mutex_unlock(&cntr_names_lock);
1674 			return NULL;
1675 		}
1676 		cntr_names_initialized = 1;
1677 	}
1678 	mutex_unlock(&cntr_names_lock);
1679 
1680 	if (!port_num)
1681 		return rdma_alloc_hw_stats_struct(
1682 				dev_cntr_names,
1683 				num_dev_cntrs + num_driver_cntrs,
1684 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1685 	else
1686 		return rdma_alloc_hw_stats_struct(
1687 				port_cntr_names,
1688 				num_port_cntrs,
1689 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1690 }
1691 
1692 static u64 hfi1_sps_ints(void)
1693 {
1694 	unsigned long flags;
1695 	struct hfi1_devdata *dd;
1696 	u64 sps_ints = 0;
1697 
1698 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1699 	list_for_each_entry(dd, &hfi1_dev_list, list) {
1700 		sps_ints += get_all_cpu_total(dd->int_counter);
1701 	}
1702 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1703 	return sps_ints;
1704 }
1705 
1706 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1707 			u8 port, int index)
1708 {
1709 	u64 *values;
1710 	int count;
1711 
1712 	if (!port) {
1713 		u64 *stats = (u64 *)&hfi1_stats;
1714 		int i;
1715 
1716 		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1717 		values[num_dev_cntrs] = hfi1_sps_ints();
1718 		for (i = 1; i < num_driver_cntrs; i++)
1719 			values[num_dev_cntrs + i] = stats[i];
1720 		count = num_dev_cntrs + num_driver_cntrs;
1721 	} else {
1722 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1723 
1724 		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1725 		count = num_port_cntrs;
1726 	}
1727 
1728 	memcpy(stats->value, values, count * sizeof(u64));
1729 	return count;
1730 }
1731 
1732 /**
1733  * hfi1_register_ib_device - register our device with the infiniband core
1734  * @dd: the device data structure
1735  * Return 0 if successful, errno if unsuccessful.
1736  */
1737 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1738 {
1739 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1740 	struct ib_device *ibdev = &dev->rdi.ibdev;
1741 	struct hfi1_pportdata *ppd = dd->pport;
1742 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1743 	unsigned i;
1744 	int ret;
1745 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1746 
1747 	for (i = 0; i < dd->num_pports; i++)
1748 		init_ibport(ppd + i);
1749 
1750 	/* Only need to initialize non-zero fields. */
1751 
1752 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1753 
1754 	seqlock_init(&dev->iowait_lock);
1755 	seqlock_init(&dev->txwait_lock);
1756 	INIT_LIST_HEAD(&dev->txwait);
1757 	INIT_LIST_HEAD(&dev->memwait);
1758 
1759 	ret = verbs_txreq_init(dev);
1760 	if (ret)
1761 		goto err_verbs_txreq;
1762 
1763 	/* Use first-port GUID as node guid */
1764 	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1765 
1766 	/*
1767 	 * The system image GUID is supposed to be the same for all
1768 	 * HFIs in a single system but since there can be other
1769 	 * device types in the system, we can't be sure this is unique.
1770 	 */
1771 	if (!ib_hfi1_sys_image_guid)
1772 		ib_hfi1_sys_image_guid = ibdev->node_guid;
1773 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1774 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1775 	ibdev->owner = THIS_MODULE;
1776 	ibdev->phys_port_cnt = dd->num_pports;
1777 	ibdev->dev.parent = &dd->pcidev->dev;
1778 	ibdev->modify_device = modify_device;
1779 	ibdev->alloc_hw_stats = alloc_hw_stats;
1780 	ibdev->get_hw_stats = get_hw_stats;
1781 	ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1782 	ibdev->free_rdma_netdev = hfi1_vnic_free_rn;
1783 
1784 	/* keep process mad in the driver */
1785 	ibdev->process_mad = hfi1_process_mad;
1786 	ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1787 
1788 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1789 		sizeof(ibdev->node_desc));
1790 
1791 	/*
1792 	 * Fill in rvt info object.
1793 	 */
1794 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1795 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1796 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1797 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1798 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1799 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1800 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1801 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1802 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1803 	/*
1804 	 * Fill in rvt info device attributes.
1805 	 */
1806 	hfi1_fill_device_attr(dd);
1807 
1808 	/* queue pair */
1809 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1810 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1811 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1812 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1813 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1814 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1815 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1816 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1817 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1818 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1819 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1820 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1821 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1822 
1823 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1824 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1825 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1826 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1827 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1828 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1829 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1830 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1831 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1832 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1833 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1834 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1835 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1836 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1837 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1838 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1839 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1840 	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1841 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1842 
1843 	/* completeion queue */
1844 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1845 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1846 		 "hfi1_cq%d", dd->unit);
1847 	dd->verbs_dev.rdi.dparms.node = dd->node;
1848 
1849 	/* misc settings */
1850 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1851 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1852 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1853 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1854 
1855 	/* post send table */
1856 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1857 
1858 	ppd = dd->pport;
1859 	for (i = 0; i < dd->num_pports; i++, ppd++)
1860 		rvt_init_port(&dd->verbs_dev.rdi,
1861 			      &ppd->ibport_data.rvp,
1862 			      i,
1863 			      ppd->pkeys);
1864 
1865 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1866 	if (ret)
1867 		goto err_verbs_txreq;
1868 
1869 	ret = hfi1_verbs_register_sysfs(dd);
1870 	if (ret)
1871 		goto err_class;
1872 
1873 	return ret;
1874 
1875 err_class:
1876 	rvt_unregister_device(&dd->verbs_dev.rdi);
1877 err_verbs_txreq:
1878 	verbs_txreq_exit(dev);
1879 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1880 	return ret;
1881 }
1882 
1883 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1884 {
1885 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1886 
1887 	hfi1_verbs_unregister_sysfs(dd);
1888 
1889 	rvt_unregister_device(&dd->verbs_dev.rdi);
1890 
1891 	if (!list_empty(&dev->txwait))
1892 		dd_dev_err(dd, "txwait list not empty!\n");
1893 	if (!list_empty(&dev->memwait))
1894 		dd_dev_err(dd, "memwait list not empty!\n");
1895 
1896 	del_timer_sync(&dev->mem_timer);
1897 	verbs_txreq_exit(dev);
1898 
1899 	mutex_lock(&cntr_names_lock);
1900 	kfree(dev_cntr_names);
1901 	kfree(port_cntr_names);
1902 	dev_cntr_names = NULL;
1903 	port_cntr_names = NULL;
1904 	cntr_names_initialized = 0;
1905 	mutex_unlock(&cntr_names_lock);
1906 }
1907 
1908 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1909 {
1910 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1911 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1912 	struct ib_header *hdr = packet->hdr;
1913 	struct rvt_qp *qp = packet->qp;
1914 	u32 lqpn, rqpn = 0;
1915 	u16 rlid = 0;
1916 	u8 sl, sc5, svc_type;
1917 
1918 	switch (packet->qp->ibqp.qp_type) {
1919 	case IB_QPT_UC:
1920 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1921 		rqpn = qp->remote_qpn;
1922 		svc_type = IB_CC_SVCTYPE_UC;
1923 		break;
1924 	case IB_QPT_RC:
1925 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1926 		rqpn = qp->remote_qpn;
1927 		svc_type = IB_CC_SVCTYPE_RC;
1928 		break;
1929 	case IB_QPT_SMI:
1930 	case IB_QPT_GSI:
1931 	case IB_QPT_UD:
1932 		svc_type = IB_CC_SVCTYPE_UD;
1933 		break;
1934 	default:
1935 		ibp->rvp.n_pkt_drops++;
1936 		return;
1937 	}
1938 
1939 	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1940 	sl = ibp->sc_to_sl[sc5];
1941 	lqpn = qp->ibqp.qp_num;
1942 
1943 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1944 }
1945