1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <rdma/ib_mad.h> 49 #include <rdma/ib_user_verbs.h> 50 #include <linux/io.h> 51 #include <linux/module.h> 52 #include <linux/utsname.h> 53 #include <linux/rculist.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 #include <rdma/opa_addr.h> 57 58 #include "hfi.h" 59 #include "common.h" 60 #include "device.h" 61 #include "trace.h" 62 #include "qp.h" 63 #include "verbs_txreq.h" 64 #include "debugfs.h" 65 #include "vnic.h" 66 #include "fault.h" 67 #include "affinity.h" 68 69 static unsigned int hfi1_lkey_table_size = 16; 70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 71 S_IRUGO); 72 MODULE_PARM_DESC(lkey_table_size, 73 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 74 75 static unsigned int hfi1_max_pds = 0xFFFF; 76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 77 MODULE_PARM_DESC(max_pds, 78 "Maximum number of protection domains to support"); 79 80 static unsigned int hfi1_max_ahs = 0xFFFF; 81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 83 84 unsigned int hfi1_max_cqes = 0x2FFFFF; 85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 86 MODULE_PARM_DESC(max_cqes, 87 "Maximum number of completion queue entries to support"); 88 89 unsigned int hfi1_max_cqs = 0x1FFFF; 90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 92 93 unsigned int hfi1_max_qp_wrs = 0x3FFF; 94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 96 97 unsigned int hfi1_max_qps = 32768; 98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 100 101 unsigned int hfi1_max_sges = 0x60; 102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 104 105 unsigned int hfi1_max_mcast_grps = 16384; 106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 107 MODULE_PARM_DESC(max_mcast_grps, 108 "Maximum number of multicast groups to support"); 109 110 unsigned int hfi1_max_mcast_qp_attached = 16; 111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 112 uint, S_IRUGO); 113 MODULE_PARM_DESC(max_mcast_qp_attached, 114 "Maximum number of attached QPs to support"); 115 116 unsigned int hfi1_max_srqs = 1024; 117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 119 120 unsigned int hfi1_max_srq_sges = 128; 121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 123 124 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 127 128 unsigned short piothreshold = 256; 129 module_param(piothreshold, ushort, S_IRUGO); 130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 131 132 static unsigned int sge_copy_mode; 133 module_param(sge_copy_mode, uint, S_IRUGO); 134 MODULE_PARM_DESC(sge_copy_mode, 135 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 136 137 static void verbs_sdma_complete( 138 struct sdma_txreq *cookie, 139 int status); 140 141 static int pio_wait(struct rvt_qp *qp, 142 struct send_context *sc, 143 struct hfi1_pkt_state *ps, 144 u32 flag); 145 146 /* Length of buffer to create verbs txreq cache name */ 147 #define TXREQ_NAME_LEN 24 148 149 /* 16B trailing buffer */ 150 static const u8 trail_buf[MAX_16B_PADDING]; 151 152 static uint wss_threshold = 80; 153 module_param(wss_threshold, uint, S_IRUGO); 154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 155 static uint wss_clean_period = 256; 156 module_param(wss_clean_period, uint, S_IRUGO); 157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 158 159 /* 160 * Translate ib_wr_opcode into ib_wc_opcode. 161 */ 162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 163 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 164 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 165 [IB_WR_SEND] = IB_WC_SEND, 166 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 167 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 168 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 169 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 170 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 171 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 172 [IB_WR_REG_MR] = IB_WC_REG_MR 173 }; 174 175 /* 176 * Length of header by opcode, 0 --> not supported 177 */ 178 const u8 hdr_len_by_opcode[256] = { 179 /* RC */ 180 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 181 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 182 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 183 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 184 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 185 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 186 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 187 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 188 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 189 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 190 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 191 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 192 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 193 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 197 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 198 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 199 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 200 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 201 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 202 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 203 /* UC */ 204 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 205 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 206 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 207 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 208 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 209 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 210 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 211 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 212 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 213 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 214 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 215 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 216 /* UD */ 217 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 218 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 219 }; 220 221 static const opcode_handler opcode_handler_tbl[256] = { 222 /* RC */ 223 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 224 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 225 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 226 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 227 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 228 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 229 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 230 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 231 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 232 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 233 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 234 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 235 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 236 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 237 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 238 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 239 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 240 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 241 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 242 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 243 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 244 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 245 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 246 /* UC */ 247 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 248 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 249 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 250 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 251 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 252 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 253 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 254 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 255 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 256 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 257 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 258 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 259 /* UD */ 260 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 261 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 262 /* CNP */ 263 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 264 }; 265 266 #define OPMASK 0x1f 267 268 static const u32 pio_opmask[BIT(3)] = { 269 /* RC */ 270 [IB_OPCODE_RC >> 5] = 271 BIT(RC_OP(SEND_ONLY) & OPMASK) | 272 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 273 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 274 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 275 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 276 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 277 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 278 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 279 BIT(RC_OP(FETCH_ADD) & OPMASK), 280 /* UC */ 281 [IB_OPCODE_UC >> 5] = 282 BIT(UC_OP(SEND_ONLY) & OPMASK) | 283 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 284 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 285 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 286 }; 287 288 /* 289 * System image GUID. 290 */ 291 __be64 ib_hfi1_sys_image_guid; 292 293 /* 294 * Make sure the QP is ready and able to accept the given opcode. 295 */ 296 static inline opcode_handler qp_ok(struct hfi1_packet *packet) 297 { 298 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 299 return NULL; 300 if (((packet->opcode & RVT_OPCODE_QP_MASK) == 301 packet->qp->allowed_ops) || 302 (packet->opcode == IB_OPCODE_CNP)) 303 return opcode_handler_tbl[packet->opcode]; 304 305 return NULL; 306 } 307 308 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 309 { 310 #ifdef CONFIG_FAULT_INJECTION 311 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) 312 /* 313 * In order to drop non-IB traffic we 314 * set PbcInsertHrc to NONE (0x2). 315 * The packet will still be delivered 316 * to the receiving node but a 317 * KHdrHCRCErr (KDETH packet with a bad 318 * HCRC) will be triggered and the 319 * packet will not be delivered to the 320 * correct context. 321 */ 322 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 323 else 324 /* 325 * In order to drop regular verbs 326 * traffic we set the PbcTestEbp 327 * flag. The packet will still be 328 * delivered to the receiving node but 329 * a 'late ebp error' will be 330 * triggered and will be dropped. 331 */ 332 pbc |= PBC_TEST_EBP; 333 #endif 334 return pbc; 335 } 336 337 static int hfi1_do_pkey_check(struct hfi1_packet *packet) 338 { 339 struct hfi1_ctxtdata *rcd = packet->rcd; 340 struct hfi1_pportdata *ppd = rcd->ppd; 341 struct hfi1_16b_header *hdr = packet->hdr; 342 u16 pkey; 343 344 /* Pkey check needed only for bypass packets */ 345 if (packet->etype != RHF_RCV_TYPE_BYPASS) 346 return 0; 347 348 /* Perform pkey check */ 349 pkey = hfi1_16B_get_pkey(hdr); 350 return ingress_pkey_check(ppd, pkey, packet->sc, 351 packet->qp->s_pkey_index, 352 packet->slid, true); 353 } 354 355 static inline void hfi1_handle_packet(struct hfi1_packet *packet, 356 bool is_mcast) 357 { 358 u32 qp_num; 359 struct hfi1_ctxtdata *rcd = packet->rcd; 360 struct hfi1_pportdata *ppd = rcd->ppd; 361 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 362 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 363 opcode_handler packet_handler; 364 unsigned long flags; 365 366 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); 367 368 if (unlikely(is_mcast)) { 369 struct rvt_mcast *mcast; 370 struct rvt_mcast_qp *p; 371 372 if (!packet->grh) 373 goto drop; 374 mcast = rvt_mcast_find(&ibp->rvp, 375 &packet->grh->dgid, 376 opa_get_lid(packet->dlid, 9B)); 377 if (!mcast) 378 goto drop; 379 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 380 packet->qp = p->qp; 381 if (hfi1_do_pkey_check(packet)) 382 goto drop; 383 spin_lock_irqsave(&packet->qp->r_lock, flags); 384 packet_handler = qp_ok(packet); 385 if (likely(packet_handler)) 386 packet_handler(packet); 387 else 388 ibp->rvp.n_pkt_drops++; 389 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 390 } 391 /* 392 * Notify rvt_multicast_detach() if it is waiting for us 393 * to finish. 394 */ 395 if (atomic_dec_return(&mcast->refcount) <= 1) 396 wake_up(&mcast->wait); 397 } else { 398 /* Get the destination QP number. */ 399 if (packet->etype == RHF_RCV_TYPE_BYPASS && 400 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) 401 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); 402 else 403 qp_num = ib_bth_get_qpn(packet->ohdr); 404 405 rcu_read_lock(); 406 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 407 if (!packet->qp) 408 goto unlock_drop; 409 410 if (hfi1_do_pkey_check(packet)) 411 goto unlock_drop; 412 413 spin_lock_irqsave(&packet->qp->r_lock, flags); 414 packet_handler = qp_ok(packet); 415 if (likely(packet_handler)) 416 packet_handler(packet); 417 else 418 ibp->rvp.n_pkt_drops++; 419 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 420 rcu_read_unlock(); 421 } 422 return; 423 unlock_drop: 424 rcu_read_unlock(); 425 drop: 426 ibp->rvp.n_pkt_drops++; 427 } 428 429 /** 430 * hfi1_ib_rcv - process an incoming packet 431 * @packet: data packet information 432 * 433 * This is called to process an incoming packet at interrupt level. 434 */ 435 void hfi1_ib_rcv(struct hfi1_packet *packet) 436 { 437 struct hfi1_ctxtdata *rcd = packet->rcd; 438 439 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 440 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 441 } 442 443 void hfi1_16B_rcv(struct hfi1_packet *packet) 444 { 445 struct hfi1_ctxtdata *rcd = packet->rcd; 446 447 trace_input_ibhdr(rcd->dd, packet, false); 448 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 449 } 450 451 /* 452 * This is called from a timer to check for QPs 453 * which need kernel memory in order to send a packet. 454 */ 455 static void mem_timer(struct timer_list *t) 456 { 457 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); 458 struct list_head *list = &dev->memwait; 459 struct rvt_qp *qp = NULL; 460 struct iowait *wait; 461 unsigned long flags; 462 struct hfi1_qp_priv *priv; 463 464 write_seqlock_irqsave(&dev->iowait_lock, flags); 465 if (!list_empty(list)) { 466 wait = list_first_entry(list, struct iowait, list); 467 qp = iowait_to_qp(wait); 468 priv = qp->priv; 469 list_del_init(&priv->s_iowait.list); 470 priv->s_iowait.lock = NULL; 471 /* refcount held until actual wake up */ 472 if (!list_empty(list)) 473 mod_timer(&dev->mem_timer, jiffies + 1); 474 } 475 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 476 477 if (qp) 478 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 479 } 480 481 /* 482 * This is called with progress side lock held. 483 */ 484 /* New API */ 485 static void verbs_sdma_complete( 486 struct sdma_txreq *cookie, 487 int status) 488 { 489 struct verbs_txreq *tx = 490 container_of(cookie, struct verbs_txreq, txreq); 491 struct rvt_qp *qp = tx->qp; 492 493 spin_lock(&qp->s_lock); 494 if (tx->wqe) { 495 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 496 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 497 struct hfi1_opa_header *hdr; 498 499 hdr = &tx->phdr.hdr; 500 hfi1_rc_send_complete(qp, hdr); 501 } 502 spin_unlock(&qp->s_lock); 503 504 hfi1_put_txreq(tx); 505 } 506 507 static int wait_kmem(struct hfi1_ibdev *dev, 508 struct rvt_qp *qp, 509 struct hfi1_pkt_state *ps) 510 { 511 struct hfi1_qp_priv *priv = qp->priv; 512 unsigned long flags; 513 int ret = 0; 514 515 spin_lock_irqsave(&qp->s_lock, flags); 516 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 517 write_seqlock(&dev->iowait_lock); 518 list_add_tail(&ps->s_txreq->txreq.list, 519 &ps->wait->tx_head); 520 if (list_empty(&priv->s_iowait.list)) { 521 if (list_empty(&dev->memwait)) 522 mod_timer(&dev->mem_timer, jiffies + 1); 523 qp->s_flags |= RVT_S_WAIT_KMEM; 524 list_add_tail(&priv->s_iowait.list, &dev->memwait); 525 priv->s_iowait.lock = &dev->iowait_lock; 526 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 527 rvt_get_qp(qp); 528 } 529 write_sequnlock(&dev->iowait_lock); 530 hfi1_qp_unbusy(qp, ps->wait); 531 ret = -EBUSY; 532 } 533 spin_unlock_irqrestore(&qp->s_lock, flags); 534 535 return ret; 536 } 537 538 /* 539 * This routine calls txadds for each sg entry. 540 * 541 * Add failures will revert the sge cursor 542 */ 543 static noinline int build_verbs_ulp_payload( 544 struct sdma_engine *sde, 545 u32 length, 546 struct verbs_txreq *tx) 547 { 548 struct rvt_sge_state *ss = tx->ss; 549 struct rvt_sge *sg_list = ss->sg_list; 550 struct rvt_sge sge = ss->sge; 551 u8 num_sge = ss->num_sge; 552 u32 len; 553 int ret = 0; 554 555 while (length) { 556 len = ss->sge.length; 557 if (len > length) 558 len = length; 559 if (len > ss->sge.sge_length) 560 len = ss->sge.sge_length; 561 WARN_ON_ONCE(len == 0); 562 ret = sdma_txadd_kvaddr( 563 sde->dd, 564 &tx->txreq, 565 ss->sge.vaddr, 566 len); 567 if (ret) 568 goto bail_txadd; 569 rvt_update_sge(ss, len, false); 570 length -= len; 571 } 572 return ret; 573 bail_txadd: 574 /* unwind cursor */ 575 ss->sge = sge; 576 ss->num_sge = num_sge; 577 ss->sg_list = sg_list; 578 return ret; 579 } 580 581 /** 582 * update_tx_opstats - record stats by opcode 583 * @qp; the qp 584 * @ps: transmit packet state 585 * @plen: the plen in dwords 586 * 587 * This is a routine to record the tx opstats after a 588 * packet has been presented to the egress mechanism. 589 */ 590 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 591 u32 plen) 592 { 593 #ifdef CONFIG_DEBUG_FS 594 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 595 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); 596 597 inc_opstats(plen * 4, &s->stats[ps->opcode]); 598 put_cpu_ptr(s); 599 #endif 600 } 601 602 /* 603 * Build the number of DMA descriptors needed to send length bytes of data. 604 * 605 * NOTE: DMA mapping is held in the tx until completed in the ring or 606 * the tx desc is freed without having been submitted to the ring 607 * 608 * This routine ensures all the helper routine calls succeed. 609 */ 610 /* New API */ 611 static int build_verbs_tx_desc( 612 struct sdma_engine *sde, 613 u32 length, 614 struct verbs_txreq *tx, 615 struct hfi1_ahg_info *ahg_info, 616 u64 pbc) 617 { 618 int ret = 0; 619 struct hfi1_sdma_header *phdr = &tx->phdr; 620 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; 621 u8 extra_bytes = 0; 622 623 if (tx->phdr.hdr.hdr_type) { 624 /* 625 * hdrbytes accounts for PBC. Need to subtract 8 bytes 626 * before calculating padding. 627 */ 628 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + 629 (SIZE_OF_CRC << 2) + SIZE_OF_LT; 630 } 631 if (!ahg_info->ahgcount) { 632 ret = sdma_txinit_ahg( 633 &tx->txreq, 634 ahg_info->tx_flags, 635 hdrbytes + length + 636 extra_bytes, 637 ahg_info->ahgidx, 638 0, 639 NULL, 640 0, 641 verbs_sdma_complete); 642 if (ret) 643 goto bail_txadd; 644 phdr->pbc = cpu_to_le64(pbc); 645 ret = sdma_txadd_kvaddr( 646 sde->dd, 647 &tx->txreq, 648 phdr, 649 hdrbytes); 650 if (ret) 651 goto bail_txadd; 652 } else { 653 ret = sdma_txinit_ahg( 654 &tx->txreq, 655 ahg_info->tx_flags, 656 length, 657 ahg_info->ahgidx, 658 ahg_info->ahgcount, 659 ahg_info->ahgdesc, 660 hdrbytes, 661 verbs_sdma_complete); 662 if (ret) 663 goto bail_txadd; 664 } 665 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 666 if (tx->ss) { 667 ret = build_verbs_ulp_payload(sde, length, tx); 668 if (ret) 669 goto bail_txadd; 670 } 671 672 /* add icrc, lt byte, and padding to flit */ 673 if (extra_bytes) 674 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq, 675 (void *)trail_buf, extra_bytes); 676 677 bail_txadd: 678 return ret; 679 } 680 681 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 682 u64 pbc) 683 { 684 struct hfi1_qp_priv *priv = qp->priv; 685 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 686 u32 hdrwords = ps->s_txreq->hdr_dwords; 687 u32 len = ps->s_txreq->s_cur_size; 688 u32 plen; 689 struct hfi1_ibdev *dev = ps->dev; 690 struct hfi1_pportdata *ppd = ps->ppd; 691 struct verbs_txreq *tx; 692 u8 sc5 = priv->s_sc; 693 int ret; 694 u32 dwords; 695 696 if (ps->s_txreq->phdr.hdr.hdr_type) { 697 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); 698 699 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + 700 SIZE_OF_LT) >> 2; 701 } else { 702 dwords = (len + 3) >> 2; 703 } 704 plen = hdrwords + dwords + sizeof(pbc) / 4; 705 706 tx = ps->s_txreq; 707 if (!sdma_txreq_built(&tx->txreq)) { 708 if (likely(pbc == 0)) { 709 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 710 711 /* No vl15 here */ 712 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 713 if (ps->s_txreq->phdr.hdr.hdr_type) 714 pbc |= PBC_PACKET_BYPASS | 715 PBC_INSERT_BYPASS_ICRC; 716 else 717 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 718 719 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 720 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 721 pbc = create_pbc(ppd, 722 pbc, 723 qp->srate_mbps, 724 vl, 725 plen); 726 } 727 tx->wqe = qp->s_wqe; 728 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 729 if (unlikely(ret)) 730 goto bail_build; 731 } 732 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); 733 if (unlikely(ret < 0)) { 734 if (ret == -ECOMM) 735 goto bail_ecomm; 736 return ret; 737 } 738 739 update_tx_opstats(qp, ps, plen); 740 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 741 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 742 return ret; 743 744 bail_ecomm: 745 /* The current one got "sent" */ 746 return 0; 747 bail_build: 748 ret = wait_kmem(dev, qp, ps); 749 if (!ret) { 750 /* free txreq - bad state */ 751 hfi1_put_txreq(ps->s_txreq); 752 ps->s_txreq = NULL; 753 } 754 return ret; 755 } 756 757 /* 758 * If we are now in the error state, return zero to flush the 759 * send work request. 760 */ 761 static int pio_wait(struct rvt_qp *qp, 762 struct send_context *sc, 763 struct hfi1_pkt_state *ps, 764 u32 flag) 765 { 766 struct hfi1_qp_priv *priv = qp->priv; 767 struct hfi1_devdata *dd = sc->dd; 768 struct hfi1_ibdev *dev = &dd->verbs_dev; 769 unsigned long flags; 770 int ret = 0; 771 772 /* 773 * Note that as soon as want_buffer() is called and 774 * possibly before it returns, sc_piobufavail() 775 * could be called. Therefore, put QP on the I/O wait list before 776 * enabling the PIO avail interrupt. 777 */ 778 spin_lock_irqsave(&qp->s_lock, flags); 779 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 780 write_seqlock(&dev->iowait_lock); 781 list_add_tail(&ps->s_txreq->txreq.list, 782 &ps->wait->tx_head); 783 if (list_empty(&priv->s_iowait.list)) { 784 struct hfi1_ibdev *dev = &dd->verbs_dev; 785 int was_empty; 786 787 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 788 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); 789 qp->s_flags |= flag; 790 was_empty = list_empty(&sc->piowait); 791 iowait_queue(ps->pkts_sent, &priv->s_iowait, 792 &sc->piowait); 793 priv->s_iowait.lock = &dev->iowait_lock; 794 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 795 rvt_get_qp(qp); 796 /* counting: only call wantpiobuf_intr if first user */ 797 if (was_empty) 798 hfi1_sc_wantpiobuf_intr(sc, 1); 799 } 800 write_sequnlock(&dev->iowait_lock); 801 hfi1_qp_unbusy(qp, ps->wait); 802 ret = -EBUSY; 803 } 804 spin_unlock_irqrestore(&qp->s_lock, flags); 805 return ret; 806 } 807 808 static void verbs_pio_complete(void *arg, int code) 809 { 810 struct rvt_qp *qp = (struct rvt_qp *)arg; 811 struct hfi1_qp_priv *priv = qp->priv; 812 813 if (iowait_pio_dec(&priv->s_iowait)) 814 iowait_drain_wakeup(&priv->s_iowait); 815 } 816 817 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 818 u64 pbc) 819 { 820 struct hfi1_qp_priv *priv = qp->priv; 821 u32 hdrwords = ps->s_txreq->hdr_dwords; 822 struct rvt_sge_state *ss = ps->s_txreq->ss; 823 u32 len = ps->s_txreq->s_cur_size; 824 u32 dwords; 825 u32 plen; 826 struct hfi1_pportdata *ppd = ps->ppd; 827 u32 *hdr; 828 u8 sc5; 829 unsigned long flags = 0; 830 struct send_context *sc; 831 struct pio_buf *pbuf; 832 int wc_status = IB_WC_SUCCESS; 833 int ret = 0; 834 pio_release_cb cb = NULL; 835 u8 extra_bytes = 0; 836 837 if (ps->s_txreq->phdr.hdr.hdr_type) { 838 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); 839 840 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; 841 dwords = (len + extra_bytes) >> 2; 842 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; 843 } else { 844 dwords = (len + 3) >> 2; 845 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; 846 } 847 plen = hdrwords + dwords + sizeof(pbc) / 4; 848 849 /* only RC/UC use complete */ 850 switch (qp->ibqp.qp_type) { 851 case IB_QPT_RC: 852 case IB_QPT_UC: 853 cb = verbs_pio_complete; 854 break; 855 default: 856 break; 857 } 858 859 /* vl15 special case taken care of in ud.c */ 860 sc5 = priv->s_sc; 861 sc = ps->s_txreq->psc; 862 863 if (likely(pbc == 0)) { 864 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 865 866 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 867 if (ps->s_txreq->phdr.hdr.hdr_type) 868 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; 869 else 870 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 871 872 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 873 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 874 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 875 } 876 if (cb) 877 iowait_pio_inc(&priv->s_iowait); 878 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 879 if (unlikely(!pbuf)) { 880 if (cb) 881 verbs_pio_complete(qp, 0); 882 if (ppd->host_link_state != HLS_UP_ACTIVE) { 883 /* 884 * If we have filled the PIO buffers to capacity and are 885 * not in an active state this request is not going to 886 * go out to so just complete it with an error or else a 887 * ULP or the core may be stuck waiting. 888 */ 889 hfi1_cdbg( 890 PIO, 891 "alloc failed. state not active, completing"); 892 wc_status = IB_WC_GENERAL_ERR; 893 goto pio_bail; 894 } else { 895 /* 896 * This is a normal occurrence. The PIO buffs are full 897 * up but we are still happily sending, well we could be 898 * so lets continue to queue the request. 899 */ 900 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 901 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 902 if (!ret) 903 /* txreq not queued - free */ 904 goto bail; 905 /* tx consumed in wait */ 906 return ret; 907 } 908 } 909 910 if (dwords == 0) { 911 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 912 } else { 913 seg_pio_copy_start(pbuf, pbc, 914 hdr, hdrwords * 4); 915 if (ss) { 916 while (len) { 917 void *addr = ss->sge.vaddr; 918 u32 slen = ss->sge.length; 919 920 if (slen > len) 921 slen = len; 922 rvt_update_sge(ss, slen, false); 923 seg_pio_copy_mid(pbuf, addr, slen); 924 len -= slen; 925 } 926 } 927 /* add icrc, lt byte, and padding to flit */ 928 if (extra_bytes) 929 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes); 930 931 seg_pio_copy_end(pbuf); 932 } 933 934 update_tx_opstats(qp, ps, plen); 935 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 936 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 937 938 pio_bail: 939 if (qp->s_wqe) { 940 spin_lock_irqsave(&qp->s_lock, flags); 941 rvt_send_complete(qp, qp->s_wqe, wc_status); 942 spin_unlock_irqrestore(&qp->s_lock, flags); 943 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 944 spin_lock_irqsave(&qp->s_lock, flags); 945 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 946 spin_unlock_irqrestore(&qp->s_lock, flags); 947 } 948 949 ret = 0; 950 951 bail: 952 hfi1_put_txreq(ps->s_txreq); 953 return ret; 954 } 955 956 /* 957 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 958 * being an entry from the partition key table), return 0 959 * otherwise. Use the matching criteria for egress partition keys 960 * specified in the OPAv1 spec., section 9.1l.7. 961 */ 962 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 963 { 964 u16 mkey = pkey & PKEY_LOW_15_MASK; 965 u16 mentry = ent & PKEY_LOW_15_MASK; 966 967 if (mkey == mentry) { 968 /* 969 * If pkey[15] is set (full partition member), 970 * is bit 15 in the corresponding table element 971 * clear (limited member)? 972 */ 973 if (pkey & PKEY_MEMBER_MASK) 974 return !!(ent & PKEY_MEMBER_MASK); 975 return 1; 976 } 977 return 0; 978 } 979 980 /** 981 * egress_pkey_check - check P_KEY of a packet 982 * @ppd: Physical IB port data 983 * @slid: SLID for packet 984 * @bkey: PKEY for header 985 * @sc5: SC for packet 986 * @s_pkey_index: It will be used for look up optimization for kernel contexts 987 * only. If it is negative value, then it means user contexts is calling this 988 * function. 989 * 990 * It checks if hdr's pkey is valid. 991 * 992 * Return: 0 on success, otherwise, 1 993 */ 994 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 995 u8 sc5, int8_t s_pkey_index) 996 { 997 struct hfi1_devdata *dd; 998 int i; 999 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1000 1001 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1002 return 0; 1003 1004 /* If SC15, pkey[0:14] must be 0x7fff */ 1005 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1006 goto bad; 1007 1008 /* Is the pkey = 0x0, or 0x8000? */ 1009 if ((pkey & PKEY_LOW_15_MASK) == 0) 1010 goto bad; 1011 1012 /* 1013 * For the kernel contexts only, if a qp is passed into the function, 1014 * the most likely matching pkey has index qp->s_pkey_index 1015 */ 1016 if (!is_user_ctxt_mechanism && 1017 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1018 return 0; 1019 } 1020 1021 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1022 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1023 return 0; 1024 } 1025 bad: 1026 /* 1027 * For the user-context mechanism, the P_KEY check would only happen 1028 * once per SDMA request, not once per packet. Therefore, there's no 1029 * need to increment the counter for the user-context mechanism. 1030 */ 1031 if (!is_user_ctxt_mechanism) { 1032 incr_cntr64(&ppd->port_xmit_constraint_errors); 1033 dd = ppd->dd; 1034 if (!(dd->err_info_xmit_constraint.status & 1035 OPA_EI_STATUS_SMASK)) { 1036 dd->err_info_xmit_constraint.status |= 1037 OPA_EI_STATUS_SMASK; 1038 dd->err_info_xmit_constraint.slid = slid; 1039 dd->err_info_xmit_constraint.pkey = pkey; 1040 } 1041 } 1042 return 1; 1043 } 1044 1045 /** 1046 * get_send_routine - choose an egress routine 1047 * 1048 * Choose an egress routine based on QP type 1049 * and size 1050 */ 1051 static inline send_routine get_send_routine(struct rvt_qp *qp, 1052 struct hfi1_pkt_state *ps) 1053 { 1054 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1055 struct hfi1_qp_priv *priv = qp->priv; 1056 struct verbs_txreq *tx = ps->s_txreq; 1057 1058 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1059 return dd->process_pio_send; 1060 switch (qp->ibqp.qp_type) { 1061 case IB_QPT_SMI: 1062 return dd->process_pio_send; 1063 case IB_QPT_GSI: 1064 case IB_QPT_UD: 1065 break; 1066 case IB_QPT_UC: 1067 case IB_QPT_RC: { 1068 if (piothreshold && 1069 tx->s_cur_size <= min(piothreshold, qp->pmtu) && 1070 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && 1071 iowait_sdma_pending(&priv->s_iowait) == 0 && 1072 !sdma_txreq_built(&tx->txreq)) 1073 return dd->process_pio_send; 1074 break; 1075 } 1076 default: 1077 break; 1078 } 1079 return dd->process_dma_send; 1080 } 1081 1082 /** 1083 * hfi1_verbs_send - send a packet 1084 * @qp: the QP to send on 1085 * @ps: the state of the packet to send 1086 * 1087 * Return zero if packet is sent or queued OK. 1088 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1089 */ 1090 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1091 { 1092 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1093 struct hfi1_qp_priv *priv = qp->priv; 1094 struct ib_other_headers *ohdr = NULL; 1095 send_routine sr; 1096 int ret; 1097 u16 pkey; 1098 u32 slid; 1099 u8 l4 = 0; 1100 1101 /* locate the pkey within the headers */ 1102 if (ps->s_txreq->phdr.hdr.hdr_type) { 1103 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; 1104 1105 l4 = hfi1_16B_get_l4(hdr); 1106 if (l4 == OPA_16B_L4_IB_LOCAL) 1107 ohdr = &hdr->u.oth; 1108 else if (l4 == OPA_16B_L4_IB_GLOBAL) 1109 ohdr = &hdr->u.l.oth; 1110 1111 slid = hfi1_16B_get_slid(hdr); 1112 pkey = hfi1_16B_get_pkey(hdr); 1113 } else { 1114 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; 1115 u8 lnh = ib_get_lnh(hdr); 1116 1117 if (lnh == HFI1_LRH_GRH) 1118 ohdr = &hdr->u.l.oth; 1119 else 1120 ohdr = &hdr->u.oth; 1121 slid = ib_get_slid(hdr); 1122 pkey = ib_bth_get_pkey(ohdr); 1123 } 1124 1125 if (likely(l4 != OPA_16B_L4_FM)) 1126 ps->opcode = ib_bth_get_opcode(ohdr); 1127 else 1128 ps->opcode = IB_OPCODE_UD_SEND_ONLY; 1129 1130 sr = get_send_routine(qp, ps); 1131 ret = egress_pkey_check(dd->pport, slid, pkey, 1132 priv->s_sc, qp->s_pkey_index); 1133 if (unlikely(ret)) { 1134 /* 1135 * The value we are returning here does not get propagated to 1136 * the verbs caller. Thus we need to complete the request with 1137 * error otherwise the caller could be sitting waiting on the 1138 * completion event. Only do this for PIO. SDMA has its own 1139 * mechanism for handling the errors. So for SDMA we can just 1140 * return. 1141 */ 1142 if (sr == dd->process_pio_send) { 1143 unsigned long flags; 1144 1145 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1146 __func__); 1147 spin_lock_irqsave(&qp->s_lock, flags); 1148 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1149 spin_unlock_irqrestore(&qp->s_lock, flags); 1150 } 1151 return -EINVAL; 1152 } 1153 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1154 return pio_wait(qp, 1155 ps->s_txreq->psc, 1156 ps, 1157 HFI1_S_WAIT_PIO_DRAIN); 1158 return sr(qp, ps, 0); 1159 } 1160 1161 /** 1162 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1163 * @dd: the device data structure 1164 */ 1165 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1166 { 1167 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1168 u32 ver = dd->dc8051_ver; 1169 1170 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1171 1172 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1173 ((u64)(dc8051_ver_min(ver)) << 16) | 1174 (u64)dc8051_ver_patch(ver); 1175 1176 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1177 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1178 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1179 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1180 IB_DEVICE_MEM_MGT_EXTENSIONS | 1181 IB_DEVICE_RDMA_NETDEV_OPA_VNIC; 1182 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1183 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1184 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1185 rdi->dparms.props.hw_ver = dd->minrev; 1186 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1187 rdi->dparms.props.max_mr_size = U64_MAX; 1188 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1189 rdi->dparms.props.max_qp = hfi1_max_qps; 1190 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs; 1191 rdi->dparms.props.max_send_sge = hfi1_max_sges; 1192 rdi->dparms.props.max_recv_sge = hfi1_max_sges; 1193 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1194 rdi->dparms.props.max_cq = hfi1_max_cqs; 1195 rdi->dparms.props.max_ah = hfi1_max_ahs; 1196 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1197 rdi->dparms.props.max_mr = rdi->lkey_table.max; 1198 rdi->dparms.props.max_fmr = rdi->lkey_table.max; 1199 rdi->dparms.props.max_map_per_fmr = 32767; 1200 rdi->dparms.props.max_pd = hfi1_max_pds; 1201 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1202 rdi->dparms.props.max_qp_init_rd_atom = 255; 1203 rdi->dparms.props.max_srq = hfi1_max_srqs; 1204 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1205 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1206 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1207 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1208 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1209 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1210 rdi->dparms.props.max_total_mcast_qp_attach = 1211 rdi->dparms.props.max_mcast_qp_attach * 1212 rdi->dparms.props.max_mcast_grp; 1213 } 1214 1215 static inline u16 opa_speed_to_ib(u16 in) 1216 { 1217 u16 out = 0; 1218 1219 if (in & OPA_LINK_SPEED_25G) 1220 out |= IB_SPEED_EDR; 1221 if (in & OPA_LINK_SPEED_12_5G) 1222 out |= IB_SPEED_FDR; 1223 1224 return out; 1225 } 1226 1227 /* 1228 * Convert a single OPA link width (no multiple flags) to an IB value. 1229 * A zero OPA link width means link down, which means the IB width value 1230 * is a don't care. 1231 */ 1232 static inline u16 opa_width_to_ib(u16 in) 1233 { 1234 switch (in) { 1235 case OPA_LINK_WIDTH_1X: 1236 /* map 2x and 3x to 1x as they don't exist in IB */ 1237 case OPA_LINK_WIDTH_2X: 1238 case OPA_LINK_WIDTH_3X: 1239 return IB_WIDTH_1X; 1240 default: /* link down or unknown, return our largest width */ 1241 case OPA_LINK_WIDTH_4X: 1242 return IB_WIDTH_4X; 1243 } 1244 } 1245 1246 static int query_port(struct rvt_dev_info *rdi, u8 port_num, 1247 struct ib_port_attr *props) 1248 { 1249 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1250 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1251 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1252 u32 lid = ppd->lid; 1253 1254 /* props being zeroed by the caller, avoid zeroing it here */ 1255 props->lid = lid ? lid : 0; 1256 props->lmc = ppd->lmc; 1257 /* OPA logical states match IB logical states */ 1258 props->state = driver_lstate(ppd); 1259 props->phys_state = driver_pstate(ppd); 1260 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1261 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1262 /* see rate_show() in ib core/sysfs.c */ 1263 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); 1264 props->max_vl_num = ppd->vls_supported; 1265 1266 /* Once we are a "first class" citizen and have added the OPA MTUs to 1267 * the core we can advertise the larger MTU enum to the ULPs, for now 1268 * advertise only 4K. 1269 * 1270 * Those applications which are either OPA aware or pass the MTU enum 1271 * from the Path Records to us will get the new 8k MTU. Those that 1272 * attempt to process the MTU enum may fail in various ways. 1273 */ 1274 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1275 4096 : hfi1_max_mtu), IB_MTU_4096); 1276 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1277 mtu_to_enum(ppd->ibmtu, IB_MTU_4096); 1278 1279 return 0; 1280 } 1281 1282 static int modify_device(struct ib_device *device, 1283 int device_modify_mask, 1284 struct ib_device_modify *device_modify) 1285 { 1286 struct hfi1_devdata *dd = dd_from_ibdev(device); 1287 unsigned i; 1288 int ret; 1289 1290 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1291 IB_DEVICE_MODIFY_NODE_DESC)) { 1292 ret = -EOPNOTSUPP; 1293 goto bail; 1294 } 1295 1296 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1297 memcpy(device->node_desc, device_modify->node_desc, 1298 IB_DEVICE_NODE_DESC_MAX); 1299 for (i = 0; i < dd->num_pports; i++) { 1300 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1301 1302 hfi1_node_desc_chg(ibp); 1303 } 1304 } 1305 1306 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1307 ib_hfi1_sys_image_guid = 1308 cpu_to_be64(device_modify->sys_image_guid); 1309 for (i = 0; i < dd->num_pports; i++) { 1310 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1311 1312 hfi1_sys_guid_chg(ibp); 1313 } 1314 } 1315 1316 ret = 0; 1317 1318 bail: 1319 return ret; 1320 } 1321 1322 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) 1323 { 1324 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1325 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1326 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1327 int ret; 1328 1329 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1330 OPA_LINKDOWN_REASON_UNKNOWN); 1331 ret = set_link_state(ppd, HLS_DN_DOWNDEF); 1332 return ret; 1333 } 1334 1335 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1336 int guid_index, __be64 *guid) 1337 { 1338 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1339 1340 if (guid_index >= HFI1_GUIDS_PER_PORT) 1341 return -EINVAL; 1342 1343 *guid = get_sguid(ibp, guid_index); 1344 return 0; 1345 } 1346 1347 /* 1348 * convert ah port,sl to sc 1349 */ 1350 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1351 { 1352 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1353 1354 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1355 } 1356 1357 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1358 { 1359 struct hfi1_ibport *ibp; 1360 struct hfi1_pportdata *ppd; 1361 struct hfi1_devdata *dd; 1362 u8 sc5; 1363 u8 sl; 1364 1365 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && 1366 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) 1367 return -EINVAL; 1368 1369 /* test the mapping for validity */ 1370 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1371 ppd = ppd_from_ibp(ibp); 1372 dd = dd_from_ppd(ppd); 1373 1374 sl = rdma_ah_get_sl(ah_attr); 1375 if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) 1376 return -EINVAL; 1377 1378 sc5 = ibp->sl_to_sc[sl]; 1379 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1380 return -EINVAL; 1381 return 0; 1382 } 1383 1384 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1385 struct rdma_ah_attr *ah_attr, 1386 struct rvt_ah *ah) 1387 { 1388 struct hfi1_ibport *ibp; 1389 struct hfi1_pportdata *ppd; 1390 struct hfi1_devdata *dd; 1391 u8 sc5; 1392 struct rdma_ah_attr *attr = &ah->attr; 1393 1394 /* 1395 * Do not trust reading anything from rvt_ah at this point as it is not 1396 * done being setup. We can however modify things which we need to set. 1397 */ 1398 1399 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1400 ppd = ppd_from_ibp(ibp); 1401 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1402 hfi1_update_ah_attr(ibdev, attr); 1403 hfi1_make_opa_lid(attr); 1404 dd = dd_from_ppd(ppd); 1405 ah->vl = sc_to_vlt(dd, sc5); 1406 if (ah->vl < num_vls || ah->vl == 15) 1407 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1408 } 1409 1410 /** 1411 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1412 * @dd: the hfi1_ib device 1413 */ 1414 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1415 { 1416 return ARRAY_SIZE(dd->pport[0].pkeys); 1417 } 1418 1419 static void init_ibport(struct hfi1_pportdata *ppd) 1420 { 1421 struct hfi1_ibport *ibp = &ppd->ibport_data; 1422 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1423 int i; 1424 1425 for (i = 0; i < sz; i++) { 1426 ibp->sl_to_sc[i] = i; 1427 ibp->sc_to_sl[i] = i; 1428 } 1429 1430 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) 1431 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); 1432 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); 1433 1434 spin_lock_init(&ibp->rvp.lock); 1435 /* Set the prefix to the default value (see ch. 4.1.1) */ 1436 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1437 ibp->rvp.sm_lid = 0; 1438 /* 1439 * Below should only set bits defined in OPA PortInfo.CapabilityMask 1440 * and PortInfo.CapabilityMask3 1441 */ 1442 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1443 IB_PORT_CAP_MASK_NOTICE_SUP; 1444 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; 1445 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1446 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1447 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1448 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1449 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1450 1451 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1452 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1453 } 1454 1455 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) 1456 { 1457 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1458 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1459 u32 ver = dd_from_dev(dev)->dc8051_ver; 1460 1461 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), 1462 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1463 } 1464 1465 static const char * const driver_cntr_names[] = { 1466 /* must be element 0*/ 1467 "DRIVER_KernIntr", 1468 "DRIVER_ErrorIntr", 1469 "DRIVER_Tx_Errs", 1470 "DRIVER_Rcv_Errs", 1471 "DRIVER_HW_Errs", 1472 "DRIVER_NoPIOBufs", 1473 "DRIVER_CtxtsOpen", 1474 "DRIVER_RcvLen_Errs", 1475 "DRIVER_EgrBufFull", 1476 "DRIVER_EgrHdrFull" 1477 }; 1478 1479 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1480 static const char **dev_cntr_names; 1481 static const char **port_cntr_names; 1482 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1483 static int num_dev_cntrs; 1484 static int num_port_cntrs; 1485 static int cntr_names_initialized; 1486 1487 /* 1488 * Convert a list of names separated by '\n' into an array of NULL terminated 1489 * strings. Optionally some entries can be reserved in the array to hold extra 1490 * external strings. 1491 */ 1492 static int init_cntr_names(const char *names_in, 1493 const size_t names_len, 1494 int num_extra_names, 1495 int *num_cntrs, 1496 const char ***cntr_names) 1497 { 1498 char *names_out, *p, **q; 1499 int i, n; 1500 1501 n = 0; 1502 for (i = 0; i < names_len; i++) 1503 if (names_in[i] == '\n') 1504 n++; 1505 1506 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, 1507 GFP_KERNEL); 1508 if (!names_out) { 1509 *num_cntrs = 0; 1510 *cntr_names = NULL; 1511 return -ENOMEM; 1512 } 1513 1514 p = names_out + (n + num_extra_names) * sizeof(char *); 1515 memcpy(p, names_in, names_len); 1516 1517 q = (char **)names_out; 1518 for (i = 0; i < n; i++) { 1519 q[i] = p; 1520 p = strchr(p, '\n'); 1521 *p++ = '\0'; 1522 } 1523 1524 *num_cntrs = n; 1525 *cntr_names = (const char **)names_out; 1526 return 0; 1527 } 1528 1529 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, 1530 u8 port_num) 1531 { 1532 int i, err; 1533 1534 mutex_lock(&cntr_names_lock); 1535 if (!cntr_names_initialized) { 1536 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1537 1538 err = init_cntr_names(dd->cntrnames, 1539 dd->cntrnameslen, 1540 num_driver_cntrs, 1541 &num_dev_cntrs, 1542 &dev_cntr_names); 1543 if (err) { 1544 mutex_unlock(&cntr_names_lock); 1545 return NULL; 1546 } 1547 1548 for (i = 0; i < num_driver_cntrs; i++) 1549 dev_cntr_names[num_dev_cntrs + i] = 1550 driver_cntr_names[i]; 1551 1552 err = init_cntr_names(dd->portcntrnames, 1553 dd->portcntrnameslen, 1554 0, 1555 &num_port_cntrs, 1556 &port_cntr_names); 1557 if (err) { 1558 kfree(dev_cntr_names); 1559 dev_cntr_names = NULL; 1560 mutex_unlock(&cntr_names_lock); 1561 return NULL; 1562 } 1563 cntr_names_initialized = 1; 1564 } 1565 mutex_unlock(&cntr_names_lock); 1566 1567 if (!port_num) 1568 return rdma_alloc_hw_stats_struct( 1569 dev_cntr_names, 1570 num_dev_cntrs + num_driver_cntrs, 1571 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1572 else 1573 return rdma_alloc_hw_stats_struct( 1574 port_cntr_names, 1575 num_port_cntrs, 1576 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1577 } 1578 1579 static u64 hfi1_sps_ints(void) 1580 { 1581 unsigned long flags; 1582 struct hfi1_devdata *dd; 1583 u64 sps_ints = 0; 1584 1585 spin_lock_irqsave(&hfi1_devs_lock, flags); 1586 list_for_each_entry(dd, &hfi1_dev_list, list) { 1587 sps_ints += get_all_cpu_total(dd->int_counter); 1588 } 1589 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1590 return sps_ints; 1591 } 1592 1593 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1594 u8 port, int index) 1595 { 1596 u64 *values; 1597 int count; 1598 1599 if (!port) { 1600 u64 *stats = (u64 *)&hfi1_stats; 1601 int i; 1602 1603 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1604 values[num_dev_cntrs] = hfi1_sps_ints(); 1605 for (i = 1; i < num_driver_cntrs; i++) 1606 values[num_dev_cntrs + i] = stats[i]; 1607 count = num_dev_cntrs + num_driver_cntrs; 1608 } else { 1609 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1610 1611 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1612 count = num_port_cntrs; 1613 } 1614 1615 memcpy(stats->value, values, count * sizeof(u64)); 1616 return count; 1617 } 1618 1619 /** 1620 * hfi1_register_ib_device - register our device with the infiniband core 1621 * @dd: the device data structure 1622 * Return 0 if successful, errno if unsuccessful. 1623 */ 1624 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1625 { 1626 struct hfi1_ibdev *dev = &dd->verbs_dev; 1627 struct ib_device *ibdev = &dev->rdi.ibdev; 1628 struct hfi1_pportdata *ppd = dd->pport; 1629 struct hfi1_ibport *ibp = &ppd->ibport_data; 1630 unsigned i; 1631 int ret; 1632 1633 for (i = 0; i < dd->num_pports; i++) 1634 init_ibport(ppd + i); 1635 1636 /* Only need to initialize non-zero fields. */ 1637 1638 timer_setup(&dev->mem_timer, mem_timer, 0); 1639 1640 seqlock_init(&dev->iowait_lock); 1641 seqlock_init(&dev->txwait_lock); 1642 INIT_LIST_HEAD(&dev->txwait); 1643 INIT_LIST_HEAD(&dev->memwait); 1644 1645 ret = verbs_txreq_init(dev); 1646 if (ret) 1647 goto err_verbs_txreq; 1648 1649 /* Use first-port GUID as node guid */ 1650 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1651 1652 /* 1653 * The system image GUID is supposed to be the same for all 1654 * HFIs in a single system but since there can be other 1655 * device types in the system, we can't be sure this is unique. 1656 */ 1657 if (!ib_hfi1_sys_image_guid) 1658 ib_hfi1_sys_image_guid = ibdev->node_guid; 1659 ibdev->owner = THIS_MODULE; 1660 ibdev->phys_port_cnt = dd->num_pports; 1661 ibdev->dev.parent = &dd->pcidev->dev; 1662 ibdev->modify_device = modify_device; 1663 ibdev->alloc_hw_stats = alloc_hw_stats; 1664 ibdev->get_hw_stats = get_hw_stats; 1665 ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn; 1666 1667 /* keep process mad in the driver */ 1668 ibdev->process_mad = hfi1_process_mad; 1669 ibdev->get_dev_fw_str = hfi1_get_dev_fw_str; 1670 1671 strlcpy(ibdev->node_desc, init_utsname()->nodename, 1672 sizeof(ibdev->node_desc)); 1673 1674 /* 1675 * Fill in rvt info object. 1676 */ 1677 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files; 1678 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1679 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1680 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1681 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1682 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1683 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1684 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1685 /* 1686 * Fill in rvt info device attributes. 1687 */ 1688 hfi1_fill_device_attr(dd); 1689 1690 /* queue pair */ 1691 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1692 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1693 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1694 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1695 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; 1696 dd->verbs_dev.rdi.dparms.qpn_res_end = 1697 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; 1698 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1699 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1700 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1701 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1702 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | 1703 RDMA_CORE_CAP_OPA_AH; 1704 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1705 1706 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1707 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1708 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1709 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1710 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1711 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1712 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1713 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1714 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1715 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1716 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1717 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1718 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1719 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1720 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1721 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1722 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1723 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1724 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; 1725 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = 1726 hfi1_comp_vect_mappings_lookup; 1727 1728 /* completeion queue */ 1729 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; 1730 dd->verbs_dev.rdi.dparms.node = dd->node; 1731 1732 /* misc settings */ 1733 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1734 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1735 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1736 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1737 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; 1738 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; 1739 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; 1740 1741 /* post send table */ 1742 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1743 1744 /* opcode translation table */ 1745 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; 1746 1747 ppd = dd->pport; 1748 for (i = 0; i < dd->num_pports; i++, ppd++) 1749 rvt_init_port(&dd->verbs_dev.rdi, 1750 &ppd->ibport_data.rvp, 1751 i, 1752 ppd->pkeys); 1753 1754 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev, 1755 &ib_hfi1_attr_group); 1756 1757 ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1); 1758 if (ret) 1759 goto err_verbs_txreq; 1760 1761 ret = hfi1_verbs_register_sysfs(dd); 1762 if (ret) 1763 goto err_class; 1764 1765 return ret; 1766 1767 err_class: 1768 rvt_unregister_device(&dd->verbs_dev.rdi); 1769 err_verbs_txreq: 1770 verbs_txreq_exit(dev); 1771 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1772 return ret; 1773 } 1774 1775 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1776 { 1777 struct hfi1_ibdev *dev = &dd->verbs_dev; 1778 1779 hfi1_verbs_unregister_sysfs(dd); 1780 1781 rvt_unregister_device(&dd->verbs_dev.rdi); 1782 1783 if (!list_empty(&dev->txwait)) 1784 dd_dev_err(dd, "txwait list not empty!\n"); 1785 if (!list_empty(&dev->memwait)) 1786 dd_dev_err(dd, "memwait list not empty!\n"); 1787 1788 del_timer_sync(&dev->mem_timer); 1789 verbs_txreq_exit(dev); 1790 1791 mutex_lock(&cntr_names_lock); 1792 kfree(dev_cntr_names); 1793 kfree(port_cntr_names); 1794 dev_cntr_names = NULL; 1795 port_cntr_names = NULL; 1796 cntr_names_initialized = 0; 1797 mutex_unlock(&cntr_names_lock); 1798 } 1799 1800 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1801 { 1802 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1803 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1804 struct ib_header *hdr = packet->hdr; 1805 struct rvt_qp *qp = packet->qp; 1806 u32 lqpn, rqpn = 0; 1807 u16 rlid = 0; 1808 u8 sl, sc5, svc_type; 1809 1810 switch (packet->qp->ibqp.qp_type) { 1811 case IB_QPT_UC: 1812 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1813 rqpn = qp->remote_qpn; 1814 svc_type = IB_CC_SVCTYPE_UC; 1815 break; 1816 case IB_QPT_RC: 1817 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1818 rqpn = qp->remote_qpn; 1819 svc_type = IB_CC_SVCTYPE_RC; 1820 break; 1821 case IB_QPT_SMI: 1822 case IB_QPT_GSI: 1823 case IB_QPT_UD: 1824 svc_type = IB_CC_SVCTYPE_UD; 1825 break; 1826 default: 1827 ibp->rvp.n_pkt_drops++; 1828 return; 1829 } 1830 1831 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 1832 sl = ibp->sc_to_sl[sc5]; 1833 lqpn = qp->ibqp.qp_num; 1834 1835 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 1836 } 1837