1 /* 2 * Copyright(c) 2015 - 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <rdma/ib_mad.h> 49 #include <rdma/ib_user_verbs.h> 50 #include <linux/io.h> 51 #include <linux/module.h> 52 #include <linux/utsname.h> 53 #include <linux/rculist.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 57 #include "hfi.h" 58 #include "common.h" 59 #include "device.h" 60 #include "trace.h" 61 #include "qp.h" 62 #include "verbs_txreq.h" 63 #include "debugfs.h" 64 #include "vnic.h" 65 66 static unsigned int hfi1_lkey_table_size = 16; 67 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 68 S_IRUGO); 69 MODULE_PARM_DESC(lkey_table_size, 70 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 71 72 static unsigned int hfi1_max_pds = 0xFFFF; 73 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 74 MODULE_PARM_DESC(max_pds, 75 "Maximum number of protection domains to support"); 76 77 static unsigned int hfi1_max_ahs = 0xFFFF; 78 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 79 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 80 81 unsigned int hfi1_max_cqes = 0x2FFFFF; 82 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 83 MODULE_PARM_DESC(max_cqes, 84 "Maximum number of completion queue entries to support"); 85 86 unsigned int hfi1_max_cqs = 0x1FFFF; 87 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 88 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 89 90 unsigned int hfi1_max_qp_wrs = 0x3FFF; 91 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 92 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 93 94 unsigned int hfi1_max_qps = 32768; 95 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 96 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 97 98 unsigned int hfi1_max_sges = 0x60; 99 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 100 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 101 102 unsigned int hfi1_max_mcast_grps = 16384; 103 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 104 MODULE_PARM_DESC(max_mcast_grps, 105 "Maximum number of multicast groups to support"); 106 107 unsigned int hfi1_max_mcast_qp_attached = 16; 108 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 109 uint, S_IRUGO); 110 MODULE_PARM_DESC(max_mcast_qp_attached, 111 "Maximum number of attached QPs to support"); 112 113 unsigned int hfi1_max_srqs = 1024; 114 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 115 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 116 117 unsigned int hfi1_max_srq_sges = 128; 118 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 119 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 120 121 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 122 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 123 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 124 125 unsigned short piothreshold = 256; 126 module_param(piothreshold, ushort, S_IRUGO); 127 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 128 129 #define COPY_CACHELESS 1 130 #define COPY_ADAPTIVE 2 131 static unsigned int sge_copy_mode; 132 module_param(sge_copy_mode, uint, S_IRUGO); 133 MODULE_PARM_DESC(sge_copy_mode, 134 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 135 136 static void verbs_sdma_complete( 137 struct sdma_txreq *cookie, 138 int status); 139 140 static int pio_wait(struct rvt_qp *qp, 141 struct send_context *sc, 142 struct hfi1_pkt_state *ps, 143 u32 flag); 144 145 /* Length of buffer to create verbs txreq cache name */ 146 #define TXREQ_NAME_LEN 24 147 148 static uint wss_threshold; 149 module_param(wss_threshold, uint, S_IRUGO); 150 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 151 static uint wss_clean_period = 256; 152 module_param(wss_clean_period, uint, S_IRUGO); 153 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 154 155 /* memory working set size */ 156 struct hfi1_wss { 157 unsigned long *entries; 158 atomic_t total_count; 159 atomic_t clean_counter; 160 atomic_t clean_entry; 161 162 int threshold; 163 int num_entries; 164 long pages_mask; 165 }; 166 167 static struct hfi1_wss wss; 168 169 int hfi1_wss_init(void) 170 { 171 long llc_size; 172 long llc_bits; 173 long table_size; 174 long table_bits; 175 176 /* check for a valid percent range - default to 80 if none or invalid */ 177 if (wss_threshold < 1 || wss_threshold > 100) 178 wss_threshold = 80; 179 /* reject a wildly large period */ 180 if (wss_clean_period > 1000000) 181 wss_clean_period = 256; 182 /* reject a zero period */ 183 if (wss_clean_period == 0) 184 wss_clean_period = 1; 185 186 /* 187 * Calculate the table size - the next power of 2 larger than the 188 * LLC size. LLC size is in KiB. 189 */ 190 llc_size = wss_llc_size() * 1024; 191 table_size = roundup_pow_of_two(llc_size); 192 193 /* one bit per page in rounded up table */ 194 llc_bits = llc_size / PAGE_SIZE; 195 table_bits = table_size / PAGE_SIZE; 196 wss.pages_mask = table_bits - 1; 197 wss.num_entries = table_bits / BITS_PER_LONG; 198 199 wss.threshold = (llc_bits * wss_threshold) / 100; 200 if (wss.threshold == 0) 201 wss.threshold = 1; 202 203 atomic_set(&wss.clean_counter, wss_clean_period); 204 205 wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries), 206 GFP_KERNEL); 207 if (!wss.entries) { 208 hfi1_wss_exit(); 209 return -ENOMEM; 210 } 211 212 return 0; 213 } 214 215 void hfi1_wss_exit(void) 216 { 217 /* coded to handle partially initialized and repeat callers */ 218 kfree(wss.entries); 219 wss.entries = NULL; 220 } 221 222 /* 223 * Advance the clean counter. When the clean period has expired, 224 * clean an entry. 225 * 226 * This is implemented in atomics to avoid locking. Because multiple 227 * variables are involved, it can be racy which can lead to slightly 228 * inaccurate information. Since this is only a heuristic, this is 229 * OK. Any innaccuracies will clean themselves out as the counter 230 * advances. That said, it is unlikely the entry clean operation will 231 * race - the next possible racer will not start until the next clean 232 * period. 233 * 234 * The clean counter is implemented as a decrement to zero. When zero 235 * is reached an entry is cleaned. 236 */ 237 static void wss_advance_clean_counter(void) 238 { 239 int entry; 240 int weight; 241 unsigned long bits; 242 243 /* become the cleaner if we decrement the counter to zero */ 244 if (atomic_dec_and_test(&wss.clean_counter)) { 245 /* 246 * Set, not add, the clean period. This avoids an issue 247 * where the counter could decrement below the clean period. 248 * Doing a set can result in lost decrements, slowing the 249 * clean advance. Since this a heuristic, this possible 250 * slowdown is OK. 251 * 252 * An alternative is to loop, advancing the counter by a 253 * clean period until the result is > 0. However, this could 254 * lead to several threads keeping another in the clean loop. 255 * This could be mitigated by limiting the number of times 256 * we stay in the loop. 257 */ 258 atomic_set(&wss.clean_counter, wss_clean_period); 259 260 /* 261 * Uniquely grab the entry to clean and move to next. 262 * The current entry is always the lower bits of 263 * wss.clean_entry. The table size, wss.num_entries, 264 * is always a power-of-2. 265 */ 266 entry = (atomic_inc_return(&wss.clean_entry) - 1) 267 & (wss.num_entries - 1); 268 269 /* clear the entry and count the bits */ 270 bits = xchg(&wss.entries[entry], 0); 271 weight = hweight64((u64)bits); 272 /* only adjust the contended total count if needed */ 273 if (weight) 274 atomic_sub(weight, &wss.total_count); 275 } 276 } 277 278 /* 279 * Insert the given address into the working set array. 280 */ 281 static void wss_insert(void *address) 282 { 283 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask; 284 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 285 u32 nr = page & (BITS_PER_LONG - 1); 286 287 if (!test_and_set_bit(nr, &wss.entries[entry])) 288 atomic_inc(&wss.total_count); 289 290 wss_advance_clean_counter(); 291 } 292 293 /* 294 * Is the working set larger than the threshold? 295 */ 296 static inline bool wss_exceeds_threshold(void) 297 { 298 return atomic_read(&wss.total_count) >= wss.threshold; 299 } 300 301 /* 302 * Translate ib_wr_opcode into ib_wc_opcode. 303 */ 304 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 305 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 306 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 307 [IB_WR_SEND] = IB_WC_SEND, 308 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 309 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 310 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 311 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 312 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 313 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 314 [IB_WR_REG_MR] = IB_WC_REG_MR 315 }; 316 317 /* 318 * Length of header by opcode, 0 --> not supported 319 */ 320 const u8 hdr_len_by_opcode[256] = { 321 /* RC */ 322 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 323 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 324 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 325 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 326 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 327 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 328 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 329 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 330 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 331 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 332 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 333 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 334 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 335 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 336 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 337 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 338 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 339 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 340 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 341 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 342 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 343 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 344 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 345 /* UC */ 346 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 347 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 348 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 349 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 350 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 351 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 352 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 353 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 354 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 355 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 356 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 357 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 358 /* UD */ 359 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 360 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 361 }; 362 363 static const opcode_handler opcode_handler_tbl[256] = { 364 /* RC */ 365 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 366 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 367 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 368 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 369 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 370 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 371 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 372 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 373 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 374 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 375 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 376 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 377 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 378 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 379 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 380 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 381 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 382 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 383 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 384 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 385 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 386 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 387 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 388 /* UC */ 389 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 390 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 391 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 392 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 393 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 394 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 395 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 396 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 397 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 398 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 399 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 400 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 401 /* UD */ 402 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 403 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 404 /* CNP */ 405 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 406 }; 407 408 #define OPMASK 0x1f 409 410 static const u32 pio_opmask[BIT(3)] = { 411 /* RC */ 412 [IB_OPCODE_RC >> 5] = 413 BIT(RC_OP(SEND_ONLY) & OPMASK) | 414 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 415 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 416 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 417 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 418 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 419 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 420 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 421 BIT(RC_OP(FETCH_ADD) & OPMASK), 422 /* UC */ 423 [IB_OPCODE_UC >> 5] = 424 BIT(UC_OP(SEND_ONLY) & OPMASK) | 425 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 426 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 427 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 428 }; 429 430 /* 431 * System image GUID. 432 */ 433 __be64 ib_hfi1_sys_image_guid; 434 435 /** 436 * hfi1_copy_sge - copy data to SGE memory 437 * @ss: the SGE state 438 * @data: the data to copy 439 * @length: the length of the data 440 * @release: boolean to release MR 441 * @copy_last: do a separate copy of the last 8 bytes 442 */ 443 void hfi1_copy_sge( 444 struct rvt_sge_state *ss, 445 void *data, u32 length, 446 bool release, 447 bool copy_last) 448 { 449 struct rvt_sge *sge = &ss->sge; 450 int i; 451 bool in_last = false; 452 bool cacheless_copy = false; 453 454 if (sge_copy_mode == COPY_CACHELESS) { 455 cacheless_copy = length >= PAGE_SIZE; 456 } else if (sge_copy_mode == COPY_ADAPTIVE) { 457 if (length >= PAGE_SIZE) { 458 /* 459 * NOTE: this *assumes*: 460 * o The first vaddr is the dest. 461 * o If multiple pages, then vaddr is sequential. 462 */ 463 wss_insert(sge->vaddr); 464 if (length >= (2 * PAGE_SIZE)) 465 wss_insert(sge->vaddr + PAGE_SIZE); 466 467 cacheless_copy = wss_exceeds_threshold(); 468 } else { 469 wss_advance_clean_counter(); 470 } 471 } 472 if (copy_last) { 473 if (length > 8) { 474 length -= 8; 475 } else { 476 copy_last = false; 477 in_last = true; 478 } 479 } 480 481 again: 482 while (length) { 483 u32 len = rvt_get_sge_length(sge, length); 484 485 WARN_ON_ONCE(len == 0); 486 if (unlikely(in_last)) { 487 /* enforce byte transfer ordering */ 488 for (i = 0; i < len; i++) 489 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 490 } else if (cacheless_copy) { 491 cacheless_memcpy(sge->vaddr, data, len); 492 } else { 493 memcpy(sge->vaddr, data, len); 494 } 495 rvt_update_sge(ss, len, release); 496 data += len; 497 length -= len; 498 } 499 500 if (copy_last) { 501 copy_last = false; 502 in_last = true; 503 length = 8; 504 goto again; 505 } 506 } 507 508 /* 509 * Make sure the QP is ready and able to accept the given opcode. 510 */ 511 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet) 512 { 513 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 514 return NULL; 515 if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) || 516 (opcode == IB_OPCODE_CNP)) 517 return opcode_handler_tbl[opcode]; 518 519 return NULL; 520 } 521 522 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 523 { 524 #ifdef CONFIG_FAULT_INJECTION 525 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) 526 /* 527 * In order to drop non-IB traffic we 528 * set PbcInsertHrc to NONE (0x2). 529 * The packet will still be delivered 530 * to the receiving node but a 531 * KHdrHCRCErr (KDETH packet with a bad 532 * HCRC) will be triggered and the 533 * packet will not be delivered to the 534 * correct context. 535 */ 536 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 537 else 538 /* 539 * In order to drop regular verbs 540 * traffic we set the PbcTestEbp 541 * flag. The packet will still be 542 * delivered to the receiving node but 543 * a 'late ebp error' will be 544 * triggered and will be dropped. 545 */ 546 pbc |= PBC_TEST_EBP; 547 #endif 548 return pbc; 549 } 550 551 /** 552 * hfi1_ib_rcv - process an incoming packet 553 * @packet: data packet information 554 * 555 * This is called to process an incoming packet at interrupt level. 556 * 557 * Tlen is the length of the header + data + CRC in bytes. 558 */ 559 void hfi1_ib_rcv(struct hfi1_packet *packet) 560 { 561 struct hfi1_ctxtdata *rcd = packet->rcd; 562 struct ib_header *hdr = packet->hdr; 563 u32 tlen = packet->tlen; 564 struct hfi1_pportdata *ppd = rcd->ppd; 565 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 566 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 567 opcode_handler packet_handler; 568 unsigned long flags; 569 u32 qp_num; 570 int lnh; 571 u8 opcode; 572 u16 lid; 573 574 /* Check for GRH */ 575 lnh = ib_get_lnh(hdr); 576 if (lnh == HFI1_LRH_BTH) { 577 packet->ohdr = &hdr->u.oth; 578 } else if (lnh == HFI1_LRH_GRH) { 579 u32 vtf; 580 581 packet->ohdr = &hdr->u.l.oth; 582 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR) 583 goto drop; 584 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow); 585 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 586 goto drop; 587 packet->rcv_flags |= HFI1_HAS_GRH; 588 } else { 589 goto drop; 590 } 591 592 trace_input_ibhdr(rcd->dd, hdr); 593 594 opcode = ib_bth_get_opcode(packet->ohdr); 595 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 596 597 /* Get the destination QP number. */ 598 qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK; 599 lid = ib_get_dlid(hdr); 600 if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 601 (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) { 602 struct rvt_mcast *mcast; 603 struct rvt_mcast_qp *p; 604 605 if (lnh != HFI1_LRH_GRH) 606 goto drop; 607 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid, lid); 608 if (!mcast) 609 goto drop; 610 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 611 packet->qp = p->qp; 612 spin_lock_irqsave(&packet->qp->r_lock, flags); 613 packet_handler = qp_ok(opcode, packet); 614 if (likely(packet_handler)) 615 packet_handler(packet); 616 else 617 ibp->rvp.n_pkt_drops++; 618 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 619 } 620 /* 621 * Notify rvt_multicast_detach() if it is waiting for us 622 * to finish. 623 */ 624 if (atomic_dec_return(&mcast->refcount) <= 1) 625 wake_up(&mcast->wait); 626 } else { 627 rcu_read_lock(); 628 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 629 if (!packet->qp) { 630 rcu_read_unlock(); 631 goto drop; 632 } 633 if (unlikely(hfi1_dbg_fault_opcode(packet->qp, opcode, 634 true))) { 635 rcu_read_unlock(); 636 goto drop; 637 } 638 spin_lock_irqsave(&packet->qp->r_lock, flags); 639 packet_handler = qp_ok(opcode, packet); 640 if (likely(packet_handler)) 641 packet_handler(packet); 642 else 643 ibp->rvp.n_pkt_drops++; 644 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 645 rcu_read_unlock(); 646 } 647 return; 648 649 drop: 650 ibp->rvp.n_pkt_drops++; 651 } 652 653 /* 654 * This is called from a timer to check for QPs 655 * which need kernel memory in order to send a packet. 656 */ 657 static void mem_timer(unsigned long data) 658 { 659 struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data; 660 struct list_head *list = &dev->memwait; 661 struct rvt_qp *qp = NULL; 662 struct iowait *wait; 663 unsigned long flags; 664 struct hfi1_qp_priv *priv; 665 666 write_seqlock_irqsave(&dev->iowait_lock, flags); 667 if (!list_empty(list)) { 668 wait = list_first_entry(list, struct iowait, list); 669 qp = iowait_to_qp(wait); 670 priv = qp->priv; 671 list_del_init(&priv->s_iowait.list); 672 priv->s_iowait.lock = NULL; 673 /* refcount held until actual wake up */ 674 if (!list_empty(list)) 675 mod_timer(&dev->mem_timer, jiffies + 1); 676 } 677 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 678 679 if (qp) 680 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 681 } 682 683 /* 684 * This is called with progress side lock held. 685 */ 686 /* New API */ 687 static void verbs_sdma_complete( 688 struct sdma_txreq *cookie, 689 int status) 690 { 691 struct verbs_txreq *tx = 692 container_of(cookie, struct verbs_txreq, txreq); 693 struct rvt_qp *qp = tx->qp; 694 695 spin_lock(&qp->s_lock); 696 if (tx->wqe) { 697 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 698 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 699 struct ib_header *hdr; 700 701 hdr = &tx->phdr.hdr; 702 hfi1_rc_send_complete(qp, hdr); 703 } 704 spin_unlock(&qp->s_lock); 705 706 hfi1_put_txreq(tx); 707 } 708 709 static int wait_kmem(struct hfi1_ibdev *dev, 710 struct rvt_qp *qp, 711 struct hfi1_pkt_state *ps) 712 { 713 struct hfi1_qp_priv *priv = qp->priv; 714 unsigned long flags; 715 int ret = 0; 716 717 spin_lock_irqsave(&qp->s_lock, flags); 718 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 719 write_seqlock(&dev->iowait_lock); 720 list_add_tail(&ps->s_txreq->txreq.list, 721 &priv->s_iowait.tx_head); 722 if (list_empty(&priv->s_iowait.list)) { 723 if (list_empty(&dev->memwait)) 724 mod_timer(&dev->mem_timer, jiffies + 1); 725 qp->s_flags |= RVT_S_WAIT_KMEM; 726 list_add_tail(&priv->s_iowait.list, &dev->memwait); 727 priv->s_iowait.lock = &dev->iowait_lock; 728 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 729 rvt_get_qp(qp); 730 } 731 write_sequnlock(&dev->iowait_lock); 732 qp->s_flags &= ~RVT_S_BUSY; 733 ret = -EBUSY; 734 } 735 spin_unlock_irqrestore(&qp->s_lock, flags); 736 737 return ret; 738 } 739 740 /* 741 * This routine calls txadds for each sg entry. 742 * 743 * Add failures will revert the sge cursor 744 */ 745 static noinline int build_verbs_ulp_payload( 746 struct sdma_engine *sde, 747 u32 length, 748 struct verbs_txreq *tx) 749 { 750 struct rvt_sge_state *ss = tx->ss; 751 struct rvt_sge *sg_list = ss->sg_list; 752 struct rvt_sge sge = ss->sge; 753 u8 num_sge = ss->num_sge; 754 u32 len; 755 int ret = 0; 756 757 while (length) { 758 len = ss->sge.length; 759 if (len > length) 760 len = length; 761 if (len > ss->sge.sge_length) 762 len = ss->sge.sge_length; 763 WARN_ON_ONCE(len == 0); 764 ret = sdma_txadd_kvaddr( 765 sde->dd, 766 &tx->txreq, 767 ss->sge.vaddr, 768 len); 769 if (ret) 770 goto bail_txadd; 771 rvt_update_sge(ss, len, false); 772 length -= len; 773 } 774 return ret; 775 bail_txadd: 776 /* unwind cursor */ 777 ss->sge = sge; 778 ss->num_sge = num_sge; 779 ss->sg_list = sg_list; 780 return ret; 781 } 782 783 /* 784 * Build the number of DMA descriptors needed to send length bytes of data. 785 * 786 * NOTE: DMA mapping is held in the tx until completed in the ring or 787 * the tx desc is freed without having been submitted to the ring 788 * 789 * This routine ensures all the helper routine calls succeed. 790 */ 791 /* New API */ 792 static int build_verbs_tx_desc( 793 struct sdma_engine *sde, 794 u32 length, 795 struct verbs_txreq *tx, 796 struct hfi1_ahg_info *ahg_info, 797 u64 pbc) 798 { 799 int ret = 0; 800 struct hfi1_sdma_header *phdr = &tx->phdr; 801 u16 hdrbytes = tx->hdr_dwords << 2; 802 803 if (!ahg_info->ahgcount) { 804 ret = sdma_txinit_ahg( 805 &tx->txreq, 806 ahg_info->tx_flags, 807 hdrbytes + length, 808 ahg_info->ahgidx, 809 0, 810 NULL, 811 0, 812 verbs_sdma_complete); 813 if (ret) 814 goto bail_txadd; 815 phdr->pbc = cpu_to_le64(pbc); 816 ret = sdma_txadd_kvaddr( 817 sde->dd, 818 &tx->txreq, 819 phdr, 820 hdrbytes); 821 if (ret) 822 goto bail_txadd; 823 } else { 824 ret = sdma_txinit_ahg( 825 &tx->txreq, 826 ahg_info->tx_flags, 827 length, 828 ahg_info->ahgidx, 829 ahg_info->ahgcount, 830 ahg_info->ahgdesc, 831 hdrbytes, 832 verbs_sdma_complete); 833 if (ret) 834 goto bail_txadd; 835 } 836 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 837 if (tx->ss) 838 ret = build_verbs_ulp_payload(sde, length, tx); 839 bail_txadd: 840 return ret; 841 } 842 843 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 844 u64 pbc) 845 { 846 struct hfi1_qp_priv *priv = qp->priv; 847 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 848 u32 hdrwords = qp->s_hdrwords; 849 u32 len = ps->s_txreq->s_cur_size; 850 u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */ 851 struct hfi1_ibdev *dev = ps->dev; 852 struct hfi1_pportdata *ppd = ps->ppd; 853 struct verbs_txreq *tx; 854 u8 sc5 = priv->s_sc; 855 856 int ret; 857 858 tx = ps->s_txreq; 859 if (!sdma_txreq_built(&tx->txreq)) { 860 if (likely(pbc == 0)) { 861 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 862 u8 opcode = get_opcode(&tx->phdr.hdr); 863 864 /* No vl15 here */ 865 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ 866 pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; 867 868 if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false))) 869 pbc = hfi1_fault_tx(qp, opcode, pbc); 870 pbc = create_pbc(ppd, 871 pbc, 872 qp->srate_mbps, 873 vl, 874 plen); 875 } 876 tx->wqe = qp->s_wqe; 877 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 878 if (unlikely(ret)) 879 goto bail_build; 880 } 881 ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq); 882 if (unlikely(ret < 0)) { 883 if (ret == -ECOMM) 884 goto bail_ecomm; 885 return ret; 886 } 887 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 888 &ps->s_txreq->phdr.hdr); 889 return ret; 890 891 bail_ecomm: 892 /* The current one got "sent" */ 893 return 0; 894 bail_build: 895 ret = wait_kmem(dev, qp, ps); 896 if (!ret) { 897 /* free txreq - bad state */ 898 hfi1_put_txreq(ps->s_txreq); 899 ps->s_txreq = NULL; 900 } 901 return ret; 902 } 903 904 /* 905 * If we are now in the error state, return zero to flush the 906 * send work request. 907 */ 908 static int pio_wait(struct rvt_qp *qp, 909 struct send_context *sc, 910 struct hfi1_pkt_state *ps, 911 u32 flag) 912 { 913 struct hfi1_qp_priv *priv = qp->priv; 914 struct hfi1_devdata *dd = sc->dd; 915 struct hfi1_ibdev *dev = &dd->verbs_dev; 916 unsigned long flags; 917 int ret = 0; 918 919 /* 920 * Note that as soon as want_buffer() is called and 921 * possibly before it returns, sc_piobufavail() 922 * could be called. Therefore, put QP on the I/O wait list before 923 * enabling the PIO avail interrupt. 924 */ 925 spin_lock_irqsave(&qp->s_lock, flags); 926 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 927 write_seqlock(&dev->iowait_lock); 928 list_add_tail(&ps->s_txreq->txreq.list, 929 &priv->s_iowait.tx_head); 930 if (list_empty(&priv->s_iowait.list)) { 931 struct hfi1_ibdev *dev = &dd->verbs_dev; 932 int was_empty; 933 934 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 935 dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN); 936 qp->s_flags |= flag; 937 was_empty = list_empty(&sc->piowait); 938 list_add_tail(&priv->s_iowait.list, &sc->piowait); 939 priv->s_iowait.lock = &dev->iowait_lock; 940 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 941 rvt_get_qp(qp); 942 /* counting: only call wantpiobuf_intr if first user */ 943 if (was_empty) 944 hfi1_sc_wantpiobuf_intr(sc, 1); 945 } 946 write_sequnlock(&dev->iowait_lock); 947 qp->s_flags &= ~RVT_S_BUSY; 948 ret = -EBUSY; 949 } 950 spin_unlock_irqrestore(&qp->s_lock, flags); 951 return ret; 952 } 953 954 static void verbs_pio_complete(void *arg, int code) 955 { 956 struct rvt_qp *qp = (struct rvt_qp *)arg; 957 struct hfi1_qp_priv *priv = qp->priv; 958 959 if (iowait_pio_dec(&priv->s_iowait)) 960 iowait_drain_wakeup(&priv->s_iowait); 961 } 962 963 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 964 u64 pbc) 965 { 966 struct hfi1_qp_priv *priv = qp->priv; 967 u32 hdrwords = qp->s_hdrwords; 968 struct rvt_sge_state *ss = ps->s_txreq->ss; 969 u32 len = ps->s_txreq->s_cur_size; 970 u32 dwords = (len + 3) >> 2; 971 u32 plen = hdrwords + dwords + 2; /* includes pbc */ 972 struct hfi1_pportdata *ppd = ps->ppd; 973 u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr; 974 u8 sc5; 975 unsigned long flags = 0; 976 struct send_context *sc; 977 struct pio_buf *pbuf; 978 int wc_status = IB_WC_SUCCESS; 979 int ret = 0; 980 pio_release_cb cb = NULL; 981 982 /* only RC/UC use complete */ 983 switch (qp->ibqp.qp_type) { 984 case IB_QPT_RC: 985 case IB_QPT_UC: 986 cb = verbs_pio_complete; 987 break; 988 default: 989 break; 990 } 991 992 /* vl15 special case taken care of in ud.c */ 993 sc5 = priv->s_sc; 994 sc = ps->s_txreq->psc; 995 996 if (likely(pbc == 0)) { 997 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 998 struct verbs_txreq *tx = ps->s_txreq; 999 u8 opcode = get_opcode(&tx->phdr.hdr); 1000 1001 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ 1002 pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; 1003 if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false))) 1004 pbc = hfi1_fault_tx(qp, opcode, pbc); 1005 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 1006 } 1007 if (cb) 1008 iowait_pio_inc(&priv->s_iowait); 1009 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 1010 if (unlikely(!pbuf)) { 1011 if (cb) 1012 verbs_pio_complete(qp, 0); 1013 if (ppd->host_link_state != HLS_UP_ACTIVE) { 1014 /* 1015 * If we have filled the PIO buffers to capacity and are 1016 * not in an active state this request is not going to 1017 * go out to so just complete it with an error or else a 1018 * ULP or the core may be stuck waiting. 1019 */ 1020 hfi1_cdbg( 1021 PIO, 1022 "alloc failed. state not active, completing"); 1023 wc_status = IB_WC_GENERAL_ERR; 1024 goto pio_bail; 1025 } else { 1026 /* 1027 * This is a normal occurrence. The PIO buffs are full 1028 * up but we are still happily sending, well we could be 1029 * so lets continue to queue the request. 1030 */ 1031 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 1032 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 1033 if (!ret) 1034 /* txreq not queued - free */ 1035 goto bail; 1036 /* tx consumed in wait */ 1037 return ret; 1038 } 1039 } 1040 1041 if (len == 0) { 1042 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 1043 } else { 1044 if (ss) { 1045 seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4); 1046 while (len) { 1047 void *addr = ss->sge.vaddr; 1048 u32 slen = ss->sge.length; 1049 1050 if (slen > len) 1051 slen = len; 1052 rvt_update_sge(ss, slen, false); 1053 seg_pio_copy_mid(pbuf, addr, slen); 1054 len -= slen; 1055 } 1056 seg_pio_copy_end(pbuf); 1057 } 1058 } 1059 1060 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 1061 &ps->s_txreq->phdr.hdr); 1062 1063 pio_bail: 1064 if (qp->s_wqe) { 1065 spin_lock_irqsave(&qp->s_lock, flags); 1066 hfi1_send_complete(qp, qp->s_wqe, wc_status); 1067 spin_unlock_irqrestore(&qp->s_lock, flags); 1068 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 1069 spin_lock_irqsave(&qp->s_lock, flags); 1070 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 1071 spin_unlock_irqrestore(&qp->s_lock, flags); 1072 } 1073 1074 ret = 0; 1075 1076 bail: 1077 hfi1_put_txreq(ps->s_txreq); 1078 return ret; 1079 } 1080 1081 /* 1082 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1083 * being an entry from the partition key table), return 0 1084 * otherwise. Use the matching criteria for egress partition keys 1085 * specified in the OPAv1 spec., section 9.1l.7. 1086 */ 1087 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 1088 { 1089 u16 mkey = pkey & PKEY_LOW_15_MASK; 1090 u16 mentry = ent & PKEY_LOW_15_MASK; 1091 1092 if (mkey == mentry) { 1093 /* 1094 * If pkey[15] is set (full partition member), 1095 * is bit 15 in the corresponding table element 1096 * clear (limited member)? 1097 */ 1098 if (pkey & PKEY_MEMBER_MASK) 1099 return !!(ent & PKEY_MEMBER_MASK); 1100 return 1; 1101 } 1102 return 0; 1103 } 1104 1105 /** 1106 * egress_pkey_check - check P_KEY of a packet 1107 * @ppd: Physical IB port data 1108 * @lrh: Local route header 1109 * @bth: Base transport header 1110 * @sc5: SC for packet 1111 * @s_pkey_index: It will be used for look up optimization for kernel contexts 1112 * only. If it is negative value, then it means user contexts is calling this 1113 * function. 1114 * 1115 * It checks if hdr's pkey is valid. 1116 * 1117 * Return: 0 on success, otherwise, 1 1118 */ 1119 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth, 1120 u8 sc5, int8_t s_pkey_index) 1121 { 1122 struct hfi1_devdata *dd; 1123 int i; 1124 u16 pkey; 1125 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1126 1127 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1128 return 0; 1129 1130 pkey = (u16)be32_to_cpu(bth[0]); 1131 1132 /* If SC15, pkey[0:14] must be 0x7fff */ 1133 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1134 goto bad; 1135 1136 /* Is the pkey = 0x0, or 0x8000? */ 1137 if ((pkey & PKEY_LOW_15_MASK) == 0) 1138 goto bad; 1139 1140 /* 1141 * For the kernel contexts only, if a qp is passed into the function, 1142 * the most likely matching pkey has index qp->s_pkey_index 1143 */ 1144 if (!is_user_ctxt_mechanism && 1145 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1146 return 0; 1147 } 1148 1149 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1150 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1151 return 0; 1152 } 1153 bad: 1154 /* 1155 * For the user-context mechanism, the P_KEY check would only happen 1156 * once per SDMA request, not once per packet. Therefore, there's no 1157 * need to increment the counter for the user-context mechanism. 1158 */ 1159 if (!is_user_ctxt_mechanism) { 1160 incr_cntr64(&ppd->port_xmit_constraint_errors); 1161 dd = ppd->dd; 1162 if (!(dd->err_info_xmit_constraint.status & 1163 OPA_EI_STATUS_SMASK)) { 1164 u16 slid = be16_to_cpu(lrh[3]); 1165 1166 dd->err_info_xmit_constraint.status |= 1167 OPA_EI_STATUS_SMASK; 1168 dd->err_info_xmit_constraint.slid = slid; 1169 dd->err_info_xmit_constraint.pkey = pkey; 1170 } 1171 } 1172 return 1; 1173 } 1174 1175 /** 1176 * get_send_routine - choose an egress routine 1177 * 1178 * Choose an egress routine based on QP type 1179 * and size 1180 */ 1181 static inline send_routine get_send_routine(struct rvt_qp *qp, 1182 struct verbs_txreq *tx) 1183 { 1184 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1185 struct hfi1_qp_priv *priv = qp->priv; 1186 struct ib_header *h = &tx->phdr.hdr; 1187 1188 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1189 return dd->process_pio_send; 1190 switch (qp->ibqp.qp_type) { 1191 case IB_QPT_SMI: 1192 return dd->process_pio_send; 1193 case IB_QPT_GSI: 1194 case IB_QPT_UD: 1195 break; 1196 case IB_QPT_UC: 1197 case IB_QPT_RC: { 1198 u8 op = get_opcode(h); 1199 1200 if (piothreshold && 1201 tx->s_cur_size <= min(piothreshold, qp->pmtu) && 1202 (BIT(op & OPMASK) & pio_opmask[op >> 5]) && 1203 iowait_sdma_pending(&priv->s_iowait) == 0 && 1204 !sdma_txreq_built(&tx->txreq)) 1205 return dd->process_pio_send; 1206 break; 1207 } 1208 default: 1209 break; 1210 } 1211 return dd->process_dma_send; 1212 } 1213 1214 /** 1215 * hfi1_verbs_send - send a packet 1216 * @qp: the QP to send on 1217 * @ps: the state of the packet to send 1218 * 1219 * Return zero if packet is sent or queued OK. 1220 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1221 */ 1222 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1223 { 1224 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1225 struct hfi1_qp_priv *priv = qp->priv; 1226 struct ib_other_headers *ohdr; 1227 struct ib_header *hdr; 1228 send_routine sr; 1229 int ret; 1230 u8 lnh; 1231 1232 hdr = &ps->s_txreq->phdr.hdr; 1233 /* locate the pkey within the headers */ 1234 lnh = ib_get_lnh(hdr); 1235 if (lnh == HFI1_LRH_GRH) 1236 ohdr = &hdr->u.l.oth; 1237 else 1238 ohdr = &hdr->u.oth; 1239 1240 sr = get_send_routine(qp, ps->s_txreq); 1241 ret = egress_pkey_check(dd->pport, 1242 hdr->lrh, 1243 ohdr->bth, 1244 priv->s_sc, 1245 qp->s_pkey_index); 1246 if (unlikely(ret)) { 1247 /* 1248 * The value we are returning here does not get propagated to 1249 * the verbs caller. Thus we need to complete the request with 1250 * error otherwise the caller could be sitting waiting on the 1251 * completion event. Only do this for PIO. SDMA has its own 1252 * mechanism for handling the errors. So for SDMA we can just 1253 * return. 1254 */ 1255 if (sr == dd->process_pio_send) { 1256 unsigned long flags; 1257 1258 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1259 __func__); 1260 spin_lock_irqsave(&qp->s_lock, flags); 1261 hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1262 spin_unlock_irqrestore(&qp->s_lock, flags); 1263 } 1264 return -EINVAL; 1265 } 1266 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1267 return pio_wait(qp, 1268 ps->s_txreq->psc, 1269 ps, 1270 RVT_S_WAIT_PIO_DRAIN); 1271 return sr(qp, ps, 0); 1272 } 1273 1274 /** 1275 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1276 * @dd: the device data structure 1277 */ 1278 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1279 { 1280 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1281 u32 ver = dd->dc8051_ver; 1282 1283 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1284 1285 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1286 ((u64)(dc8051_ver_min(ver)) << 16) | 1287 (u64)dc8051_ver_patch(ver); 1288 1289 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1290 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1291 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1292 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1293 IB_DEVICE_MEM_MGT_EXTENSIONS | 1294 IB_DEVICE_RDMA_NETDEV_OPA_VNIC; 1295 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1296 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1297 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1298 rdi->dparms.props.hw_ver = dd->minrev; 1299 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1300 rdi->dparms.props.max_mr_size = U64_MAX; 1301 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1302 rdi->dparms.props.max_qp = hfi1_max_qps; 1303 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs; 1304 rdi->dparms.props.max_sge = hfi1_max_sges; 1305 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1306 rdi->dparms.props.max_cq = hfi1_max_cqs; 1307 rdi->dparms.props.max_ah = hfi1_max_ahs; 1308 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1309 rdi->dparms.props.max_mr = rdi->lkey_table.max; 1310 rdi->dparms.props.max_fmr = rdi->lkey_table.max; 1311 rdi->dparms.props.max_map_per_fmr = 32767; 1312 rdi->dparms.props.max_pd = hfi1_max_pds; 1313 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1314 rdi->dparms.props.max_qp_init_rd_atom = 255; 1315 rdi->dparms.props.max_srq = hfi1_max_srqs; 1316 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1317 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1318 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1319 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1320 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1321 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1322 rdi->dparms.props.max_total_mcast_qp_attach = 1323 rdi->dparms.props.max_mcast_qp_attach * 1324 rdi->dparms.props.max_mcast_grp; 1325 } 1326 1327 static inline u16 opa_speed_to_ib(u16 in) 1328 { 1329 u16 out = 0; 1330 1331 if (in & OPA_LINK_SPEED_25G) 1332 out |= IB_SPEED_EDR; 1333 if (in & OPA_LINK_SPEED_12_5G) 1334 out |= IB_SPEED_FDR; 1335 1336 return out; 1337 } 1338 1339 /* 1340 * Convert a single OPA link width (no multiple flags) to an IB value. 1341 * A zero OPA link width means link down, which means the IB width value 1342 * is a don't care. 1343 */ 1344 static inline u16 opa_width_to_ib(u16 in) 1345 { 1346 switch (in) { 1347 case OPA_LINK_WIDTH_1X: 1348 /* map 2x and 3x to 1x as they don't exist in IB */ 1349 case OPA_LINK_WIDTH_2X: 1350 case OPA_LINK_WIDTH_3X: 1351 return IB_WIDTH_1X; 1352 default: /* link down or unknown, return our largest width */ 1353 case OPA_LINK_WIDTH_4X: 1354 return IB_WIDTH_4X; 1355 } 1356 } 1357 1358 static int query_port(struct rvt_dev_info *rdi, u8 port_num, 1359 struct ib_port_attr *props) 1360 { 1361 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1362 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1363 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1364 u16 lid = ppd->lid; 1365 1366 /* props being zeroed by the caller, avoid zeroing it here */ 1367 props->lid = lid ? lid : 0; 1368 props->lmc = ppd->lmc; 1369 /* OPA logical states match IB logical states */ 1370 props->state = driver_lstate(ppd); 1371 props->phys_state = hfi1_ibphys_portstate(ppd); 1372 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1373 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1374 /* see rate_show() in ib core/sysfs.c */ 1375 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); 1376 props->max_vl_num = ppd->vls_supported; 1377 1378 /* Once we are a "first class" citizen and have added the OPA MTUs to 1379 * the core we can advertise the larger MTU enum to the ULPs, for now 1380 * advertise only 4K. 1381 * 1382 * Those applications which are either OPA aware or pass the MTU enum 1383 * from the Path Records to us will get the new 8k MTU. Those that 1384 * attempt to process the MTU enum may fail in various ways. 1385 */ 1386 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1387 4096 : hfi1_max_mtu), IB_MTU_4096); 1388 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1389 mtu_to_enum(ppd->ibmtu, IB_MTU_2048); 1390 1391 return 0; 1392 } 1393 1394 static int modify_device(struct ib_device *device, 1395 int device_modify_mask, 1396 struct ib_device_modify *device_modify) 1397 { 1398 struct hfi1_devdata *dd = dd_from_ibdev(device); 1399 unsigned i; 1400 int ret; 1401 1402 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1403 IB_DEVICE_MODIFY_NODE_DESC)) { 1404 ret = -EOPNOTSUPP; 1405 goto bail; 1406 } 1407 1408 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1409 memcpy(device->node_desc, device_modify->node_desc, 1410 IB_DEVICE_NODE_DESC_MAX); 1411 for (i = 0; i < dd->num_pports; i++) { 1412 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1413 1414 hfi1_node_desc_chg(ibp); 1415 } 1416 } 1417 1418 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1419 ib_hfi1_sys_image_guid = 1420 cpu_to_be64(device_modify->sys_image_guid); 1421 for (i = 0; i < dd->num_pports; i++) { 1422 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1423 1424 hfi1_sys_guid_chg(ibp); 1425 } 1426 } 1427 1428 ret = 0; 1429 1430 bail: 1431 return ret; 1432 } 1433 1434 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) 1435 { 1436 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1437 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1438 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1439 int ret; 1440 1441 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1442 OPA_LINKDOWN_REASON_UNKNOWN); 1443 ret = set_link_state(ppd, HLS_DN_DOWNDEF); 1444 return ret; 1445 } 1446 1447 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1448 int guid_index, __be64 *guid) 1449 { 1450 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1451 1452 if (guid_index >= HFI1_GUIDS_PER_PORT) 1453 return -EINVAL; 1454 1455 *guid = get_sguid(ibp, guid_index); 1456 return 0; 1457 } 1458 1459 /* 1460 * convert ah port,sl to sc 1461 */ 1462 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1463 { 1464 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1465 1466 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1467 } 1468 1469 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1470 { 1471 struct hfi1_ibport *ibp; 1472 struct hfi1_pportdata *ppd; 1473 struct hfi1_devdata *dd; 1474 u8 sc5; 1475 1476 /* test the mapping for validity */ 1477 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1478 ppd = ppd_from_ibp(ibp); 1479 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)]; 1480 dd = dd_from_ppd(ppd); 1481 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1482 return -EINVAL; 1483 return 0; 1484 } 1485 1486 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1487 struct rdma_ah_attr *ah_attr, 1488 struct rvt_ah *ah) 1489 { 1490 struct hfi1_ibport *ibp; 1491 struct hfi1_pportdata *ppd; 1492 struct hfi1_devdata *dd; 1493 u8 sc5; 1494 1495 /* 1496 * Do not trust reading anything from rvt_ah at this point as it is not 1497 * done being setup. We can however modify things which we need to set. 1498 */ 1499 1500 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1501 ppd = ppd_from_ibp(ibp); 1502 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1503 dd = dd_from_ppd(ppd); 1504 ah->vl = sc_to_vlt(dd, sc5); 1505 if (ah->vl < num_vls || ah->vl == 15) 1506 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1507 } 1508 1509 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid) 1510 { 1511 struct rdma_ah_attr attr; 1512 struct ib_ah *ah = ERR_PTR(-EINVAL); 1513 struct rvt_qp *qp0; 1514 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1515 struct hfi1_devdata *dd = dd_from_ppd(ppd); 1516 u8 port_num = ppd->port; 1517 1518 memset(&attr, 0, sizeof(attr)); 1519 attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num); 1520 rdma_ah_set_dlid(&attr, dlid); 1521 rdma_ah_set_port_num(&attr, ppd_from_ibp(ibp)->port); 1522 rcu_read_lock(); 1523 qp0 = rcu_dereference(ibp->rvp.qp[0]); 1524 if (qp0) 1525 ah = rdma_create_ah(qp0->ibqp.pd, &attr); 1526 rcu_read_unlock(); 1527 return ah; 1528 } 1529 1530 /** 1531 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1532 * @dd: the hfi1_ib device 1533 */ 1534 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1535 { 1536 return ARRAY_SIZE(dd->pport[0].pkeys); 1537 } 1538 1539 static void init_ibport(struct hfi1_pportdata *ppd) 1540 { 1541 struct hfi1_ibport *ibp = &ppd->ibport_data; 1542 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1543 int i; 1544 1545 for (i = 0; i < sz; i++) { 1546 ibp->sl_to_sc[i] = i; 1547 ibp->sc_to_sl[i] = i; 1548 } 1549 1550 spin_lock_init(&ibp->rvp.lock); 1551 /* Set the prefix to the default value (see ch. 4.1.1) */ 1552 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1553 ibp->rvp.sm_lid = 0; 1554 /* Below should only set bits defined in OPA PortInfo.CapabilityMask */ 1555 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1556 IB_PORT_CAP_MASK_NOTICE_SUP; 1557 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1558 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1559 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1560 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1561 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1562 1563 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1564 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1565 } 1566 1567 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str, 1568 size_t str_len) 1569 { 1570 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1571 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1572 u32 ver = dd_from_dev(dev)->dc8051_ver; 1573 1574 snprintf(str, str_len, "%u.%u.%u", dc8051_ver_maj(ver), 1575 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1576 } 1577 1578 static const char * const driver_cntr_names[] = { 1579 /* must be element 0*/ 1580 "DRIVER_KernIntr", 1581 "DRIVER_ErrorIntr", 1582 "DRIVER_Tx_Errs", 1583 "DRIVER_Rcv_Errs", 1584 "DRIVER_HW_Errs", 1585 "DRIVER_NoPIOBufs", 1586 "DRIVER_CtxtsOpen", 1587 "DRIVER_RcvLen_Errs", 1588 "DRIVER_EgrBufFull", 1589 "DRIVER_EgrHdrFull" 1590 }; 1591 1592 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1593 static const char **dev_cntr_names; 1594 static const char **port_cntr_names; 1595 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1596 static int num_dev_cntrs; 1597 static int num_port_cntrs; 1598 static int cntr_names_initialized; 1599 1600 /* 1601 * Convert a list of names separated by '\n' into an array of NULL terminated 1602 * strings. Optionally some entries can be reserved in the array to hold extra 1603 * external strings. 1604 */ 1605 static int init_cntr_names(const char *names_in, 1606 const size_t names_len, 1607 int num_extra_names, 1608 int *num_cntrs, 1609 const char ***cntr_names) 1610 { 1611 char *names_out, *p, **q; 1612 int i, n; 1613 1614 n = 0; 1615 for (i = 0; i < names_len; i++) 1616 if (names_in[i] == '\n') 1617 n++; 1618 1619 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, 1620 GFP_KERNEL); 1621 if (!names_out) { 1622 *num_cntrs = 0; 1623 *cntr_names = NULL; 1624 return -ENOMEM; 1625 } 1626 1627 p = names_out + (n + num_extra_names) * sizeof(char *); 1628 memcpy(p, names_in, names_len); 1629 1630 q = (char **)names_out; 1631 for (i = 0; i < n; i++) { 1632 q[i] = p; 1633 p = strchr(p, '\n'); 1634 *p++ = '\0'; 1635 } 1636 1637 *num_cntrs = n; 1638 *cntr_names = (const char **)names_out; 1639 return 0; 1640 } 1641 1642 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, 1643 u8 port_num) 1644 { 1645 int i, err; 1646 1647 mutex_lock(&cntr_names_lock); 1648 if (!cntr_names_initialized) { 1649 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1650 1651 err = init_cntr_names(dd->cntrnames, 1652 dd->cntrnameslen, 1653 num_driver_cntrs, 1654 &num_dev_cntrs, 1655 &dev_cntr_names); 1656 if (err) { 1657 mutex_unlock(&cntr_names_lock); 1658 return NULL; 1659 } 1660 1661 for (i = 0; i < num_driver_cntrs; i++) 1662 dev_cntr_names[num_dev_cntrs + i] = 1663 driver_cntr_names[i]; 1664 1665 err = init_cntr_names(dd->portcntrnames, 1666 dd->portcntrnameslen, 1667 0, 1668 &num_port_cntrs, 1669 &port_cntr_names); 1670 if (err) { 1671 kfree(dev_cntr_names); 1672 dev_cntr_names = NULL; 1673 mutex_unlock(&cntr_names_lock); 1674 return NULL; 1675 } 1676 cntr_names_initialized = 1; 1677 } 1678 mutex_unlock(&cntr_names_lock); 1679 1680 if (!port_num) 1681 return rdma_alloc_hw_stats_struct( 1682 dev_cntr_names, 1683 num_dev_cntrs + num_driver_cntrs, 1684 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1685 else 1686 return rdma_alloc_hw_stats_struct( 1687 port_cntr_names, 1688 num_port_cntrs, 1689 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1690 } 1691 1692 static u64 hfi1_sps_ints(void) 1693 { 1694 unsigned long flags; 1695 struct hfi1_devdata *dd; 1696 u64 sps_ints = 0; 1697 1698 spin_lock_irqsave(&hfi1_devs_lock, flags); 1699 list_for_each_entry(dd, &hfi1_dev_list, list) { 1700 sps_ints += get_all_cpu_total(dd->int_counter); 1701 } 1702 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1703 return sps_ints; 1704 } 1705 1706 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1707 u8 port, int index) 1708 { 1709 u64 *values; 1710 int count; 1711 1712 if (!port) { 1713 u64 *stats = (u64 *)&hfi1_stats; 1714 int i; 1715 1716 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1717 values[num_dev_cntrs] = hfi1_sps_ints(); 1718 for (i = 1; i < num_driver_cntrs; i++) 1719 values[num_dev_cntrs + i] = stats[i]; 1720 count = num_dev_cntrs + num_driver_cntrs; 1721 } else { 1722 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1723 1724 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1725 count = num_port_cntrs; 1726 } 1727 1728 memcpy(stats->value, values, count * sizeof(u64)); 1729 return count; 1730 } 1731 1732 /** 1733 * hfi1_register_ib_device - register our device with the infiniband core 1734 * @dd: the device data structure 1735 * Return 0 if successful, errno if unsuccessful. 1736 */ 1737 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1738 { 1739 struct hfi1_ibdev *dev = &dd->verbs_dev; 1740 struct ib_device *ibdev = &dev->rdi.ibdev; 1741 struct hfi1_pportdata *ppd = dd->pport; 1742 struct hfi1_ibport *ibp = &ppd->ibport_data; 1743 unsigned i; 1744 int ret; 1745 size_t lcpysz = IB_DEVICE_NAME_MAX; 1746 1747 for (i = 0; i < dd->num_pports; i++) 1748 init_ibport(ppd + i); 1749 1750 /* Only need to initialize non-zero fields. */ 1751 1752 setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev); 1753 1754 seqlock_init(&dev->iowait_lock); 1755 seqlock_init(&dev->txwait_lock); 1756 INIT_LIST_HEAD(&dev->txwait); 1757 INIT_LIST_HEAD(&dev->memwait); 1758 1759 ret = verbs_txreq_init(dev); 1760 if (ret) 1761 goto err_verbs_txreq; 1762 1763 /* Use first-port GUID as node guid */ 1764 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1765 1766 /* 1767 * The system image GUID is supposed to be the same for all 1768 * HFIs in a single system but since there can be other 1769 * device types in the system, we can't be sure this is unique. 1770 */ 1771 if (!ib_hfi1_sys_image_guid) 1772 ib_hfi1_sys_image_guid = ibdev->node_guid; 1773 lcpysz = strlcpy(ibdev->name, class_name(), lcpysz); 1774 strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz); 1775 ibdev->owner = THIS_MODULE; 1776 ibdev->phys_port_cnt = dd->num_pports; 1777 ibdev->dev.parent = &dd->pcidev->dev; 1778 ibdev->modify_device = modify_device; 1779 ibdev->alloc_hw_stats = alloc_hw_stats; 1780 ibdev->get_hw_stats = get_hw_stats; 1781 ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn; 1782 1783 /* keep process mad in the driver */ 1784 ibdev->process_mad = hfi1_process_mad; 1785 ibdev->get_dev_fw_str = hfi1_get_dev_fw_str; 1786 1787 strncpy(ibdev->node_desc, init_utsname()->nodename, 1788 sizeof(ibdev->node_desc)); 1789 1790 /* 1791 * Fill in rvt info object. 1792 */ 1793 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files; 1794 dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name; 1795 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1796 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1797 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1798 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1799 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1800 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1801 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1802 /* 1803 * Fill in rvt info device attributes. 1804 */ 1805 hfi1_fill_device_attr(dd); 1806 1807 /* queue pair */ 1808 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1809 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1810 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1811 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1812 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; 1813 dd->verbs_dev.rdi.dparms.qpn_res_end = 1814 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; 1815 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1816 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1817 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1818 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1819 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA; 1820 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1821 1822 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1823 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1824 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1825 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1826 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1827 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1828 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1829 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1830 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1831 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1832 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1833 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1834 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1835 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1836 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1837 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1838 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1839 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1840 dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe; 1841 1842 /* completeion queue */ 1843 snprintf(dd->verbs_dev.rdi.dparms.cq_name, 1844 sizeof(dd->verbs_dev.rdi.dparms.cq_name), 1845 "hfi1_cq%d", dd->unit); 1846 dd->verbs_dev.rdi.dparms.node = dd->node; 1847 1848 /* misc settings */ 1849 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1850 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1851 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1852 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1853 1854 /* post send table */ 1855 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1856 1857 ppd = dd->pport; 1858 for (i = 0; i < dd->num_pports; i++, ppd++) 1859 rvt_init_port(&dd->verbs_dev.rdi, 1860 &ppd->ibport_data.rvp, 1861 i, 1862 ppd->pkeys); 1863 1864 ret = rvt_register_device(&dd->verbs_dev.rdi); 1865 if (ret) 1866 goto err_verbs_txreq; 1867 1868 ret = hfi1_verbs_register_sysfs(dd); 1869 if (ret) 1870 goto err_class; 1871 1872 return ret; 1873 1874 err_class: 1875 rvt_unregister_device(&dd->verbs_dev.rdi); 1876 err_verbs_txreq: 1877 verbs_txreq_exit(dev); 1878 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1879 return ret; 1880 } 1881 1882 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1883 { 1884 struct hfi1_ibdev *dev = &dd->verbs_dev; 1885 1886 hfi1_verbs_unregister_sysfs(dd); 1887 1888 rvt_unregister_device(&dd->verbs_dev.rdi); 1889 1890 if (!list_empty(&dev->txwait)) 1891 dd_dev_err(dd, "txwait list not empty!\n"); 1892 if (!list_empty(&dev->memwait)) 1893 dd_dev_err(dd, "memwait list not empty!\n"); 1894 1895 del_timer_sync(&dev->mem_timer); 1896 verbs_txreq_exit(dev); 1897 1898 mutex_lock(&cntr_names_lock); 1899 kfree(dev_cntr_names); 1900 kfree(port_cntr_names); 1901 dev_cntr_names = NULL; 1902 port_cntr_names = NULL; 1903 cntr_names_initialized = 0; 1904 mutex_unlock(&cntr_names_lock); 1905 } 1906 1907 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1908 { 1909 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1910 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1911 struct ib_header *hdr = packet->hdr; 1912 struct rvt_qp *qp = packet->qp; 1913 u32 lqpn, rqpn = 0; 1914 u16 rlid = 0; 1915 u8 sl, sc5, svc_type; 1916 1917 switch (packet->qp->ibqp.qp_type) { 1918 case IB_QPT_UC: 1919 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1920 rqpn = qp->remote_qpn; 1921 svc_type = IB_CC_SVCTYPE_UC; 1922 break; 1923 case IB_QPT_RC: 1924 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1925 rqpn = qp->remote_qpn; 1926 svc_type = IB_CC_SVCTYPE_RC; 1927 break; 1928 case IB_QPT_SMI: 1929 case IB_QPT_GSI: 1930 case IB_QPT_UD: 1931 svc_type = IB_CC_SVCTYPE_UD; 1932 break; 1933 default: 1934 ibp->rvp.n_pkt_drops++; 1935 return; 1936 } 1937 1938 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 1939 sl = ibp->sc_to_sl[sc5]; 1940 lqpn = qp->ibqp.qp_num; 1941 1942 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 1943 } 1944