1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <rdma/ib_mad.h> 49 #include <rdma/ib_user_verbs.h> 50 #include <linux/io.h> 51 #include <linux/module.h> 52 #include <linux/utsname.h> 53 #include <linux/rculist.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 #include <rdma/opa_addr.h> 57 #include <linux/nospec.h> 58 59 #include "hfi.h" 60 #include "common.h" 61 #include "device.h" 62 #include "trace.h" 63 #include "qp.h" 64 #include "verbs_txreq.h" 65 #include "debugfs.h" 66 #include "vnic.h" 67 #include "fault.h" 68 #include "affinity.h" 69 70 static unsigned int hfi1_lkey_table_size = 16; 71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 72 S_IRUGO); 73 MODULE_PARM_DESC(lkey_table_size, 74 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 75 76 static unsigned int hfi1_max_pds = 0xFFFF; 77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 78 MODULE_PARM_DESC(max_pds, 79 "Maximum number of protection domains to support"); 80 81 static unsigned int hfi1_max_ahs = 0xFFFF; 82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 84 85 unsigned int hfi1_max_cqes = 0x2FFFFF; 86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 87 MODULE_PARM_DESC(max_cqes, 88 "Maximum number of completion queue entries to support"); 89 90 unsigned int hfi1_max_cqs = 0x1FFFF; 91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 93 94 unsigned int hfi1_max_qp_wrs = 0x3FFF; 95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 97 98 unsigned int hfi1_max_qps = 32768; 99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 101 102 unsigned int hfi1_max_sges = 0x60; 103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 105 106 unsigned int hfi1_max_mcast_grps = 16384; 107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 108 MODULE_PARM_DESC(max_mcast_grps, 109 "Maximum number of multicast groups to support"); 110 111 unsigned int hfi1_max_mcast_qp_attached = 16; 112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 113 uint, S_IRUGO); 114 MODULE_PARM_DESC(max_mcast_qp_attached, 115 "Maximum number of attached QPs to support"); 116 117 unsigned int hfi1_max_srqs = 1024; 118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 120 121 unsigned int hfi1_max_srq_sges = 128; 122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 124 125 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 128 129 unsigned short piothreshold = 256; 130 module_param(piothreshold, ushort, S_IRUGO); 131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 132 133 static unsigned int sge_copy_mode; 134 module_param(sge_copy_mode, uint, S_IRUGO); 135 MODULE_PARM_DESC(sge_copy_mode, 136 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 137 138 static void verbs_sdma_complete( 139 struct sdma_txreq *cookie, 140 int status); 141 142 static int pio_wait(struct rvt_qp *qp, 143 struct send_context *sc, 144 struct hfi1_pkt_state *ps, 145 u32 flag); 146 147 /* Length of buffer to create verbs txreq cache name */ 148 #define TXREQ_NAME_LEN 24 149 150 /* 16B trailing buffer */ 151 static const u8 trail_buf[MAX_16B_PADDING]; 152 153 static uint wss_threshold = 80; 154 module_param(wss_threshold, uint, S_IRUGO); 155 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 156 static uint wss_clean_period = 256; 157 module_param(wss_clean_period, uint, S_IRUGO); 158 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 159 160 /* 161 * Translate ib_wr_opcode into ib_wc_opcode. 162 */ 163 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 164 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 165 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE, 166 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 167 [IB_WR_SEND] = IB_WC_SEND, 168 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 169 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 170 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ, 171 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 172 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 173 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 174 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 175 [IB_WR_REG_MR] = IB_WC_REG_MR 176 }; 177 178 /* 179 * Length of header by opcode, 0 --> not supported 180 */ 181 const u8 hdr_len_by_opcode[256] = { 182 /* RC */ 183 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 184 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 185 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 186 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 187 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 188 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 189 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 190 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 191 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 192 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 193 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 194 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 195 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 197 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 198 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 199 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 200 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 201 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 202 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 203 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 204 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 205 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 206 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36, 207 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36, 208 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36, 209 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36, 210 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36, 211 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36, 212 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36, 213 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36, 214 /* UC */ 215 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 216 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 217 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 218 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 219 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 220 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 221 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 222 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 223 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 224 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 225 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 226 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 227 /* UD */ 228 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 229 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 230 }; 231 232 static const opcode_handler opcode_handler_tbl[256] = { 233 /* RC */ 234 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 235 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 236 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 237 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 238 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 239 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 240 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 241 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 242 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 243 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 244 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 245 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 246 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 247 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 248 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 249 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 250 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 251 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 252 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 253 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 254 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 255 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 256 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 257 258 /* TID RDMA has separate handlers for different opcodes.*/ 259 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req, 260 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp, 261 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data, 262 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data, 263 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req, 264 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp, 265 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync, 266 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack, 267 268 /* UC */ 269 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 270 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 271 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 272 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 273 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 274 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 275 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 276 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 277 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 278 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 279 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 280 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 281 /* UD */ 282 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 283 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 284 /* CNP */ 285 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 286 }; 287 288 #define OPMASK 0x1f 289 290 static const u32 pio_opmask[BIT(3)] = { 291 /* RC */ 292 [IB_OPCODE_RC >> 5] = 293 BIT(RC_OP(SEND_ONLY) & OPMASK) | 294 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 295 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 296 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 297 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 298 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 299 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 300 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 301 BIT(RC_OP(FETCH_ADD) & OPMASK), 302 /* UC */ 303 [IB_OPCODE_UC >> 5] = 304 BIT(UC_OP(SEND_ONLY) & OPMASK) | 305 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 306 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 307 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 308 }; 309 310 /* 311 * System image GUID. 312 */ 313 __be64 ib_hfi1_sys_image_guid; 314 315 /* 316 * Make sure the QP is ready and able to accept the given opcode. 317 */ 318 static inline opcode_handler qp_ok(struct hfi1_packet *packet) 319 { 320 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 321 return NULL; 322 if (((packet->opcode & RVT_OPCODE_QP_MASK) == 323 packet->qp->allowed_ops) || 324 (packet->opcode == IB_OPCODE_CNP)) 325 return opcode_handler_tbl[packet->opcode]; 326 327 return NULL; 328 } 329 330 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 331 { 332 #ifdef CONFIG_FAULT_INJECTION 333 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) { 334 /* 335 * In order to drop non-IB traffic we 336 * set PbcInsertHrc to NONE (0x2). 337 * The packet will still be delivered 338 * to the receiving node but a 339 * KHdrHCRCErr (KDETH packet with a bad 340 * HCRC) will be triggered and the 341 * packet will not be delivered to the 342 * correct context. 343 */ 344 pbc &= ~PBC_INSERT_HCRC_SMASK; 345 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 346 } else { 347 /* 348 * In order to drop regular verbs 349 * traffic we set the PbcTestEbp 350 * flag. The packet will still be 351 * delivered to the receiving node but 352 * a 'late ebp error' will be 353 * triggered and will be dropped. 354 */ 355 pbc |= PBC_TEST_EBP; 356 } 357 #endif 358 return pbc; 359 } 360 361 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet) 362 { 363 if (packet->qp->ibqp.qp_type != IB_QPT_RC || 364 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 365 return NULL; 366 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA) 367 return opcode_handler_tbl[opcode]; 368 return NULL; 369 } 370 371 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet) 372 { 373 struct hfi1_ctxtdata *rcd = packet->rcd; 374 struct ib_header *hdr = packet->hdr; 375 u32 tlen = packet->tlen; 376 struct hfi1_pportdata *ppd = rcd->ppd; 377 struct hfi1_ibport *ibp = &ppd->ibport_data; 378 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 379 opcode_handler opcode_handler; 380 unsigned long flags; 381 u32 qp_num; 382 int lnh; 383 u8 opcode; 384 385 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 386 if (unlikely(tlen < 15 * sizeof(u32))) 387 goto drop; 388 389 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 390 if (lnh != HFI1_LRH_BTH) 391 goto drop; 392 393 packet->ohdr = &hdr->u.oth; 394 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 395 396 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 397 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 398 399 /* verbs_qp can be picked up from any tid_rdma header struct */ 400 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) & 401 RVT_QPN_MASK; 402 403 rcu_read_lock(); 404 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 405 if (!packet->qp) 406 goto drop_rcu; 407 spin_lock_irqsave(&packet->qp->r_lock, flags); 408 opcode_handler = tid_qp_ok(opcode, packet); 409 if (likely(opcode_handler)) 410 opcode_handler(packet); 411 else 412 goto drop_unlock; 413 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 414 rcu_read_unlock(); 415 416 return; 417 drop_unlock: 418 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 419 drop_rcu: 420 rcu_read_unlock(); 421 drop: 422 ibp->rvp.n_pkt_drops++; 423 } 424 425 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet) 426 { 427 struct hfi1_ctxtdata *rcd = packet->rcd; 428 struct ib_header *hdr = packet->hdr; 429 u32 tlen = packet->tlen; 430 struct hfi1_pportdata *ppd = rcd->ppd; 431 struct hfi1_ibport *ibp = &ppd->ibport_data; 432 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 433 opcode_handler opcode_handler; 434 unsigned long flags; 435 u32 qp_num; 436 int lnh; 437 u8 opcode; 438 439 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 440 if (unlikely(tlen < 15 * sizeof(u32))) 441 goto drop; 442 443 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 444 if (lnh != HFI1_LRH_BTH) 445 goto drop; 446 447 packet->ohdr = &hdr->u.oth; 448 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 449 450 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 451 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 452 453 /* verbs_qp can be picked up from any tid_rdma header struct */ 454 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) & 455 RVT_QPN_MASK; 456 457 rcu_read_lock(); 458 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 459 if (!packet->qp) 460 goto drop_rcu; 461 spin_lock_irqsave(&packet->qp->r_lock, flags); 462 opcode_handler = tid_qp_ok(opcode, packet); 463 if (likely(opcode_handler)) 464 opcode_handler(packet); 465 else 466 goto drop_unlock; 467 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 468 rcu_read_unlock(); 469 470 return; 471 drop_unlock: 472 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 473 drop_rcu: 474 rcu_read_unlock(); 475 drop: 476 ibp->rvp.n_pkt_drops++; 477 } 478 479 static int hfi1_do_pkey_check(struct hfi1_packet *packet) 480 { 481 struct hfi1_ctxtdata *rcd = packet->rcd; 482 struct hfi1_pportdata *ppd = rcd->ppd; 483 struct hfi1_16b_header *hdr = packet->hdr; 484 u16 pkey; 485 486 /* Pkey check needed only for bypass packets */ 487 if (packet->etype != RHF_RCV_TYPE_BYPASS) 488 return 0; 489 490 /* Perform pkey check */ 491 pkey = hfi1_16B_get_pkey(hdr); 492 return ingress_pkey_check(ppd, pkey, packet->sc, 493 packet->qp->s_pkey_index, 494 packet->slid, true); 495 } 496 497 static inline void hfi1_handle_packet(struct hfi1_packet *packet, 498 bool is_mcast) 499 { 500 u32 qp_num; 501 struct hfi1_ctxtdata *rcd = packet->rcd; 502 struct hfi1_pportdata *ppd = rcd->ppd; 503 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 504 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 505 opcode_handler packet_handler; 506 unsigned long flags; 507 508 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); 509 510 if (unlikely(is_mcast)) { 511 struct rvt_mcast *mcast; 512 struct rvt_mcast_qp *p; 513 514 if (!packet->grh) 515 goto drop; 516 mcast = rvt_mcast_find(&ibp->rvp, 517 &packet->grh->dgid, 518 opa_get_lid(packet->dlid, 9B)); 519 if (!mcast) 520 goto drop; 521 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 522 packet->qp = p->qp; 523 if (hfi1_do_pkey_check(packet)) 524 goto drop; 525 spin_lock_irqsave(&packet->qp->r_lock, flags); 526 packet_handler = qp_ok(packet); 527 if (likely(packet_handler)) 528 packet_handler(packet); 529 else 530 ibp->rvp.n_pkt_drops++; 531 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 532 } 533 /* 534 * Notify rvt_multicast_detach() if it is waiting for us 535 * to finish. 536 */ 537 if (atomic_dec_return(&mcast->refcount) <= 1) 538 wake_up(&mcast->wait); 539 } else { 540 /* Get the destination QP number. */ 541 if (packet->etype == RHF_RCV_TYPE_BYPASS && 542 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) 543 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); 544 else 545 qp_num = ib_bth_get_qpn(packet->ohdr); 546 547 rcu_read_lock(); 548 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 549 if (!packet->qp) 550 goto unlock_drop; 551 552 if (hfi1_do_pkey_check(packet)) 553 goto unlock_drop; 554 555 spin_lock_irqsave(&packet->qp->r_lock, flags); 556 packet_handler = qp_ok(packet); 557 if (likely(packet_handler)) 558 packet_handler(packet); 559 else 560 ibp->rvp.n_pkt_drops++; 561 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 562 rcu_read_unlock(); 563 } 564 return; 565 unlock_drop: 566 rcu_read_unlock(); 567 drop: 568 ibp->rvp.n_pkt_drops++; 569 } 570 571 /** 572 * hfi1_ib_rcv - process an incoming packet 573 * @packet: data packet information 574 * 575 * This is called to process an incoming packet at interrupt level. 576 */ 577 void hfi1_ib_rcv(struct hfi1_packet *packet) 578 { 579 struct hfi1_ctxtdata *rcd = packet->rcd; 580 581 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 582 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 583 } 584 585 void hfi1_16B_rcv(struct hfi1_packet *packet) 586 { 587 struct hfi1_ctxtdata *rcd = packet->rcd; 588 589 trace_input_ibhdr(rcd->dd, packet, false); 590 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 591 } 592 593 /* 594 * This is called from a timer to check for QPs 595 * which need kernel memory in order to send a packet. 596 */ 597 static void mem_timer(struct timer_list *t) 598 { 599 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); 600 struct list_head *list = &dev->memwait; 601 struct rvt_qp *qp = NULL; 602 struct iowait *wait; 603 unsigned long flags; 604 struct hfi1_qp_priv *priv; 605 606 write_seqlock_irqsave(&dev->iowait_lock, flags); 607 if (!list_empty(list)) { 608 wait = list_first_entry(list, struct iowait, list); 609 qp = iowait_to_qp(wait); 610 priv = qp->priv; 611 list_del_init(&priv->s_iowait.list); 612 priv->s_iowait.lock = NULL; 613 /* refcount held until actual wake up */ 614 if (!list_empty(list)) 615 mod_timer(&dev->mem_timer, jiffies + 1); 616 } 617 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 618 619 if (qp) 620 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 621 } 622 623 /* 624 * This is called with progress side lock held. 625 */ 626 /* New API */ 627 static void verbs_sdma_complete( 628 struct sdma_txreq *cookie, 629 int status) 630 { 631 struct verbs_txreq *tx = 632 container_of(cookie, struct verbs_txreq, txreq); 633 struct rvt_qp *qp = tx->qp; 634 635 spin_lock(&qp->s_lock); 636 if (tx->wqe) { 637 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 638 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 639 struct hfi1_opa_header *hdr; 640 641 hdr = &tx->phdr.hdr; 642 if (unlikely(status == SDMA_TXREQ_S_ABORTED)) 643 hfi1_rc_verbs_aborted(qp, hdr); 644 hfi1_rc_send_complete(qp, hdr); 645 } 646 spin_unlock(&qp->s_lock); 647 648 hfi1_put_txreq(tx); 649 } 650 651 void hfi1_wait_kmem(struct rvt_qp *qp) 652 { 653 struct hfi1_qp_priv *priv = qp->priv; 654 struct ib_qp *ibqp = &qp->ibqp; 655 struct ib_device *ibdev = ibqp->device; 656 struct hfi1_ibdev *dev = to_idev(ibdev); 657 658 if (list_empty(&priv->s_iowait.list)) { 659 if (list_empty(&dev->memwait)) 660 mod_timer(&dev->mem_timer, jiffies + 1); 661 qp->s_flags |= RVT_S_WAIT_KMEM; 662 list_add_tail(&priv->s_iowait.list, &dev->memwait); 663 priv->s_iowait.lock = &dev->iowait_lock; 664 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 665 rvt_get_qp(qp); 666 } 667 } 668 669 static int wait_kmem(struct hfi1_ibdev *dev, 670 struct rvt_qp *qp, 671 struct hfi1_pkt_state *ps) 672 { 673 unsigned long flags; 674 int ret = 0; 675 676 spin_lock_irqsave(&qp->s_lock, flags); 677 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 678 write_seqlock(&dev->iowait_lock); 679 list_add_tail(&ps->s_txreq->txreq.list, 680 &ps->wait->tx_head); 681 hfi1_wait_kmem(qp); 682 write_sequnlock(&dev->iowait_lock); 683 hfi1_qp_unbusy(qp, ps->wait); 684 ret = -EBUSY; 685 } 686 spin_unlock_irqrestore(&qp->s_lock, flags); 687 688 return ret; 689 } 690 691 /* 692 * This routine calls txadds for each sg entry. 693 * 694 * Add failures will revert the sge cursor 695 */ 696 static noinline int build_verbs_ulp_payload( 697 struct sdma_engine *sde, 698 u32 length, 699 struct verbs_txreq *tx) 700 { 701 struct rvt_sge_state *ss = tx->ss; 702 struct rvt_sge *sg_list = ss->sg_list; 703 struct rvt_sge sge = ss->sge; 704 u8 num_sge = ss->num_sge; 705 u32 len; 706 int ret = 0; 707 708 while (length) { 709 len = rvt_get_sge_length(&ss->sge, length); 710 WARN_ON_ONCE(len == 0); 711 ret = sdma_txadd_kvaddr( 712 sde->dd, 713 &tx->txreq, 714 ss->sge.vaddr, 715 len); 716 if (ret) 717 goto bail_txadd; 718 rvt_update_sge(ss, len, false); 719 length -= len; 720 } 721 return ret; 722 bail_txadd: 723 /* unwind cursor */ 724 ss->sge = sge; 725 ss->num_sge = num_sge; 726 ss->sg_list = sg_list; 727 return ret; 728 } 729 730 /** 731 * update_tx_opstats - record stats by opcode 732 * @qp; the qp 733 * @ps: transmit packet state 734 * @plen: the plen in dwords 735 * 736 * This is a routine to record the tx opstats after a 737 * packet has been presented to the egress mechanism. 738 */ 739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 740 u32 plen) 741 { 742 #ifdef CONFIG_DEBUG_FS 743 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 744 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); 745 746 inc_opstats(plen * 4, &s->stats[ps->opcode]); 747 put_cpu_ptr(s); 748 #endif 749 } 750 751 /* 752 * Build the number of DMA descriptors needed to send length bytes of data. 753 * 754 * NOTE: DMA mapping is held in the tx until completed in the ring or 755 * the tx desc is freed without having been submitted to the ring 756 * 757 * This routine ensures all the helper routine calls succeed. 758 */ 759 /* New API */ 760 static int build_verbs_tx_desc( 761 struct sdma_engine *sde, 762 u32 length, 763 struct verbs_txreq *tx, 764 struct hfi1_ahg_info *ahg_info, 765 u64 pbc) 766 { 767 int ret = 0; 768 struct hfi1_sdma_header *phdr = &tx->phdr; 769 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; 770 u8 extra_bytes = 0; 771 772 if (tx->phdr.hdr.hdr_type) { 773 /* 774 * hdrbytes accounts for PBC. Need to subtract 8 bytes 775 * before calculating padding. 776 */ 777 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + 778 (SIZE_OF_CRC << 2) + SIZE_OF_LT; 779 } 780 if (!ahg_info->ahgcount) { 781 ret = sdma_txinit_ahg( 782 &tx->txreq, 783 ahg_info->tx_flags, 784 hdrbytes + length + 785 extra_bytes, 786 ahg_info->ahgidx, 787 0, 788 NULL, 789 0, 790 verbs_sdma_complete); 791 if (ret) 792 goto bail_txadd; 793 phdr->pbc = cpu_to_le64(pbc); 794 ret = sdma_txadd_kvaddr( 795 sde->dd, 796 &tx->txreq, 797 phdr, 798 hdrbytes); 799 if (ret) 800 goto bail_txadd; 801 } else { 802 ret = sdma_txinit_ahg( 803 &tx->txreq, 804 ahg_info->tx_flags, 805 length, 806 ahg_info->ahgidx, 807 ahg_info->ahgcount, 808 ahg_info->ahgdesc, 809 hdrbytes, 810 verbs_sdma_complete); 811 if (ret) 812 goto bail_txadd; 813 } 814 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 815 if (tx->ss) { 816 ret = build_verbs_ulp_payload(sde, length, tx); 817 if (ret) 818 goto bail_txadd; 819 } 820 821 /* add icrc, lt byte, and padding to flit */ 822 if (extra_bytes) 823 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq, 824 (void *)trail_buf, extra_bytes); 825 826 bail_txadd: 827 return ret; 828 } 829 830 static u64 update_hcrc(u8 opcode, u64 pbc) 831 { 832 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) { 833 pbc &= ~PBC_INSERT_HCRC_SMASK; 834 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT; 835 } 836 return pbc; 837 } 838 839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 840 u64 pbc) 841 { 842 struct hfi1_qp_priv *priv = qp->priv; 843 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 844 u32 hdrwords = ps->s_txreq->hdr_dwords; 845 u32 len = ps->s_txreq->s_cur_size; 846 u32 plen; 847 struct hfi1_ibdev *dev = ps->dev; 848 struct hfi1_pportdata *ppd = ps->ppd; 849 struct verbs_txreq *tx; 850 u8 sc5 = priv->s_sc; 851 int ret; 852 u32 dwords; 853 854 if (ps->s_txreq->phdr.hdr.hdr_type) { 855 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); 856 857 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + 858 SIZE_OF_LT) >> 2; 859 } else { 860 dwords = (len + 3) >> 2; 861 } 862 plen = hdrwords + dwords + sizeof(pbc) / 4; 863 864 tx = ps->s_txreq; 865 if (!sdma_txreq_built(&tx->txreq)) { 866 if (likely(pbc == 0)) { 867 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 868 869 /* No vl15 here */ 870 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 871 if (ps->s_txreq->phdr.hdr.hdr_type) 872 pbc |= PBC_PACKET_BYPASS | 873 PBC_INSERT_BYPASS_ICRC; 874 else 875 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 876 877 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 878 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 879 pbc = create_pbc(ppd, 880 pbc, 881 qp->srate_mbps, 882 vl, 883 plen); 884 885 /* Update HCRC based on packet opcode */ 886 pbc = update_hcrc(ps->opcode, pbc); 887 } 888 tx->wqe = qp->s_wqe; 889 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 890 if (unlikely(ret)) 891 goto bail_build; 892 } 893 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); 894 if (unlikely(ret < 0)) { 895 if (ret == -ECOMM) 896 goto bail_ecomm; 897 return ret; 898 } 899 900 update_tx_opstats(qp, ps, plen); 901 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 902 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 903 return ret; 904 905 bail_ecomm: 906 /* The current one got "sent" */ 907 return 0; 908 bail_build: 909 ret = wait_kmem(dev, qp, ps); 910 if (!ret) { 911 /* free txreq - bad state */ 912 hfi1_put_txreq(ps->s_txreq); 913 ps->s_txreq = NULL; 914 } 915 return ret; 916 } 917 918 /* 919 * If we are now in the error state, return zero to flush the 920 * send work request. 921 */ 922 static int pio_wait(struct rvt_qp *qp, 923 struct send_context *sc, 924 struct hfi1_pkt_state *ps, 925 u32 flag) 926 { 927 struct hfi1_qp_priv *priv = qp->priv; 928 struct hfi1_devdata *dd = sc->dd; 929 unsigned long flags; 930 int ret = 0; 931 932 /* 933 * Note that as soon as want_buffer() is called and 934 * possibly before it returns, sc_piobufavail() 935 * could be called. Therefore, put QP on the I/O wait list before 936 * enabling the PIO avail interrupt. 937 */ 938 spin_lock_irqsave(&qp->s_lock, flags); 939 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 940 write_seqlock(&sc->waitlock); 941 list_add_tail(&ps->s_txreq->txreq.list, 942 &ps->wait->tx_head); 943 if (list_empty(&priv->s_iowait.list)) { 944 struct hfi1_ibdev *dev = &dd->verbs_dev; 945 int was_empty; 946 947 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 948 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); 949 qp->s_flags |= flag; 950 was_empty = list_empty(&sc->piowait); 951 iowait_get_priority(&priv->s_iowait); 952 iowait_queue(ps->pkts_sent, &priv->s_iowait, 953 &sc->piowait); 954 priv->s_iowait.lock = &sc->waitlock; 955 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 956 rvt_get_qp(qp); 957 /* counting: only call wantpiobuf_intr if first user */ 958 if (was_empty) 959 hfi1_sc_wantpiobuf_intr(sc, 1); 960 } 961 write_sequnlock(&sc->waitlock); 962 hfi1_qp_unbusy(qp, ps->wait); 963 ret = -EBUSY; 964 } 965 spin_unlock_irqrestore(&qp->s_lock, flags); 966 return ret; 967 } 968 969 static void verbs_pio_complete(void *arg, int code) 970 { 971 struct rvt_qp *qp = (struct rvt_qp *)arg; 972 struct hfi1_qp_priv *priv = qp->priv; 973 974 if (iowait_pio_dec(&priv->s_iowait)) 975 iowait_drain_wakeup(&priv->s_iowait); 976 } 977 978 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 979 u64 pbc) 980 { 981 struct hfi1_qp_priv *priv = qp->priv; 982 u32 hdrwords = ps->s_txreq->hdr_dwords; 983 struct rvt_sge_state *ss = ps->s_txreq->ss; 984 u32 len = ps->s_txreq->s_cur_size; 985 u32 dwords; 986 u32 plen; 987 struct hfi1_pportdata *ppd = ps->ppd; 988 u32 *hdr; 989 u8 sc5; 990 unsigned long flags = 0; 991 struct send_context *sc; 992 struct pio_buf *pbuf; 993 int wc_status = IB_WC_SUCCESS; 994 int ret = 0; 995 pio_release_cb cb = NULL; 996 u8 extra_bytes = 0; 997 998 if (ps->s_txreq->phdr.hdr.hdr_type) { 999 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); 1000 1001 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; 1002 dwords = (len + extra_bytes) >> 2; 1003 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; 1004 } else { 1005 dwords = (len + 3) >> 2; 1006 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; 1007 } 1008 plen = hdrwords + dwords + sizeof(pbc) / 4; 1009 1010 /* only RC/UC use complete */ 1011 switch (qp->ibqp.qp_type) { 1012 case IB_QPT_RC: 1013 case IB_QPT_UC: 1014 cb = verbs_pio_complete; 1015 break; 1016 default: 1017 break; 1018 } 1019 1020 /* vl15 special case taken care of in ud.c */ 1021 sc5 = priv->s_sc; 1022 sc = ps->s_txreq->psc; 1023 1024 if (likely(pbc == 0)) { 1025 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 1026 1027 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 1028 if (ps->s_txreq->phdr.hdr.hdr_type) 1029 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; 1030 else 1031 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 1032 1033 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 1034 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 1035 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 1036 1037 /* Update HCRC based on packet opcode */ 1038 pbc = update_hcrc(ps->opcode, pbc); 1039 } 1040 if (cb) 1041 iowait_pio_inc(&priv->s_iowait); 1042 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 1043 if (unlikely(IS_ERR_OR_NULL(pbuf))) { 1044 if (cb) 1045 verbs_pio_complete(qp, 0); 1046 if (IS_ERR(pbuf)) { 1047 /* 1048 * If we have filled the PIO buffers to capacity and are 1049 * not in an active state this request is not going to 1050 * go out to so just complete it with an error or else a 1051 * ULP or the core may be stuck waiting. 1052 */ 1053 hfi1_cdbg( 1054 PIO, 1055 "alloc failed. state not active, completing"); 1056 wc_status = IB_WC_GENERAL_ERR; 1057 goto pio_bail; 1058 } else { 1059 /* 1060 * This is a normal occurrence. The PIO buffs are full 1061 * up but we are still happily sending, well we could be 1062 * so lets continue to queue the request. 1063 */ 1064 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 1065 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 1066 if (!ret) 1067 /* txreq not queued - free */ 1068 goto bail; 1069 /* tx consumed in wait */ 1070 return ret; 1071 } 1072 } 1073 1074 if (dwords == 0) { 1075 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 1076 } else { 1077 seg_pio_copy_start(pbuf, pbc, 1078 hdr, hdrwords * 4); 1079 if (ss) { 1080 while (len) { 1081 void *addr = ss->sge.vaddr; 1082 u32 slen = rvt_get_sge_length(&ss->sge, len); 1083 1084 rvt_update_sge(ss, slen, false); 1085 seg_pio_copy_mid(pbuf, addr, slen); 1086 len -= slen; 1087 } 1088 } 1089 /* add icrc, lt byte, and padding to flit */ 1090 if (extra_bytes) 1091 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes); 1092 1093 seg_pio_copy_end(pbuf); 1094 } 1095 1096 update_tx_opstats(qp, ps, plen); 1097 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 1098 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 1099 1100 pio_bail: 1101 spin_lock_irqsave(&qp->s_lock, flags); 1102 if (qp->s_wqe) { 1103 rvt_send_complete(qp, qp->s_wqe, wc_status); 1104 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 1105 if (unlikely(wc_status == IB_WC_GENERAL_ERR)) 1106 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr); 1107 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 1108 } 1109 spin_unlock_irqrestore(&qp->s_lock, flags); 1110 1111 ret = 0; 1112 1113 bail: 1114 hfi1_put_txreq(ps->s_txreq); 1115 return ret; 1116 } 1117 1118 /* 1119 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1120 * being an entry from the partition key table), return 0 1121 * otherwise. Use the matching criteria for egress partition keys 1122 * specified in the OPAv1 spec., section 9.1l.7. 1123 */ 1124 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 1125 { 1126 u16 mkey = pkey & PKEY_LOW_15_MASK; 1127 u16 mentry = ent & PKEY_LOW_15_MASK; 1128 1129 if (mkey == mentry) { 1130 /* 1131 * If pkey[15] is set (full partition member), 1132 * is bit 15 in the corresponding table element 1133 * clear (limited member)? 1134 */ 1135 if (pkey & PKEY_MEMBER_MASK) 1136 return !!(ent & PKEY_MEMBER_MASK); 1137 return 1; 1138 } 1139 return 0; 1140 } 1141 1142 /** 1143 * egress_pkey_check - check P_KEY of a packet 1144 * @ppd: Physical IB port data 1145 * @slid: SLID for packet 1146 * @bkey: PKEY for header 1147 * @sc5: SC for packet 1148 * @s_pkey_index: It will be used for look up optimization for kernel contexts 1149 * only. If it is negative value, then it means user contexts is calling this 1150 * function. 1151 * 1152 * It checks if hdr's pkey is valid. 1153 * 1154 * Return: 0 on success, otherwise, 1 1155 */ 1156 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1157 u8 sc5, int8_t s_pkey_index) 1158 { 1159 struct hfi1_devdata *dd; 1160 int i; 1161 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1162 1163 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1164 return 0; 1165 1166 /* If SC15, pkey[0:14] must be 0x7fff */ 1167 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1168 goto bad; 1169 1170 /* Is the pkey = 0x0, or 0x8000? */ 1171 if ((pkey & PKEY_LOW_15_MASK) == 0) 1172 goto bad; 1173 1174 /* 1175 * For the kernel contexts only, if a qp is passed into the function, 1176 * the most likely matching pkey has index qp->s_pkey_index 1177 */ 1178 if (!is_user_ctxt_mechanism && 1179 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1180 return 0; 1181 } 1182 1183 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1184 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1185 return 0; 1186 } 1187 bad: 1188 /* 1189 * For the user-context mechanism, the P_KEY check would only happen 1190 * once per SDMA request, not once per packet. Therefore, there's no 1191 * need to increment the counter for the user-context mechanism. 1192 */ 1193 if (!is_user_ctxt_mechanism) { 1194 incr_cntr64(&ppd->port_xmit_constraint_errors); 1195 dd = ppd->dd; 1196 if (!(dd->err_info_xmit_constraint.status & 1197 OPA_EI_STATUS_SMASK)) { 1198 dd->err_info_xmit_constraint.status |= 1199 OPA_EI_STATUS_SMASK; 1200 dd->err_info_xmit_constraint.slid = slid; 1201 dd->err_info_xmit_constraint.pkey = pkey; 1202 } 1203 } 1204 return 1; 1205 } 1206 1207 /** 1208 * get_send_routine - choose an egress routine 1209 * 1210 * Choose an egress routine based on QP type 1211 * and size 1212 */ 1213 static inline send_routine get_send_routine(struct rvt_qp *qp, 1214 struct hfi1_pkt_state *ps) 1215 { 1216 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1217 struct hfi1_qp_priv *priv = qp->priv; 1218 struct verbs_txreq *tx = ps->s_txreq; 1219 1220 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1221 return dd->process_pio_send; 1222 switch (qp->ibqp.qp_type) { 1223 case IB_QPT_SMI: 1224 return dd->process_pio_send; 1225 case IB_QPT_GSI: 1226 case IB_QPT_UD: 1227 break; 1228 case IB_QPT_UC: 1229 case IB_QPT_RC: 1230 priv->s_running_pkt_size = 1231 (tx->s_cur_size + priv->s_running_pkt_size) / 2; 1232 if (piothreshold && 1233 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) && 1234 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && 1235 iowait_sdma_pending(&priv->s_iowait) == 0 && 1236 !sdma_txreq_built(&tx->txreq)) 1237 return dd->process_pio_send; 1238 break; 1239 default: 1240 break; 1241 } 1242 return dd->process_dma_send; 1243 } 1244 1245 /** 1246 * hfi1_verbs_send - send a packet 1247 * @qp: the QP to send on 1248 * @ps: the state of the packet to send 1249 * 1250 * Return zero if packet is sent or queued OK. 1251 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1252 */ 1253 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1254 { 1255 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1256 struct hfi1_qp_priv *priv = qp->priv; 1257 struct ib_other_headers *ohdr = NULL; 1258 send_routine sr; 1259 int ret; 1260 u16 pkey; 1261 u32 slid; 1262 u8 l4 = 0; 1263 1264 /* locate the pkey within the headers */ 1265 if (ps->s_txreq->phdr.hdr.hdr_type) { 1266 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; 1267 1268 l4 = hfi1_16B_get_l4(hdr); 1269 if (l4 == OPA_16B_L4_IB_LOCAL) 1270 ohdr = &hdr->u.oth; 1271 else if (l4 == OPA_16B_L4_IB_GLOBAL) 1272 ohdr = &hdr->u.l.oth; 1273 1274 slid = hfi1_16B_get_slid(hdr); 1275 pkey = hfi1_16B_get_pkey(hdr); 1276 } else { 1277 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; 1278 u8 lnh = ib_get_lnh(hdr); 1279 1280 if (lnh == HFI1_LRH_GRH) 1281 ohdr = &hdr->u.l.oth; 1282 else 1283 ohdr = &hdr->u.oth; 1284 slid = ib_get_slid(hdr); 1285 pkey = ib_bth_get_pkey(ohdr); 1286 } 1287 1288 if (likely(l4 != OPA_16B_L4_FM)) 1289 ps->opcode = ib_bth_get_opcode(ohdr); 1290 else 1291 ps->opcode = IB_OPCODE_UD_SEND_ONLY; 1292 1293 sr = get_send_routine(qp, ps); 1294 ret = egress_pkey_check(dd->pport, slid, pkey, 1295 priv->s_sc, qp->s_pkey_index); 1296 if (unlikely(ret)) { 1297 /* 1298 * The value we are returning here does not get propagated to 1299 * the verbs caller. Thus we need to complete the request with 1300 * error otherwise the caller could be sitting waiting on the 1301 * completion event. Only do this for PIO. SDMA has its own 1302 * mechanism for handling the errors. So for SDMA we can just 1303 * return. 1304 */ 1305 if (sr == dd->process_pio_send) { 1306 unsigned long flags; 1307 1308 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1309 __func__); 1310 spin_lock_irqsave(&qp->s_lock, flags); 1311 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1312 spin_unlock_irqrestore(&qp->s_lock, flags); 1313 } 1314 return -EINVAL; 1315 } 1316 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1317 return pio_wait(qp, 1318 ps->s_txreq->psc, 1319 ps, 1320 HFI1_S_WAIT_PIO_DRAIN); 1321 return sr(qp, ps, 0); 1322 } 1323 1324 /** 1325 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1326 * @dd: the device data structure 1327 */ 1328 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1329 { 1330 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1331 u32 ver = dd->dc8051_ver; 1332 1333 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1334 1335 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1336 ((u64)(dc8051_ver_min(ver)) << 16) | 1337 (u64)dc8051_ver_patch(ver); 1338 1339 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1340 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1341 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1342 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1343 IB_DEVICE_MEM_MGT_EXTENSIONS | 1344 IB_DEVICE_RDMA_NETDEV_OPA_VNIC; 1345 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1346 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1347 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1348 rdi->dparms.props.hw_ver = dd->minrev; 1349 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1350 rdi->dparms.props.max_mr_size = U64_MAX; 1351 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1352 rdi->dparms.props.max_qp = hfi1_max_qps; 1353 rdi->dparms.props.max_qp_wr = 1354 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ? 1355 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs); 1356 rdi->dparms.props.max_send_sge = hfi1_max_sges; 1357 rdi->dparms.props.max_recv_sge = hfi1_max_sges; 1358 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1359 rdi->dparms.props.max_cq = hfi1_max_cqs; 1360 rdi->dparms.props.max_ah = hfi1_max_ahs; 1361 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1362 rdi->dparms.props.max_map_per_fmr = 32767; 1363 rdi->dparms.props.max_pd = hfi1_max_pds; 1364 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1365 rdi->dparms.props.max_qp_init_rd_atom = 255; 1366 rdi->dparms.props.max_srq = hfi1_max_srqs; 1367 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1368 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1369 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1370 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1371 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1372 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1373 rdi->dparms.props.max_total_mcast_qp_attach = 1374 rdi->dparms.props.max_mcast_qp_attach * 1375 rdi->dparms.props.max_mcast_grp; 1376 } 1377 1378 static inline u16 opa_speed_to_ib(u16 in) 1379 { 1380 u16 out = 0; 1381 1382 if (in & OPA_LINK_SPEED_25G) 1383 out |= IB_SPEED_EDR; 1384 if (in & OPA_LINK_SPEED_12_5G) 1385 out |= IB_SPEED_FDR; 1386 1387 return out; 1388 } 1389 1390 /* 1391 * Convert a single OPA link width (no multiple flags) to an IB value. 1392 * A zero OPA link width means link down, which means the IB width value 1393 * is a don't care. 1394 */ 1395 static inline u16 opa_width_to_ib(u16 in) 1396 { 1397 switch (in) { 1398 case OPA_LINK_WIDTH_1X: 1399 /* map 2x and 3x to 1x as they don't exist in IB */ 1400 case OPA_LINK_WIDTH_2X: 1401 case OPA_LINK_WIDTH_3X: 1402 return IB_WIDTH_1X; 1403 default: /* link down or unknown, return our largest width */ 1404 case OPA_LINK_WIDTH_4X: 1405 return IB_WIDTH_4X; 1406 } 1407 } 1408 1409 static int query_port(struct rvt_dev_info *rdi, u8 port_num, 1410 struct ib_port_attr *props) 1411 { 1412 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1413 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1414 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1415 u32 lid = ppd->lid; 1416 1417 /* props being zeroed by the caller, avoid zeroing it here */ 1418 props->lid = lid ? lid : 0; 1419 props->lmc = ppd->lmc; 1420 /* OPA logical states match IB logical states */ 1421 props->state = driver_lstate(ppd); 1422 props->phys_state = driver_pstate(ppd); 1423 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1424 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1425 /* see rate_show() in ib core/sysfs.c */ 1426 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); 1427 props->max_vl_num = ppd->vls_supported; 1428 1429 /* Once we are a "first class" citizen and have added the OPA MTUs to 1430 * the core we can advertise the larger MTU enum to the ULPs, for now 1431 * advertise only 4K. 1432 * 1433 * Those applications which are either OPA aware or pass the MTU enum 1434 * from the Path Records to us will get the new 8k MTU. Those that 1435 * attempt to process the MTU enum may fail in various ways. 1436 */ 1437 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1438 4096 : hfi1_max_mtu), IB_MTU_4096); 1439 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1440 mtu_to_enum(ppd->ibmtu, IB_MTU_4096); 1441 1442 return 0; 1443 } 1444 1445 static int modify_device(struct ib_device *device, 1446 int device_modify_mask, 1447 struct ib_device_modify *device_modify) 1448 { 1449 struct hfi1_devdata *dd = dd_from_ibdev(device); 1450 unsigned i; 1451 int ret; 1452 1453 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1454 IB_DEVICE_MODIFY_NODE_DESC)) { 1455 ret = -EOPNOTSUPP; 1456 goto bail; 1457 } 1458 1459 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1460 memcpy(device->node_desc, device_modify->node_desc, 1461 IB_DEVICE_NODE_DESC_MAX); 1462 for (i = 0; i < dd->num_pports; i++) { 1463 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1464 1465 hfi1_node_desc_chg(ibp); 1466 } 1467 } 1468 1469 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1470 ib_hfi1_sys_image_guid = 1471 cpu_to_be64(device_modify->sys_image_guid); 1472 for (i = 0; i < dd->num_pports; i++) { 1473 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1474 1475 hfi1_sys_guid_chg(ibp); 1476 } 1477 } 1478 1479 ret = 0; 1480 1481 bail: 1482 return ret; 1483 } 1484 1485 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) 1486 { 1487 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1488 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1489 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1490 int ret; 1491 1492 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1493 OPA_LINKDOWN_REASON_UNKNOWN); 1494 ret = set_link_state(ppd, HLS_DN_DOWNDEF); 1495 return ret; 1496 } 1497 1498 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1499 int guid_index, __be64 *guid) 1500 { 1501 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1502 1503 if (guid_index >= HFI1_GUIDS_PER_PORT) 1504 return -EINVAL; 1505 1506 *guid = get_sguid(ibp, guid_index); 1507 return 0; 1508 } 1509 1510 /* 1511 * convert ah port,sl to sc 1512 */ 1513 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1514 { 1515 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1516 1517 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1518 } 1519 1520 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1521 { 1522 struct hfi1_ibport *ibp; 1523 struct hfi1_pportdata *ppd; 1524 struct hfi1_devdata *dd; 1525 u8 sc5; 1526 u8 sl; 1527 1528 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && 1529 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) 1530 return -EINVAL; 1531 1532 /* test the mapping for validity */ 1533 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1534 ppd = ppd_from_ibp(ibp); 1535 dd = dd_from_ppd(ppd); 1536 1537 sl = rdma_ah_get_sl(ah_attr); 1538 if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) 1539 return -EINVAL; 1540 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc)); 1541 1542 sc5 = ibp->sl_to_sc[sl]; 1543 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1544 return -EINVAL; 1545 return 0; 1546 } 1547 1548 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1549 struct rdma_ah_attr *ah_attr, 1550 struct rvt_ah *ah) 1551 { 1552 struct hfi1_ibport *ibp; 1553 struct hfi1_pportdata *ppd; 1554 struct hfi1_devdata *dd; 1555 u8 sc5; 1556 struct rdma_ah_attr *attr = &ah->attr; 1557 1558 /* 1559 * Do not trust reading anything from rvt_ah at this point as it is not 1560 * done being setup. We can however modify things which we need to set. 1561 */ 1562 1563 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1564 ppd = ppd_from_ibp(ibp); 1565 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1566 hfi1_update_ah_attr(ibdev, attr); 1567 hfi1_make_opa_lid(attr); 1568 dd = dd_from_ppd(ppd); 1569 ah->vl = sc_to_vlt(dd, sc5); 1570 if (ah->vl < num_vls || ah->vl == 15) 1571 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1572 } 1573 1574 /** 1575 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1576 * @dd: the hfi1_ib device 1577 */ 1578 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1579 { 1580 return ARRAY_SIZE(dd->pport[0].pkeys); 1581 } 1582 1583 static void init_ibport(struct hfi1_pportdata *ppd) 1584 { 1585 struct hfi1_ibport *ibp = &ppd->ibport_data; 1586 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1587 int i; 1588 1589 for (i = 0; i < sz; i++) { 1590 ibp->sl_to_sc[i] = i; 1591 ibp->sc_to_sl[i] = i; 1592 } 1593 1594 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) 1595 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); 1596 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); 1597 1598 spin_lock_init(&ibp->rvp.lock); 1599 /* Set the prefix to the default value (see ch. 4.1.1) */ 1600 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1601 ibp->rvp.sm_lid = 0; 1602 /* 1603 * Below should only set bits defined in OPA PortInfo.CapabilityMask 1604 * and PortInfo.CapabilityMask3 1605 */ 1606 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1607 IB_PORT_CAP_MASK_NOTICE_SUP; 1608 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; 1609 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1610 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1611 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1612 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1613 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1614 1615 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1616 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1617 } 1618 1619 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) 1620 { 1621 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1622 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1623 u32 ver = dd_from_dev(dev)->dc8051_ver; 1624 1625 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), 1626 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1627 } 1628 1629 static const char * const driver_cntr_names[] = { 1630 /* must be element 0*/ 1631 "DRIVER_KernIntr", 1632 "DRIVER_ErrorIntr", 1633 "DRIVER_Tx_Errs", 1634 "DRIVER_Rcv_Errs", 1635 "DRIVER_HW_Errs", 1636 "DRIVER_NoPIOBufs", 1637 "DRIVER_CtxtsOpen", 1638 "DRIVER_RcvLen_Errs", 1639 "DRIVER_EgrBufFull", 1640 "DRIVER_EgrHdrFull" 1641 }; 1642 1643 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1644 static const char **dev_cntr_names; 1645 static const char **port_cntr_names; 1646 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1647 static int num_dev_cntrs; 1648 static int num_port_cntrs; 1649 static int cntr_names_initialized; 1650 1651 /* 1652 * Convert a list of names separated by '\n' into an array of NULL terminated 1653 * strings. Optionally some entries can be reserved in the array to hold extra 1654 * external strings. 1655 */ 1656 static int init_cntr_names(const char *names_in, 1657 const size_t names_len, 1658 int num_extra_names, 1659 int *num_cntrs, 1660 const char ***cntr_names) 1661 { 1662 char *names_out, *p, **q; 1663 int i, n; 1664 1665 n = 0; 1666 for (i = 0; i < names_len; i++) 1667 if (names_in[i] == '\n') 1668 n++; 1669 1670 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, 1671 GFP_KERNEL); 1672 if (!names_out) { 1673 *num_cntrs = 0; 1674 *cntr_names = NULL; 1675 return -ENOMEM; 1676 } 1677 1678 p = names_out + (n + num_extra_names) * sizeof(char *); 1679 memcpy(p, names_in, names_len); 1680 1681 q = (char **)names_out; 1682 for (i = 0; i < n; i++) { 1683 q[i] = p; 1684 p = strchr(p, '\n'); 1685 *p++ = '\0'; 1686 } 1687 1688 *num_cntrs = n; 1689 *cntr_names = (const char **)names_out; 1690 return 0; 1691 } 1692 1693 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, 1694 u8 port_num) 1695 { 1696 int i, err; 1697 1698 mutex_lock(&cntr_names_lock); 1699 if (!cntr_names_initialized) { 1700 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1701 1702 err = init_cntr_names(dd->cntrnames, 1703 dd->cntrnameslen, 1704 num_driver_cntrs, 1705 &num_dev_cntrs, 1706 &dev_cntr_names); 1707 if (err) { 1708 mutex_unlock(&cntr_names_lock); 1709 return NULL; 1710 } 1711 1712 for (i = 0; i < num_driver_cntrs; i++) 1713 dev_cntr_names[num_dev_cntrs + i] = 1714 driver_cntr_names[i]; 1715 1716 err = init_cntr_names(dd->portcntrnames, 1717 dd->portcntrnameslen, 1718 0, 1719 &num_port_cntrs, 1720 &port_cntr_names); 1721 if (err) { 1722 kfree(dev_cntr_names); 1723 dev_cntr_names = NULL; 1724 mutex_unlock(&cntr_names_lock); 1725 return NULL; 1726 } 1727 cntr_names_initialized = 1; 1728 } 1729 mutex_unlock(&cntr_names_lock); 1730 1731 if (!port_num) 1732 return rdma_alloc_hw_stats_struct( 1733 dev_cntr_names, 1734 num_dev_cntrs + num_driver_cntrs, 1735 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1736 else 1737 return rdma_alloc_hw_stats_struct( 1738 port_cntr_names, 1739 num_port_cntrs, 1740 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1741 } 1742 1743 static u64 hfi1_sps_ints(void) 1744 { 1745 unsigned long index, flags; 1746 struct hfi1_devdata *dd; 1747 u64 sps_ints = 0; 1748 1749 xa_lock_irqsave(&hfi1_dev_table, flags); 1750 xa_for_each(&hfi1_dev_table, index, dd) { 1751 sps_ints += get_all_cpu_total(dd->int_counter); 1752 } 1753 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1754 return sps_ints; 1755 } 1756 1757 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1758 u8 port, int index) 1759 { 1760 u64 *values; 1761 int count; 1762 1763 if (!port) { 1764 u64 *stats = (u64 *)&hfi1_stats; 1765 int i; 1766 1767 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1768 values[num_dev_cntrs] = hfi1_sps_ints(); 1769 for (i = 1; i < num_driver_cntrs; i++) 1770 values[num_dev_cntrs + i] = stats[i]; 1771 count = num_dev_cntrs + num_driver_cntrs; 1772 } else { 1773 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1774 1775 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1776 count = num_port_cntrs; 1777 } 1778 1779 memcpy(stats->value, values, count * sizeof(u64)); 1780 return count; 1781 } 1782 1783 static const struct ib_device_ops hfi1_dev_ops = { 1784 .owner = THIS_MODULE, 1785 .driver_id = RDMA_DRIVER_HFI1, 1786 1787 .alloc_hw_stats = alloc_hw_stats, 1788 .alloc_rdma_netdev = hfi1_vnic_alloc_rn, 1789 .get_dev_fw_str = hfi1_get_dev_fw_str, 1790 .get_hw_stats = get_hw_stats, 1791 .init_port = hfi1_create_port_files, 1792 .modify_device = modify_device, 1793 /* keep process mad in the driver */ 1794 .process_mad = hfi1_process_mad, 1795 }; 1796 1797 /** 1798 * hfi1_register_ib_device - register our device with the infiniband core 1799 * @dd: the device data structure 1800 * Return 0 if successful, errno if unsuccessful. 1801 */ 1802 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1803 { 1804 struct hfi1_ibdev *dev = &dd->verbs_dev; 1805 struct ib_device *ibdev = &dev->rdi.ibdev; 1806 struct hfi1_pportdata *ppd = dd->pport; 1807 struct hfi1_ibport *ibp = &ppd->ibport_data; 1808 unsigned i; 1809 int ret; 1810 1811 for (i = 0; i < dd->num_pports; i++) 1812 init_ibport(ppd + i); 1813 1814 /* Only need to initialize non-zero fields. */ 1815 1816 timer_setup(&dev->mem_timer, mem_timer, 0); 1817 1818 seqlock_init(&dev->iowait_lock); 1819 seqlock_init(&dev->txwait_lock); 1820 INIT_LIST_HEAD(&dev->txwait); 1821 INIT_LIST_HEAD(&dev->memwait); 1822 1823 ret = verbs_txreq_init(dev); 1824 if (ret) 1825 goto err_verbs_txreq; 1826 1827 /* Use first-port GUID as node guid */ 1828 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1829 1830 /* 1831 * The system image GUID is supposed to be the same for all 1832 * HFIs in a single system but since there can be other 1833 * device types in the system, we can't be sure this is unique. 1834 */ 1835 if (!ib_hfi1_sys_image_guid) 1836 ib_hfi1_sys_image_guid = ibdev->node_guid; 1837 ibdev->phys_port_cnt = dd->num_pports; 1838 ibdev->dev.parent = &dd->pcidev->dev; 1839 1840 ib_set_device_ops(ibdev, &hfi1_dev_ops); 1841 1842 strlcpy(ibdev->node_desc, init_utsname()->nodename, 1843 sizeof(ibdev->node_desc)); 1844 1845 /* 1846 * Fill in rvt info object. 1847 */ 1848 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1849 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1850 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1851 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1852 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1853 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1854 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1855 /* 1856 * Fill in rvt info device attributes. 1857 */ 1858 hfi1_fill_device_attr(dd); 1859 1860 /* queue pair */ 1861 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1862 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1863 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1864 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1865 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; 1866 dd->verbs_dev.rdi.dparms.qpn_res_end = 1867 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; 1868 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1869 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1870 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1871 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1872 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | 1873 RDMA_CORE_CAP_OPA_AH; 1874 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1875 1876 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1877 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init; 1878 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1879 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1880 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1881 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1882 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1883 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1884 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1885 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1886 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1887 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1888 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1889 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1890 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1891 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1892 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1893 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1894 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1895 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; 1896 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = 1897 hfi1_comp_vect_mappings_lookup; 1898 1899 /* completeion queue */ 1900 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; 1901 dd->verbs_dev.rdi.dparms.node = dd->node; 1902 1903 /* misc settings */ 1904 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1905 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1906 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1907 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1908 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; 1909 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; 1910 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; 1911 dd->verbs_dev.rdi.dparms.reserved_operations = 1; 1912 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT; 1913 1914 /* post send table */ 1915 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1916 1917 /* opcode translation table */ 1918 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; 1919 1920 ppd = dd->pport; 1921 for (i = 0; i < dd->num_pports; i++, ppd++) 1922 rvt_init_port(&dd->verbs_dev.rdi, 1923 &ppd->ibport_data.rvp, 1924 i, 1925 ppd->pkeys); 1926 1927 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev, 1928 &ib_hfi1_attr_group); 1929 1930 ret = rvt_register_device(&dd->verbs_dev.rdi); 1931 if (ret) 1932 goto err_verbs_txreq; 1933 1934 ret = hfi1_verbs_register_sysfs(dd); 1935 if (ret) 1936 goto err_class; 1937 1938 return ret; 1939 1940 err_class: 1941 rvt_unregister_device(&dd->verbs_dev.rdi); 1942 err_verbs_txreq: 1943 verbs_txreq_exit(dev); 1944 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1945 return ret; 1946 } 1947 1948 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1949 { 1950 struct hfi1_ibdev *dev = &dd->verbs_dev; 1951 1952 hfi1_verbs_unregister_sysfs(dd); 1953 1954 rvt_unregister_device(&dd->verbs_dev.rdi); 1955 1956 if (!list_empty(&dev->txwait)) 1957 dd_dev_err(dd, "txwait list not empty!\n"); 1958 if (!list_empty(&dev->memwait)) 1959 dd_dev_err(dd, "memwait list not empty!\n"); 1960 1961 del_timer_sync(&dev->mem_timer); 1962 verbs_txreq_exit(dev); 1963 1964 mutex_lock(&cntr_names_lock); 1965 kfree(dev_cntr_names); 1966 kfree(port_cntr_names); 1967 dev_cntr_names = NULL; 1968 port_cntr_names = NULL; 1969 cntr_names_initialized = 0; 1970 mutex_unlock(&cntr_names_lock); 1971 } 1972 1973 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1974 { 1975 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1976 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1977 struct ib_header *hdr = packet->hdr; 1978 struct rvt_qp *qp = packet->qp; 1979 u32 lqpn, rqpn = 0; 1980 u16 rlid = 0; 1981 u8 sl, sc5, svc_type; 1982 1983 switch (packet->qp->ibqp.qp_type) { 1984 case IB_QPT_UC: 1985 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1986 rqpn = qp->remote_qpn; 1987 svc_type = IB_CC_SVCTYPE_UC; 1988 break; 1989 case IB_QPT_RC: 1990 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1991 rqpn = qp->remote_qpn; 1992 svc_type = IB_CC_SVCTYPE_RC; 1993 break; 1994 case IB_QPT_SMI: 1995 case IB_QPT_GSI: 1996 case IB_QPT_UD: 1997 svc_type = IB_CC_SVCTYPE_UD; 1998 break; 1999 default: 2000 ibp->rvp.n_pkt_drops++; 2001 return; 2002 } 2003 2004 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 2005 sl = ibp->sc_to_sl[sc5]; 2006 lqpn = qp->ibqp.qp_num; 2007 2008 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 2009 } 2010