1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <rdma/ib_mad.h> 49 #include <rdma/ib_user_verbs.h> 50 #include <linux/io.h> 51 #include <linux/module.h> 52 #include <linux/utsname.h> 53 #include <linux/rculist.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 #include <rdma/opa_addr.h> 57 58 #include "hfi.h" 59 #include "common.h" 60 #include "device.h" 61 #include "trace.h" 62 #include "qp.h" 63 #include "verbs_txreq.h" 64 #include "debugfs.h" 65 #include "vnic.h" 66 #include "fault.h" 67 #include "affinity.h" 68 69 static unsigned int hfi1_lkey_table_size = 16; 70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 71 S_IRUGO); 72 MODULE_PARM_DESC(lkey_table_size, 73 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 74 75 static unsigned int hfi1_max_pds = 0xFFFF; 76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 77 MODULE_PARM_DESC(max_pds, 78 "Maximum number of protection domains to support"); 79 80 static unsigned int hfi1_max_ahs = 0xFFFF; 81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 83 84 unsigned int hfi1_max_cqes = 0x2FFFFF; 85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 86 MODULE_PARM_DESC(max_cqes, 87 "Maximum number of completion queue entries to support"); 88 89 unsigned int hfi1_max_cqs = 0x1FFFF; 90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 92 93 unsigned int hfi1_max_qp_wrs = 0x3FFF; 94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 96 97 unsigned int hfi1_max_qps = 32768; 98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 100 101 unsigned int hfi1_max_sges = 0x60; 102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 104 105 unsigned int hfi1_max_mcast_grps = 16384; 106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 107 MODULE_PARM_DESC(max_mcast_grps, 108 "Maximum number of multicast groups to support"); 109 110 unsigned int hfi1_max_mcast_qp_attached = 16; 111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 112 uint, S_IRUGO); 113 MODULE_PARM_DESC(max_mcast_qp_attached, 114 "Maximum number of attached QPs to support"); 115 116 unsigned int hfi1_max_srqs = 1024; 117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 119 120 unsigned int hfi1_max_srq_sges = 128; 121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 123 124 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 127 128 unsigned short piothreshold = 256; 129 module_param(piothreshold, ushort, S_IRUGO); 130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 131 132 static unsigned int sge_copy_mode; 133 module_param(sge_copy_mode, uint, S_IRUGO); 134 MODULE_PARM_DESC(sge_copy_mode, 135 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 136 137 static void verbs_sdma_complete( 138 struct sdma_txreq *cookie, 139 int status); 140 141 static int pio_wait(struct rvt_qp *qp, 142 struct send_context *sc, 143 struct hfi1_pkt_state *ps, 144 u32 flag); 145 146 /* Length of buffer to create verbs txreq cache name */ 147 #define TXREQ_NAME_LEN 24 148 149 /* 16B trailing buffer */ 150 static const u8 trail_buf[MAX_16B_PADDING]; 151 152 static uint wss_threshold = 80; 153 module_param(wss_threshold, uint, S_IRUGO); 154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 155 static uint wss_clean_period = 256; 156 module_param(wss_clean_period, uint, S_IRUGO); 157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 158 159 /* 160 * Translate ib_wr_opcode into ib_wc_opcode. 161 */ 162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 163 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 164 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE, 165 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 166 [IB_WR_SEND] = IB_WC_SEND, 167 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 168 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 169 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ, 170 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 171 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 172 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 173 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 174 [IB_WR_REG_MR] = IB_WC_REG_MR 175 }; 176 177 /* 178 * Length of header by opcode, 0 --> not supported 179 */ 180 const u8 hdr_len_by_opcode[256] = { 181 /* RC */ 182 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 183 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 184 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 185 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 186 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 187 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 188 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 189 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 190 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 191 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 192 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 193 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 194 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 197 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 198 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 199 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 200 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 201 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 202 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 203 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 204 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 205 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36, 206 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36, 207 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36, 208 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36, 209 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36, 210 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36, 211 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36, 212 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36, 213 /* UC */ 214 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 215 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 216 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 217 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 218 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 219 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 220 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 221 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 222 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 223 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 224 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 225 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 226 /* UD */ 227 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 228 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 229 }; 230 231 static const opcode_handler opcode_handler_tbl[256] = { 232 /* RC */ 233 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 234 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 235 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 236 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 237 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 238 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 239 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 240 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 241 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 242 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 243 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 244 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 245 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 246 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 247 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 248 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 249 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 250 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 251 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 252 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 253 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 254 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 255 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 256 257 /* TID RDMA has separate handlers for different opcodes.*/ 258 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req, 259 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp, 260 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data, 261 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data, 262 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req, 263 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp, 264 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync, 265 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack, 266 267 /* UC */ 268 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 269 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 270 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 271 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 272 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 273 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 274 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 275 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 276 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 277 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 278 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 279 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 280 /* UD */ 281 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 282 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 283 /* CNP */ 284 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 285 }; 286 287 #define OPMASK 0x1f 288 289 static const u32 pio_opmask[BIT(3)] = { 290 /* RC */ 291 [IB_OPCODE_RC >> 5] = 292 BIT(RC_OP(SEND_ONLY) & OPMASK) | 293 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 294 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 295 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 296 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 297 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 298 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 299 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 300 BIT(RC_OP(FETCH_ADD) & OPMASK), 301 /* UC */ 302 [IB_OPCODE_UC >> 5] = 303 BIT(UC_OP(SEND_ONLY) & OPMASK) | 304 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 305 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 306 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 307 }; 308 309 /* 310 * System image GUID. 311 */ 312 __be64 ib_hfi1_sys_image_guid; 313 314 /* 315 * Make sure the QP is ready and able to accept the given opcode. 316 */ 317 static inline opcode_handler qp_ok(struct hfi1_packet *packet) 318 { 319 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 320 return NULL; 321 if (((packet->opcode & RVT_OPCODE_QP_MASK) == 322 packet->qp->allowed_ops) || 323 (packet->opcode == IB_OPCODE_CNP)) 324 return opcode_handler_tbl[packet->opcode]; 325 326 return NULL; 327 } 328 329 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 330 { 331 #ifdef CONFIG_FAULT_INJECTION 332 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) { 333 /* 334 * In order to drop non-IB traffic we 335 * set PbcInsertHrc to NONE (0x2). 336 * The packet will still be delivered 337 * to the receiving node but a 338 * KHdrHCRCErr (KDETH packet with a bad 339 * HCRC) will be triggered and the 340 * packet will not be delivered to the 341 * correct context. 342 */ 343 pbc &= ~PBC_INSERT_HCRC_SMASK; 344 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 345 } else { 346 /* 347 * In order to drop regular verbs 348 * traffic we set the PbcTestEbp 349 * flag. The packet will still be 350 * delivered to the receiving node but 351 * a 'late ebp error' will be 352 * triggered and will be dropped. 353 */ 354 pbc |= PBC_TEST_EBP; 355 } 356 #endif 357 return pbc; 358 } 359 360 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet) 361 { 362 if (packet->qp->ibqp.qp_type != IB_QPT_RC || 363 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 364 return NULL; 365 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA) 366 return opcode_handler_tbl[opcode]; 367 return NULL; 368 } 369 370 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet) 371 { 372 struct hfi1_ctxtdata *rcd = packet->rcd; 373 struct ib_header *hdr = packet->hdr; 374 u32 tlen = packet->tlen; 375 struct hfi1_pportdata *ppd = rcd->ppd; 376 struct hfi1_ibport *ibp = &ppd->ibport_data; 377 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 378 opcode_handler opcode_handler; 379 unsigned long flags; 380 u32 qp_num; 381 int lnh; 382 u8 opcode; 383 384 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 385 if (unlikely(tlen < 15 * sizeof(u32))) 386 goto drop; 387 388 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 389 if (lnh != HFI1_LRH_BTH) 390 goto drop; 391 392 packet->ohdr = &hdr->u.oth; 393 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 394 395 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 396 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 397 398 /* verbs_qp can be picked up from any tid_rdma header struct */ 399 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) & 400 RVT_QPN_MASK; 401 402 rcu_read_lock(); 403 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 404 if (!packet->qp) 405 goto drop_rcu; 406 spin_lock_irqsave(&packet->qp->r_lock, flags); 407 opcode_handler = tid_qp_ok(opcode, packet); 408 if (likely(opcode_handler)) 409 opcode_handler(packet); 410 else 411 goto drop_unlock; 412 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 413 rcu_read_unlock(); 414 415 return; 416 drop_unlock: 417 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 418 drop_rcu: 419 rcu_read_unlock(); 420 drop: 421 ibp->rvp.n_pkt_drops++; 422 } 423 424 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet) 425 { 426 struct hfi1_ctxtdata *rcd = packet->rcd; 427 struct ib_header *hdr = packet->hdr; 428 u32 tlen = packet->tlen; 429 struct hfi1_pportdata *ppd = rcd->ppd; 430 struct hfi1_ibport *ibp = &ppd->ibport_data; 431 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 432 opcode_handler opcode_handler; 433 unsigned long flags; 434 u32 qp_num; 435 int lnh; 436 u8 opcode; 437 438 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 439 if (unlikely(tlen < 15 * sizeof(u32))) 440 goto drop; 441 442 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 443 if (lnh != HFI1_LRH_BTH) 444 goto drop; 445 446 packet->ohdr = &hdr->u.oth; 447 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 448 449 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 450 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 451 452 /* verbs_qp can be picked up from any tid_rdma header struct */ 453 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) & 454 RVT_QPN_MASK; 455 456 rcu_read_lock(); 457 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 458 if (!packet->qp) 459 goto drop_rcu; 460 spin_lock_irqsave(&packet->qp->r_lock, flags); 461 opcode_handler = tid_qp_ok(opcode, packet); 462 if (likely(opcode_handler)) 463 opcode_handler(packet); 464 else 465 goto drop_unlock; 466 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 467 rcu_read_unlock(); 468 469 return; 470 drop_unlock: 471 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 472 drop_rcu: 473 rcu_read_unlock(); 474 drop: 475 ibp->rvp.n_pkt_drops++; 476 } 477 478 static int hfi1_do_pkey_check(struct hfi1_packet *packet) 479 { 480 struct hfi1_ctxtdata *rcd = packet->rcd; 481 struct hfi1_pportdata *ppd = rcd->ppd; 482 struct hfi1_16b_header *hdr = packet->hdr; 483 u16 pkey; 484 485 /* Pkey check needed only for bypass packets */ 486 if (packet->etype != RHF_RCV_TYPE_BYPASS) 487 return 0; 488 489 /* Perform pkey check */ 490 pkey = hfi1_16B_get_pkey(hdr); 491 return ingress_pkey_check(ppd, pkey, packet->sc, 492 packet->qp->s_pkey_index, 493 packet->slid, true); 494 } 495 496 static inline void hfi1_handle_packet(struct hfi1_packet *packet, 497 bool is_mcast) 498 { 499 u32 qp_num; 500 struct hfi1_ctxtdata *rcd = packet->rcd; 501 struct hfi1_pportdata *ppd = rcd->ppd; 502 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 503 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 504 opcode_handler packet_handler; 505 unsigned long flags; 506 507 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); 508 509 if (unlikely(is_mcast)) { 510 struct rvt_mcast *mcast; 511 struct rvt_mcast_qp *p; 512 513 if (!packet->grh) 514 goto drop; 515 mcast = rvt_mcast_find(&ibp->rvp, 516 &packet->grh->dgid, 517 opa_get_lid(packet->dlid, 9B)); 518 if (!mcast) 519 goto drop; 520 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 521 packet->qp = p->qp; 522 if (hfi1_do_pkey_check(packet)) 523 goto drop; 524 spin_lock_irqsave(&packet->qp->r_lock, flags); 525 packet_handler = qp_ok(packet); 526 if (likely(packet_handler)) 527 packet_handler(packet); 528 else 529 ibp->rvp.n_pkt_drops++; 530 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 531 } 532 /* 533 * Notify rvt_multicast_detach() if it is waiting for us 534 * to finish. 535 */ 536 if (atomic_dec_return(&mcast->refcount) <= 1) 537 wake_up(&mcast->wait); 538 } else { 539 /* Get the destination QP number. */ 540 if (packet->etype == RHF_RCV_TYPE_BYPASS && 541 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) 542 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); 543 else 544 qp_num = ib_bth_get_qpn(packet->ohdr); 545 546 rcu_read_lock(); 547 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 548 if (!packet->qp) 549 goto unlock_drop; 550 551 if (hfi1_do_pkey_check(packet)) 552 goto unlock_drop; 553 554 spin_lock_irqsave(&packet->qp->r_lock, flags); 555 packet_handler = qp_ok(packet); 556 if (likely(packet_handler)) 557 packet_handler(packet); 558 else 559 ibp->rvp.n_pkt_drops++; 560 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 561 rcu_read_unlock(); 562 } 563 return; 564 unlock_drop: 565 rcu_read_unlock(); 566 drop: 567 ibp->rvp.n_pkt_drops++; 568 } 569 570 /** 571 * hfi1_ib_rcv - process an incoming packet 572 * @packet: data packet information 573 * 574 * This is called to process an incoming packet at interrupt level. 575 */ 576 void hfi1_ib_rcv(struct hfi1_packet *packet) 577 { 578 struct hfi1_ctxtdata *rcd = packet->rcd; 579 580 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 581 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 582 } 583 584 void hfi1_16B_rcv(struct hfi1_packet *packet) 585 { 586 struct hfi1_ctxtdata *rcd = packet->rcd; 587 588 trace_input_ibhdr(rcd->dd, packet, false); 589 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 590 } 591 592 /* 593 * This is called from a timer to check for QPs 594 * which need kernel memory in order to send a packet. 595 */ 596 static void mem_timer(struct timer_list *t) 597 { 598 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); 599 struct list_head *list = &dev->memwait; 600 struct rvt_qp *qp = NULL; 601 struct iowait *wait; 602 unsigned long flags; 603 struct hfi1_qp_priv *priv; 604 605 write_seqlock_irqsave(&dev->iowait_lock, flags); 606 if (!list_empty(list)) { 607 wait = list_first_entry(list, struct iowait, list); 608 qp = iowait_to_qp(wait); 609 priv = qp->priv; 610 list_del_init(&priv->s_iowait.list); 611 priv->s_iowait.lock = NULL; 612 /* refcount held until actual wake up */ 613 if (!list_empty(list)) 614 mod_timer(&dev->mem_timer, jiffies + 1); 615 } 616 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 617 618 if (qp) 619 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 620 } 621 622 /* 623 * This is called with progress side lock held. 624 */ 625 /* New API */ 626 static void verbs_sdma_complete( 627 struct sdma_txreq *cookie, 628 int status) 629 { 630 struct verbs_txreq *tx = 631 container_of(cookie, struct verbs_txreq, txreq); 632 struct rvt_qp *qp = tx->qp; 633 634 spin_lock(&qp->s_lock); 635 if (tx->wqe) { 636 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 637 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 638 struct hfi1_opa_header *hdr; 639 640 hdr = &tx->phdr.hdr; 641 if (unlikely(status == SDMA_TXREQ_S_ABORTED)) 642 hfi1_rc_verbs_aborted(qp, hdr); 643 hfi1_rc_send_complete(qp, hdr); 644 } 645 spin_unlock(&qp->s_lock); 646 647 hfi1_put_txreq(tx); 648 } 649 650 void hfi1_wait_kmem(struct rvt_qp *qp) 651 { 652 struct hfi1_qp_priv *priv = qp->priv; 653 struct ib_qp *ibqp = &qp->ibqp; 654 struct ib_device *ibdev = ibqp->device; 655 struct hfi1_ibdev *dev = to_idev(ibdev); 656 657 if (list_empty(&priv->s_iowait.list)) { 658 if (list_empty(&dev->memwait)) 659 mod_timer(&dev->mem_timer, jiffies + 1); 660 qp->s_flags |= RVT_S_WAIT_KMEM; 661 list_add_tail(&priv->s_iowait.list, &dev->memwait); 662 priv->s_iowait.lock = &dev->iowait_lock; 663 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 664 rvt_get_qp(qp); 665 } 666 } 667 668 static int wait_kmem(struct hfi1_ibdev *dev, 669 struct rvt_qp *qp, 670 struct hfi1_pkt_state *ps) 671 { 672 unsigned long flags; 673 int ret = 0; 674 675 spin_lock_irqsave(&qp->s_lock, flags); 676 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 677 write_seqlock(&dev->iowait_lock); 678 list_add_tail(&ps->s_txreq->txreq.list, 679 &ps->wait->tx_head); 680 hfi1_wait_kmem(qp); 681 write_sequnlock(&dev->iowait_lock); 682 hfi1_qp_unbusy(qp, ps->wait); 683 ret = -EBUSY; 684 } 685 spin_unlock_irqrestore(&qp->s_lock, flags); 686 687 return ret; 688 } 689 690 /* 691 * This routine calls txadds for each sg entry. 692 * 693 * Add failures will revert the sge cursor 694 */ 695 static noinline int build_verbs_ulp_payload( 696 struct sdma_engine *sde, 697 u32 length, 698 struct verbs_txreq *tx) 699 { 700 struct rvt_sge_state *ss = tx->ss; 701 struct rvt_sge *sg_list = ss->sg_list; 702 struct rvt_sge sge = ss->sge; 703 u8 num_sge = ss->num_sge; 704 u32 len; 705 int ret = 0; 706 707 while (length) { 708 len = rvt_get_sge_length(&ss->sge, length); 709 WARN_ON_ONCE(len == 0); 710 ret = sdma_txadd_kvaddr( 711 sde->dd, 712 &tx->txreq, 713 ss->sge.vaddr, 714 len); 715 if (ret) 716 goto bail_txadd; 717 rvt_update_sge(ss, len, false); 718 length -= len; 719 } 720 return ret; 721 bail_txadd: 722 /* unwind cursor */ 723 ss->sge = sge; 724 ss->num_sge = num_sge; 725 ss->sg_list = sg_list; 726 return ret; 727 } 728 729 /** 730 * update_tx_opstats - record stats by opcode 731 * @qp; the qp 732 * @ps: transmit packet state 733 * @plen: the plen in dwords 734 * 735 * This is a routine to record the tx opstats after a 736 * packet has been presented to the egress mechanism. 737 */ 738 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 739 u32 plen) 740 { 741 #ifdef CONFIG_DEBUG_FS 742 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 743 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); 744 745 inc_opstats(plen * 4, &s->stats[ps->opcode]); 746 put_cpu_ptr(s); 747 #endif 748 } 749 750 /* 751 * Build the number of DMA descriptors needed to send length bytes of data. 752 * 753 * NOTE: DMA mapping is held in the tx until completed in the ring or 754 * the tx desc is freed without having been submitted to the ring 755 * 756 * This routine ensures all the helper routine calls succeed. 757 */ 758 /* New API */ 759 static int build_verbs_tx_desc( 760 struct sdma_engine *sde, 761 u32 length, 762 struct verbs_txreq *tx, 763 struct hfi1_ahg_info *ahg_info, 764 u64 pbc) 765 { 766 int ret = 0; 767 struct hfi1_sdma_header *phdr = &tx->phdr; 768 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; 769 u8 extra_bytes = 0; 770 771 if (tx->phdr.hdr.hdr_type) { 772 /* 773 * hdrbytes accounts for PBC. Need to subtract 8 bytes 774 * before calculating padding. 775 */ 776 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + 777 (SIZE_OF_CRC << 2) + SIZE_OF_LT; 778 } 779 if (!ahg_info->ahgcount) { 780 ret = sdma_txinit_ahg( 781 &tx->txreq, 782 ahg_info->tx_flags, 783 hdrbytes + length + 784 extra_bytes, 785 ahg_info->ahgidx, 786 0, 787 NULL, 788 0, 789 verbs_sdma_complete); 790 if (ret) 791 goto bail_txadd; 792 phdr->pbc = cpu_to_le64(pbc); 793 ret = sdma_txadd_kvaddr( 794 sde->dd, 795 &tx->txreq, 796 phdr, 797 hdrbytes); 798 if (ret) 799 goto bail_txadd; 800 } else { 801 ret = sdma_txinit_ahg( 802 &tx->txreq, 803 ahg_info->tx_flags, 804 length, 805 ahg_info->ahgidx, 806 ahg_info->ahgcount, 807 ahg_info->ahgdesc, 808 hdrbytes, 809 verbs_sdma_complete); 810 if (ret) 811 goto bail_txadd; 812 } 813 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 814 if (tx->ss) { 815 ret = build_verbs_ulp_payload(sde, length, tx); 816 if (ret) 817 goto bail_txadd; 818 } 819 820 /* add icrc, lt byte, and padding to flit */ 821 if (extra_bytes) 822 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq, 823 (void *)trail_buf, extra_bytes); 824 825 bail_txadd: 826 return ret; 827 } 828 829 static u64 update_hcrc(u8 opcode, u64 pbc) 830 { 831 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) { 832 pbc &= ~PBC_INSERT_HCRC_SMASK; 833 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT; 834 } 835 return pbc; 836 } 837 838 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 839 u64 pbc) 840 { 841 struct hfi1_qp_priv *priv = qp->priv; 842 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 843 u32 hdrwords = ps->s_txreq->hdr_dwords; 844 u32 len = ps->s_txreq->s_cur_size; 845 u32 plen; 846 struct hfi1_ibdev *dev = ps->dev; 847 struct hfi1_pportdata *ppd = ps->ppd; 848 struct verbs_txreq *tx; 849 u8 sc5 = priv->s_sc; 850 int ret; 851 u32 dwords; 852 853 if (ps->s_txreq->phdr.hdr.hdr_type) { 854 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); 855 856 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + 857 SIZE_OF_LT) >> 2; 858 } else { 859 dwords = (len + 3) >> 2; 860 } 861 plen = hdrwords + dwords + sizeof(pbc) / 4; 862 863 tx = ps->s_txreq; 864 if (!sdma_txreq_built(&tx->txreq)) { 865 if (likely(pbc == 0)) { 866 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 867 868 /* No vl15 here */ 869 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 870 if (ps->s_txreq->phdr.hdr.hdr_type) 871 pbc |= PBC_PACKET_BYPASS | 872 PBC_INSERT_BYPASS_ICRC; 873 else 874 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 875 876 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 877 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 878 pbc = create_pbc(ppd, 879 pbc, 880 qp->srate_mbps, 881 vl, 882 plen); 883 884 /* Update HCRC based on packet opcode */ 885 pbc = update_hcrc(ps->opcode, pbc); 886 } 887 tx->wqe = qp->s_wqe; 888 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 889 if (unlikely(ret)) 890 goto bail_build; 891 } 892 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); 893 if (unlikely(ret < 0)) { 894 if (ret == -ECOMM) 895 goto bail_ecomm; 896 return ret; 897 } 898 899 update_tx_opstats(qp, ps, plen); 900 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 901 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 902 return ret; 903 904 bail_ecomm: 905 /* The current one got "sent" */ 906 return 0; 907 bail_build: 908 ret = wait_kmem(dev, qp, ps); 909 if (!ret) { 910 /* free txreq - bad state */ 911 hfi1_put_txreq(ps->s_txreq); 912 ps->s_txreq = NULL; 913 } 914 return ret; 915 } 916 917 /* 918 * If we are now in the error state, return zero to flush the 919 * send work request. 920 */ 921 static int pio_wait(struct rvt_qp *qp, 922 struct send_context *sc, 923 struct hfi1_pkt_state *ps, 924 u32 flag) 925 { 926 struct hfi1_qp_priv *priv = qp->priv; 927 struct hfi1_devdata *dd = sc->dd; 928 unsigned long flags; 929 int ret = 0; 930 931 /* 932 * Note that as soon as want_buffer() is called and 933 * possibly before it returns, sc_piobufavail() 934 * could be called. Therefore, put QP on the I/O wait list before 935 * enabling the PIO avail interrupt. 936 */ 937 spin_lock_irqsave(&qp->s_lock, flags); 938 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 939 write_seqlock(&sc->waitlock); 940 list_add_tail(&ps->s_txreq->txreq.list, 941 &ps->wait->tx_head); 942 if (list_empty(&priv->s_iowait.list)) { 943 struct hfi1_ibdev *dev = &dd->verbs_dev; 944 int was_empty; 945 946 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 947 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); 948 qp->s_flags |= flag; 949 was_empty = list_empty(&sc->piowait); 950 iowait_get_priority(&priv->s_iowait); 951 iowait_queue(ps->pkts_sent, &priv->s_iowait, 952 &sc->piowait); 953 priv->s_iowait.lock = &sc->waitlock; 954 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 955 rvt_get_qp(qp); 956 /* counting: only call wantpiobuf_intr if first user */ 957 if (was_empty) 958 hfi1_sc_wantpiobuf_intr(sc, 1); 959 } 960 write_sequnlock(&sc->waitlock); 961 hfi1_qp_unbusy(qp, ps->wait); 962 ret = -EBUSY; 963 } 964 spin_unlock_irqrestore(&qp->s_lock, flags); 965 return ret; 966 } 967 968 static void verbs_pio_complete(void *arg, int code) 969 { 970 struct rvt_qp *qp = (struct rvt_qp *)arg; 971 struct hfi1_qp_priv *priv = qp->priv; 972 973 if (iowait_pio_dec(&priv->s_iowait)) 974 iowait_drain_wakeup(&priv->s_iowait); 975 } 976 977 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 978 u64 pbc) 979 { 980 struct hfi1_qp_priv *priv = qp->priv; 981 u32 hdrwords = ps->s_txreq->hdr_dwords; 982 struct rvt_sge_state *ss = ps->s_txreq->ss; 983 u32 len = ps->s_txreq->s_cur_size; 984 u32 dwords; 985 u32 plen; 986 struct hfi1_pportdata *ppd = ps->ppd; 987 u32 *hdr; 988 u8 sc5; 989 unsigned long flags = 0; 990 struct send_context *sc; 991 struct pio_buf *pbuf; 992 int wc_status = IB_WC_SUCCESS; 993 int ret = 0; 994 pio_release_cb cb = NULL; 995 u8 extra_bytes = 0; 996 997 if (ps->s_txreq->phdr.hdr.hdr_type) { 998 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); 999 1000 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; 1001 dwords = (len + extra_bytes) >> 2; 1002 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; 1003 } else { 1004 dwords = (len + 3) >> 2; 1005 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; 1006 } 1007 plen = hdrwords + dwords + sizeof(pbc) / 4; 1008 1009 /* only RC/UC use complete */ 1010 switch (qp->ibqp.qp_type) { 1011 case IB_QPT_RC: 1012 case IB_QPT_UC: 1013 cb = verbs_pio_complete; 1014 break; 1015 default: 1016 break; 1017 } 1018 1019 /* vl15 special case taken care of in ud.c */ 1020 sc5 = priv->s_sc; 1021 sc = ps->s_txreq->psc; 1022 1023 if (likely(pbc == 0)) { 1024 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 1025 1026 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 1027 if (ps->s_txreq->phdr.hdr.hdr_type) 1028 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; 1029 else 1030 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 1031 1032 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 1033 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 1034 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 1035 1036 /* Update HCRC based on packet opcode */ 1037 pbc = update_hcrc(ps->opcode, pbc); 1038 } 1039 if (cb) 1040 iowait_pio_inc(&priv->s_iowait); 1041 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 1042 if (unlikely(IS_ERR_OR_NULL(pbuf))) { 1043 if (cb) 1044 verbs_pio_complete(qp, 0); 1045 if (IS_ERR(pbuf)) { 1046 /* 1047 * If we have filled the PIO buffers to capacity and are 1048 * not in an active state this request is not going to 1049 * go out to so just complete it with an error or else a 1050 * ULP or the core may be stuck waiting. 1051 */ 1052 hfi1_cdbg( 1053 PIO, 1054 "alloc failed. state not active, completing"); 1055 wc_status = IB_WC_GENERAL_ERR; 1056 goto pio_bail; 1057 } else { 1058 /* 1059 * This is a normal occurrence. The PIO buffs are full 1060 * up but we are still happily sending, well we could be 1061 * so lets continue to queue the request. 1062 */ 1063 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 1064 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 1065 if (!ret) 1066 /* txreq not queued - free */ 1067 goto bail; 1068 /* tx consumed in wait */ 1069 return ret; 1070 } 1071 } 1072 1073 if (dwords == 0) { 1074 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 1075 } else { 1076 seg_pio_copy_start(pbuf, pbc, 1077 hdr, hdrwords * 4); 1078 if (ss) { 1079 while (len) { 1080 void *addr = ss->sge.vaddr; 1081 u32 slen = rvt_get_sge_length(&ss->sge, len); 1082 1083 rvt_update_sge(ss, slen, false); 1084 seg_pio_copy_mid(pbuf, addr, slen); 1085 len -= slen; 1086 } 1087 } 1088 /* add icrc, lt byte, and padding to flit */ 1089 if (extra_bytes) 1090 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes); 1091 1092 seg_pio_copy_end(pbuf); 1093 } 1094 1095 update_tx_opstats(qp, ps, plen); 1096 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 1097 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 1098 1099 pio_bail: 1100 spin_lock_irqsave(&qp->s_lock, flags); 1101 if (qp->s_wqe) { 1102 rvt_send_complete(qp, qp->s_wqe, wc_status); 1103 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 1104 if (unlikely(wc_status == IB_WC_GENERAL_ERR)) 1105 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr); 1106 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 1107 } 1108 spin_unlock_irqrestore(&qp->s_lock, flags); 1109 1110 ret = 0; 1111 1112 bail: 1113 hfi1_put_txreq(ps->s_txreq); 1114 return ret; 1115 } 1116 1117 /* 1118 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1119 * being an entry from the partition key table), return 0 1120 * otherwise. Use the matching criteria for egress partition keys 1121 * specified in the OPAv1 spec., section 9.1l.7. 1122 */ 1123 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 1124 { 1125 u16 mkey = pkey & PKEY_LOW_15_MASK; 1126 u16 mentry = ent & PKEY_LOW_15_MASK; 1127 1128 if (mkey == mentry) { 1129 /* 1130 * If pkey[15] is set (full partition member), 1131 * is bit 15 in the corresponding table element 1132 * clear (limited member)? 1133 */ 1134 if (pkey & PKEY_MEMBER_MASK) 1135 return !!(ent & PKEY_MEMBER_MASK); 1136 return 1; 1137 } 1138 return 0; 1139 } 1140 1141 /** 1142 * egress_pkey_check - check P_KEY of a packet 1143 * @ppd: Physical IB port data 1144 * @slid: SLID for packet 1145 * @bkey: PKEY for header 1146 * @sc5: SC for packet 1147 * @s_pkey_index: It will be used for look up optimization for kernel contexts 1148 * only. If it is negative value, then it means user contexts is calling this 1149 * function. 1150 * 1151 * It checks if hdr's pkey is valid. 1152 * 1153 * Return: 0 on success, otherwise, 1 1154 */ 1155 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1156 u8 sc5, int8_t s_pkey_index) 1157 { 1158 struct hfi1_devdata *dd; 1159 int i; 1160 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1161 1162 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1163 return 0; 1164 1165 /* If SC15, pkey[0:14] must be 0x7fff */ 1166 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1167 goto bad; 1168 1169 /* Is the pkey = 0x0, or 0x8000? */ 1170 if ((pkey & PKEY_LOW_15_MASK) == 0) 1171 goto bad; 1172 1173 /* 1174 * For the kernel contexts only, if a qp is passed into the function, 1175 * the most likely matching pkey has index qp->s_pkey_index 1176 */ 1177 if (!is_user_ctxt_mechanism && 1178 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1179 return 0; 1180 } 1181 1182 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1183 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1184 return 0; 1185 } 1186 bad: 1187 /* 1188 * For the user-context mechanism, the P_KEY check would only happen 1189 * once per SDMA request, not once per packet. Therefore, there's no 1190 * need to increment the counter for the user-context mechanism. 1191 */ 1192 if (!is_user_ctxt_mechanism) { 1193 incr_cntr64(&ppd->port_xmit_constraint_errors); 1194 dd = ppd->dd; 1195 if (!(dd->err_info_xmit_constraint.status & 1196 OPA_EI_STATUS_SMASK)) { 1197 dd->err_info_xmit_constraint.status |= 1198 OPA_EI_STATUS_SMASK; 1199 dd->err_info_xmit_constraint.slid = slid; 1200 dd->err_info_xmit_constraint.pkey = pkey; 1201 } 1202 } 1203 return 1; 1204 } 1205 1206 /** 1207 * get_send_routine - choose an egress routine 1208 * 1209 * Choose an egress routine based on QP type 1210 * and size 1211 */ 1212 static inline send_routine get_send_routine(struct rvt_qp *qp, 1213 struct hfi1_pkt_state *ps) 1214 { 1215 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1216 struct hfi1_qp_priv *priv = qp->priv; 1217 struct verbs_txreq *tx = ps->s_txreq; 1218 1219 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1220 return dd->process_pio_send; 1221 switch (qp->ibqp.qp_type) { 1222 case IB_QPT_SMI: 1223 return dd->process_pio_send; 1224 case IB_QPT_GSI: 1225 case IB_QPT_UD: 1226 break; 1227 case IB_QPT_UC: 1228 case IB_QPT_RC: 1229 priv->s_running_pkt_size = 1230 (tx->s_cur_size + priv->s_running_pkt_size) / 2; 1231 if (piothreshold && 1232 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) && 1233 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && 1234 iowait_sdma_pending(&priv->s_iowait) == 0 && 1235 !sdma_txreq_built(&tx->txreq)) 1236 return dd->process_pio_send; 1237 break; 1238 default: 1239 break; 1240 } 1241 return dd->process_dma_send; 1242 } 1243 1244 /** 1245 * hfi1_verbs_send - send a packet 1246 * @qp: the QP to send on 1247 * @ps: the state of the packet to send 1248 * 1249 * Return zero if packet is sent or queued OK. 1250 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1251 */ 1252 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1253 { 1254 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1255 struct hfi1_qp_priv *priv = qp->priv; 1256 struct ib_other_headers *ohdr = NULL; 1257 send_routine sr; 1258 int ret; 1259 u16 pkey; 1260 u32 slid; 1261 u8 l4 = 0; 1262 1263 /* locate the pkey within the headers */ 1264 if (ps->s_txreq->phdr.hdr.hdr_type) { 1265 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; 1266 1267 l4 = hfi1_16B_get_l4(hdr); 1268 if (l4 == OPA_16B_L4_IB_LOCAL) 1269 ohdr = &hdr->u.oth; 1270 else if (l4 == OPA_16B_L4_IB_GLOBAL) 1271 ohdr = &hdr->u.l.oth; 1272 1273 slid = hfi1_16B_get_slid(hdr); 1274 pkey = hfi1_16B_get_pkey(hdr); 1275 } else { 1276 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; 1277 u8 lnh = ib_get_lnh(hdr); 1278 1279 if (lnh == HFI1_LRH_GRH) 1280 ohdr = &hdr->u.l.oth; 1281 else 1282 ohdr = &hdr->u.oth; 1283 slid = ib_get_slid(hdr); 1284 pkey = ib_bth_get_pkey(ohdr); 1285 } 1286 1287 if (likely(l4 != OPA_16B_L4_FM)) 1288 ps->opcode = ib_bth_get_opcode(ohdr); 1289 else 1290 ps->opcode = IB_OPCODE_UD_SEND_ONLY; 1291 1292 sr = get_send_routine(qp, ps); 1293 ret = egress_pkey_check(dd->pport, slid, pkey, 1294 priv->s_sc, qp->s_pkey_index); 1295 if (unlikely(ret)) { 1296 /* 1297 * The value we are returning here does not get propagated to 1298 * the verbs caller. Thus we need to complete the request with 1299 * error otherwise the caller could be sitting waiting on the 1300 * completion event. Only do this for PIO. SDMA has its own 1301 * mechanism for handling the errors. So for SDMA we can just 1302 * return. 1303 */ 1304 if (sr == dd->process_pio_send) { 1305 unsigned long flags; 1306 1307 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1308 __func__); 1309 spin_lock_irqsave(&qp->s_lock, flags); 1310 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1311 spin_unlock_irqrestore(&qp->s_lock, flags); 1312 } 1313 return -EINVAL; 1314 } 1315 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1316 return pio_wait(qp, 1317 ps->s_txreq->psc, 1318 ps, 1319 HFI1_S_WAIT_PIO_DRAIN); 1320 return sr(qp, ps, 0); 1321 } 1322 1323 /** 1324 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1325 * @dd: the device data structure 1326 */ 1327 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1328 { 1329 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1330 u32 ver = dd->dc8051_ver; 1331 1332 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1333 1334 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1335 ((u64)(dc8051_ver_min(ver)) << 16) | 1336 (u64)dc8051_ver_patch(ver); 1337 1338 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1339 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1340 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1341 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1342 IB_DEVICE_MEM_MGT_EXTENSIONS | 1343 IB_DEVICE_RDMA_NETDEV_OPA_VNIC; 1344 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1345 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1346 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1347 rdi->dparms.props.hw_ver = dd->minrev; 1348 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1349 rdi->dparms.props.max_mr_size = U64_MAX; 1350 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1351 rdi->dparms.props.max_qp = hfi1_max_qps; 1352 rdi->dparms.props.max_qp_wr = 1353 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ? 1354 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs); 1355 rdi->dparms.props.max_send_sge = hfi1_max_sges; 1356 rdi->dparms.props.max_recv_sge = hfi1_max_sges; 1357 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1358 rdi->dparms.props.max_cq = hfi1_max_cqs; 1359 rdi->dparms.props.max_ah = hfi1_max_ahs; 1360 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1361 rdi->dparms.props.max_map_per_fmr = 32767; 1362 rdi->dparms.props.max_pd = hfi1_max_pds; 1363 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1364 rdi->dparms.props.max_qp_init_rd_atom = 255; 1365 rdi->dparms.props.max_srq = hfi1_max_srqs; 1366 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1367 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1368 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1369 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1370 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1371 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1372 rdi->dparms.props.max_total_mcast_qp_attach = 1373 rdi->dparms.props.max_mcast_qp_attach * 1374 rdi->dparms.props.max_mcast_grp; 1375 } 1376 1377 static inline u16 opa_speed_to_ib(u16 in) 1378 { 1379 u16 out = 0; 1380 1381 if (in & OPA_LINK_SPEED_25G) 1382 out |= IB_SPEED_EDR; 1383 if (in & OPA_LINK_SPEED_12_5G) 1384 out |= IB_SPEED_FDR; 1385 1386 return out; 1387 } 1388 1389 /* 1390 * Convert a single OPA link width (no multiple flags) to an IB value. 1391 * A zero OPA link width means link down, which means the IB width value 1392 * is a don't care. 1393 */ 1394 static inline u16 opa_width_to_ib(u16 in) 1395 { 1396 switch (in) { 1397 case OPA_LINK_WIDTH_1X: 1398 /* map 2x and 3x to 1x as they don't exist in IB */ 1399 case OPA_LINK_WIDTH_2X: 1400 case OPA_LINK_WIDTH_3X: 1401 return IB_WIDTH_1X; 1402 default: /* link down or unknown, return our largest width */ 1403 case OPA_LINK_WIDTH_4X: 1404 return IB_WIDTH_4X; 1405 } 1406 } 1407 1408 static int query_port(struct rvt_dev_info *rdi, u8 port_num, 1409 struct ib_port_attr *props) 1410 { 1411 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1412 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1413 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1414 u32 lid = ppd->lid; 1415 1416 /* props being zeroed by the caller, avoid zeroing it here */ 1417 props->lid = lid ? lid : 0; 1418 props->lmc = ppd->lmc; 1419 /* OPA logical states match IB logical states */ 1420 props->state = driver_lstate(ppd); 1421 props->phys_state = driver_pstate(ppd); 1422 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1423 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1424 /* see rate_show() in ib core/sysfs.c */ 1425 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); 1426 props->max_vl_num = ppd->vls_supported; 1427 1428 /* Once we are a "first class" citizen and have added the OPA MTUs to 1429 * the core we can advertise the larger MTU enum to the ULPs, for now 1430 * advertise only 4K. 1431 * 1432 * Those applications which are either OPA aware or pass the MTU enum 1433 * from the Path Records to us will get the new 8k MTU. Those that 1434 * attempt to process the MTU enum may fail in various ways. 1435 */ 1436 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1437 4096 : hfi1_max_mtu), IB_MTU_4096); 1438 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1439 mtu_to_enum(ppd->ibmtu, IB_MTU_4096); 1440 1441 return 0; 1442 } 1443 1444 static int modify_device(struct ib_device *device, 1445 int device_modify_mask, 1446 struct ib_device_modify *device_modify) 1447 { 1448 struct hfi1_devdata *dd = dd_from_ibdev(device); 1449 unsigned i; 1450 int ret; 1451 1452 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1453 IB_DEVICE_MODIFY_NODE_DESC)) { 1454 ret = -EOPNOTSUPP; 1455 goto bail; 1456 } 1457 1458 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1459 memcpy(device->node_desc, device_modify->node_desc, 1460 IB_DEVICE_NODE_DESC_MAX); 1461 for (i = 0; i < dd->num_pports; i++) { 1462 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1463 1464 hfi1_node_desc_chg(ibp); 1465 } 1466 } 1467 1468 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1469 ib_hfi1_sys_image_guid = 1470 cpu_to_be64(device_modify->sys_image_guid); 1471 for (i = 0; i < dd->num_pports; i++) { 1472 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1473 1474 hfi1_sys_guid_chg(ibp); 1475 } 1476 } 1477 1478 ret = 0; 1479 1480 bail: 1481 return ret; 1482 } 1483 1484 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) 1485 { 1486 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1487 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1488 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1489 int ret; 1490 1491 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1492 OPA_LINKDOWN_REASON_UNKNOWN); 1493 ret = set_link_state(ppd, HLS_DN_DOWNDEF); 1494 return ret; 1495 } 1496 1497 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1498 int guid_index, __be64 *guid) 1499 { 1500 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1501 1502 if (guid_index >= HFI1_GUIDS_PER_PORT) 1503 return -EINVAL; 1504 1505 *guid = get_sguid(ibp, guid_index); 1506 return 0; 1507 } 1508 1509 /* 1510 * convert ah port,sl to sc 1511 */ 1512 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1513 { 1514 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1515 1516 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1517 } 1518 1519 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1520 { 1521 struct hfi1_ibport *ibp; 1522 struct hfi1_pportdata *ppd; 1523 struct hfi1_devdata *dd; 1524 u8 sc5; 1525 u8 sl; 1526 1527 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && 1528 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) 1529 return -EINVAL; 1530 1531 /* test the mapping for validity */ 1532 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1533 ppd = ppd_from_ibp(ibp); 1534 dd = dd_from_ppd(ppd); 1535 1536 sl = rdma_ah_get_sl(ah_attr); 1537 if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) 1538 return -EINVAL; 1539 1540 sc5 = ibp->sl_to_sc[sl]; 1541 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1542 return -EINVAL; 1543 return 0; 1544 } 1545 1546 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1547 struct rdma_ah_attr *ah_attr, 1548 struct rvt_ah *ah) 1549 { 1550 struct hfi1_ibport *ibp; 1551 struct hfi1_pportdata *ppd; 1552 struct hfi1_devdata *dd; 1553 u8 sc5; 1554 struct rdma_ah_attr *attr = &ah->attr; 1555 1556 /* 1557 * Do not trust reading anything from rvt_ah at this point as it is not 1558 * done being setup. We can however modify things which we need to set. 1559 */ 1560 1561 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1562 ppd = ppd_from_ibp(ibp); 1563 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1564 hfi1_update_ah_attr(ibdev, attr); 1565 hfi1_make_opa_lid(attr); 1566 dd = dd_from_ppd(ppd); 1567 ah->vl = sc_to_vlt(dd, sc5); 1568 if (ah->vl < num_vls || ah->vl == 15) 1569 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1570 } 1571 1572 /** 1573 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1574 * @dd: the hfi1_ib device 1575 */ 1576 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1577 { 1578 return ARRAY_SIZE(dd->pport[0].pkeys); 1579 } 1580 1581 static void init_ibport(struct hfi1_pportdata *ppd) 1582 { 1583 struct hfi1_ibport *ibp = &ppd->ibport_data; 1584 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1585 int i; 1586 1587 for (i = 0; i < sz; i++) { 1588 ibp->sl_to_sc[i] = i; 1589 ibp->sc_to_sl[i] = i; 1590 } 1591 1592 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) 1593 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); 1594 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); 1595 1596 spin_lock_init(&ibp->rvp.lock); 1597 /* Set the prefix to the default value (see ch. 4.1.1) */ 1598 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1599 ibp->rvp.sm_lid = 0; 1600 /* 1601 * Below should only set bits defined in OPA PortInfo.CapabilityMask 1602 * and PortInfo.CapabilityMask3 1603 */ 1604 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1605 IB_PORT_CAP_MASK_NOTICE_SUP; 1606 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; 1607 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1608 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1609 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1610 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1611 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1612 1613 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1614 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1615 } 1616 1617 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) 1618 { 1619 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1620 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1621 u32 ver = dd_from_dev(dev)->dc8051_ver; 1622 1623 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), 1624 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1625 } 1626 1627 static const char * const driver_cntr_names[] = { 1628 /* must be element 0*/ 1629 "DRIVER_KernIntr", 1630 "DRIVER_ErrorIntr", 1631 "DRIVER_Tx_Errs", 1632 "DRIVER_Rcv_Errs", 1633 "DRIVER_HW_Errs", 1634 "DRIVER_NoPIOBufs", 1635 "DRIVER_CtxtsOpen", 1636 "DRIVER_RcvLen_Errs", 1637 "DRIVER_EgrBufFull", 1638 "DRIVER_EgrHdrFull" 1639 }; 1640 1641 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1642 static const char **dev_cntr_names; 1643 static const char **port_cntr_names; 1644 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1645 static int num_dev_cntrs; 1646 static int num_port_cntrs; 1647 static int cntr_names_initialized; 1648 1649 /* 1650 * Convert a list of names separated by '\n' into an array of NULL terminated 1651 * strings. Optionally some entries can be reserved in the array to hold extra 1652 * external strings. 1653 */ 1654 static int init_cntr_names(const char *names_in, 1655 const size_t names_len, 1656 int num_extra_names, 1657 int *num_cntrs, 1658 const char ***cntr_names) 1659 { 1660 char *names_out, *p, **q; 1661 int i, n; 1662 1663 n = 0; 1664 for (i = 0; i < names_len; i++) 1665 if (names_in[i] == '\n') 1666 n++; 1667 1668 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, 1669 GFP_KERNEL); 1670 if (!names_out) { 1671 *num_cntrs = 0; 1672 *cntr_names = NULL; 1673 return -ENOMEM; 1674 } 1675 1676 p = names_out + (n + num_extra_names) * sizeof(char *); 1677 memcpy(p, names_in, names_len); 1678 1679 q = (char **)names_out; 1680 for (i = 0; i < n; i++) { 1681 q[i] = p; 1682 p = strchr(p, '\n'); 1683 *p++ = '\0'; 1684 } 1685 1686 *num_cntrs = n; 1687 *cntr_names = (const char **)names_out; 1688 return 0; 1689 } 1690 1691 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, 1692 u8 port_num) 1693 { 1694 int i, err; 1695 1696 mutex_lock(&cntr_names_lock); 1697 if (!cntr_names_initialized) { 1698 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1699 1700 err = init_cntr_names(dd->cntrnames, 1701 dd->cntrnameslen, 1702 num_driver_cntrs, 1703 &num_dev_cntrs, 1704 &dev_cntr_names); 1705 if (err) { 1706 mutex_unlock(&cntr_names_lock); 1707 return NULL; 1708 } 1709 1710 for (i = 0; i < num_driver_cntrs; i++) 1711 dev_cntr_names[num_dev_cntrs + i] = 1712 driver_cntr_names[i]; 1713 1714 err = init_cntr_names(dd->portcntrnames, 1715 dd->portcntrnameslen, 1716 0, 1717 &num_port_cntrs, 1718 &port_cntr_names); 1719 if (err) { 1720 kfree(dev_cntr_names); 1721 dev_cntr_names = NULL; 1722 mutex_unlock(&cntr_names_lock); 1723 return NULL; 1724 } 1725 cntr_names_initialized = 1; 1726 } 1727 mutex_unlock(&cntr_names_lock); 1728 1729 if (!port_num) 1730 return rdma_alloc_hw_stats_struct( 1731 dev_cntr_names, 1732 num_dev_cntrs + num_driver_cntrs, 1733 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1734 else 1735 return rdma_alloc_hw_stats_struct( 1736 port_cntr_names, 1737 num_port_cntrs, 1738 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1739 } 1740 1741 static u64 hfi1_sps_ints(void) 1742 { 1743 unsigned long index, flags; 1744 struct hfi1_devdata *dd; 1745 u64 sps_ints = 0; 1746 1747 xa_lock_irqsave(&hfi1_dev_table, flags); 1748 xa_for_each(&hfi1_dev_table, index, dd) { 1749 sps_ints += get_all_cpu_total(dd->int_counter); 1750 } 1751 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1752 return sps_ints; 1753 } 1754 1755 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1756 u8 port, int index) 1757 { 1758 u64 *values; 1759 int count; 1760 1761 if (!port) { 1762 u64 *stats = (u64 *)&hfi1_stats; 1763 int i; 1764 1765 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1766 values[num_dev_cntrs] = hfi1_sps_ints(); 1767 for (i = 1; i < num_driver_cntrs; i++) 1768 values[num_dev_cntrs + i] = stats[i]; 1769 count = num_dev_cntrs + num_driver_cntrs; 1770 } else { 1771 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1772 1773 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1774 count = num_port_cntrs; 1775 } 1776 1777 memcpy(stats->value, values, count * sizeof(u64)); 1778 return count; 1779 } 1780 1781 static const struct ib_device_ops hfi1_dev_ops = { 1782 .owner = THIS_MODULE, 1783 .driver_id = RDMA_DRIVER_HFI1, 1784 1785 .alloc_hw_stats = alloc_hw_stats, 1786 .alloc_rdma_netdev = hfi1_vnic_alloc_rn, 1787 .get_dev_fw_str = hfi1_get_dev_fw_str, 1788 .get_hw_stats = get_hw_stats, 1789 .init_port = hfi1_create_port_files, 1790 .modify_device = modify_device, 1791 /* keep process mad in the driver */ 1792 .process_mad = hfi1_process_mad, 1793 }; 1794 1795 /** 1796 * hfi1_register_ib_device - register our device with the infiniband core 1797 * @dd: the device data structure 1798 * Return 0 if successful, errno if unsuccessful. 1799 */ 1800 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1801 { 1802 struct hfi1_ibdev *dev = &dd->verbs_dev; 1803 struct ib_device *ibdev = &dev->rdi.ibdev; 1804 struct hfi1_pportdata *ppd = dd->pport; 1805 struct hfi1_ibport *ibp = &ppd->ibport_data; 1806 unsigned i; 1807 int ret; 1808 1809 for (i = 0; i < dd->num_pports; i++) 1810 init_ibport(ppd + i); 1811 1812 /* Only need to initialize non-zero fields. */ 1813 1814 timer_setup(&dev->mem_timer, mem_timer, 0); 1815 1816 seqlock_init(&dev->iowait_lock); 1817 seqlock_init(&dev->txwait_lock); 1818 INIT_LIST_HEAD(&dev->txwait); 1819 INIT_LIST_HEAD(&dev->memwait); 1820 1821 ret = verbs_txreq_init(dev); 1822 if (ret) 1823 goto err_verbs_txreq; 1824 1825 /* Use first-port GUID as node guid */ 1826 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1827 1828 /* 1829 * The system image GUID is supposed to be the same for all 1830 * HFIs in a single system but since there can be other 1831 * device types in the system, we can't be sure this is unique. 1832 */ 1833 if (!ib_hfi1_sys_image_guid) 1834 ib_hfi1_sys_image_guid = ibdev->node_guid; 1835 ibdev->phys_port_cnt = dd->num_pports; 1836 ibdev->dev.parent = &dd->pcidev->dev; 1837 1838 ib_set_device_ops(ibdev, &hfi1_dev_ops); 1839 1840 strlcpy(ibdev->node_desc, init_utsname()->nodename, 1841 sizeof(ibdev->node_desc)); 1842 1843 /* 1844 * Fill in rvt info object. 1845 */ 1846 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1847 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1848 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1849 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1850 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1851 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1852 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1853 /* 1854 * Fill in rvt info device attributes. 1855 */ 1856 hfi1_fill_device_attr(dd); 1857 1858 /* queue pair */ 1859 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1860 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1861 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1862 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1863 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; 1864 dd->verbs_dev.rdi.dparms.qpn_res_end = 1865 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; 1866 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1867 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1868 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1869 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1870 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | 1871 RDMA_CORE_CAP_OPA_AH; 1872 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1873 1874 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1875 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init; 1876 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1877 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1878 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1879 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1880 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1881 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1882 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1883 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1884 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1885 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1886 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1887 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1888 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1889 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1890 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1891 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1892 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1893 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; 1894 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = 1895 hfi1_comp_vect_mappings_lookup; 1896 1897 /* completeion queue */ 1898 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; 1899 dd->verbs_dev.rdi.dparms.node = dd->node; 1900 1901 /* misc settings */ 1902 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1903 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1904 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1905 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1906 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; 1907 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; 1908 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; 1909 dd->verbs_dev.rdi.dparms.reserved_operations = 1; 1910 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT; 1911 1912 /* post send table */ 1913 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1914 1915 /* opcode translation table */ 1916 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; 1917 1918 ppd = dd->pport; 1919 for (i = 0; i < dd->num_pports; i++, ppd++) 1920 rvt_init_port(&dd->verbs_dev.rdi, 1921 &ppd->ibport_data.rvp, 1922 i, 1923 ppd->pkeys); 1924 1925 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev, 1926 &ib_hfi1_attr_group); 1927 1928 ret = rvt_register_device(&dd->verbs_dev.rdi); 1929 if (ret) 1930 goto err_verbs_txreq; 1931 1932 ret = hfi1_verbs_register_sysfs(dd); 1933 if (ret) 1934 goto err_class; 1935 1936 return ret; 1937 1938 err_class: 1939 rvt_unregister_device(&dd->verbs_dev.rdi); 1940 err_verbs_txreq: 1941 verbs_txreq_exit(dev); 1942 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1943 return ret; 1944 } 1945 1946 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1947 { 1948 struct hfi1_ibdev *dev = &dd->verbs_dev; 1949 1950 hfi1_verbs_unregister_sysfs(dd); 1951 1952 rvt_unregister_device(&dd->verbs_dev.rdi); 1953 1954 if (!list_empty(&dev->txwait)) 1955 dd_dev_err(dd, "txwait list not empty!\n"); 1956 if (!list_empty(&dev->memwait)) 1957 dd_dev_err(dd, "memwait list not empty!\n"); 1958 1959 del_timer_sync(&dev->mem_timer); 1960 verbs_txreq_exit(dev); 1961 1962 mutex_lock(&cntr_names_lock); 1963 kfree(dev_cntr_names); 1964 kfree(port_cntr_names); 1965 dev_cntr_names = NULL; 1966 port_cntr_names = NULL; 1967 cntr_names_initialized = 0; 1968 mutex_unlock(&cntr_names_lock); 1969 } 1970 1971 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1972 { 1973 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1974 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1975 struct ib_header *hdr = packet->hdr; 1976 struct rvt_qp *qp = packet->qp; 1977 u32 lqpn, rqpn = 0; 1978 u16 rlid = 0; 1979 u8 sl, sc5, svc_type; 1980 1981 switch (packet->qp->ibqp.qp_type) { 1982 case IB_QPT_UC: 1983 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1984 rqpn = qp->remote_qpn; 1985 svc_type = IB_CC_SVCTYPE_UC; 1986 break; 1987 case IB_QPT_RC: 1988 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1989 rqpn = qp->remote_qpn; 1990 svc_type = IB_CC_SVCTYPE_RC; 1991 break; 1992 case IB_QPT_SMI: 1993 case IB_QPT_GSI: 1994 case IB_QPT_UD: 1995 svc_type = IB_CC_SVCTYPE_UD; 1996 break; 1997 default: 1998 ibp->rvp.n_pkt_drops++; 1999 return; 2000 } 2001 2002 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 2003 sl = ibp->sc_to_sl[sc5]; 2004 lqpn = qp->ibqp.qp_num; 2005 2006 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 2007 } 2008