xref: /openbmc/linux/drivers/infiniband/hw/hfi1/verbs.c (revision 8ec90bfd)
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58 
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69 #include "ipoib.h"
70 
71 static unsigned int hfi1_lkey_table_size = 16;
72 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
73 		   S_IRUGO);
74 MODULE_PARM_DESC(lkey_table_size,
75 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
76 
77 static unsigned int hfi1_max_pds = 0xFFFF;
78 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_pds,
80 		 "Maximum number of protection domains to support");
81 
82 static unsigned int hfi1_max_ahs = 0xFFFF;
83 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
84 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
85 
86 unsigned int hfi1_max_cqes = 0x2FFFFF;
87 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
88 MODULE_PARM_DESC(max_cqes,
89 		 "Maximum number of completion queue entries to support");
90 
91 unsigned int hfi1_max_cqs = 0x1FFFF;
92 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
93 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
94 
95 unsigned int hfi1_max_qp_wrs = 0x3FFF;
96 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
97 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
98 
99 unsigned int hfi1_max_qps = 32768;
100 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
101 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
102 
103 unsigned int hfi1_max_sges = 0x60;
104 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
105 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
106 
107 unsigned int hfi1_max_mcast_grps = 16384;
108 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
109 MODULE_PARM_DESC(max_mcast_grps,
110 		 "Maximum number of multicast groups to support");
111 
112 unsigned int hfi1_max_mcast_qp_attached = 16;
113 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
114 		   uint, S_IRUGO);
115 MODULE_PARM_DESC(max_mcast_qp_attached,
116 		 "Maximum number of attached QPs to support");
117 
118 unsigned int hfi1_max_srqs = 1024;
119 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
120 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
121 
122 unsigned int hfi1_max_srq_sges = 128;
123 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
124 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
125 
126 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
127 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
128 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
129 
130 unsigned short piothreshold = 256;
131 module_param(piothreshold, ushort, S_IRUGO);
132 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
133 
134 static unsigned int sge_copy_mode;
135 module_param(sge_copy_mode, uint, S_IRUGO);
136 MODULE_PARM_DESC(sge_copy_mode,
137 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
138 
139 static void verbs_sdma_complete(
140 	struct sdma_txreq *cookie,
141 	int status);
142 
143 static int pio_wait(struct rvt_qp *qp,
144 		    struct send_context *sc,
145 		    struct hfi1_pkt_state *ps,
146 		    u32 flag);
147 
148 /* Length of buffer to create verbs txreq cache name */
149 #define TXREQ_NAME_LEN 24
150 
151 static uint wss_threshold = 80;
152 module_param(wss_threshold, uint, S_IRUGO);
153 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
154 static uint wss_clean_period = 256;
155 module_param(wss_clean_period, uint, S_IRUGO);
156 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
157 
158 /*
159  * Translate ib_wr_opcode into ib_wc_opcode.
160  */
161 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
162 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
163 	[IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165 	[IB_WR_SEND] = IB_WC_SEND,
166 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168 	[IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
169 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
170 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
171 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
172 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
173 	[IB_WR_REG_MR] = IB_WC_REG_MR
174 };
175 
176 /*
177  * Length of header by opcode, 0 --> not supported
178  */
179 const u8 hdr_len_by_opcode[256] = {
180 	/* RC */
181 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
182 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
183 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
184 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
185 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
186 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
187 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
188 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
189 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
190 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
191 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
192 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
193 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
194 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
195 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
196 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
197 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
198 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
199 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
200 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
201 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
202 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
203 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
204 	[IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
205 	[IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
206 	[IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
207 	[IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
208 	[IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
209 	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
210 	[IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
211 	[IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
212 	/* UC */
213 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
214 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
215 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
216 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
217 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
218 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
219 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
220 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
221 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
222 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
223 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
224 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
225 	/* UD */
226 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
227 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
228 };
229 
230 static const opcode_handler opcode_handler_tbl[256] = {
231 	/* RC */
232 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
233 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
234 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
235 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
236 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
237 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
238 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
239 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
240 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
241 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
242 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
243 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
244 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
245 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
246 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
247 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
248 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
249 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
250 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
251 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
252 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
253 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
254 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
255 
256 	/* TID RDMA has separate handlers for different opcodes.*/
257 	[IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
258 	[IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
259 	[IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
260 	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
261 	[IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
262 	[IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
263 	[IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
264 	[IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
265 
266 	/* UC */
267 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
268 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
269 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
270 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
271 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
272 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
273 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
274 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
275 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
276 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
277 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
278 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
279 	/* UD */
280 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
281 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
282 	/* CNP */
283 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
284 };
285 
286 #define OPMASK 0x1f
287 
288 static const u32 pio_opmask[BIT(3)] = {
289 	/* RC */
290 	[IB_OPCODE_RC >> 5] =
291 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
292 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
293 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
294 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
295 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
296 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
297 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
298 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
299 		BIT(RC_OP(FETCH_ADD) & OPMASK),
300 	/* UC */
301 	[IB_OPCODE_UC >> 5] =
302 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
303 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
304 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
305 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
306 };
307 
308 /*
309  * System image GUID.
310  */
311 __be64 ib_hfi1_sys_image_guid;
312 
313 /*
314  * Make sure the QP is ready and able to accept the given opcode.
315  */
316 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
317 {
318 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
319 		return NULL;
320 	if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
321 	     packet->qp->allowed_ops) ||
322 	    (packet->opcode == IB_OPCODE_CNP))
323 		return opcode_handler_tbl[packet->opcode];
324 
325 	return NULL;
326 }
327 
328 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
329 {
330 #ifdef CONFIG_FAULT_INJECTION
331 	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
332 		/*
333 		 * In order to drop non-IB traffic we
334 		 * set PbcInsertHrc to NONE (0x2).
335 		 * The packet will still be delivered
336 		 * to the receiving node but a
337 		 * KHdrHCRCErr (KDETH packet with a bad
338 		 * HCRC) will be triggered and the
339 		 * packet will not be delivered to the
340 		 * correct context.
341 		 */
342 		pbc &= ~PBC_INSERT_HCRC_SMASK;
343 		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
344 	} else {
345 		/*
346 		 * In order to drop regular verbs
347 		 * traffic we set the PbcTestEbp
348 		 * flag. The packet will still be
349 		 * delivered to the receiving node but
350 		 * a 'late ebp error' will be
351 		 * triggered and will be dropped.
352 		 */
353 		pbc |= PBC_TEST_EBP;
354 	}
355 #endif
356 	return pbc;
357 }
358 
359 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
360 {
361 	if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
362 	    !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
363 		return NULL;
364 	if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
365 		return opcode_handler_tbl[opcode];
366 	return NULL;
367 }
368 
369 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
370 {
371 	struct hfi1_ctxtdata *rcd = packet->rcd;
372 	struct ib_header *hdr = packet->hdr;
373 	u32 tlen = packet->tlen;
374 	struct hfi1_pportdata *ppd = rcd->ppd;
375 	struct hfi1_ibport *ibp = &ppd->ibport_data;
376 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
377 	opcode_handler opcode_handler;
378 	unsigned long flags;
379 	u32 qp_num;
380 	int lnh;
381 	u8 opcode;
382 
383 	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
384 	if (unlikely(tlen < 15 * sizeof(u32)))
385 		goto drop;
386 
387 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
388 	if (lnh != HFI1_LRH_BTH)
389 		goto drop;
390 
391 	packet->ohdr = &hdr->u.oth;
392 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
393 
394 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
395 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
396 
397 	/* verbs_qp can be picked up from any tid_rdma header struct */
398 	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
399 		RVT_QPN_MASK;
400 
401 	rcu_read_lock();
402 	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
403 	if (!packet->qp)
404 		goto drop_rcu;
405 	spin_lock_irqsave(&packet->qp->r_lock, flags);
406 	opcode_handler = tid_qp_ok(opcode, packet);
407 	if (likely(opcode_handler))
408 		opcode_handler(packet);
409 	else
410 		goto drop_unlock;
411 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
412 	rcu_read_unlock();
413 
414 	return;
415 drop_unlock:
416 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
417 drop_rcu:
418 	rcu_read_unlock();
419 drop:
420 	ibp->rvp.n_pkt_drops++;
421 }
422 
423 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
424 {
425 	struct hfi1_ctxtdata *rcd = packet->rcd;
426 	struct ib_header *hdr = packet->hdr;
427 	u32 tlen = packet->tlen;
428 	struct hfi1_pportdata *ppd = rcd->ppd;
429 	struct hfi1_ibport *ibp = &ppd->ibport_data;
430 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
431 	opcode_handler opcode_handler;
432 	unsigned long flags;
433 	u32 qp_num;
434 	int lnh;
435 	u8 opcode;
436 
437 	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
438 	if (unlikely(tlen < 15 * sizeof(u32)))
439 		goto drop;
440 
441 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
442 	if (lnh != HFI1_LRH_BTH)
443 		goto drop;
444 
445 	packet->ohdr = &hdr->u.oth;
446 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
447 
448 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
449 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
450 
451 	/* verbs_qp can be picked up from any tid_rdma header struct */
452 	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
453 		RVT_QPN_MASK;
454 
455 	rcu_read_lock();
456 	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
457 	if (!packet->qp)
458 		goto drop_rcu;
459 	spin_lock_irqsave(&packet->qp->r_lock, flags);
460 	opcode_handler = tid_qp_ok(opcode, packet);
461 	if (likely(opcode_handler))
462 		opcode_handler(packet);
463 	else
464 		goto drop_unlock;
465 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
466 	rcu_read_unlock();
467 
468 	return;
469 drop_unlock:
470 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
471 drop_rcu:
472 	rcu_read_unlock();
473 drop:
474 	ibp->rvp.n_pkt_drops++;
475 }
476 
477 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
478 {
479 	struct hfi1_ctxtdata *rcd = packet->rcd;
480 	struct hfi1_pportdata *ppd = rcd->ppd;
481 	struct hfi1_16b_header *hdr = packet->hdr;
482 	u16 pkey;
483 
484 	/* Pkey check needed only for bypass packets */
485 	if (packet->etype != RHF_RCV_TYPE_BYPASS)
486 		return 0;
487 
488 	/* Perform pkey check */
489 	pkey = hfi1_16B_get_pkey(hdr);
490 	return ingress_pkey_check(ppd, pkey, packet->sc,
491 				  packet->qp->s_pkey_index,
492 				  packet->slid, true);
493 }
494 
495 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
496 				      bool is_mcast)
497 {
498 	u32 qp_num;
499 	struct hfi1_ctxtdata *rcd = packet->rcd;
500 	struct hfi1_pportdata *ppd = rcd->ppd;
501 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
502 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
503 	opcode_handler packet_handler;
504 	unsigned long flags;
505 
506 	inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
507 
508 	if (unlikely(is_mcast)) {
509 		struct rvt_mcast *mcast;
510 		struct rvt_mcast_qp *p;
511 
512 		if (!packet->grh)
513 			goto drop;
514 		mcast = rvt_mcast_find(&ibp->rvp,
515 				       &packet->grh->dgid,
516 				       opa_get_lid(packet->dlid, 9B));
517 		if (!mcast)
518 			goto drop;
519 		rcu_read_lock();
520 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
521 			packet->qp = p->qp;
522 			if (hfi1_do_pkey_check(packet))
523 				goto unlock_drop;
524 			spin_lock_irqsave(&packet->qp->r_lock, flags);
525 			packet_handler = qp_ok(packet);
526 			if (likely(packet_handler))
527 				packet_handler(packet);
528 			else
529 				ibp->rvp.n_pkt_drops++;
530 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
531 		}
532 		rcu_read_unlock();
533 		/*
534 		 * Notify rvt_multicast_detach() if it is waiting for us
535 		 * to finish.
536 		 */
537 		if (atomic_dec_return(&mcast->refcount) <= 1)
538 			wake_up(&mcast->wait);
539 	} else {
540 		/* Get the destination QP number. */
541 		if (packet->etype == RHF_RCV_TYPE_BYPASS &&
542 		    hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
543 			qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
544 		else
545 			qp_num = ib_bth_get_qpn(packet->ohdr);
546 
547 		rcu_read_lock();
548 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
549 		if (!packet->qp)
550 			goto unlock_drop;
551 
552 		if (hfi1_do_pkey_check(packet))
553 			goto unlock_drop;
554 
555 		spin_lock_irqsave(&packet->qp->r_lock, flags);
556 		packet_handler = qp_ok(packet);
557 		if (likely(packet_handler))
558 			packet_handler(packet);
559 		else
560 			ibp->rvp.n_pkt_drops++;
561 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
562 		rcu_read_unlock();
563 	}
564 	return;
565 unlock_drop:
566 	rcu_read_unlock();
567 drop:
568 	ibp->rvp.n_pkt_drops++;
569 }
570 
571 /**
572  * hfi1_ib_rcv - process an incoming packet
573  * @packet: data packet information
574  *
575  * This is called to process an incoming packet at interrupt level.
576  */
577 void hfi1_ib_rcv(struct hfi1_packet *packet)
578 {
579 	struct hfi1_ctxtdata *rcd = packet->rcd;
580 
581 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
582 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
583 }
584 
585 void hfi1_16B_rcv(struct hfi1_packet *packet)
586 {
587 	struct hfi1_ctxtdata *rcd = packet->rcd;
588 
589 	trace_input_ibhdr(rcd->dd, packet, false);
590 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
591 }
592 
593 /*
594  * This is called from a timer to check for QPs
595  * which need kernel memory in order to send a packet.
596  */
597 static void mem_timer(struct timer_list *t)
598 {
599 	struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
600 	struct list_head *list = &dev->memwait;
601 	struct rvt_qp *qp = NULL;
602 	struct iowait *wait;
603 	unsigned long flags;
604 	struct hfi1_qp_priv *priv;
605 
606 	write_seqlock_irqsave(&dev->iowait_lock, flags);
607 	if (!list_empty(list)) {
608 		wait = list_first_entry(list, struct iowait, list);
609 		qp = iowait_to_qp(wait);
610 		priv = qp->priv;
611 		list_del_init(&priv->s_iowait.list);
612 		priv->s_iowait.lock = NULL;
613 		/* refcount held until actual wake up */
614 		if (!list_empty(list))
615 			mod_timer(&dev->mem_timer, jiffies + 1);
616 	}
617 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
618 
619 	if (qp)
620 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
621 }
622 
623 /*
624  * This is called with progress side lock held.
625  */
626 /* New API */
627 static void verbs_sdma_complete(
628 	struct sdma_txreq *cookie,
629 	int status)
630 {
631 	struct verbs_txreq *tx =
632 		container_of(cookie, struct verbs_txreq, txreq);
633 	struct rvt_qp *qp = tx->qp;
634 
635 	spin_lock(&qp->s_lock);
636 	if (tx->wqe) {
637 		rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
638 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
639 		struct hfi1_opa_header *hdr;
640 
641 		hdr = &tx->phdr.hdr;
642 		if (unlikely(status == SDMA_TXREQ_S_ABORTED))
643 			hfi1_rc_verbs_aborted(qp, hdr);
644 		hfi1_rc_send_complete(qp, hdr);
645 	}
646 	spin_unlock(&qp->s_lock);
647 
648 	hfi1_put_txreq(tx);
649 }
650 
651 void hfi1_wait_kmem(struct rvt_qp *qp)
652 {
653 	struct hfi1_qp_priv *priv = qp->priv;
654 	struct ib_qp *ibqp = &qp->ibqp;
655 	struct ib_device *ibdev = ibqp->device;
656 	struct hfi1_ibdev *dev = to_idev(ibdev);
657 
658 	if (list_empty(&priv->s_iowait.list)) {
659 		if (list_empty(&dev->memwait))
660 			mod_timer(&dev->mem_timer, jiffies + 1);
661 		qp->s_flags |= RVT_S_WAIT_KMEM;
662 		list_add_tail(&priv->s_iowait.list, &dev->memwait);
663 		priv->s_iowait.lock = &dev->iowait_lock;
664 		trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
665 		rvt_get_qp(qp);
666 	}
667 }
668 
669 static int wait_kmem(struct hfi1_ibdev *dev,
670 		     struct rvt_qp *qp,
671 		     struct hfi1_pkt_state *ps)
672 {
673 	unsigned long flags;
674 	int ret = 0;
675 
676 	spin_lock_irqsave(&qp->s_lock, flags);
677 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
678 		write_seqlock(&dev->iowait_lock);
679 		list_add_tail(&ps->s_txreq->txreq.list,
680 			      &ps->wait->tx_head);
681 		hfi1_wait_kmem(qp);
682 		write_sequnlock(&dev->iowait_lock);
683 		hfi1_qp_unbusy(qp, ps->wait);
684 		ret = -EBUSY;
685 	}
686 	spin_unlock_irqrestore(&qp->s_lock, flags);
687 
688 	return ret;
689 }
690 
691 /*
692  * This routine calls txadds for each sg entry.
693  *
694  * Add failures will revert the sge cursor
695  */
696 static noinline int build_verbs_ulp_payload(
697 	struct sdma_engine *sde,
698 	u32 length,
699 	struct verbs_txreq *tx)
700 {
701 	struct rvt_sge_state *ss = tx->ss;
702 	struct rvt_sge *sg_list = ss->sg_list;
703 	struct rvt_sge sge = ss->sge;
704 	u8 num_sge = ss->num_sge;
705 	u32 len;
706 	int ret = 0;
707 
708 	while (length) {
709 		len = rvt_get_sge_length(&ss->sge, length);
710 		WARN_ON_ONCE(len == 0);
711 		ret = sdma_txadd_kvaddr(
712 			sde->dd,
713 			&tx->txreq,
714 			ss->sge.vaddr,
715 			len);
716 		if (ret)
717 			goto bail_txadd;
718 		rvt_update_sge(ss, len, false);
719 		length -= len;
720 	}
721 	return ret;
722 bail_txadd:
723 	/* unwind cursor */
724 	ss->sge = sge;
725 	ss->num_sge = num_sge;
726 	ss->sg_list = sg_list;
727 	return ret;
728 }
729 
730 /**
731  * update_tx_opstats - record stats by opcode
732  * @qp; the qp
733  * @ps: transmit packet state
734  * @plen: the plen in dwords
735  *
736  * This is a routine to record the tx opstats after a
737  * packet has been presented to the egress mechanism.
738  */
739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
740 			      u32 plen)
741 {
742 #ifdef CONFIG_DEBUG_FS
743 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
744 	struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
745 
746 	inc_opstats(plen * 4, &s->stats[ps->opcode]);
747 	put_cpu_ptr(s);
748 #endif
749 }
750 
751 /*
752  * Build the number of DMA descriptors needed to send length bytes of data.
753  *
754  * NOTE: DMA mapping is held in the tx until completed in the ring or
755  *       the tx desc is freed without having been submitted to the ring
756  *
757  * This routine ensures all the helper routine calls succeed.
758  */
759 /* New API */
760 static int build_verbs_tx_desc(
761 	struct sdma_engine *sde,
762 	u32 length,
763 	struct verbs_txreq *tx,
764 	struct hfi1_ahg_info *ahg_info,
765 	u64 pbc)
766 {
767 	int ret = 0;
768 	struct hfi1_sdma_header *phdr = &tx->phdr;
769 	u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
770 	u8 extra_bytes = 0;
771 
772 	if (tx->phdr.hdr.hdr_type) {
773 		/*
774 		 * hdrbytes accounts for PBC. Need to subtract 8 bytes
775 		 * before calculating padding.
776 		 */
777 		extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
778 			      (SIZE_OF_CRC << 2) + SIZE_OF_LT;
779 	}
780 	if (!ahg_info->ahgcount) {
781 		ret = sdma_txinit_ahg(
782 			&tx->txreq,
783 			ahg_info->tx_flags,
784 			hdrbytes + length +
785 			extra_bytes,
786 			ahg_info->ahgidx,
787 			0,
788 			NULL,
789 			0,
790 			verbs_sdma_complete);
791 		if (ret)
792 			goto bail_txadd;
793 		phdr->pbc = cpu_to_le64(pbc);
794 		ret = sdma_txadd_kvaddr(
795 			sde->dd,
796 			&tx->txreq,
797 			phdr,
798 			hdrbytes);
799 		if (ret)
800 			goto bail_txadd;
801 	} else {
802 		ret = sdma_txinit_ahg(
803 			&tx->txreq,
804 			ahg_info->tx_flags,
805 			length,
806 			ahg_info->ahgidx,
807 			ahg_info->ahgcount,
808 			ahg_info->ahgdesc,
809 			hdrbytes,
810 			verbs_sdma_complete);
811 		if (ret)
812 			goto bail_txadd;
813 	}
814 	/* add the ulp payload - if any. tx->ss can be NULL for acks */
815 	if (tx->ss) {
816 		ret = build_verbs_ulp_payload(sde, length, tx);
817 		if (ret)
818 			goto bail_txadd;
819 	}
820 
821 	/* add icrc, lt byte, and padding to flit */
822 	if (extra_bytes)
823 		ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
824 				       sde->dd->sdma_pad_phys, extra_bytes);
825 
826 bail_txadd:
827 	return ret;
828 }
829 
830 static u64 update_hcrc(u8 opcode, u64 pbc)
831 {
832 	if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
833 		pbc &= ~PBC_INSERT_HCRC_SMASK;
834 		pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
835 	}
836 	return pbc;
837 }
838 
839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
840 			u64 pbc)
841 {
842 	struct hfi1_qp_priv *priv = qp->priv;
843 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
844 	u32 hdrwords = ps->s_txreq->hdr_dwords;
845 	u32 len = ps->s_txreq->s_cur_size;
846 	u32 plen;
847 	struct hfi1_ibdev *dev = ps->dev;
848 	struct hfi1_pportdata *ppd = ps->ppd;
849 	struct verbs_txreq *tx;
850 	u8 sc5 = priv->s_sc;
851 	int ret;
852 	u32 dwords;
853 
854 	if (ps->s_txreq->phdr.hdr.hdr_type) {
855 		u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
856 
857 		dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
858 			  SIZE_OF_LT) >> 2;
859 	} else {
860 		dwords = (len + 3) >> 2;
861 	}
862 	plen = hdrwords + dwords + sizeof(pbc) / 4;
863 
864 	tx = ps->s_txreq;
865 	if (!sdma_txreq_built(&tx->txreq)) {
866 		if (likely(pbc == 0)) {
867 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
868 
869 			/* No vl15 here */
870 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
871 			if (ps->s_txreq->phdr.hdr.hdr_type)
872 				pbc |= PBC_PACKET_BYPASS |
873 				       PBC_INSERT_BYPASS_ICRC;
874 			else
875 				pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
876 
877 			pbc = create_pbc(ppd,
878 					 pbc,
879 					 qp->srate_mbps,
880 					 vl,
881 					 plen);
882 
883 			if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
884 				pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
885 			else
886 				/* Update HCRC based on packet opcode */
887 				pbc = update_hcrc(ps->opcode, pbc);
888 		}
889 		tx->wqe = qp->s_wqe;
890 		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
891 		if (unlikely(ret))
892 			goto bail_build;
893 	}
894 	ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
895 	if (unlikely(ret < 0)) {
896 		if (ret == -ECOMM)
897 			goto bail_ecomm;
898 		return ret;
899 	}
900 
901 	update_tx_opstats(qp, ps, plen);
902 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
903 				&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
904 	return ret;
905 
906 bail_ecomm:
907 	/* The current one got "sent" */
908 	return 0;
909 bail_build:
910 	ret = wait_kmem(dev, qp, ps);
911 	if (!ret) {
912 		/* free txreq - bad state */
913 		hfi1_put_txreq(ps->s_txreq);
914 		ps->s_txreq = NULL;
915 	}
916 	return ret;
917 }
918 
919 /*
920  * If we are now in the error state, return zero to flush the
921  * send work request.
922  */
923 static int pio_wait(struct rvt_qp *qp,
924 		    struct send_context *sc,
925 		    struct hfi1_pkt_state *ps,
926 		    u32 flag)
927 {
928 	struct hfi1_qp_priv *priv = qp->priv;
929 	struct hfi1_devdata *dd = sc->dd;
930 	unsigned long flags;
931 	int ret = 0;
932 
933 	/*
934 	 * Note that as soon as want_buffer() is called and
935 	 * possibly before it returns, sc_piobufavail()
936 	 * could be called. Therefore, put QP on the I/O wait list before
937 	 * enabling the PIO avail interrupt.
938 	 */
939 	spin_lock_irqsave(&qp->s_lock, flags);
940 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
941 		write_seqlock(&sc->waitlock);
942 		list_add_tail(&ps->s_txreq->txreq.list,
943 			      &ps->wait->tx_head);
944 		if (list_empty(&priv->s_iowait.list)) {
945 			struct hfi1_ibdev *dev = &dd->verbs_dev;
946 			int was_empty;
947 
948 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
949 			dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
950 			qp->s_flags |= flag;
951 			was_empty = list_empty(&sc->piowait);
952 			iowait_get_priority(&priv->s_iowait);
953 			iowait_queue(ps->pkts_sent, &priv->s_iowait,
954 				     &sc->piowait);
955 			priv->s_iowait.lock = &sc->waitlock;
956 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
957 			rvt_get_qp(qp);
958 			/* counting: only call wantpiobuf_intr if first user */
959 			if (was_empty)
960 				hfi1_sc_wantpiobuf_intr(sc, 1);
961 		}
962 		write_sequnlock(&sc->waitlock);
963 		hfi1_qp_unbusy(qp, ps->wait);
964 		ret = -EBUSY;
965 	}
966 	spin_unlock_irqrestore(&qp->s_lock, flags);
967 	return ret;
968 }
969 
970 static void verbs_pio_complete(void *arg, int code)
971 {
972 	struct rvt_qp *qp = (struct rvt_qp *)arg;
973 	struct hfi1_qp_priv *priv = qp->priv;
974 
975 	if (iowait_pio_dec(&priv->s_iowait))
976 		iowait_drain_wakeup(&priv->s_iowait);
977 }
978 
979 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
980 			u64 pbc)
981 {
982 	struct hfi1_qp_priv *priv = qp->priv;
983 	u32 hdrwords = ps->s_txreq->hdr_dwords;
984 	struct rvt_sge_state *ss = ps->s_txreq->ss;
985 	u32 len = ps->s_txreq->s_cur_size;
986 	u32 dwords;
987 	u32 plen;
988 	struct hfi1_pportdata *ppd = ps->ppd;
989 	u32 *hdr;
990 	u8 sc5;
991 	unsigned long flags = 0;
992 	struct send_context *sc;
993 	struct pio_buf *pbuf;
994 	int wc_status = IB_WC_SUCCESS;
995 	int ret = 0;
996 	pio_release_cb cb = NULL;
997 	u8 extra_bytes = 0;
998 
999 	if (ps->s_txreq->phdr.hdr.hdr_type) {
1000 		u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1001 
1002 		extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1003 		dwords = (len + extra_bytes) >> 2;
1004 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1005 	} else {
1006 		dwords = (len + 3) >> 2;
1007 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1008 	}
1009 	plen = hdrwords + dwords + sizeof(pbc) / 4;
1010 
1011 	/* only RC/UC use complete */
1012 	switch (qp->ibqp.qp_type) {
1013 	case IB_QPT_RC:
1014 	case IB_QPT_UC:
1015 		cb = verbs_pio_complete;
1016 		break;
1017 	default:
1018 		break;
1019 	}
1020 
1021 	/* vl15 special case taken care of in ud.c */
1022 	sc5 = priv->s_sc;
1023 	sc = ps->s_txreq->psc;
1024 
1025 	if (likely(pbc == 0)) {
1026 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1027 
1028 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1029 		if (ps->s_txreq->phdr.hdr.hdr_type)
1030 			pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1031 		else
1032 			pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1033 
1034 		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1035 		if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1036 			pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1037 		else
1038 			/* Update HCRC based on packet opcode */
1039 			pbc = update_hcrc(ps->opcode, pbc);
1040 	}
1041 	if (cb)
1042 		iowait_pio_inc(&priv->s_iowait);
1043 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1044 	if (IS_ERR_OR_NULL(pbuf)) {
1045 		if (cb)
1046 			verbs_pio_complete(qp, 0);
1047 		if (IS_ERR(pbuf)) {
1048 			/*
1049 			 * If we have filled the PIO buffers to capacity and are
1050 			 * not in an active state this request is not going to
1051 			 * go out to so just complete it with an error or else a
1052 			 * ULP or the core may be stuck waiting.
1053 			 */
1054 			hfi1_cdbg(
1055 				PIO,
1056 				"alloc failed. state not active, completing");
1057 			wc_status = IB_WC_GENERAL_ERR;
1058 			goto pio_bail;
1059 		} else {
1060 			/*
1061 			 * This is a normal occurrence. The PIO buffs are full
1062 			 * up but we are still happily sending, well we could be
1063 			 * so lets continue to queue the request.
1064 			 */
1065 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1066 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1067 			if (!ret)
1068 				/* txreq not queued - free */
1069 				goto bail;
1070 			/* tx consumed in wait */
1071 			return ret;
1072 		}
1073 	}
1074 
1075 	if (dwords == 0) {
1076 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1077 	} else {
1078 		seg_pio_copy_start(pbuf, pbc,
1079 				   hdr, hdrwords * 4);
1080 		if (ss) {
1081 			while (len) {
1082 				void *addr = ss->sge.vaddr;
1083 				u32 slen = rvt_get_sge_length(&ss->sge, len);
1084 
1085 				rvt_update_sge(ss, slen, false);
1086 				seg_pio_copy_mid(pbuf, addr, slen);
1087 				len -= slen;
1088 			}
1089 		}
1090 		/* add icrc, lt byte, and padding to flit */
1091 		if (extra_bytes)
1092 			seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1093 					 extra_bytes);
1094 
1095 		seg_pio_copy_end(pbuf);
1096 	}
1097 
1098 	update_tx_opstats(qp, ps, plen);
1099 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100 			       &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1101 
1102 pio_bail:
1103 	spin_lock_irqsave(&qp->s_lock, flags);
1104 	if (qp->s_wqe) {
1105 		rvt_send_complete(qp, qp->s_wqe, wc_status);
1106 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1107 		if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1108 			hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1109 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110 	}
1111 	spin_unlock_irqrestore(&qp->s_lock, flags);
1112 
1113 	ret = 0;
1114 
1115 bail:
1116 	hfi1_put_txreq(ps->s_txreq);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122  * being an entry from the partition key table), return 0
1123  * otherwise. Use the matching criteria for egress partition keys
1124  * specified in the OPAv1 spec., section 9.1l.7.
1125  */
1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127 {
1128 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1129 	u16 mentry = ent & PKEY_LOW_15_MASK;
1130 
1131 	if (mkey == mentry) {
1132 		/*
1133 		 * If pkey[15] is set (full partition member),
1134 		 * is bit 15 in the corresponding table element
1135 		 * clear (limited member)?
1136 		 */
1137 		if (pkey & PKEY_MEMBER_MASK)
1138 			return !!(ent & PKEY_MEMBER_MASK);
1139 		return 1;
1140 	}
1141 	return 0;
1142 }
1143 
1144 /**
1145  * egress_pkey_check - check P_KEY of a packet
1146  * @ppd:  Physical IB port data
1147  * @slid: SLID for packet
1148  * @bkey: PKEY for header
1149  * @sc5:  SC for packet
1150  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151  * only. If it is negative value, then it means user contexts is calling this
1152  * function.
1153  *
1154  * It checks if hdr's pkey is valid.
1155  *
1156  * Return: 0 on success, otherwise, 1
1157  */
1158 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1159 		      u8 sc5, int8_t s_pkey_index)
1160 {
1161 	struct hfi1_devdata *dd;
1162 	int i;
1163 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1164 
1165 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1166 		return 0;
1167 
1168 	/* If SC15, pkey[0:14] must be 0x7fff */
1169 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1170 		goto bad;
1171 
1172 	/* Is the pkey = 0x0, or 0x8000? */
1173 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1174 		goto bad;
1175 
1176 	/*
1177 	 * For the kernel contexts only, if a qp is passed into the function,
1178 	 * the most likely matching pkey has index qp->s_pkey_index
1179 	 */
1180 	if (!is_user_ctxt_mechanism &&
1181 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1182 		return 0;
1183 	}
1184 
1185 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1186 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1187 			return 0;
1188 	}
1189 bad:
1190 	/*
1191 	 * For the user-context mechanism, the P_KEY check would only happen
1192 	 * once per SDMA request, not once per packet.  Therefore, there's no
1193 	 * need to increment the counter for the user-context mechanism.
1194 	 */
1195 	if (!is_user_ctxt_mechanism) {
1196 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1197 		dd = ppd->dd;
1198 		if (!(dd->err_info_xmit_constraint.status &
1199 		      OPA_EI_STATUS_SMASK)) {
1200 			dd->err_info_xmit_constraint.status |=
1201 				OPA_EI_STATUS_SMASK;
1202 			dd->err_info_xmit_constraint.slid = slid;
1203 			dd->err_info_xmit_constraint.pkey = pkey;
1204 		}
1205 	}
1206 	return 1;
1207 }
1208 
1209 /**
1210  * get_send_routine - choose an egress routine
1211  *
1212  * Choose an egress routine based on QP type
1213  * and size
1214  */
1215 static inline send_routine get_send_routine(struct rvt_qp *qp,
1216 					    struct hfi1_pkt_state *ps)
1217 {
1218 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1219 	struct hfi1_qp_priv *priv = qp->priv;
1220 	struct verbs_txreq *tx = ps->s_txreq;
1221 
1222 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1223 		return dd->process_pio_send;
1224 	switch (qp->ibqp.qp_type) {
1225 	case IB_QPT_SMI:
1226 		return dd->process_pio_send;
1227 	case IB_QPT_GSI:
1228 	case IB_QPT_UD:
1229 		break;
1230 	case IB_QPT_UC:
1231 	case IB_QPT_RC:
1232 		priv->s_running_pkt_size =
1233 			(tx->s_cur_size + priv->s_running_pkt_size) / 2;
1234 		if (piothreshold &&
1235 		    priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1236 		    (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1237 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1238 		    !sdma_txreq_built(&tx->txreq))
1239 			return dd->process_pio_send;
1240 		break;
1241 	default:
1242 		break;
1243 	}
1244 	return dd->process_dma_send;
1245 }
1246 
1247 /**
1248  * hfi1_verbs_send - send a packet
1249  * @qp: the QP to send on
1250  * @ps: the state of the packet to send
1251  *
1252  * Return zero if packet is sent or queued OK.
1253  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1254  */
1255 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1256 {
1257 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1258 	struct hfi1_qp_priv *priv = qp->priv;
1259 	struct ib_other_headers *ohdr = NULL;
1260 	send_routine sr;
1261 	int ret;
1262 	u16 pkey;
1263 	u32 slid;
1264 	u8 l4 = 0;
1265 
1266 	/* locate the pkey within the headers */
1267 	if (ps->s_txreq->phdr.hdr.hdr_type) {
1268 		struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1269 
1270 		l4 = hfi1_16B_get_l4(hdr);
1271 		if (l4 == OPA_16B_L4_IB_LOCAL)
1272 			ohdr = &hdr->u.oth;
1273 		else if (l4 == OPA_16B_L4_IB_GLOBAL)
1274 			ohdr = &hdr->u.l.oth;
1275 
1276 		slid = hfi1_16B_get_slid(hdr);
1277 		pkey = hfi1_16B_get_pkey(hdr);
1278 	} else {
1279 		struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1280 		u8 lnh = ib_get_lnh(hdr);
1281 
1282 		if (lnh == HFI1_LRH_GRH)
1283 			ohdr = &hdr->u.l.oth;
1284 		else
1285 			ohdr = &hdr->u.oth;
1286 		slid = ib_get_slid(hdr);
1287 		pkey = ib_bth_get_pkey(ohdr);
1288 	}
1289 
1290 	if (likely(l4 != OPA_16B_L4_FM))
1291 		ps->opcode = ib_bth_get_opcode(ohdr);
1292 	else
1293 		ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1294 
1295 	sr = get_send_routine(qp, ps);
1296 	ret = egress_pkey_check(dd->pport, slid, pkey,
1297 				priv->s_sc, qp->s_pkey_index);
1298 	if (unlikely(ret)) {
1299 		/*
1300 		 * The value we are returning here does not get propagated to
1301 		 * the verbs caller. Thus we need to complete the request with
1302 		 * error otherwise the caller could be sitting waiting on the
1303 		 * completion event. Only do this for PIO. SDMA has its own
1304 		 * mechanism for handling the errors. So for SDMA we can just
1305 		 * return.
1306 		 */
1307 		if (sr == dd->process_pio_send) {
1308 			unsigned long flags;
1309 
1310 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1311 				  __func__);
1312 			spin_lock_irqsave(&qp->s_lock, flags);
1313 			rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1314 			spin_unlock_irqrestore(&qp->s_lock, flags);
1315 		}
1316 		return -EINVAL;
1317 	}
1318 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1319 		return pio_wait(qp,
1320 				ps->s_txreq->psc,
1321 				ps,
1322 				HFI1_S_WAIT_PIO_DRAIN);
1323 	return sr(qp, ps, 0);
1324 }
1325 
1326 /**
1327  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1328  * @dd: the device data structure
1329  */
1330 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1331 {
1332 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1333 	u32 ver = dd->dc8051_ver;
1334 
1335 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1336 
1337 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1338 		((u64)(dc8051_ver_min(ver)) << 16) |
1339 		(u64)dc8051_ver_patch(ver);
1340 
1341 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1342 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1343 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1344 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1345 			IB_DEVICE_MEM_MGT_EXTENSIONS |
1346 			IB_DEVICE_RDMA_NETDEV_OPA;
1347 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1348 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1349 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1350 	rdi->dparms.props.hw_ver = dd->minrev;
1351 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1352 	rdi->dparms.props.max_mr_size = U64_MAX;
1353 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1354 	rdi->dparms.props.max_qp = hfi1_max_qps;
1355 	rdi->dparms.props.max_qp_wr =
1356 		(hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1357 		 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1358 	rdi->dparms.props.max_send_sge = hfi1_max_sges;
1359 	rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1360 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1361 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1362 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1363 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1364 	rdi->dparms.props.max_pd = hfi1_max_pds;
1365 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1366 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1367 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1368 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1369 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1370 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1371 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1372 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1373 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1374 	rdi->dparms.props.max_total_mcast_qp_attach =
1375 					rdi->dparms.props.max_mcast_qp_attach *
1376 					rdi->dparms.props.max_mcast_grp;
1377 }
1378 
1379 static inline u16 opa_speed_to_ib(u16 in)
1380 {
1381 	u16 out = 0;
1382 
1383 	if (in & OPA_LINK_SPEED_25G)
1384 		out |= IB_SPEED_EDR;
1385 	if (in & OPA_LINK_SPEED_12_5G)
1386 		out |= IB_SPEED_FDR;
1387 
1388 	return out;
1389 }
1390 
1391 /*
1392  * Convert a single OPA link width (no multiple flags) to an IB value.
1393  * A zero OPA link width means link down, which means the IB width value
1394  * is a don't care.
1395  */
1396 static inline u16 opa_width_to_ib(u16 in)
1397 {
1398 	switch (in) {
1399 	case OPA_LINK_WIDTH_1X:
1400 	/* map 2x and 3x to 1x as they don't exist in IB */
1401 	case OPA_LINK_WIDTH_2X:
1402 	case OPA_LINK_WIDTH_3X:
1403 		return IB_WIDTH_1X;
1404 	default: /* link down or unknown, return our largest width */
1405 	case OPA_LINK_WIDTH_4X:
1406 		return IB_WIDTH_4X;
1407 	}
1408 }
1409 
1410 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1411 		      struct ib_port_attr *props)
1412 {
1413 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1414 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1415 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1416 	u32 lid = ppd->lid;
1417 
1418 	/* props being zeroed by the caller, avoid zeroing it here */
1419 	props->lid = lid ? lid : 0;
1420 	props->lmc = ppd->lmc;
1421 	/* OPA logical states match IB logical states */
1422 	props->state = driver_lstate(ppd);
1423 	props->phys_state = driver_pstate(ppd);
1424 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1425 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1426 	/* see rate_show() in ib core/sysfs.c */
1427 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1428 	props->max_vl_num = ppd->vls_supported;
1429 
1430 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1431 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1432 	 * advertise only 4K.
1433 	 *
1434 	 * Those applications which are either OPA aware or pass the MTU enum
1435 	 * from the Path Records to us will get the new 8k MTU.  Those that
1436 	 * attempt to process the MTU enum may fail in various ways.
1437 	 */
1438 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1439 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1440 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1441 		mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1442 	props->phys_mtu = HFI1_CAP_IS_KSET(AIP) ? hfi1_max_mtu :
1443 				ib_mtu_enum_to_int(props->max_mtu);
1444 
1445 	return 0;
1446 }
1447 
1448 static int modify_device(struct ib_device *device,
1449 			 int device_modify_mask,
1450 			 struct ib_device_modify *device_modify)
1451 {
1452 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1453 	unsigned i;
1454 	int ret;
1455 
1456 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1457 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1458 		ret = -EOPNOTSUPP;
1459 		goto bail;
1460 	}
1461 
1462 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1463 		memcpy(device->node_desc, device_modify->node_desc,
1464 		       IB_DEVICE_NODE_DESC_MAX);
1465 		for (i = 0; i < dd->num_pports; i++) {
1466 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1467 
1468 			hfi1_node_desc_chg(ibp);
1469 		}
1470 	}
1471 
1472 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1473 		ib_hfi1_sys_image_guid =
1474 			cpu_to_be64(device_modify->sys_image_guid);
1475 		for (i = 0; i < dd->num_pports; i++) {
1476 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1477 
1478 			hfi1_sys_guid_chg(ibp);
1479 		}
1480 	}
1481 
1482 	ret = 0;
1483 
1484 bail:
1485 	return ret;
1486 }
1487 
1488 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1489 {
1490 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1491 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1492 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1493 	int ret;
1494 
1495 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1496 			     OPA_LINKDOWN_REASON_UNKNOWN);
1497 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1498 	return ret;
1499 }
1500 
1501 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1502 			    int guid_index, __be64 *guid)
1503 {
1504 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1505 
1506 	if (guid_index >= HFI1_GUIDS_PER_PORT)
1507 		return -EINVAL;
1508 
1509 	*guid = get_sguid(ibp, guid_index);
1510 	return 0;
1511 }
1512 
1513 /*
1514  * convert ah port,sl to sc
1515  */
1516 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1517 {
1518 	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1519 
1520 	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1521 }
1522 
1523 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1524 {
1525 	struct hfi1_ibport *ibp;
1526 	struct hfi1_pportdata *ppd;
1527 	struct hfi1_devdata *dd;
1528 	u8 sc5;
1529 	u8 sl;
1530 
1531 	if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1532 	    !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1533 		return -EINVAL;
1534 
1535 	/* test the mapping for validity */
1536 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1537 	ppd = ppd_from_ibp(ibp);
1538 	dd = dd_from_ppd(ppd);
1539 
1540 	sl = rdma_ah_get_sl(ah_attr);
1541 	if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1542 		return -EINVAL;
1543 	sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1544 
1545 	sc5 = ibp->sl_to_sc[sl];
1546 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1547 		return -EINVAL;
1548 	return 0;
1549 }
1550 
1551 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1552 			       struct rdma_ah_attr *ah_attr,
1553 			       struct rvt_ah *ah)
1554 {
1555 	struct hfi1_ibport *ibp;
1556 	struct hfi1_pportdata *ppd;
1557 	struct hfi1_devdata *dd;
1558 	u8 sc5;
1559 	struct rdma_ah_attr *attr = &ah->attr;
1560 
1561 	/*
1562 	 * Do not trust reading anything from rvt_ah at this point as it is not
1563 	 * done being setup. We can however modify things which we need to set.
1564 	 */
1565 
1566 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1567 	ppd = ppd_from_ibp(ibp);
1568 	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1569 	hfi1_update_ah_attr(ibdev, attr);
1570 	hfi1_make_opa_lid(attr);
1571 	dd = dd_from_ppd(ppd);
1572 	ah->vl = sc_to_vlt(dd, sc5);
1573 	if (ah->vl < num_vls || ah->vl == 15)
1574 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1575 }
1576 
1577 /**
1578  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1579  * @dd: the hfi1_ib device
1580  */
1581 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1582 {
1583 	return ARRAY_SIZE(dd->pport[0].pkeys);
1584 }
1585 
1586 static void init_ibport(struct hfi1_pportdata *ppd)
1587 {
1588 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1589 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1590 	int i;
1591 
1592 	for (i = 0; i < sz; i++) {
1593 		ibp->sl_to_sc[i] = i;
1594 		ibp->sc_to_sl[i] = i;
1595 	}
1596 
1597 	for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1598 		INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1599 	timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1600 
1601 	spin_lock_init(&ibp->rvp.lock);
1602 	/* Set the prefix to the default value (see ch. 4.1.1) */
1603 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1604 	ibp->rvp.sm_lid = 0;
1605 	/*
1606 	 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1607 	 * and PortInfo.CapabilityMask3
1608 	 */
1609 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1610 		IB_PORT_CAP_MASK_NOTICE_SUP;
1611 	ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1612 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1613 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1614 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1615 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1616 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1617 
1618 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1619 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1620 }
1621 
1622 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1623 {
1624 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1625 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1626 	u32 ver = dd_from_dev(dev)->dc8051_ver;
1627 
1628 	snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1629 		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1630 }
1631 
1632 static const char * const driver_cntr_names[] = {
1633 	/* must be element 0*/
1634 	"DRIVER_KernIntr",
1635 	"DRIVER_ErrorIntr",
1636 	"DRIVER_Tx_Errs",
1637 	"DRIVER_Rcv_Errs",
1638 	"DRIVER_HW_Errs",
1639 	"DRIVER_NoPIOBufs",
1640 	"DRIVER_CtxtsOpen",
1641 	"DRIVER_RcvLen_Errs",
1642 	"DRIVER_EgrBufFull",
1643 	"DRIVER_EgrHdrFull"
1644 };
1645 
1646 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1647 static const char **dev_cntr_names;
1648 static const char **port_cntr_names;
1649 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1650 static int num_dev_cntrs;
1651 static int num_port_cntrs;
1652 static int cntr_names_initialized;
1653 
1654 /*
1655  * Convert a list of names separated by '\n' into an array of NULL terminated
1656  * strings. Optionally some entries can be reserved in the array to hold extra
1657  * external strings.
1658  */
1659 static int init_cntr_names(const char *names_in,
1660 			   const size_t names_len,
1661 			   int num_extra_names,
1662 			   int *num_cntrs,
1663 			   const char ***cntr_names)
1664 {
1665 	char *names_out, *p, **q;
1666 	int i, n;
1667 
1668 	n = 0;
1669 	for (i = 0; i < names_len; i++)
1670 		if (names_in[i] == '\n')
1671 			n++;
1672 
1673 	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1674 			    GFP_KERNEL);
1675 	if (!names_out) {
1676 		*num_cntrs = 0;
1677 		*cntr_names = NULL;
1678 		return -ENOMEM;
1679 	}
1680 
1681 	p = names_out + (n + num_extra_names) * sizeof(char *);
1682 	memcpy(p, names_in, names_len);
1683 
1684 	q = (char **)names_out;
1685 	for (i = 0; i < n; i++) {
1686 		q[i] = p;
1687 		p = strchr(p, '\n');
1688 		*p++ = '\0';
1689 	}
1690 
1691 	*num_cntrs = n;
1692 	*cntr_names = (const char **)names_out;
1693 	return 0;
1694 }
1695 
1696 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1697 					    u8 port_num)
1698 {
1699 	int i, err;
1700 
1701 	mutex_lock(&cntr_names_lock);
1702 	if (!cntr_names_initialized) {
1703 		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1704 
1705 		err = init_cntr_names(dd->cntrnames,
1706 				      dd->cntrnameslen,
1707 				      num_driver_cntrs,
1708 				      &num_dev_cntrs,
1709 				      &dev_cntr_names);
1710 		if (err) {
1711 			mutex_unlock(&cntr_names_lock);
1712 			return NULL;
1713 		}
1714 
1715 		for (i = 0; i < num_driver_cntrs; i++)
1716 			dev_cntr_names[num_dev_cntrs + i] =
1717 				driver_cntr_names[i];
1718 
1719 		err = init_cntr_names(dd->portcntrnames,
1720 				      dd->portcntrnameslen,
1721 				      0,
1722 				      &num_port_cntrs,
1723 				      &port_cntr_names);
1724 		if (err) {
1725 			kfree(dev_cntr_names);
1726 			dev_cntr_names = NULL;
1727 			mutex_unlock(&cntr_names_lock);
1728 			return NULL;
1729 		}
1730 		cntr_names_initialized = 1;
1731 	}
1732 	mutex_unlock(&cntr_names_lock);
1733 
1734 	if (!port_num)
1735 		return rdma_alloc_hw_stats_struct(
1736 				dev_cntr_names,
1737 				num_dev_cntrs + num_driver_cntrs,
1738 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1739 	else
1740 		return rdma_alloc_hw_stats_struct(
1741 				port_cntr_names,
1742 				num_port_cntrs,
1743 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1744 }
1745 
1746 static u64 hfi1_sps_ints(void)
1747 {
1748 	unsigned long index, flags;
1749 	struct hfi1_devdata *dd;
1750 	u64 sps_ints = 0;
1751 
1752 	xa_lock_irqsave(&hfi1_dev_table, flags);
1753 	xa_for_each(&hfi1_dev_table, index, dd) {
1754 		sps_ints += get_all_cpu_total(dd->int_counter);
1755 	}
1756 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1757 	return sps_ints;
1758 }
1759 
1760 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1761 			u8 port, int index)
1762 {
1763 	u64 *values;
1764 	int count;
1765 
1766 	if (!port) {
1767 		u64 *stats = (u64 *)&hfi1_stats;
1768 		int i;
1769 
1770 		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1771 		values[num_dev_cntrs] = hfi1_sps_ints();
1772 		for (i = 1; i < num_driver_cntrs; i++)
1773 			values[num_dev_cntrs + i] = stats[i];
1774 		count = num_dev_cntrs + num_driver_cntrs;
1775 	} else {
1776 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1777 
1778 		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1779 		count = num_port_cntrs;
1780 	}
1781 
1782 	memcpy(stats->value, values, count * sizeof(u64));
1783 	return count;
1784 }
1785 
1786 static const struct ib_device_ops hfi1_dev_ops = {
1787 	.owner = THIS_MODULE,
1788 	.driver_id = RDMA_DRIVER_HFI1,
1789 
1790 	.alloc_hw_stats = alloc_hw_stats,
1791 	.alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1792 	.get_dev_fw_str = hfi1_get_dev_fw_str,
1793 	.get_hw_stats = get_hw_stats,
1794 	.init_port = hfi1_create_port_files,
1795 	.modify_device = modify_device,
1796 	/* keep process mad in the driver */
1797 	.process_mad = hfi1_process_mad,
1798 	.rdma_netdev_get_params = hfi1_ipoib_rn_get_params,
1799 };
1800 
1801 /**
1802  * hfi1_register_ib_device - register our device with the infiniband core
1803  * @dd: the device data structure
1804  * Return 0 if successful, errno if unsuccessful.
1805  */
1806 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1807 {
1808 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1809 	struct ib_device *ibdev = &dev->rdi.ibdev;
1810 	struct hfi1_pportdata *ppd = dd->pport;
1811 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1812 	unsigned i;
1813 	int ret;
1814 
1815 	for (i = 0; i < dd->num_pports; i++)
1816 		init_ibport(ppd + i);
1817 
1818 	/* Only need to initialize non-zero fields. */
1819 
1820 	timer_setup(&dev->mem_timer, mem_timer, 0);
1821 
1822 	seqlock_init(&dev->iowait_lock);
1823 	seqlock_init(&dev->txwait_lock);
1824 	INIT_LIST_HEAD(&dev->txwait);
1825 	INIT_LIST_HEAD(&dev->memwait);
1826 
1827 	ret = verbs_txreq_init(dev);
1828 	if (ret)
1829 		goto err_verbs_txreq;
1830 
1831 	/* Use first-port GUID as node guid */
1832 	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1833 
1834 	/*
1835 	 * The system image GUID is supposed to be the same for all
1836 	 * HFIs in a single system but since there can be other
1837 	 * device types in the system, we can't be sure this is unique.
1838 	 */
1839 	if (!ib_hfi1_sys_image_guid)
1840 		ib_hfi1_sys_image_guid = ibdev->node_guid;
1841 	ibdev->phys_port_cnt = dd->num_pports;
1842 	ibdev->dev.parent = &dd->pcidev->dev;
1843 
1844 	ib_set_device_ops(ibdev, &hfi1_dev_ops);
1845 
1846 	strlcpy(ibdev->node_desc, init_utsname()->nodename,
1847 		sizeof(ibdev->node_desc));
1848 
1849 	/*
1850 	 * Fill in rvt info object.
1851 	 */
1852 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1853 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1854 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1855 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1856 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1857 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1858 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1859 	/*
1860 	 * Fill in rvt info device attributes.
1861 	 */
1862 	hfi1_fill_device_attr(dd);
1863 
1864 	/* queue pair */
1865 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1866 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1867 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1868 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1869 	dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE;
1870 	dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX;
1871 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1872 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1873 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1874 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1875 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1876 						RDMA_CORE_CAP_OPA_AH;
1877 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1878 
1879 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1880 	dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1881 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1882 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1883 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1884 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1885 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1886 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1887 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1888 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1889 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1890 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1891 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1892 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1893 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1894 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1895 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1896 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1897 	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1898 	dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1899 	dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1900 						hfi1_comp_vect_mappings_lookup;
1901 
1902 	/* completeion queue */
1903 	dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1904 	dd->verbs_dev.rdi.dparms.node = dd->node;
1905 
1906 	/* misc settings */
1907 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1908 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1909 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1910 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1911 	dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1912 	dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1913 	dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1914 	dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1915 	dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1916 
1917 	/* post send table */
1918 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1919 
1920 	/* opcode translation table */
1921 	dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1922 
1923 	ppd = dd->pport;
1924 	for (i = 0; i < dd->num_pports; i++, ppd++)
1925 		rvt_init_port(&dd->verbs_dev.rdi,
1926 			      &ppd->ibport_data.rvp,
1927 			      i,
1928 			      ppd->pkeys);
1929 
1930 	rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1931 				    &ib_hfi1_attr_group);
1932 
1933 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1934 	if (ret)
1935 		goto err_verbs_txreq;
1936 
1937 	ret = hfi1_verbs_register_sysfs(dd);
1938 	if (ret)
1939 		goto err_class;
1940 
1941 	return ret;
1942 
1943 err_class:
1944 	rvt_unregister_device(&dd->verbs_dev.rdi);
1945 err_verbs_txreq:
1946 	verbs_txreq_exit(dev);
1947 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1948 	return ret;
1949 }
1950 
1951 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1952 {
1953 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1954 
1955 	hfi1_verbs_unregister_sysfs(dd);
1956 
1957 	rvt_unregister_device(&dd->verbs_dev.rdi);
1958 
1959 	if (!list_empty(&dev->txwait))
1960 		dd_dev_err(dd, "txwait list not empty!\n");
1961 	if (!list_empty(&dev->memwait))
1962 		dd_dev_err(dd, "memwait list not empty!\n");
1963 
1964 	del_timer_sync(&dev->mem_timer);
1965 	verbs_txreq_exit(dev);
1966 
1967 	mutex_lock(&cntr_names_lock);
1968 	kfree(dev_cntr_names);
1969 	kfree(port_cntr_names);
1970 	dev_cntr_names = NULL;
1971 	port_cntr_names = NULL;
1972 	cntr_names_initialized = 0;
1973 	mutex_unlock(&cntr_names_lock);
1974 }
1975 
1976 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1977 {
1978 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1979 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1980 	struct ib_header *hdr = packet->hdr;
1981 	struct rvt_qp *qp = packet->qp;
1982 	u32 lqpn, rqpn = 0;
1983 	u16 rlid = 0;
1984 	u8 sl, sc5, svc_type;
1985 
1986 	switch (packet->qp->ibqp.qp_type) {
1987 	case IB_QPT_UC:
1988 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1989 		rqpn = qp->remote_qpn;
1990 		svc_type = IB_CC_SVCTYPE_UC;
1991 		break;
1992 	case IB_QPT_RC:
1993 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1994 		rqpn = qp->remote_qpn;
1995 		svc_type = IB_CC_SVCTYPE_RC;
1996 		break;
1997 	case IB_QPT_SMI:
1998 	case IB_QPT_GSI:
1999 	case IB_QPT_UD:
2000 		svc_type = IB_CC_SVCTYPE_UD;
2001 		break;
2002 	default:
2003 		ibp->rvp.n_pkt_drops++;
2004 		return;
2005 	}
2006 
2007 	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2008 	sl = ibp->sc_to_sl[sc5];
2009 	lqpn = qp->ibqp.qp_num;
2010 
2011 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2012 }
2013