xref: /openbmc/linux/drivers/infiniband/hw/hfi1/verbs.c (revision 7bcae826)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 		   S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69 
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 		 "Maximum number of protection domains to support");
74 
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78 
79 unsigned int hfi1_max_cqes = 0x2FFFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 		 "Maximum number of completion queue entries to support");
83 
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87 
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91 
92 unsigned int hfi1_max_qps = 32768;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95 
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99 
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 		 "Maximum number of multicast groups to support");
104 
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 		   uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 		 "Maximum number of attached QPs to support");
110 
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114 
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118 
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122 
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126 
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133 
134 static void verbs_sdma_complete(
135 	struct sdma_txreq *cookie,
136 	int status);
137 
138 static int pio_wait(struct rvt_qp *qp,
139 		    struct send_context *sc,
140 		    struct hfi1_pkt_state *ps,
141 		    u32 flag);
142 
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145 
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152 
153 /* memory working set size */
154 struct hfi1_wss {
155 	unsigned long *entries;
156 	atomic_t total_count;
157 	atomic_t clean_counter;
158 	atomic_t clean_entry;
159 
160 	int threshold;
161 	int num_entries;
162 	long pages_mask;
163 };
164 
165 static struct hfi1_wss wss;
166 
167 int hfi1_wss_init(void)
168 {
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 
174 	/* check for a valid percent range - default to 80 if none or invalid */
175 	if (wss_threshold < 1 || wss_threshold > 100)
176 		wss_threshold = 80;
177 	/* reject a wildly large period */
178 	if (wss_clean_period > 1000000)
179 		wss_clean_period = 256;
180 	/* reject a zero period */
181 	if (wss_clean_period == 0)
182 		wss_clean_period = 1;
183 
184 	/*
185 	 * Calculate the table size - the next power of 2 larger than the
186 	 * LLC size.  LLC size is in KiB.
187 	 */
188 	llc_size = wss_llc_size() * 1024;
189 	table_size = roundup_pow_of_two(llc_size);
190 
191 	/* one bit per page in rounded up table */
192 	llc_bits = llc_size / PAGE_SIZE;
193 	table_bits = table_size / PAGE_SIZE;
194 	wss.pages_mask = table_bits - 1;
195 	wss.num_entries = table_bits / BITS_PER_LONG;
196 
197 	wss.threshold = (llc_bits * wss_threshold) / 100;
198 	if (wss.threshold == 0)
199 		wss.threshold = 1;
200 
201 	atomic_set(&wss.clean_counter, wss_clean_period);
202 
203 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 			      GFP_KERNEL);
205 	if (!wss.entries) {
206 		hfi1_wss_exit();
207 		return -ENOMEM;
208 	}
209 
210 	return 0;
211 }
212 
213 void hfi1_wss_exit(void)
214 {
215 	/* coded to handle partially initialized and repeat callers */
216 	kfree(wss.entries);
217 	wss.entries = NULL;
218 }
219 
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237 	int entry;
238 	int weight;
239 	unsigned long bits;
240 
241 	/* become the cleaner if we decrement the counter to zero */
242 	if (atomic_dec_and_test(&wss.clean_counter)) {
243 		/*
244 		 * Set, not add, the clean period.  This avoids an issue
245 		 * where the counter could decrement below the clean period.
246 		 * Doing a set can result in lost decrements, slowing the
247 		 * clean advance.  Since this a heuristic, this possible
248 		 * slowdown is OK.
249 		 *
250 		 * An alternative is to loop, advancing the counter by a
251 		 * clean period until the result is > 0. However, this could
252 		 * lead to several threads keeping another in the clean loop.
253 		 * This could be mitigated by limiting the number of times
254 		 * we stay in the loop.
255 		 */
256 		atomic_set(&wss.clean_counter, wss_clean_period);
257 
258 		/*
259 		 * Uniquely grab the entry to clean and move to next.
260 		 * The current entry is always the lower bits of
261 		 * wss.clean_entry.  The table size, wss.num_entries,
262 		 * is always a power-of-2.
263 		 */
264 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 			& (wss.num_entries - 1);
266 
267 		/* clear the entry and count the bits */
268 		bits = xchg(&wss.entries[entry], 0);
269 		weight = hweight64((u64)bits);
270 		/* only adjust the contended total count if needed */
271 		if (weight)
272 			atomic_sub(weight, &wss.total_count);
273 	}
274 }
275 
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 	u32 nr = page & (BITS_PER_LONG - 1);
284 
285 	if (!test_and_set_bit(nr, &wss.entries[entry]))
286 		atomic_inc(&wss.total_count);
287 
288 	wss_advance_clean_counter();
289 }
290 
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline bool wss_exceeds_threshold(void)
295 {
296 	return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298 
299 /*
300  * Length of header by opcode, 0 --> not supported
301  */
302 const u8 hdr_len_by_opcode[256] = {
303 	/* RC */
304 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
305 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
306 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
307 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
308 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
309 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
310 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
311 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
312 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
313 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
314 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
315 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
316 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
317 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
318 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
319 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
320 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
321 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
322 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
323 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
324 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
325 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
326 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
327 	/* UC */
328 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
329 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
330 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
331 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
332 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
333 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
334 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
335 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
336 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
337 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
338 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
339 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
340 	/* UD */
341 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
342 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
343 };
344 
345 static const opcode_handler opcode_handler_tbl[256] = {
346 	/* RC */
347 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
348 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
349 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
350 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
351 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
352 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
353 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
354 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
355 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
356 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
357 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
358 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
359 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
360 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
361 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
362 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
363 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
364 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
365 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
366 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
367 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
370 	/* UC */
371 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
372 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
373 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
374 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
375 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
376 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
377 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
378 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
379 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
380 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
381 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
382 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
383 	/* UD */
384 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
385 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
386 	/* CNP */
387 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
388 };
389 
390 #define OPMASK 0x1f
391 
392 static const u32 pio_opmask[BIT(3)] = {
393 	/* RC */
394 	[IB_OPCODE_RC >> 5] =
395 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
396 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
397 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
398 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
399 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
400 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
401 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
402 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
403 		BIT(RC_OP(FETCH_ADD) & OPMASK),
404 	/* UC */
405 	[IB_OPCODE_UC >> 5] =
406 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
407 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
408 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
409 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
410 };
411 
412 /*
413  * System image GUID.
414  */
415 __be64 ib_hfi1_sys_image_guid;
416 
417 /**
418  * hfi1_copy_sge - copy data to SGE memory
419  * @ss: the SGE state
420  * @data: the data to copy
421  * @length: the length of the data
422  * @release: boolean to release MR
423  * @copy_last: do a separate copy of the last 8 bytes
424  */
425 void hfi1_copy_sge(
426 	struct rvt_sge_state *ss,
427 	void *data, u32 length,
428 	bool release,
429 	bool copy_last)
430 {
431 	struct rvt_sge *sge = &ss->sge;
432 	int i;
433 	bool in_last = false;
434 	bool cacheless_copy = false;
435 
436 	if (sge_copy_mode == COPY_CACHELESS) {
437 		cacheless_copy = length >= PAGE_SIZE;
438 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
439 		if (length >= PAGE_SIZE) {
440 			/*
441 			 * NOTE: this *assumes*:
442 			 * o The first vaddr is the dest.
443 			 * o If multiple pages, then vaddr is sequential.
444 			 */
445 			wss_insert(sge->vaddr);
446 			if (length >= (2 * PAGE_SIZE))
447 				wss_insert(sge->vaddr + PAGE_SIZE);
448 
449 			cacheless_copy = wss_exceeds_threshold();
450 		} else {
451 			wss_advance_clean_counter();
452 		}
453 	}
454 	if (copy_last) {
455 		if (length > 8) {
456 			length -= 8;
457 		} else {
458 			copy_last = false;
459 			in_last = true;
460 		}
461 	}
462 
463 again:
464 	while (length) {
465 		u32 len = rvt_get_sge_length(sge, length);
466 
467 		WARN_ON_ONCE(len == 0);
468 		if (unlikely(in_last)) {
469 			/* enforce byte transfer ordering */
470 			for (i = 0; i < len; i++)
471 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
472 		} else if (cacheless_copy) {
473 			cacheless_memcpy(sge->vaddr, data, len);
474 		} else {
475 			memcpy(sge->vaddr, data, len);
476 		}
477 		rvt_update_sge(ss, len, release);
478 		data += len;
479 		length -= len;
480 	}
481 
482 	if (copy_last) {
483 		copy_last = false;
484 		in_last = true;
485 		length = 8;
486 		goto again;
487 	}
488 }
489 
490 /*
491  * Make sure the QP is ready and able to accept the given opcode.
492  */
493 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
494 {
495 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
496 		return NULL;
497 	if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
498 	    (opcode == IB_OPCODE_CNP))
499 		return opcode_handler_tbl[opcode];
500 
501 	return NULL;
502 }
503 
504 /**
505  * hfi1_ib_rcv - process an incoming packet
506  * @packet: data packet information
507  *
508  * This is called to process an incoming packet at interrupt level.
509  *
510  * Tlen is the length of the header + data + CRC in bytes.
511  */
512 void hfi1_ib_rcv(struct hfi1_packet *packet)
513 {
514 	struct hfi1_ctxtdata *rcd = packet->rcd;
515 	struct ib_header *hdr = packet->hdr;
516 	u32 tlen = packet->tlen;
517 	struct hfi1_pportdata *ppd = rcd->ppd;
518 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
519 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
520 	opcode_handler packet_handler;
521 	unsigned long flags;
522 	u32 qp_num;
523 	int lnh;
524 	u8 opcode;
525 	u16 lid;
526 
527 	/* Check for GRH */
528 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
529 	if (lnh == HFI1_LRH_BTH) {
530 		packet->ohdr = &hdr->u.oth;
531 	} else if (lnh == HFI1_LRH_GRH) {
532 		u32 vtf;
533 
534 		packet->ohdr = &hdr->u.l.oth;
535 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
536 			goto drop;
537 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
538 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
539 			goto drop;
540 		packet->rcv_flags |= HFI1_HAS_GRH;
541 	} else {
542 		goto drop;
543 	}
544 
545 	trace_input_ibhdr(rcd->dd, hdr);
546 
547 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
548 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
549 
550 	/* Get the destination QP number. */
551 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
552 	lid = be16_to_cpu(hdr->lrh[1]);
553 	if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
554 		     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
555 		struct rvt_mcast *mcast;
556 		struct rvt_mcast_qp *p;
557 
558 		if (lnh != HFI1_LRH_GRH)
559 			goto drop;
560 		mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
561 		if (!mcast)
562 			goto drop;
563 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
564 			packet->qp = p->qp;
565 			spin_lock_irqsave(&packet->qp->r_lock, flags);
566 			packet_handler = qp_ok(opcode, packet);
567 			if (likely(packet_handler))
568 				packet_handler(packet);
569 			else
570 				ibp->rvp.n_pkt_drops++;
571 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
572 		}
573 		/*
574 		 * Notify rvt_multicast_detach() if it is waiting for us
575 		 * to finish.
576 		 */
577 		if (atomic_dec_return(&mcast->refcount) <= 1)
578 			wake_up(&mcast->wait);
579 	} else {
580 		rcu_read_lock();
581 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
582 		if (!packet->qp) {
583 			rcu_read_unlock();
584 			goto drop;
585 		}
586 		spin_lock_irqsave(&packet->qp->r_lock, flags);
587 		packet_handler = qp_ok(opcode, packet);
588 		if (likely(packet_handler))
589 			packet_handler(packet);
590 		else
591 			ibp->rvp.n_pkt_drops++;
592 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
593 		rcu_read_unlock();
594 	}
595 	return;
596 
597 drop:
598 	ibp->rvp.n_pkt_drops++;
599 }
600 
601 /*
602  * This is called from a timer to check for QPs
603  * which need kernel memory in order to send a packet.
604  */
605 static void mem_timer(unsigned long data)
606 {
607 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
608 	struct list_head *list = &dev->memwait;
609 	struct rvt_qp *qp = NULL;
610 	struct iowait *wait;
611 	unsigned long flags;
612 	struct hfi1_qp_priv *priv;
613 
614 	write_seqlock_irqsave(&dev->iowait_lock, flags);
615 	if (!list_empty(list)) {
616 		wait = list_first_entry(list, struct iowait, list);
617 		qp = iowait_to_qp(wait);
618 		priv = qp->priv;
619 		list_del_init(&priv->s_iowait.list);
620 		priv->s_iowait.lock = NULL;
621 		/* refcount held until actual wake up */
622 		if (!list_empty(list))
623 			mod_timer(&dev->mem_timer, jiffies + 1);
624 	}
625 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
626 
627 	if (qp)
628 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
629 }
630 
631 /*
632  * This is called with progress side lock held.
633  */
634 /* New API */
635 static void verbs_sdma_complete(
636 	struct sdma_txreq *cookie,
637 	int status)
638 {
639 	struct verbs_txreq *tx =
640 		container_of(cookie, struct verbs_txreq, txreq);
641 	struct rvt_qp *qp = tx->qp;
642 
643 	spin_lock(&qp->s_lock);
644 	if (tx->wqe) {
645 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
646 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
647 		struct ib_header *hdr;
648 
649 		hdr = &tx->phdr.hdr;
650 		hfi1_rc_send_complete(qp, hdr);
651 	}
652 	spin_unlock(&qp->s_lock);
653 
654 	hfi1_put_txreq(tx);
655 }
656 
657 static int wait_kmem(struct hfi1_ibdev *dev,
658 		     struct rvt_qp *qp,
659 		     struct hfi1_pkt_state *ps)
660 {
661 	struct hfi1_qp_priv *priv = qp->priv;
662 	unsigned long flags;
663 	int ret = 0;
664 
665 	spin_lock_irqsave(&qp->s_lock, flags);
666 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
667 		write_seqlock(&dev->iowait_lock);
668 		list_add_tail(&ps->s_txreq->txreq.list,
669 			      &priv->s_iowait.tx_head);
670 		if (list_empty(&priv->s_iowait.list)) {
671 			if (list_empty(&dev->memwait))
672 				mod_timer(&dev->mem_timer, jiffies + 1);
673 			qp->s_flags |= RVT_S_WAIT_KMEM;
674 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
675 			priv->s_iowait.lock = &dev->iowait_lock;
676 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
677 			rvt_get_qp(qp);
678 		}
679 		write_sequnlock(&dev->iowait_lock);
680 		qp->s_flags &= ~RVT_S_BUSY;
681 		ret = -EBUSY;
682 	}
683 	spin_unlock_irqrestore(&qp->s_lock, flags);
684 
685 	return ret;
686 }
687 
688 /*
689  * This routine calls txadds for each sg entry.
690  *
691  * Add failures will revert the sge cursor
692  */
693 static noinline int build_verbs_ulp_payload(
694 	struct sdma_engine *sde,
695 	u32 length,
696 	struct verbs_txreq *tx)
697 {
698 	struct rvt_sge_state *ss = tx->ss;
699 	struct rvt_sge *sg_list = ss->sg_list;
700 	struct rvt_sge sge = ss->sge;
701 	u8 num_sge = ss->num_sge;
702 	u32 len;
703 	int ret = 0;
704 
705 	while (length) {
706 		len = ss->sge.length;
707 		if (len > length)
708 			len = length;
709 		if (len > ss->sge.sge_length)
710 			len = ss->sge.sge_length;
711 		WARN_ON_ONCE(len == 0);
712 		ret = sdma_txadd_kvaddr(
713 			sde->dd,
714 			&tx->txreq,
715 			ss->sge.vaddr,
716 			len);
717 		if (ret)
718 			goto bail_txadd;
719 		rvt_update_sge(ss, len, false);
720 		length -= len;
721 	}
722 	return ret;
723 bail_txadd:
724 	/* unwind cursor */
725 	ss->sge = sge;
726 	ss->num_sge = num_sge;
727 	ss->sg_list = sg_list;
728 	return ret;
729 }
730 
731 /*
732  * Build the number of DMA descriptors needed to send length bytes of data.
733  *
734  * NOTE: DMA mapping is held in the tx until completed in the ring or
735  *       the tx desc is freed without having been submitted to the ring
736  *
737  * This routine ensures all the helper routine calls succeed.
738  */
739 /* New API */
740 static int build_verbs_tx_desc(
741 	struct sdma_engine *sde,
742 	u32 length,
743 	struct verbs_txreq *tx,
744 	struct hfi1_ahg_info *ahg_info,
745 	u64 pbc)
746 {
747 	int ret = 0;
748 	struct hfi1_sdma_header *phdr = &tx->phdr;
749 	u16 hdrbytes = tx->hdr_dwords << 2;
750 
751 	if (!ahg_info->ahgcount) {
752 		ret = sdma_txinit_ahg(
753 			&tx->txreq,
754 			ahg_info->tx_flags,
755 			hdrbytes + length,
756 			ahg_info->ahgidx,
757 			0,
758 			NULL,
759 			0,
760 			verbs_sdma_complete);
761 		if (ret)
762 			goto bail_txadd;
763 		phdr->pbc = cpu_to_le64(pbc);
764 		ret = sdma_txadd_kvaddr(
765 			sde->dd,
766 			&tx->txreq,
767 			phdr,
768 			hdrbytes);
769 		if (ret)
770 			goto bail_txadd;
771 	} else {
772 		ret = sdma_txinit_ahg(
773 			&tx->txreq,
774 			ahg_info->tx_flags,
775 			length,
776 			ahg_info->ahgidx,
777 			ahg_info->ahgcount,
778 			ahg_info->ahgdesc,
779 			hdrbytes,
780 			verbs_sdma_complete);
781 		if (ret)
782 			goto bail_txadd;
783 	}
784 
785 	/* add the ulp payload - if any. tx->ss can be NULL for acks */
786 	if (tx->ss)
787 		ret = build_verbs_ulp_payload(sde, length, tx);
788 bail_txadd:
789 	return ret;
790 }
791 
792 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
793 			u64 pbc)
794 {
795 	struct hfi1_qp_priv *priv = qp->priv;
796 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
797 	u32 hdrwords = qp->s_hdrwords;
798 	u32 len = ps->s_txreq->s_cur_size;
799 	u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
800 	struct hfi1_ibdev *dev = ps->dev;
801 	struct hfi1_pportdata *ppd = ps->ppd;
802 	struct verbs_txreq *tx;
803 	u64 pbc_flags = 0;
804 	u8 sc5 = priv->s_sc;
805 
806 	int ret;
807 
808 	tx = ps->s_txreq;
809 	if (!sdma_txreq_built(&tx->txreq)) {
810 		if (likely(pbc == 0)) {
811 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
812 			/* No vl15 here */
813 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
814 			pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
815 
816 			pbc = create_pbc(ppd,
817 					 pbc_flags,
818 					 qp->srate_mbps,
819 					 vl,
820 					 plen);
821 		}
822 		tx->wqe = qp->s_wqe;
823 		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
824 		if (unlikely(ret))
825 			goto bail_build;
826 	}
827 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
828 	if (unlikely(ret < 0)) {
829 		if (ret == -ECOMM)
830 			goto bail_ecomm;
831 		return ret;
832 	}
833 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
834 				&ps->s_txreq->phdr.hdr);
835 	return ret;
836 
837 bail_ecomm:
838 	/* The current one got "sent" */
839 	return 0;
840 bail_build:
841 	ret = wait_kmem(dev, qp, ps);
842 	if (!ret) {
843 		/* free txreq - bad state */
844 		hfi1_put_txreq(ps->s_txreq);
845 		ps->s_txreq = NULL;
846 	}
847 	return ret;
848 }
849 
850 /*
851  * If we are now in the error state, return zero to flush the
852  * send work request.
853  */
854 static int pio_wait(struct rvt_qp *qp,
855 		    struct send_context *sc,
856 		    struct hfi1_pkt_state *ps,
857 		    u32 flag)
858 {
859 	struct hfi1_qp_priv *priv = qp->priv;
860 	struct hfi1_devdata *dd = sc->dd;
861 	struct hfi1_ibdev *dev = &dd->verbs_dev;
862 	unsigned long flags;
863 	int ret = 0;
864 
865 	/*
866 	 * Note that as soon as want_buffer() is called and
867 	 * possibly before it returns, sc_piobufavail()
868 	 * could be called. Therefore, put QP on the I/O wait list before
869 	 * enabling the PIO avail interrupt.
870 	 */
871 	spin_lock_irqsave(&qp->s_lock, flags);
872 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
873 		write_seqlock(&dev->iowait_lock);
874 		list_add_tail(&ps->s_txreq->txreq.list,
875 			      &priv->s_iowait.tx_head);
876 		if (list_empty(&priv->s_iowait.list)) {
877 			struct hfi1_ibdev *dev = &dd->verbs_dev;
878 			int was_empty;
879 
880 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
881 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
882 			qp->s_flags |= flag;
883 			was_empty = list_empty(&sc->piowait);
884 			list_add_tail(&priv->s_iowait.list, &sc->piowait);
885 			priv->s_iowait.lock = &dev->iowait_lock;
886 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
887 			rvt_get_qp(qp);
888 			/* counting: only call wantpiobuf_intr if first user */
889 			if (was_empty)
890 				hfi1_sc_wantpiobuf_intr(sc, 1);
891 		}
892 		write_sequnlock(&dev->iowait_lock);
893 		qp->s_flags &= ~RVT_S_BUSY;
894 		ret = -EBUSY;
895 	}
896 	spin_unlock_irqrestore(&qp->s_lock, flags);
897 	return ret;
898 }
899 
900 static void verbs_pio_complete(void *arg, int code)
901 {
902 	struct rvt_qp *qp = (struct rvt_qp *)arg;
903 	struct hfi1_qp_priv *priv = qp->priv;
904 
905 	if (iowait_pio_dec(&priv->s_iowait))
906 		iowait_drain_wakeup(&priv->s_iowait);
907 }
908 
909 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
910 			u64 pbc)
911 {
912 	struct hfi1_qp_priv *priv = qp->priv;
913 	u32 hdrwords = qp->s_hdrwords;
914 	struct rvt_sge_state *ss = ps->s_txreq->ss;
915 	u32 len = ps->s_txreq->s_cur_size;
916 	u32 dwords = (len + 3) >> 2;
917 	u32 plen = hdrwords + dwords + 2; /* includes pbc */
918 	struct hfi1_pportdata *ppd = ps->ppd;
919 	u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
920 	u64 pbc_flags = 0;
921 	u8 sc5;
922 	unsigned long flags = 0;
923 	struct send_context *sc;
924 	struct pio_buf *pbuf;
925 	int wc_status = IB_WC_SUCCESS;
926 	int ret = 0;
927 	pio_release_cb cb = NULL;
928 
929 	/* only RC/UC use complete */
930 	switch (qp->ibqp.qp_type) {
931 	case IB_QPT_RC:
932 	case IB_QPT_UC:
933 		cb = verbs_pio_complete;
934 		break;
935 	default:
936 		break;
937 	}
938 
939 	/* vl15 special case taken care of in ud.c */
940 	sc5 = priv->s_sc;
941 	sc = ps->s_txreq->psc;
942 
943 	if (likely(pbc == 0)) {
944 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
945 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
946 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
947 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
948 	}
949 	if (cb)
950 		iowait_pio_inc(&priv->s_iowait);
951 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
952 	if (unlikely(!pbuf)) {
953 		if (cb)
954 			verbs_pio_complete(qp, 0);
955 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
956 			/*
957 			 * If we have filled the PIO buffers to capacity and are
958 			 * not in an active state this request is not going to
959 			 * go out to so just complete it with an error or else a
960 			 * ULP or the core may be stuck waiting.
961 			 */
962 			hfi1_cdbg(
963 				PIO,
964 				"alloc failed. state not active, completing");
965 			wc_status = IB_WC_GENERAL_ERR;
966 			goto pio_bail;
967 		} else {
968 			/*
969 			 * This is a normal occurrence. The PIO buffs are full
970 			 * up but we are still happily sending, well we could be
971 			 * so lets continue to queue the request.
972 			 */
973 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
974 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
975 			if (!ret)
976 				/* txreq not queued - free */
977 				goto bail;
978 			/* tx consumed in wait */
979 			return ret;
980 		}
981 	}
982 
983 	if (len == 0) {
984 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
985 	} else {
986 		if (ss) {
987 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
988 			while (len) {
989 				void *addr = ss->sge.vaddr;
990 				u32 slen = ss->sge.length;
991 
992 				if (slen > len)
993 					slen = len;
994 				rvt_update_sge(ss, slen, false);
995 				seg_pio_copy_mid(pbuf, addr, slen);
996 				len -= slen;
997 			}
998 			seg_pio_copy_end(pbuf);
999 		}
1000 	}
1001 
1002 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1003 			       &ps->s_txreq->phdr.hdr);
1004 
1005 pio_bail:
1006 	if (qp->s_wqe) {
1007 		spin_lock_irqsave(&qp->s_lock, flags);
1008 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1009 		spin_unlock_irqrestore(&qp->s_lock, flags);
1010 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1011 		spin_lock_irqsave(&qp->s_lock, flags);
1012 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1013 		spin_unlock_irqrestore(&qp->s_lock, flags);
1014 	}
1015 
1016 	ret = 0;
1017 
1018 bail:
1019 	hfi1_put_txreq(ps->s_txreq);
1020 	return ret;
1021 }
1022 
1023 /*
1024  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1025  * being an entry from the partition key table), return 0
1026  * otherwise. Use the matching criteria for egress partition keys
1027  * specified in the OPAv1 spec., section 9.1l.7.
1028  */
1029 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1030 {
1031 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1032 	u16 mentry = ent & PKEY_LOW_15_MASK;
1033 
1034 	if (mkey == mentry) {
1035 		/*
1036 		 * If pkey[15] is set (full partition member),
1037 		 * is bit 15 in the corresponding table element
1038 		 * clear (limited member)?
1039 		 */
1040 		if (pkey & PKEY_MEMBER_MASK)
1041 			return !!(ent & PKEY_MEMBER_MASK);
1042 		return 1;
1043 	}
1044 	return 0;
1045 }
1046 
1047 /**
1048  * egress_pkey_check - check P_KEY of a packet
1049  * @ppd:    Physical IB port data
1050  * @lrh: Local route header
1051  * @bth: Base transport header
1052  * @sc5:    SC for packet
1053  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1054  * only. If it is negative value, then it means user contexts is calling this
1055  * function.
1056  *
1057  * It checks if hdr's pkey is valid.
1058  *
1059  * Return: 0 on success, otherwise, 1
1060  */
1061 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1062 		      u8 sc5, int8_t s_pkey_index)
1063 {
1064 	struct hfi1_devdata *dd;
1065 	int i;
1066 	u16 pkey;
1067 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1068 
1069 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1070 		return 0;
1071 
1072 	pkey = (u16)be32_to_cpu(bth[0]);
1073 
1074 	/* If SC15, pkey[0:14] must be 0x7fff */
1075 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1076 		goto bad;
1077 
1078 	/* Is the pkey = 0x0, or 0x8000? */
1079 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1080 		goto bad;
1081 
1082 	/*
1083 	 * For the kernel contexts only, if a qp is passed into the function,
1084 	 * the most likely matching pkey has index qp->s_pkey_index
1085 	 */
1086 	if (!is_user_ctxt_mechanism &&
1087 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1088 		return 0;
1089 	}
1090 
1091 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1092 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1093 			return 0;
1094 	}
1095 bad:
1096 	/*
1097 	 * For the user-context mechanism, the P_KEY check would only happen
1098 	 * once per SDMA request, not once per packet.  Therefore, there's no
1099 	 * need to increment the counter for the user-context mechanism.
1100 	 */
1101 	if (!is_user_ctxt_mechanism) {
1102 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1103 		dd = ppd->dd;
1104 		if (!(dd->err_info_xmit_constraint.status &
1105 		      OPA_EI_STATUS_SMASK)) {
1106 			u16 slid = be16_to_cpu(lrh[3]);
1107 
1108 			dd->err_info_xmit_constraint.status |=
1109 				OPA_EI_STATUS_SMASK;
1110 			dd->err_info_xmit_constraint.slid = slid;
1111 			dd->err_info_xmit_constraint.pkey = pkey;
1112 		}
1113 	}
1114 	return 1;
1115 }
1116 
1117 /**
1118  * get_send_routine - choose an egress routine
1119  *
1120  * Choose an egress routine based on QP type
1121  * and size
1122  */
1123 static inline send_routine get_send_routine(struct rvt_qp *qp,
1124 					    struct verbs_txreq *tx)
1125 {
1126 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1127 	struct hfi1_qp_priv *priv = qp->priv;
1128 	struct ib_header *h = &tx->phdr.hdr;
1129 
1130 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1131 		return dd->process_pio_send;
1132 	switch (qp->ibqp.qp_type) {
1133 	case IB_QPT_SMI:
1134 		return dd->process_pio_send;
1135 	case IB_QPT_GSI:
1136 	case IB_QPT_UD:
1137 		break;
1138 	case IB_QPT_UC:
1139 	case IB_QPT_RC: {
1140 		u8 op = get_opcode(h);
1141 
1142 		if (piothreshold &&
1143 		    tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1144 		    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1145 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1146 		    !sdma_txreq_built(&tx->txreq))
1147 			return dd->process_pio_send;
1148 		break;
1149 	}
1150 	default:
1151 		break;
1152 	}
1153 	return dd->process_dma_send;
1154 }
1155 
1156 /**
1157  * hfi1_verbs_send - send a packet
1158  * @qp: the QP to send on
1159  * @ps: the state of the packet to send
1160  *
1161  * Return zero if packet is sent or queued OK.
1162  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1163  */
1164 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1165 {
1166 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1167 	struct hfi1_qp_priv *priv = qp->priv;
1168 	struct ib_other_headers *ohdr;
1169 	struct ib_header *hdr;
1170 	send_routine sr;
1171 	int ret;
1172 	u8 lnh;
1173 
1174 	hdr = &ps->s_txreq->phdr.hdr;
1175 	/* locate the pkey within the headers */
1176 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1177 	if (lnh == HFI1_LRH_GRH)
1178 		ohdr = &hdr->u.l.oth;
1179 	else
1180 		ohdr = &hdr->u.oth;
1181 
1182 	sr = get_send_routine(qp, ps->s_txreq);
1183 	ret = egress_pkey_check(dd->pport,
1184 				hdr->lrh,
1185 				ohdr->bth,
1186 				priv->s_sc,
1187 				qp->s_pkey_index);
1188 	if (unlikely(ret)) {
1189 		/*
1190 		 * The value we are returning here does not get propagated to
1191 		 * the verbs caller. Thus we need to complete the request with
1192 		 * error otherwise the caller could be sitting waiting on the
1193 		 * completion event. Only do this for PIO. SDMA has its own
1194 		 * mechanism for handling the errors. So for SDMA we can just
1195 		 * return.
1196 		 */
1197 		if (sr == dd->process_pio_send) {
1198 			unsigned long flags;
1199 
1200 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1201 				  __func__);
1202 			spin_lock_irqsave(&qp->s_lock, flags);
1203 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1204 			spin_unlock_irqrestore(&qp->s_lock, flags);
1205 		}
1206 		return -EINVAL;
1207 	}
1208 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1209 		return pio_wait(qp,
1210 				ps->s_txreq->psc,
1211 				ps,
1212 				RVT_S_WAIT_PIO_DRAIN);
1213 	return sr(qp, ps, 0);
1214 }
1215 
1216 /**
1217  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1218  * @dd: the device data structure
1219  */
1220 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1221 {
1222 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1223 	u16 ver = dd->dc8051_ver;
1224 
1225 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1226 
1227 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1228 				    (u64)dc8051_ver_min(ver);
1229 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1230 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1231 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1232 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1233 			IB_DEVICE_MEM_MGT_EXTENSIONS;
1234 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1235 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1236 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1237 	rdi->dparms.props.hw_ver = dd->minrev;
1238 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1239 	rdi->dparms.props.max_mr_size = U64_MAX;
1240 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1241 	rdi->dparms.props.max_qp = hfi1_max_qps;
1242 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1243 	rdi->dparms.props.max_sge = hfi1_max_sges;
1244 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1245 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1246 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1247 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1248 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1249 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1250 	rdi->dparms.props.max_map_per_fmr = 32767;
1251 	rdi->dparms.props.max_pd = hfi1_max_pds;
1252 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1253 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1254 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1255 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1256 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1257 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1258 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1259 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1260 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1261 	rdi->dparms.props.max_total_mcast_qp_attach =
1262 					rdi->dparms.props.max_mcast_qp_attach *
1263 					rdi->dparms.props.max_mcast_grp;
1264 }
1265 
1266 static inline u16 opa_speed_to_ib(u16 in)
1267 {
1268 	u16 out = 0;
1269 
1270 	if (in & OPA_LINK_SPEED_25G)
1271 		out |= IB_SPEED_EDR;
1272 	if (in & OPA_LINK_SPEED_12_5G)
1273 		out |= IB_SPEED_FDR;
1274 
1275 	return out;
1276 }
1277 
1278 /*
1279  * Convert a single OPA link width (no multiple flags) to an IB value.
1280  * A zero OPA link width means link down, which means the IB width value
1281  * is a don't care.
1282  */
1283 static inline u16 opa_width_to_ib(u16 in)
1284 {
1285 	switch (in) {
1286 	case OPA_LINK_WIDTH_1X:
1287 	/* map 2x and 3x to 1x as they don't exist in IB */
1288 	case OPA_LINK_WIDTH_2X:
1289 	case OPA_LINK_WIDTH_3X:
1290 		return IB_WIDTH_1X;
1291 	default: /* link down or unknown, return our largest width */
1292 	case OPA_LINK_WIDTH_4X:
1293 		return IB_WIDTH_4X;
1294 	}
1295 }
1296 
1297 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1298 		      struct ib_port_attr *props)
1299 {
1300 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1301 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1302 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1303 	u16 lid = ppd->lid;
1304 
1305 	/* props being zeroed by the caller, avoid zeroing it here */
1306 	props->lid = lid ? lid : 0;
1307 	props->lmc = ppd->lmc;
1308 	/* OPA logical states match IB logical states */
1309 	props->state = driver_lstate(ppd);
1310 	props->phys_state = hfi1_ibphys_portstate(ppd);
1311 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1312 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1313 	/* see rate_show() in ib core/sysfs.c */
1314 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1315 	props->max_vl_num = ppd->vls_supported;
1316 
1317 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1318 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1319 	 * advertise only 4K.
1320 	 *
1321 	 * Those applications which are either OPA aware or pass the MTU enum
1322 	 * from the Path Records to us will get the new 8k MTU.  Those that
1323 	 * attempt to process the MTU enum may fail in various ways.
1324 	 */
1325 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1326 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1327 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1328 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1329 
1330 	return 0;
1331 }
1332 
1333 static int modify_device(struct ib_device *device,
1334 			 int device_modify_mask,
1335 			 struct ib_device_modify *device_modify)
1336 {
1337 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1338 	unsigned i;
1339 	int ret;
1340 
1341 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1342 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1343 		ret = -EOPNOTSUPP;
1344 		goto bail;
1345 	}
1346 
1347 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1348 		memcpy(device->node_desc, device_modify->node_desc,
1349 		       IB_DEVICE_NODE_DESC_MAX);
1350 		for (i = 0; i < dd->num_pports; i++) {
1351 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1352 
1353 			hfi1_node_desc_chg(ibp);
1354 		}
1355 	}
1356 
1357 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1358 		ib_hfi1_sys_image_guid =
1359 			cpu_to_be64(device_modify->sys_image_guid);
1360 		for (i = 0; i < dd->num_pports; i++) {
1361 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1362 
1363 			hfi1_sys_guid_chg(ibp);
1364 		}
1365 	}
1366 
1367 	ret = 0;
1368 
1369 bail:
1370 	return ret;
1371 }
1372 
1373 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1374 {
1375 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1376 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1377 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1378 	int ret;
1379 
1380 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1381 			     OPA_LINKDOWN_REASON_UNKNOWN);
1382 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1383 	return ret;
1384 }
1385 
1386 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1387 			    int guid_index, __be64 *guid)
1388 {
1389 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1390 
1391 	if (guid_index >= HFI1_GUIDS_PER_PORT)
1392 		return -EINVAL;
1393 
1394 	*guid = get_sguid(ibp, guid_index);
1395 	return 0;
1396 }
1397 
1398 /*
1399  * convert ah port,sl to sc
1400  */
1401 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1402 {
1403 	struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1404 
1405 	return ibp->sl_to_sc[ah->sl];
1406 }
1407 
1408 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1409 {
1410 	struct hfi1_ibport *ibp;
1411 	struct hfi1_pportdata *ppd;
1412 	struct hfi1_devdata *dd;
1413 	u8 sc5;
1414 
1415 	/* test the mapping for validity */
1416 	ibp = to_iport(ibdev, ah_attr->port_num);
1417 	ppd = ppd_from_ibp(ibp);
1418 	sc5 = ibp->sl_to_sc[ah_attr->sl];
1419 	dd = dd_from_ppd(ppd);
1420 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1421 		return -EINVAL;
1422 	return 0;
1423 }
1424 
1425 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1426 			       struct ib_ah_attr *ah_attr,
1427 			       struct rvt_ah *ah)
1428 {
1429 	struct hfi1_ibport *ibp;
1430 	struct hfi1_pportdata *ppd;
1431 	struct hfi1_devdata *dd;
1432 	u8 sc5;
1433 
1434 	/*
1435 	 * Do not trust reading anything from rvt_ah at this point as it is not
1436 	 * done being setup. We can however modify things which we need to set.
1437 	 */
1438 
1439 	ibp = to_iport(ibdev, ah_attr->port_num);
1440 	ppd = ppd_from_ibp(ibp);
1441 	sc5 = ibp->sl_to_sc[ah->attr.sl];
1442 	dd = dd_from_ppd(ppd);
1443 	ah->vl = sc_to_vlt(dd, sc5);
1444 	if (ah->vl < num_vls || ah->vl == 15)
1445 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1446 }
1447 
1448 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1449 {
1450 	struct ib_ah_attr attr;
1451 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1452 	struct rvt_qp *qp0;
1453 
1454 	memset(&attr, 0, sizeof(attr));
1455 	attr.dlid = dlid;
1456 	attr.port_num = ppd_from_ibp(ibp)->port;
1457 	rcu_read_lock();
1458 	qp0 = rcu_dereference(ibp->rvp.qp[0]);
1459 	if (qp0)
1460 		ah = ib_create_ah(qp0->ibqp.pd, &attr);
1461 	rcu_read_unlock();
1462 	return ah;
1463 }
1464 
1465 /**
1466  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1467  * @dd: the hfi1_ib device
1468  */
1469 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1470 {
1471 	return ARRAY_SIZE(dd->pport[0].pkeys);
1472 }
1473 
1474 static void init_ibport(struct hfi1_pportdata *ppd)
1475 {
1476 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1477 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1478 	int i;
1479 
1480 	for (i = 0; i < sz; i++) {
1481 		ibp->sl_to_sc[i] = i;
1482 		ibp->sc_to_sl[i] = i;
1483 	}
1484 
1485 	spin_lock_init(&ibp->rvp.lock);
1486 	/* Set the prefix to the default value (see ch. 4.1.1) */
1487 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1488 	ibp->rvp.sm_lid = 0;
1489 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1490 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1491 		IB_PORT_CAP_MASK_NOTICE_SUP;
1492 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1493 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1494 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1495 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1496 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1497 
1498 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1499 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1500 }
1501 
1502 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1503 				size_t str_len)
1504 {
1505 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1506 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1507 	u16 ver = dd_from_dev(dev)->dc8051_ver;
1508 
1509 	snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1510 		 dc8051_ver_min(ver));
1511 }
1512 
1513 static const char * const driver_cntr_names[] = {
1514 	/* must be element 0*/
1515 	"DRIVER_KernIntr",
1516 	"DRIVER_ErrorIntr",
1517 	"DRIVER_Tx_Errs",
1518 	"DRIVER_Rcv_Errs",
1519 	"DRIVER_HW_Errs",
1520 	"DRIVER_NoPIOBufs",
1521 	"DRIVER_CtxtsOpen",
1522 	"DRIVER_RcvLen_Errs",
1523 	"DRIVER_EgrBufFull",
1524 	"DRIVER_EgrHdrFull"
1525 };
1526 
1527 static const char **dev_cntr_names;
1528 static const char **port_cntr_names;
1529 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1530 static int num_dev_cntrs;
1531 static int num_port_cntrs;
1532 static int cntr_names_initialized;
1533 
1534 /*
1535  * Convert a list of names separated by '\n' into an array of NULL terminated
1536  * strings. Optionally some entries can be reserved in the array to hold extra
1537  * external strings.
1538  */
1539 static int init_cntr_names(const char *names_in,
1540 			   const size_t names_len,
1541 			   int num_extra_names,
1542 			   int *num_cntrs,
1543 			   const char ***cntr_names)
1544 {
1545 	char *names_out, *p, **q;
1546 	int i, n;
1547 
1548 	n = 0;
1549 	for (i = 0; i < names_len; i++)
1550 		if (names_in[i] == '\n')
1551 			n++;
1552 
1553 	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1554 			    GFP_KERNEL);
1555 	if (!names_out) {
1556 		*num_cntrs = 0;
1557 		*cntr_names = NULL;
1558 		return -ENOMEM;
1559 	}
1560 
1561 	p = names_out + (n + num_extra_names) * sizeof(char *);
1562 	memcpy(p, names_in, names_len);
1563 
1564 	q = (char **)names_out;
1565 	for (i = 0; i < n; i++) {
1566 		q[i] = p;
1567 		p = strchr(p, '\n');
1568 		*p++ = '\0';
1569 	}
1570 
1571 	*num_cntrs = n;
1572 	*cntr_names = (const char **)names_out;
1573 	return 0;
1574 }
1575 
1576 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1577 					    u8 port_num)
1578 {
1579 	int i, err;
1580 
1581 	if (!cntr_names_initialized) {
1582 		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1583 
1584 		err = init_cntr_names(dd->cntrnames,
1585 				      dd->cntrnameslen,
1586 				      num_driver_cntrs,
1587 				      &num_dev_cntrs,
1588 				      &dev_cntr_names);
1589 		if (err)
1590 			return NULL;
1591 
1592 		for (i = 0; i < num_driver_cntrs; i++)
1593 			dev_cntr_names[num_dev_cntrs + i] =
1594 				driver_cntr_names[i];
1595 
1596 		err = init_cntr_names(dd->portcntrnames,
1597 				      dd->portcntrnameslen,
1598 				      0,
1599 				      &num_port_cntrs,
1600 				      &port_cntr_names);
1601 		if (err) {
1602 			kfree(dev_cntr_names);
1603 			dev_cntr_names = NULL;
1604 			return NULL;
1605 		}
1606 		cntr_names_initialized = 1;
1607 	}
1608 
1609 	if (!port_num)
1610 		return rdma_alloc_hw_stats_struct(
1611 				dev_cntr_names,
1612 				num_dev_cntrs + num_driver_cntrs,
1613 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1614 	else
1615 		return rdma_alloc_hw_stats_struct(
1616 				port_cntr_names,
1617 				num_port_cntrs,
1618 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1619 }
1620 
1621 static u64 hfi1_sps_ints(void)
1622 {
1623 	unsigned long flags;
1624 	struct hfi1_devdata *dd;
1625 	u64 sps_ints = 0;
1626 
1627 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1628 	list_for_each_entry(dd, &hfi1_dev_list, list) {
1629 		sps_ints += get_all_cpu_total(dd->int_counter);
1630 	}
1631 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1632 	return sps_ints;
1633 }
1634 
1635 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1636 			u8 port, int index)
1637 {
1638 	u64 *values;
1639 	int count;
1640 
1641 	if (!port) {
1642 		u64 *stats = (u64 *)&hfi1_stats;
1643 		int i;
1644 
1645 		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1646 		values[num_dev_cntrs] = hfi1_sps_ints();
1647 		for (i = 1; i < num_driver_cntrs; i++)
1648 			values[num_dev_cntrs + i] = stats[i];
1649 		count = num_dev_cntrs + num_driver_cntrs;
1650 	} else {
1651 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1652 
1653 		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1654 		count = num_port_cntrs;
1655 	}
1656 
1657 	memcpy(stats->value, values, count * sizeof(u64));
1658 	return count;
1659 }
1660 
1661 /**
1662  * hfi1_register_ib_device - register our device with the infiniband core
1663  * @dd: the device data structure
1664  * Return 0 if successful, errno if unsuccessful.
1665  */
1666 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1667 {
1668 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1669 	struct ib_device *ibdev = &dev->rdi.ibdev;
1670 	struct hfi1_pportdata *ppd = dd->pport;
1671 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1672 	unsigned i;
1673 	int ret;
1674 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1675 
1676 	for (i = 0; i < dd->num_pports; i++)
1677 		init_ibport(ppd + i);
1678 
1679 	/* Only need to initialize non-zero fields. */
1680 
1681 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1682 
1683 	seqlock_init(&dev->iowait_lock);
1684 	seqlock_init(&dev->txwait_lock);
1685 	INIT_LIST_HEAD(&dev->txwait);
1686 	INIT_LIST_HEAD(&dev->memwait);
1687 
1688 	ret = verbs_txreq_init(dev);
1689 	if (ret)
1690 		goto err_verbs_txreq;
1691 
1692 	/* Use first-port GUID as node guid */
1693 	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1694 
1695 	/*
1696 	 * The system image GUID is supposed to be the same for all
1697 	 * HFIs in a single system but since there can be other
1698 	 * device types in the system, we can't be sure this is unique.
1699 	 */
1700 	if (!ib_hfi1_sys_image_guid)
1701 		ib_hfi1_sys_image_guid = ibdev->node_guid;
1702 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1703 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1704 	ibdev->owner = THIS_MODULE;
1705 	ibdev->phys_port_cnt = dd->num_pports;
1706 	ibdev->dev.parent = &dd->pcidev->dev;
1707 	ibdev->modify_device = modify_device;
1708 	ibdev->alloc_hw_stats = alloc_hw_stats;
1709 	ibdev->get_hw_stats = get_hw_stats;
1710 
1711 	/* keep process mad in the driver */
1712 	ibdev->process_mad = hfi1_process_mad;
1713 	ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1714 
1715 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1716 		sizeof(ibdev->node_desc));
1717 
1718 	/*
1719 	 * Fill in rvt info object.
1720 	 */
1721 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1722 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1723 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1724 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1725 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1726 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1727 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1728 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1729 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1730 	/*
1731 	 * Fill in rvt info device attributes.
1732 	 */
1733 	hfi1_fill_device_attr(dd);
1734 
1735 	/* queue pair */
1736 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1737 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1738 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1739 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1740 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1741 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1742 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1743 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1744 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1745 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1746 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1747 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1748 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1749 
1750 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1751 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1752 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1753 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1754 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1755 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1756 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1757 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1758 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1759 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1760 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1761 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1762 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1763 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1764 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1765 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1766 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1767 	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1768 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1769 
1770 	/* completeion queue */
1771 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1772 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1773 		 "hfi1_cq%d", dd->unit);
1774 	dd->verbs_dev.rdi.dparms.node = dd->node;
1775 
1776 	/* misc settings */
1777 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1778 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1779 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1780 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1781 
1782 	/* post send table */
1783 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1784 
1785 	ppd = dd->pport;
1786 	for (i = 0; i < dd->num_pports; i++, ppd++)
1787 		rvt_init_port(&dd->verbs_dev.rdi,
1788 			      &ppd->ibport_data.rvp,
1789 			      i,
1790 			      ppd->pkeys);
1791 
1792 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1793 	if (ret)
1794 		goto err_verbs_txreq;
1795 
1796 	ret = hfi1_verbs_register_sysfs(dd);
1797 	if (ret)
1798 		goto err_class;
1799 
1800 	return ret;
1801 
1802 err_class:
1803 	rvt_unregister_device(&dd->verbs_dev.rdi);
1804 err_verbs_txreq:
1805 	verbs_txreq_exit(dev);
1806 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1807 	return ret;
1808 }
1809 
1810 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1811 {
1812 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1813 
1814 	hfi1_verbs_unregister_sysfs(dd);
1815 
1816 	rvt_unregister_device(&dd->verbs_dev.rdi);
1817 
1818 	if (!list_empty(&dev->txwait))
1819 		dd_dev_err(dd, "txwait list not empty!\n");
1820 	if (!list_empty(&dev->memwait))
1821 		dd_dev_err(dd, "memwait list not empty!\n");
1822 
1823 	del_timer_sync(&dev->mem_timer);
1824 	verbs_txreq_exit(dev);
1825 
1826 	kfree(dev_cntr_names);
1827 	kfree(port_cntr_names);
1828 	cntr_names_initialized = 0;
1829 }
1830 
1831 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1832 {
1833 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1834 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1835 	struct ib_header *hdr = packet->hdr;
1836 	struct rvt_qp *qp = packet->qp;
1837 	u32 lqpn, rqpn = 0;
1838 	u16 rlid = 0;
1839 	u8 sl, sc5, svc_type;
1840 
1841 	switch (packet->qp->ibqp.qp_type) {
1842 	case IB_QPT_UC:
1843 		rlid = qp->remote_ah_attr.dlid;
1844 		rqpn = qp->remote_qpn;
1845 		svc_type = IB_CC_SVCTYPE_UC;
1846 		break;
1847 	case IB_QPT_RC:
1848 		rlid = qp->remote_ah_attr.dlid;
1849 		rqpn = qp->remote_qpn;
1850 		svc_type = IB_CC_SVCTYPE_RC;
1851 		break;
1852 	case IB_QPT_SMI:
1853 	case IB_QPT_GSI:
1854 	case IB_QPT_UD:
1855 		svc_type = IB_CC_SVCTYPE_UD;
1856 		break;
1857 	default:
1858 		ibp->rvp.n_pkt_drops++;
1859 		return;
1860 	}
1861 
1862 	sc5 = hdr2sc(hdr, packet->rhf);
1863 	sl = ibp->sc_to_sl[sc5];
1864 	lqpn = qp->ibqp.qp_num;
1865 
1866 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1867 }
1868