xref: /openbmc/linux/drivers/infiniband/hw/hfi1/verbs.c (revision 4a075bd4)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
66 #include "fault.h"
67 #include "affinity.h"
68 
69 static unsigned int hfi1_lkey_table_size = 16;
70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
71 		   S_IRUGO);
72 MODULE_PARM_DESC(lkey_table_size,
73 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
74 
75 static unsigned int hfi1_max_pds = 0xFFFF;
76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_pds,
78 		 "Maximum number of protection domains to support");
79 
80 static unsigned int hfi1_max_ahs = 0xFFFF;
81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
83 
84 unsigned int hfi1_max_cqes = 0x2FFFFF;
85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqes,
87 		 "Maximum number of completion queue entries to support");
88 
89 unsigned int hfi1_max_cqs = 0x1FFFF;
90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
92 
93 unsigned int hfi1_max_qp_wrs = 0x3FFF;
94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
96 
97 unsigned int hfi1_max_qps = 32768;
98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
100 
101 unsigned int hfi1_max_sges = 0x60;
102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
104 
105 unsigned int hfi1_max_mcast_grps = 16384;
106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
107 MODULE_PARM_DESC(max_mcast_grps,
108 		 "Maximum number of multicast groups to support");
109 
110 unsigned int hfi1_max_mcast_qp_attached = 16;
111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
112 		   uint, S_IRUGO);
113 MODULE_PARM_DESC(max_mcast_qp_attached,
114 		 "Maximum number of attached QPs to support");
115 
116 unsigned int hfi1_max_srqs = 1024;
117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
119 
120 unsigned int hfi1_max_srq_sges = 128;
121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
123 
124 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
127 
128 unsigned short piothreshold = 256;
129 module_param(piothreshold, ushort, S_IRUGO);
130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
131 
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
136 
137 static void verbs_sdma_complete(
138 	struct sdma_txreq *cookie,
139 	int status);
140 
141 static int pio_wait(struct rvt_qp *qp,
142 		    struct send_context *sc,
143 		    struct hfi1_pkt_state *ps,
144 		    u32 flag);
145 
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
148 
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
151 
152 static uint wss_threshold = 80;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158 
159 /*
160  * Translate ib_wr_opcode into ib_wc_opcode.
161  */
162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
163 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164 	[IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
165 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
166 	[IB_WR_SEND] = IB_WC_SEND,
167 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
168 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
169 	[IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
170 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
171 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
172 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
173 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
174 	[IB_WR_REG_MR] = IB_WC_REG_MR
175 };
176 
177 /*
178  * Length of header by opcode, 0 --> not supported
179  */
180 const u8 hdr_len_by_opcode[256] = {
181 	/* RC */
182 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
183 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
184 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
185 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
186 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
187 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
188 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
189 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
190 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
191 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
192 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
193 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
194 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
195 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
196 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
197 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
198 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
199 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
200 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
201 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
202 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
203 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
204 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
205 	[IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
206 	[IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
207 	[IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
208 	[IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
209 	[IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
210 	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
211 	[IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
212 	[IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
213 	/* UC */
214 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
215 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
216 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
217 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
218 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
219 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
220 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
221 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
222 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
223 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
224 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
225 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
226 	/* UD */
227 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
228 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
229 };
230 
231 static const opcode_handler opcode_handler_tbl[256] = {
232 	/* RC */
233 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
234 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
235 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
236 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
237 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
238 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
239 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
240 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
241 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
242 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
243 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
244 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
245 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
246 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
247 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
248 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
249 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
250 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
251 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
252 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
253 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
254 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
255 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
256 
257 	/* TID RDMA has separate handlers for different opcodes.*/
258 	[IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
259 	[IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
260 	[IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
261 	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
262 	[IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
263 	[IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
264 	[IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
265 	[IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
266 
267 	/* UC */
268 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
269 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
270 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
271 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
272 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
273 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
274 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
275 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
276 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
277 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
278 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
279 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
280 	/* UD */
281 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
282 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
283 	/* CNP */
284 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
285 };
286 
287 #define OPMASK 0x1f
288 
289 static const u32 pio_opmask[BIT(3)] = {
290 	/* RC */
291 	[IB_OPCODE_RC >> 5] =
292 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
293 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
294 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
295 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
296 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
297 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
298 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
299 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
300 		BIT(RC_OP(FETCH_ADD) & OPMASK),
301 	/* UC */
302 	[IB_OPCODE_UC >> 5] =
303 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
304 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
305 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
306 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
307 };
308 
309 /*
310  * System image GUID.
311  */
312 __be64 ib_hfi1_sys_image_guid;
313 
314 /*
315  * Make sure the QP is ready and able to accept the given opcode.
316  */
317 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
318 {
319 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
320 		return NULL;
321 	if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
322 	     packet->qp->allowed_ops) ||
323 	    (packet->opcode == IB_OPCODE_CNP))
324 		return opcode_handler_tbl[packet->opcode];
325 
326 	return NULL;
327 }
328 
329 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
330 {
331 #ifdef CONFIG_FAULT_INJECTION
332 	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
333 		/*
334 		 * In order to drop non-IB traffic we
335 		 * set PbcInsertHrc to NONE (0x2).
336 		 * The packet will still be delivered
337 		 * to the receiving node but a
338 		 * KHdrHCRCErr (KDETH packet with a bad
339 		 * HCRC) will be triggered and the
340 		 * packet will not be delivered to the
341 		 * correct context.
342 		 */
343 		pbc &= ~PBC_INSERT_HCRC_SMASK;
344 		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
345 	} else {
346 		/*
347 		 * In order to drop regular verbs
348 		 * traffic we set the PbcTestEbp
349 		 * flag. The packet will still be
350 		 * delivered to the receiving node but
351 		 * a 'late ebp error' will be
352 		 * triggered and will be dropped.
353 		 */
354 		pbc |= PBC_TEST_EBP;
355 	}
356 #endif
357 	return pbc;
358 }
359 
360 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
361 {
362 	if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
363 	    !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
364 		return NULL;
365 	if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
366 		return opcode_handler_tbl[opcode];
367 	return NULL;
368 }
369 
370 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
371 {
372 	struct hfi1_ctxtdata *rcd = packet->rcd;
373 	struct ib_header *hdr = packet->hdr;
374 	u32 tlen = packet->tlen;
375 	struct hfi1_pportdata *ppd = rcd->ppd;
376 	struct hfi1_ibport *ibp = &ppd->ibport_data;
377 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
378 	opcode_handler opcode_handler;
379 	unsigned long flags;
380 	u32 qp_num;
381 	int lnh;
382 	u8 opcode;
383 
384 	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
385 	if (unlikely(tlen < 15 * sizeof(u32)))
386 		goto drop;
387 
388 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
389 	if (lnh != HFI1_LRH_BTH)
390 		goto drop;
391 
392 	packet->ohdr = &hdr->u.oth;
393 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
394 
395 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
396 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
397 
398 	/* verbs_qp can be picked up from any tid_rdma header struct */
399 	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
400 		RVT_QPN_MASK;
401 
402 	rcu_read_lock();
403 	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
404 	if (!packet->qp)
405 		goto drop_rcu;
406 	spin_lock_irqsave(&packet->qp->r_lock, flags);
407 	opcode_handler = tid_qp_ok(opcode, packet);
408 	if (likely(opcode_handler))
409 		opcode_handler(packet);
410 	else
411 		goto drop_unlock;
412 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
413 	rcu_read_unlock();
414 
415 	return;
416 drop_unlock:
417 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
418 drop_rcu:
419 	rcu_read_unlock();
420 drop:
421 	ibp->rvp.n_pkt_drops++;
422 }
423 
424 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
425 {
426 	struct hfi1_ctxtdata *rcd = packet->rcd;
427 	struct ib_header *hdr = packet->hdr;
428 	u32 tlen = packet->tlen;
429 	struct hfi1_pportdata *ppd = rcd->ppd;
430 	struct hfi1_ibport *ibp = &ppd->ibport_data;
431 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
432 	opcode_handler opcode_handler;
433 	unsigned long flags;
434 	u32 qp_num;
435 	int lnh;
436 	u8 opcode;
437 
438 	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
439 	if (unlikely(tlen < 15 * sizeof(u32)))
440 		goto drop;
441 
442 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
443 	if (lnh != HFI1_LRH_BTH)
444 		goto drop;
445 
446 	packet->ohdr = &hdr->u.oth;
447 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
448 
449 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
450 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
451 
452 	/* verbs_qp can be picked up from any tid_rdma header struct */
453 	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
454 		RVT_QPN_MASK;
455 
456 	rcu_read_lock();
457 	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
458 	if (!packet->qp)
459 		goto drop_rcu;
460 	spin_lock_irqsave(&packet->qp->r_lock, flags);
461 	opcode_handler = tid_qp_ok(opcode, packet);
462 	if (likely(opcode_handler))
463 		opcode_handler(packet);
464 	else
465 		goto drop_unlock;
466 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
467 	rcu_read_unlock();
468 
469 	return;
470 drop_unlock:
471 	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
472 drop_rcu:
473 	rcu_read_unlock();
474 drop:
475 	ibp->rvp.n_pkt_drops++;
476 }
477 
478 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
479 {
480 	struct hfi1_ctxtdata *rcd = packet->rcd;
481 	struct hfi1_pportdata *ppd = rcd->ppd;
482 	struct hfi1_16b_header *hdr = packet->hdr;
483 	u16 pkey;
484 
485 	/* Pkey check needed only for bypass packets */
486 	if (packet->etype != RHF_RCV_TYPE_BYPASS)
487 		return 0;
488 
489 	/* Perform pkey check */
490 	pkey = hfi1_16B_get_pkey(hdr);
491 	return ingress_pkey_check(ppd, pkey, packet->sc,
492 				  packet->qp->s_pkey_index,
493 				  packet->slid, true);
494 }
495 
496 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
497 				      bool is_mcast)
498 {
499 	u32 qp_num;
500 	struct hfi1_ctxtdata *rcd = packet->rcd;
501 	struct hfi1_pportdata *ppd = rcd->ppd;
502 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
503 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
504 	opcode_handler packet_handler;
505 	unsigned long flags;
506 
507 	inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
508 
509 	if (unlikely(is_mcast)) {
510 		struct rvt_mcast *mcast;
511 		struct rvt_mcast_qp *p;
512 
513 		if (!packet->grh)
514 			goto drop;
515 		mcast = rvt_mcast_find(&ibp->rvp,
516 				       &packet->grh->dgid,
517 				       opa_get_lid(packet->dlid, 9B));
518 		if (!mcast)
519 			goto drop;
520 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
521 			packet->qp = p->qp;
522 			if (hfi1_do_pkey_check(packet))
523 				goto drop;
524 			spin_lock_irqsave(&packet->qp->r_lock, flags);
525 			packet_handler = qp_ok(packet);
526 			if (likely(packet_handler))
527 				packet_handler(packet);
528 			else
529 				ibp->rvp.n_pkt_drops++;
530 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
531 		}
532 		/*
533 		 * Notify rvt_multicast_detach() if it is waiting for us
534 		 * to finish.
535 		 */
536 		if (atomic_dec_return(&mcast->refcount) <= 1)
537 			wake_up(&mcast->wait);
538 	} else {
539 		/* Get the destination QP number. */
540 		if (packet->etype == RHF_RCV_TYPE_BYPASS &&
541 		    hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
542 			qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
543 		else
544 			qp_num = ib_bth_get_qpn(packet->ohdr);
545 
546 		rcu_read_lock();
547 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
548 		if (!packet->qp)
549 			goto unlock_drop;
550 
551 		if (hfi1_do_pkey_check(packet))
552 			goto unlock_drop;
553 
554 		spin_lock_irqsave(&packet->qp->r_lock, flags);
555 		packet_handler = qp_ok(packet);
556 		if (likely(packet_handler))
557 			packet_handler(packet);
558 		else
559 			ibp->rvp.n_pkt_drops++;
560 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
561 		rcu_read_unlock();
562 	}
563 	return;
564 unlock_drop:
565 	rcu_read_unlock();
566 drop:
567 	ibp->rvp.n_pkt_drops++;
568 }
569 
570 /**
571  * hfi1_ib_rcv - process an incoming packet
572  * @packet: data packet information
573  *
574  * This is called to process an incoming packet at interrupt level.
575  */
576 void hfi1_ib_rcv(struct hfi1_packet *packet)
577 {
578 	struct hfi1_ctxtdata *rcd = packet->rcd;
579 
580 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
581 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
582 }
583 
584 void hfi1_16B_rcv(struct hfi1_packet *packet)
585 {
586 	struct hfi1_ctxtdata *rcd = packet->rcd;
587 
588 	trace_input_ibhdr(rcd->dd, packet, false);
589 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
590 }
591 
592 /*
593  * This is called from a timer to check for QPs
594  * which need kernel memory in order to send a packet.
595  */
596 static void mem_timer(struct timer_list *t)
597 {
598 	struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
599 	struct list_head *list = &dev->memwait;
600 	struct rvt_qp *qp = NULL;
601 	struct iowait *wait;
602 	unsigned long flags;
603 	struct hfi1_qp_priv *priv;
604 
605 	write_seqlock_irqsave(&dev->iowait_lock, flags);
606 	if (!list_empty(list)) {
607 		wait = list_first_entry(list, struct iowait, list);
608 		qp = iowait_to_qp(wait);
609 		priv = qp->priv;
610 		list_del_init(&priv->s_iowait.list);
611 		priv->s_iowait.lock = NULL;
612 		/* refcount held until actual wake up */
613 		if (!list_empty(list))
614 			mod_timer(&dev->mem_timer, jiffies + 1);
615 	}
616 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
617 
618 	if (qp)
619 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
620 }
621 
622 /*
623  * This is called with progress side lock held.
624  */
625 /* New API */
626 static void verbs_sdma_complete(
627 	struct sdma_txreq *cookie,
628 	int status)
629 {
630 	struct verbs_txreq *tx =
631 		container_of(cookie, struct verbs_txreq, txreq);
632 	struct rvt_qp *qp = tx->qp;
633 
634 	spin_lock(&qp->s_lock);
635 	if (tx->wqe) {
636 		rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
637 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
638 		struct hfi1_opa_header *hdr;
639 
640 		hdr = &tx->phdr.hdr;
641 		hfi1_rc_send_complete(qp, hdr);
642 	}
643 	spin_unlock(&qp->s_lock);
644 
645 	hfi1_put_txreq(tx);
646 }
647 
648 void hfi1_wait_kmem(struct rvt_qp *qp)
649 {
650 	struct hfi1_qp_priv *priv = qp->priv;
651 	struct ib_qp *ibqp = &qp->ibqp;
652 	struct ib_device *ibdev = ibqp->device;
653 	struct hfi1_ibdev *dev = to_idev(ibdev);
654 
655 	if (list_empty(&priv->s_iowait.list)) {
656 		if (list_empty(&dev->memwait))
657 			mod_timer(&dev->mem_timer, jiffies + 1);
658 		qp->s_flags |= RVT_S_WAIT_KMEM;
659 		list_add_tail(&priv->s_iowait.list, &dev->memwait);
660 		priv->s_iowait.lock = &dev->iowait_lock;
661 		trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
662 		rvt_get_qp(qp);
663 	}
664 }
665 
666 static int wait_kmem(struct hfi1_ibdev *dev,
667 		     struct rvt_qp *qp,
668 		     struct hfi1_pkt_state *ps)
669 {
670 	unsigned long flags;
671 	int ret = 0;
672 
673 	spin_lock_irqsave(&qp->s_lock, flags);
674 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
675 		write_seqlock(&dev->iowait_lock);
676 		list_add_tail(&ps->s_txreq->txreq.list,
677 			      &ps->wait->tx_head);
678 		hfi1_wait_kmem(qp);
679 		write_sequnlock(&dev->iowait_lock);
680 		hfi1_qp_unbusy(qp, ps->wait);
681 		ret = -EBUSY;
682 	}
683 	spin_unlock_irqrestore(&qp->s_lock, flags);
684 
685 	return ret;
686 }
687 
688 /*
689  * This routine calls txadds for each sg entry.
690  *
691  * Add failures will revert the sge cursor
692  */
693 static noinline int build_verbs_ulp_payload(
694 	struct sdma_engine *sde,
695 	u32 length,
696 	struct verbs_txreq *tx)
697 {
698 	struct rvt_sge_state *ss = tx->ss;
699 	struct rvt_sge *sg_list = ss->sg_list;
700 	struct rvt_sge sge = ss->sge;
701 	u8 num_sge = ss->num_sge;
702 	u32 len;
703 	int ret = 0;
704 
705 	while (length) {
706 		len = rvt_get_sge_length(&ss->sge, length);
707 		WARN_ON_ONCE(len == 0);
708 		ret = sdma_txadd_kvaddr(
709 			sde->dd,
710 			&tx->txreq,
711 			ss->sge.vaddr,
712 			len);
713 		if (ret)
714 			goto bail_txadd;
715 		rvt_update_sge(ss, len, false);
716 		length -= len;
717 	}
718 	return ret;
719 bail_txadd:
720 	/* unwind cursor */
721 	ss->sge = sge;
722 	ss->num_sge = num_sge;
723 	ss->sg_list = sg_list;
724 	return ret;
725 }
726 
727 /**
728  * update_tx_opstats - record stats by opcode
729  * @qp; the qp
730  * @ps: transmit packet state
731  * @plen: the plen in dwords
732  *
733  * This is a routine to record the tx opstats after a
734  * packet has been presented to the egress mechanism.
735  */
736 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
737 			      u32 plen)
738 {
739 #ifdef CONFIG_DEBUG_FS
740 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
741 	struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
742 
743 	inc_opstats(plen * 4, &s->stats[ps->opcode]);
744 	put_cpu_ptr(s);
745 #endif
746 }
747 
748 /*
749  * Build the number of DMA descriptors needed to send length bytes of data.
750  *
751  * NOTE: DMA mapping is held in the tx until completed in the ring or
752  *       the tx desc is freed without having been submitted to the ring
753  *
754  * This routine ensures all the helper routine calls succeed.
755  */
756 /* New API */
757 static int build_verbs_tx_desc(
758 	struct sdma_engine *sde,
759 	u32 length,
760 	struct verbs_txreq *tx,
761 	struct hfi1_ahg_info *ahg_info,
762 	u64 pbc)
763 {
764 	int ret = 0;
765 	struct hfi1_sdma_header *phdr = &tx->phdr;
766 	u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
767 	u8 extra_bytes = 0;
768 
769 	if (tx->phdr.hdr.hdr_type) {
770 		/*
771 		 * hdrbytes accounts for PBC. Need to subtract 8 bytes
772 		 * before calculating padding.
773 		 */
774 		extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
775 			      (SIZE_OF_CRC << 2) + SIZE_OF_LT;
776 	}
777 	if (!ahg_info->ahgcount) {
778 		ret = sdma_txinit_ahg(
779 			&tx->txreq,
780 			ahg_info->tx_flags,
781 			hdrbytes + length +
782 			extra_bytes,
783 			ahg_info->ahgidx,
784 			0,
785 			NULL,
786 			0,
787 			verbs_sdma_complete);
788 		if (ret)
789 			goto bail_txadd;
790 		phdr->pbc = cpu_to_le64(pbc);
791 		ret = sdma_txadd_kvaddr(
792 			sde->dd,
793 			&tx->txreq,
794 			phdr,
795 			hdrbytes);
796 		if (ret)
797 			goto bail_txadd;
798 	} else {
799 		ret = sdma_txinit_ahg(
800 			&tx->txreq,
801 			ahg_info->tx_flags,
802 			length,
803 			ahg_info->ahgidx,
804 			ahg_info->ahgcount,
805 			ahg_info->ahgdesc,
806 			hdrbytes,
807 			verbs_sdma_complete);
808 		if (ret)
809 			goto bail_txadd;
810 	}
811 	/* add the ulp payload - if any. tx->ss can be NULL for acks */
812 	if (tx->ss) {
813 		ret = build_verbs_ulp_payload(sde, length, tx);
814 		if (ret)
815 			goto bail_txadd;
816 	}
817 
818 	/* add icrc, lt byte, and padding to flit */
819 	if (extra_bytes)
820 		ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
821 					(void *)trail_buf, extra_bytes);
822 
823 bail_txadd:
824 	return ret;
825 }
826 
827 static u64 update_hcrc(u8 opcode, u64 pbc)
828 {
829 	if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
830 		pbc &= ~PBC_INSERT_HCRC_SMASK;
831 		pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
832 	}
833 	return pbc;
834 }
835 
836 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
837 			u64 pbc)
838 {
839 	struct hfi1_qp_priv *priv = qp->priv;
840 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
841 	u32 hdrwords = ps->s_txreq->hdr_dwords;
842 	u32 len = ps->s_txreq->s_cur_size;
843 	u32 plen;
844 	struct hfi1_ibdev *dev = ps->dev;
845 	struct hfi1_pportdata *ppd = ps->ppd;
846 	struct verbs_txreq *tx;
847 	u8 sc5 = priv->s_sc;
848 	int ret;
849 	u32 dwords;
850 
851 	if (ps->s_txreq->phdr.hdr.hdr_type) {
852 		u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
853 
854 		dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
855 			  SIZE_OF_LT) >> 2;
856 	} else {
857 		dwords = (len + 3) >> 2;
858 	}
859 	plen = hdrwords + dwords + sizeof(pbc) / 4;
860 
861 	tx = ps->s_txreq;
862 	if (!sdma_txreq_built(&tx->txreq)) {
863 		if (likely(pbc == 0)) {
864 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
865 
866 			/* No vl15 here */
867 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
868 			if (ps->s_txreq->phdr.hdr.hdr_type)
869 				pbc |= PBC_PACKET_BYPASS |
870 				       PBC_INSERT_BYPASS_ICRC;
871 			else
872 				pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
873 
874 			if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
875 				pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
876 			pbc = create_pbc(ppd,
877 					 pbc,
878 					 qp->srate_mbps,
879 					 vl,
880 					 plen);
881 
882 			/* Update HCRC based on packet opcode */
883 			pbc = update_hcrc(ps->opcode, pbc);
884 		}
885 		tx->wqe = qp->s_wqe;
886 		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
887 		if (unlikely(ret))
888 			goto bail_build;
889 	}
890 	ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
891 	if (unlikely(ret < 0)) {
892 		if (ret == -ECOMM)
893 			goto bail_ecomm;
894 		return ret;
895 	}
896 
897 	update_tx_opstats(qp, ps, plen);
898 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
899 				&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
900 	return ret;
901 
902 bail_ecomm:
903 	/* The current one got "sent" */
904 	return 0;
905 bail_build:
906 	ret = wait_kmem(dev, qp, ps);
907 	if (!ret) {
908 		/* free txreq - bad state */
909 		hfi1_put_txreq(ps->s_txreq);
910 		ps->s_txreq = NULL;
911 	}
912 	return ret;
913 }
914 
915 /*
916  * If we are now in the error state, return zero to flush the
917  * send work request.
918  */
919 static int pio_wait(struct rvt_qp *qp,
920 		    struct send_context *sc,
921 		    struct hfi1_pkt_state *ps,
922 		    u32 flag)
923 {
924 	struct hfi1_qp_priv *priv = qp->priv;
925 	struct hfi1_devdata *dd = sc->dd;
926 	unsigned long flags;
927 	int ret = 0;
928 
929 	/*
930 	 * Note that as soon as want_buffer() is called and
931 	 * possibly before it returns, sc_piobufavail()
932 	 * could be called. Therefore, put QP on the I/O wait list before
933 	 * enabling the PIO avail interrupt.
934 	 */
935 	spin_lock_irqsave(&qp->s_lock, flags);
936 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
937 		write_seqlock(&sc->waitlock);
938 		list_add_tail(&ps->s_txreq->txreq.list,
939 			      &ps->wait->tx_head);
940 		if (list_empty(&priv->s_iowait.list)) {
941 			struct hfi1_ibdev *dev = &dd->verbs_dev;
942 			int was_empty;
943 
944 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
945 			dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
946 			qp->s_flags |= flag;
947 			was_empty = list_empty(&sc->piowait);
948 			iowait_get_priority(&priv->s_iowait);
949 			iowait_queue(ps->pkts_sent, &priv->s_iowait,
950 				     &sc->piowait);
951 			priv->s_iowait.lock = &sc->waitlock;
952 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
953 			rvt_get_qp(qp);
954 			/* counting: only call wantpiobuf_intr if first user */
955 			if (was_empty)
956 				hfi1_sc_wantpiobuf_intr(sc, 1);
957 		}
958 		write_sequnlock(&sc->waitlock);
959 		hfi1_qp_unbusy(qp, ps->wait);
960 		ret = -EBUSY;
961 	}
962 	spin_unlock_irqrestore(&qp->s_lock, flags);
963 	return ret;
964 }
965 
966 static void verbs_pio_complete(void *arg, int code)
967 {
968 	struct rvt_qp *qp = (struct rvt_qp *)arg;
969 	struct hfi1_qp_priv *priv = qp->priv;
970 
971 	if (iowait_pio_dec(&priv->s_iowait))
972 		iowait_drain_wakeup(&priv->s_iowait);
973 }
974 
975 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
976 			u64 pbc)
977 {
978 	struct hfi1_qp_priv *priv = qp->priv;
979 	u32 hdrwords = ps->s_txreq->hdr_dwords;
980 	struct rvt_sge_state *ss = ps->s_txreq->ss;
981 	u32 len = ps->s_txreq->s_cur_size;
982 	u32 dwords;
983 	u32 plen;
984 	struct hfi1_pportdata *ppd = ps->ppd;
985 	u32 *hdr;
986 	u8 sc5;
987 	unsigned long flags = 0;
988 	struct send_context *sc;
989 	struct pio_buf *pbuf;
990 	int wc_status = IB_WC_SUCCESS;
991 	int ret = 0;
992 	pio_release_cb cb = NULL;
993 	u8 extra_bytes = 0;
994 
995 	if (ps->s_txreq->phdr.hdr.hdr_type) {
996 		u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
997 
998 		extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
999 		dwords = (len + extra_bytes) >> 2;
1000 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1001 	} else {
1002 		dwords = (len + 3) >> 2;
1003 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1004 	}
1005 	plen = hdrwords + dwords + sizeof(pbc) / 4;
1006 
1007 	/* only RC/UC use complete */
1008 	switch (qp->ibqp.qp_type) {
1009 	case IB_QPT_RC:
1010 	case IB_QPT_UC:
1011 		cb = verbs_pio_complete;
1012 		break;
1013 	default:
1014 		break;
1015 	}
1016 
1017 	/* vl15 special case taken care of in ud.c */
1018 	sc5 = priv->s_sc;
1019 	sc = ps->s_txreq->psc;
1020 
1021 	if (likely(pbc == 0)) {
1022 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1023 
1024 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1025 		if (ps->s_txreq->phdr.hdr.hdr_type)
1026 			pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1027 		else
1028 			pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1029 
1030 		if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1031 			pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1032 		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1033 
1034 		/* Update HCRC based on packet opcode */
1035 		pbc = update_hcrc(ps->opcode, pbc);
1036 	}
1037 	if (cb)
1038 		iowait_pio_inc(&priv->s_iowait);
1039 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1040 	if (unlikely(!pbuf)) {
1041 		if (cb)
1042 			verbs_pio_complete(qp, 0);
1043 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1044 			/*
1045 			 * If we have filled the PIO buffers to capacity and are
1046 			 * not in an active state this request is not going to
1047 			 * go out to so just complete it with an error or else a
1048 			 * ULP or the core may be stuck waiting.
1049 			 */
1050 			hfi1_cdbg(
1051 				PIO,
1052 				"alloc failed. state not active, completing");
1053 			wc_status = IB_WC_GENERAL_ERR;
1054 			goto pio_bail;
1055 		} else {
1056 			/*
1057 			 * This is a normal occurrence. The PIO buffs are full
1058 			 * up but we are still happily sending, well we could be
1059 			 * so lets continue to queue the request.
1060 			 */
1061 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1062 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1063 			if (!ret)
1064 				/* txreq not queued - free */
1065 				goto bail;
1066 			/* tx consumed in wait */
1067 			return ret;
1068 		}
1069 	}
1070 
1071 	if (dwords == 0) {
1072 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1073 	} else {
1074 		seg_pio_copy_start(pbuf, pbc,
1075 				   hdr, hdrwords * 4);
1076 		if (ss) {
1077 			while (len) {
1078 				void *addr = ss->sge.vaddr;
1079 				u32 slen = rvt_get_sge_length(&ss->sge, len);
1080 
1081 				rvt_update_sge(ss, slen, false);
1082 				seg_pio_copy_mid(pbuf, addr, slen);
1083 				len -= slen;
1084 			}
1085 		}
1086 		/* add icrc, lt byte, and padding to flit */
1087 		if (extra_bytes)
1088 			seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
1089 
1090 		seg_pio_copy_end(pbuf);
1091 	}
1092 
1093 	update_tx_opstats(qp, ps, plen);
1094 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1095 			       &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1096 
1097 pio_bail:
1098 	if (qp->s_wqe) {
1099 		spin_lock_irqsave(&qp->s_lock, flags);
1100 		rvt_send_complete(qp, qp->s_wqe, wc_status);
1101 		spin_unlock_irqrestore(&qp->s_lock, flags);
1102 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1103 		spin_lock_irqsave(&qp->s_lock, flags);
1104 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1105 		spin_unlock_irqrestore(&qp->s_lock, flags);
1106 	}
1107 
1108 	ret = 0;
1109 
1110 bail:
1111 	hfi1_put_txreq(ps->s_txreq);
1112 	return ret;
1113 }
1114 
1115 /*
1116  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1117  * being an entry from the partition key table), return 0
1118  * otherwise. Use the matching criteria for egress partition keys
1119  * specified in the OPAv1 spec., section 9.1l.7.
1120  */
1121 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1122 {
1123 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1124 	u16 mentry = ent & PKEY_LOW_15_MASK;
1125 
1126 	if (mkey == mentry) {
1127 		/*
1128 		 * If pkey[15] is set (full partition member),
1129 		 * is bit 15 in the corresponding table element
1130 		 * clear (limited member)?
1131 		 */
1132 		if (pkey & PKEY_MEMBER_MASK)
1133 			return !!(ent & PKEY_MEMBER_MASK);
1134 		return 1;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * egress_pkey_check - check P_KEY of a packet
1141  * @ppd:  Physical IB port data
1142  * @slid: SLID for packet
1143  * @bkey: PKEY for header
1144  * @sc5:  SC for packet
1145  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1146  * only. If it is negative value, then it means user contexts is calling this
1147  * function.
1148  *
1149  * It checks if hdr's pkey is valid.
1150  *
1151  * Return: 0 on success, otherwise, 1
1152  */
1153 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1154 		      u8 sc5, int8_t s_pkey_index)
1155 {
1156 	struct hfi1_devdata *dd;
1157 	int i;
1158 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1159 
1160 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1161 		return 0;
1162 
1163 	/* If SC15, pkey[0:14] must be 0x7fff */
1164 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1165 		goto bad;
1166 
1167 	/* Is the pkey = 0x0, or 0x8000? */
1168 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1169 		goto bad;
1170 
1171 	/*
1172 	 * For the kernel contexts only, if a qp is passed into the function,
1173 	 * the most likely matching pkey has index qp->s_pkey_index
1174 	 */
1175 	if (!is_user_ctxt_mechanism &&
1176 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1177 		return 0;
1178 	}
1179 
1180 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1181 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1182 			return 0;
1183 	}
1184 bad:
1185 	/*
1186 	 * For the user-context mechanism, the P_KEY check would only happen
1187 	 * once per SDMA request, not once per packet.  Therefore, there's no
1188 	 * need to increment the counter for the user-context mechanism.
1189 	 */
1190 	if (!is_user_ctxt_mechanism) {
1191 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1192 		dd = ppd->dd;
1193 		if (!(dd->err_info_xmit_constraint.status &
1194 		      OPA_EI_STATUS_SMASK)) {
1195 			dd->err_info_xmit_constraint.status |=
1196 				OPA_EI_STATUS_SMASK;
1197 			dd->err_info_xmit_constraint.slid = slid;
1198 			dd->err_info_xmit_constraint.pkey = pkey;
1199 		}
1200 	}
1201 	return 1;
1202 }
1203 
1204 /**
1205  * get_send_routine - choose an egress routine
1206  *
1207  * Choose an egress routine based on QP type
1208  * and size
1209  */
1210 static inline send_routine get_send_routine(struct rvt_qp *qp,
1211 					    struct hfi1_pkt_state *ps)
1212 {
1213 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1214 	struct hfi1_qp_priv *priv = qp->priv;
1215 	struct verbs_txreq *tx = ps->s_txreq;
1216 
1217 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1218 		return dd->process_pio_send;
1219 	switch (qp->ibqp.qp_type) {
1220 	case IB_QPT_SMI:
1221 		return dd->process_pio_send;
1222 	case IB_QPT_GSI:
1223 	case IB_QPT_UD:
1224 		break;
1225 	case IB_QPT_UC:
1226 	case IB_QPT_RC:
1227 		priv->s_running_pkt_size =
1228 			(tx->s_cur_size + priv->s_running_pkt_size) / 2;
1229 		if (piothreshold &&
1230 		    priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1231 		    (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1232 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1233 		    !sdma_txreq_built(&tx->txreq))
1234 			return dd->process_pio_send;
1235 		break;
1236 	default:
1237 		break;
1238 	}
1239 	return dd->process_dma_send;
1240 }
1241 
1242 /**
1243  * hfi1_verbs_send - send a packet
1244  * @qp: the QP to send on
1245  * @ps: the state of the packet to send
1246  *
1247  * Return zero if packet is sent or queued OK.
1248  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1249  */
1250 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1251 {
1252 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1253 	struct hfi1_qp_priv *priv = qp->priv;
1254 	struct ib_other_headers *ohdr = NULL;
1255 	send_routine sr;
1256 	int ret;
1257 	u16 pkey;
1258 	u32 slid;
1259 	u8 l4 = 0;
1260 
1261 	/* locate the pkey within the headers */
1262 	if (ps->s_txreq->phdr.hdr.hdr_type) {
1263 		struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1264 
1265 		l4 = hfi1_16B_get_l4(hdr);
1266 		if (l4 == OPA_16B_L4_IB_LOCAL)
1267 			ohdr = &hdr->u.oth;
1268 		else if (l4 == OPA_16B_L4_IB_GLOBAL)
1269 			ohdr = &hdr->u.l.oth;
1270 
1271 		slid = hfi1_16B_get_slid(hdr);
1272 		pkey = hfi1_16B_get_pkey(hdr);
1273 	} else {
1274 		struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1275 		u8 lnh = ib_get_lnh(hdr);
1276 
1277 		if (lnh == HFI1_LRH_GRH)
1278 			ohdr = &hdr->u.l.oth;
1279 		else
1280 			ohdr = &hdr->u.oth;
1281 		slid = ib_get_slid(hdr);
1282 		pkey = ib_bth_get_pkey(ohdr);
1283 	}
1284 
1285 	if (likely(l4 != OPA_16B_L4_FM))
1286 		ps->opcode = ib_bth_get_opcode(ohdr);
1287 	else
1288 		ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1289 
1290 	sr = get_send_routine(qp, ps);
1291 	ret = egress_pkey_check(dd->pport, slid, pkey,
1292 				priv->s_sc, qp->s_pkey_index);
1293 	if (unlikely(ret)) {
1294 		/*
1295 		 * The value we are returning here does not get propagated to
1296 		 * the verbs caller. Thus we need to complete the request with
1297 		 * error otherwise the caller could be sitting waiting on the
1298 		 * completion event. Only do this for PIO. SDMA has its own
1299 		 * mechanism for handling the errors. So for SDMA we can just
1300 		 * return.
1301 		 */
1302 		if (sr == dd->process_pio_send) {
1303 			unsigned long flags;
1304 
1305 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1306 				  __func__);
1307 			spin_lock_irqsave(&qp->s_lock, flags);
1308 			rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1309 			spin_unlock_irqrestore(&qp->s_lock, flags);
1310 		}
1311 		return -EINVAL;
1312 	}
1313 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1314 		return pio_wait(qp,
1315 				ps->s_txreq->psc,
1316 				ps,
1317 				HFI1_S_WAIT_PIO_DRAIN);
1318 	return sr(qp, ps, 0);
1319 }
1320 
1321 /**
1322  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1323  * @dd: the device data structure
1324  */
1325 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1326 {
1327 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1328 	u32 ver = dd->dc8051_ver;
1329 
1330 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1331 
1332 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1333 		((u64)(dc8051_ver_min(ver)) << 16) |
1334 		(u64)dc8051_ver_patch(ver);
1335 
1336 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1337 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1338 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1339 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1340 			IB_DEVICE_MEM_MGT_EXTENSIONS |
1341 			IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1342 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1343 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1344 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1345 	rdi->dparms.props.hw_ver = dd->minrev;
1346 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1347 	rdi->dparms.props.max_mr_size = U64_MAX;
1348 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1349 	rdi->dparms.props.max_qp = hfi1_max_qps;
1350 	rdi->dparms.props.max_qp_wr =
1351 		(hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1352 		 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1353 	rdi->dparms.props.max_send_sge = hfi1_max_sges;
1354 	rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1355 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1356 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1357 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1358 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1359 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1360 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1361 	rdi->dparms.props.max_map_per_fmr = 32767;
1362 	rdi->dparms.props.max_pd = hfi1_max_pds;
1363 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1364 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1365 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1366 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1367 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1368 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1369 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1370 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1371 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1372 	rdi->dparms.props.max_total_mcast_qp_attach =
1373 					rdi->dparms.props.max_mcast_qp_attach *
1374 					rdi->dparms.props.max_mcast_grp;
1375 }
1376 
1377 static inline u16 opa_speed_to_ib(u16 in)
1378 {
1379 	u16 out = 0;
1380 
1381 	if (in & OPA_LINK_SPEED_25G)
1382 		out |= IB_SPEED_EDR;
1383 	if (in & OPA_LINK_SPEED_12_5G)
1384 		out |= IB_SPEED_FDR;
1385 
1386 	return out;
1387 }
1388 
1389 /*
1390  * Convert a single OPA link width (no multiple flags) to an IB value.
1391  * A zero OPA link width means link down, which means the IB width value
1392  * is a don't care.
1393  */
1394 static inline u16 opa_width_to_ib(u16 in)
1395 {
1396 	switch (in) {
1397 	case OPA_LINK_WIDTH_1X:
1398 	/* map 2x and 3x to 1x as they don't exist in IB */
1399 	case OPA_LINK_WIDTH_2X:
1400 	case OPA_LINK_WIDTH_3X:
1401 		return IB_WIDTH_1X;
1402 	default: /* link down or unknown, return our largest width */
1403 	case OPA_LINK_WIDTH_4X:
1404 		return IB_WIDTH_4X;
1405 	}
1406 }
1407 
1408 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1409 		      struct ib_port_attr *props)
1410 {
1411 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1412 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1413 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1414 	u32 lid = ppd->lid;
1415 
1416 	/* props being zeroed by the caller, avoid zeroing it here */
1417 	props->lid = lid ? lid : 0;
1418 	props->lmc = ppd->lmc;
1419 	/* OPA logical states match IB logical states */
1420 	props->state = driver_lstate(ppd);
1421 	props->phys_state = driver_pstate(ppd);
1422 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1423 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1424 	/* see rate_show() in ib core/sysfs.c */
1425 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1426 	props->max_vl_num = ppd->vls_supported;
1427 
1428 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1429 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1430 	 * advertise only 4K.
1431 	 *
1432 	 * Those applications which are either OPA aware or pass the MTU enum
1433 	 * from the Path Records to us will get the new 8k MTU.  Those that
1434 	 * attempt to process the MTU enum may fail in various ways.
1435 	 */
1436 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1437 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1438 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1439 		mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1440 
1441 	return 0;
1442 }
1443 
1444 static int modify_device(struct ib_device *device,
1445 			 int device_modify_mask,
1446 			 struct ib_device_modify *device_modify)
1447 {
1448 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1449 	unsigned i;
1450 	int ret;
1451 
1452 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1453 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1454 		ret = -EOPNOTSUPP;
1455 		goto bail;
1456 	}
1457 
1458 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1459 		memcpy(device->node_desc, device_modify->node_desc,
1460 		       IB_DEVICE_NODE_DESC_MAX);
1461 		for (i = 0; i < dd->num_pports; i++) {
1462 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1463 
1464 			hfi1_node_desc_chg(ibp);
1465 		}
1466 	}
1467 
1468 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1469 		ib_hfi1_sys_image_guid =
1470 			cpu_to_be64(device_modify->sys_image_guid);
1471 		for (i = 0; i < dd->num_pports; i++) {
1472 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1473 
1474 			hfi1_sys_guid_chg(ibp);
1475 		}
1476 	}
1477 
1478 	ret = 0;
1479 
1480 bail:
1481 	return ret;
1482 }
1483 
1484 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1485 {
1486 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1487 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1488 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1489 	int ret;
1490 
1491 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1492 			     OPA_LINKDOWN_REASON_UNKNOWN);
1493 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1494 	return ret;
1495 }
1496 
1497 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1498 			    int guid_index, __be64 *guid)
1499 {
1500 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1501 
1502 	if (guid_index >= HFI1_GUIDS_PER_PORT)
1503 		return -EINVAL;
1504 
1505 	*guid = get_sguid(ibp, guid_index);
1506 	return 0;
1507 }
1508 
1509 /*
1510  * convert ah port,sl to sc
1511  */
1512 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1513 {
1514 	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1515 
1516 	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1517 }
1518 
1519 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1520 {
1521 	struct hfi1_ibport *ibp;
1522 	struct hfi1_pportdata *ppd;
1523 	struct hfi1_devdata *dd;
1524 	u8 sc5;
1525 	u8 sl;
1526 
1527 	if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1528 	    !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1529 		return -EINVAL;
1530 
1531 	/* test the mapping for validity */
1532 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1533 	ppd = ppd_from_ibp(ibp);
1534 	dd = dd_from_ppd(ppd);
1535 
1536 	sl = rdma_ah_get_sl(ah_attr);
1537 	if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1538 		return -EINVAL;
1539 
1540 	sc5 = ibp->sl_to_sc[sl];
1541 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1542 		return -EINVAL;
1543 	return 0;
1544 }
1545 
1546 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1547 			       struct rdma_ah_attr *ah_attr,
1548 			       struct rvt_ah *ah)
1549 {
1550 	struct hfi1_ibport *ibp;
1551 	struct hfi1_pportdata *ppd;
1552 	struct hfi1_devdata *dd;
1553 	u8 sc5;
1554 	struct rdma_ah_attr *attr = &ah->attr;
1555 
1556 	/*
1557 	 * Do not trust reading anything from rvt_ah at this point as it is not
1558 	 * done being setup. We can however modify things which we need to set.
1559 	 */
1560 
1561 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1562 	ppd = ppd_from_ibp(ibp);
1563 	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1564 	hfi1_update_ah_attr(ibdev, attr);
1565 	hfi1_make_opa_lid(attr);
1566 	dd = dd_from_ppd(ppd);
1567 	ah->vl = sc_to_vlt(dd, sc5);
1568 	if (ah->vl < num_vls || ah->vl == 15)
1569 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1570 }
1571 
1572 /**
1573  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1574  * @dd: the hfi1_ib device
1575  */
1576 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1577 {
1578 	return ARRAY_SIZE(dd->pport[0].pkeys);
1579 }
1580 
1581 static void init_ibport(struct hfi1_pportdata *ppd)
1582 {
1583 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1584 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1585 	int i;
1586 
1587 	for (i = 0; i < sz; i++) {
1588 		ibp->sl_to_sc[i] = i;
1589 		ibp->sc_to_sl[i] = i;
1590 	}
1591 
1592 	for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1593 		INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1594 	timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1595 
1596 	spin_lock_init(&ibp->rvp.lock);
1597 	/* Set the prefix to the default value (see ch. 4.1.1) */
1598 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1599 	ibp->rvp.sm_lid = 0;
1600 	/*
1601 	 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1602 	 * and PortInfo.CapabilityMask3
1603 	 */
1604 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1605 		IB_PORT_CAP_MASK_NOTICE_SUP;
1606 	ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1607 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1608 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1609 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1610 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1611 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1612 
1613 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1614 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1615 }
1616 
1617 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1618 {
1619 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1620 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1621 	u32 ver = dd_from_dev(dev)->dc8051_ver;
1622 
1623 	snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1624 		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1625 }
1626 
1627 static const char * const driver_cntr_names[] = {
1628 	/* must be element 0*/
1629 	"DRIVER_KernIntr",
1630 	"DRIVER_ErrorIntr",
1631 	"DRIVER_Tx_Errs",
1632 	"DRIVER_Rcv_Errs",
1633 	"DRIVER_HW_Errs",
1634 	"DRIVER_NoPIOBufs",
1635 	"DRIVER_CtxtsOpen",
1636 	"DRIVER_RcvLen_Errs",
1637 	"DRIVER_EgrBufFull",
1638 	"DRIVER_EgrHdrFull"
1639 };
1640 
1641 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1642 static const char **dev_cntr_names;
1643 static const char **port_cntr_names;
1644 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1645 static int num_dev_cntrs;
1646 static int num_port_cntrs;
1647 static int cntr_names_initialized;
1648 
1649 /*
1650  * Convert a list of names separated by '\n' into an array of NULL terminated
1651  * strings. Optionally some entries can be reserved in the array to hold extra
1652  * external strings.
1653  */
1654 static int init_cntr_names(const char *names_in,
1655 			   const size_t names_len,
1656 			   int num_extra_names,
1657 			   int *num_cntrs,
1658 			   const char ***cntr_names)
1659 {
1660 	char *names_out, *p, **q;
1661 	int i, n;
1662 
1663 	n = 0;
1664 	for (i = 0; i < names_len; i++)
1665 		if (names_in[i] == '\n')
1666 			n++;
1667 
1668 	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1669 			    GFP_KERNEL);
1670 	if (!names_out) {
1671 		*num_cntrs = 0;
1672 		*cntr_names = NULL;
1673 		return -ENOMEM;
1674 	}
1675 
1676 	p = names_out + (n + num_extra_names) * sizeof(char *);
1677 	memcpy(p, names_in, names_len);
1678 
1679 	q = (char **)names_out;
1680 	for (i = 0; i < n; i++) {
1681 		q[i] = p;
1682 		p = strchr(p, '\n');
1683 		*p++ = '\0';
1684 	}
1685 
1686 	*num_cntrs = n;
1687 	*cntr_names = (const char **)names_out;
1688 	return 0;
1689 }
1690 
1691 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1692 					    u8 port_num)
1693 {
1694 	int i, err;
1695 
1696 	mutex_lock(&cntr_names_lock);
1697 	if (!cntr_names_initialized) {
1698 		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1699 
1700 		err = init_cntr_names(dd->cntrnames,
1701 				      dd->cntrnameslen,
1702 				      num_driver_cntrs,
1703 				      &num_dev_cntrs,
1704 				      &dev_cntr_names);
1705 		if (err) {
1706 			mutex_unlock(&cntr_names_lock);
1707 			return NULL;
1708 		}
1709 
1710 		for (i = 0; i < num_driver_cntrs; i++)
1711 			dev_cntr_names[num_dev_cntrs + i] =
1712 				driver_cntr_names[i];
1713 
1714 		err = init_cntr_names(dd->portcntrnames,
1715 				      dd->portcntrnameslen,
1716 				      0,
1717 				      &num_port_cntrs,
1718 				      &port_cntr_names);
1719 		if (err) {
1720 			kfree(dev_cntr_names);
1721 			dev_cntr_names = NULL;
1722 			mutex_unlock(&cntr_names_lock);
1723 			return NULL;
1724 		}
1725 		cntr_names_initialized = 1;
1726 	}
1727 	mutex_unlock(&cntr_names_lock);
1728 
1729 	if (!port_num)
1730 		return rdma_alloc_hw_stats_struct(
1731 				dev_cntr_names,
1732 				num_dev_cntrs + num_driver_cntrs,
1733 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1734 	else
1735 		return rdma_alloc_hw_stats_struct(
1736 				port_cntr_names,
1737 				num_port_cntrs,
1738 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1739 }
1740 
1741 static u64 hfi1_sps_ints(void)
1742 {
1743 	unsigned long index, flags;
1744 	struct hfi1_devdata *dd;
1745 	u64 sps_ints = 0;
1746 
1747 	xa_lock_irqsave(&hfi1_dev_table, flags);
1748 	xa_for_each(&hfi1_dev_table, index, dd) {
1749 		sps_ints += get_all_cpu_total(dd->int_counter);
1750 	}
1751 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1752 	return sps_ints;
1753 }
1754 
1755 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1756 			u8 port, int index)
1757 {
1758 	u64 *values;
1759 	int count;
1760 
1761 	if (!port) {
1762 		u64 *stats = (u64 *)&hfi1_stats;
1763 		int i;
1764 
1765 		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1766 		values[num_dev_cntrs] = hfi1_sps_ints();
1767 		for (i = 1; i < num_driver_cntrs; i++)
1768 			values[num_dev_cntrs + i] = stats[i];
1769 		count = num_dev_cntrs + num_driver_cntrs;
1770 	} else {
1771 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1772 
1773 		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1774 		count = num_port_cntrs;
1775 	}
1776 
1777 	memcpy(stats->value, values, count * sizeof(u64));
1778 	return count;
1779 }
1780 
1781 static const struct ib_device_ops hfi1_dev_ops = {
1782 	.alloc_hw_stats = alloc_hw_stats,
1783 	.alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1784 	.get_dev_fw_str = hfi1_get_dev_fw_str,
1785 	.get_hw_stats = get_hw_stats,
1786 	.init_port = hfi1_create_port_files,
1787 	.modify_device = modify_device,
1788 	/* keep process mad in the driver */
1789 	.process_mad = hfi1_process_mad,
1790 };
1791 
1792 /**
1793  * hfi1_register_ib_device - register our device with the infiniband core
1794  * @dd: the device data structure
1795  * Return 0 if successful, errno if unsuccessful.
1796  */
1797 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1798 {
1799 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1800 	struct ib_device *ibdev = &dev->rdi.ibdev;
1801 	struct hfi1_pportdata *ppd = dd->pport;
1802 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1803 	unsigned i;
1804 	int ret;
1805 
1806 	for (i = 0; i < dd->num_pports; i++)
1807 		init_ibport(ppd + i);
1808 
1809 	/* Only need to initialize non-zero fields. */
1810 
1811 	timer_setup(&dev->mem_timer, mem_timer, 0);
1812 
1813 	seqlock_init(&dev->iowait_lock);
1814 	seqlock_init(&dev->txwait_lock);
1815 	INIT_LIST_HEAD(&dev->txwait);
1816 	INIT_LIST_HEAD(&dev->memwait);
1817 
1818 	ret = verbs_txreq_init(dev);
1819 	if (ret)
1820 		goto err_verbs_txreq;
1821 
1822 	/* Use first-port GUID as node guid */
1823 	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1824 
1825 	/*
1826 	 * The system image GUID is supposed to be the same for all
1827 	 * HFIs in a single system but since there can be other
1828 	 * device types in the system, we can't be sure this is unique.
1829 	 */
1830 	if (!ib_hfi1_sys_image_guid)
1831 		ib_hfi1_sys_image_guid = ibdev->node_guid;
1832 	ibdev->owner = THIS_MODULE;
1833 	ibdev->phys_port_cnt = dd->num_pports;
1834 	ibdev->dev.parent = &dd->pcidev->dev;
1835 
1836 	ib_set_device_ops(ibdev, &hfi1_dev_ops);
1837 
1838 	strlcpy(ibdev->node_desc, init_utsname()->nodename,
1839 		sizeof(ibdev->node_desc));
1840 
1841 	/*
1842 	 * Fill in rvt info object.
1843 	 */
1844 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1845 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1846 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1847 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1848 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1849 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1850 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1851 	/*
1852 	 * Fill in rvt info device attributes.
1853 	 */
1854 	hfi1_fill_device_attr(dd);
1855 
1856 	/* queue pair */
1857 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1858 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1859 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1860 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1861 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1862 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1863 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1864 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1865 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1866 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1867 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1868 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1869 						RDMA_CORE_CAP_OPA_AH;
1870 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1871 
1872 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1873 	dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1874 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1875 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1876 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1877 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1878 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1879 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1880 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1881 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1882 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1883 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1884 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1885 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1886 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1887 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1888 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1889 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1890 	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1891 	dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1892 	dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1893 						hfi1_comp_vect_mappings_lookup;
1894 
1895 	/* completeion queue */
1896 	dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1897 	dd->verbs_dev.rdi.dparms.node = dd->node;
1898 
1899 	/* misc settings */
1900 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1901 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1902 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1903 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1904 	dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1905 	dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1906 	dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1907 	dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1908 	dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1909 
1910 	/* post send table */
1911 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1912 
1913 	/* opcode translation table */
1914 	dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1915 
1916 	ppd = dd->pport;
1917 	for (i = 0; i < dd->num_pports; i++, ppd++)
1918 		rvt_init_port(&dd->verbs_dev.rdi,
1919 			      &ppd->ibport_data.rvp,
1920 			      i,
1921 			      ppd->pkeys);
1922 
1923 	rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1924 				    &ib_hfi1_attr_group);
1925 
1926 	ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1);
1927 	if (ret)
1928 		goto err_verbs_txreq;
1929 
1930 	ret = hfi1_verbs_register_sysfs(dd);
1931 	if (ret)
1932 		goto err_class;
1933 
1934 	return ret;
1935 
1936 err_class:
1937 	rvt_unregister_device(&dd->verbs_dev.rdi);
1938 err_verbs_txreq:
1939 	verbs_txreq_exit(dev);
1940 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1941 	return ret;
1942 }
1943 
1944 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1945 {
1946 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1947 
1948 	hfi1_verbs_unregister_sysfs(dd);
1949 
1950 	rvt_unregister_device(&dd->verbs_dev.rdi);
1951 
1952 	if (!list_empty(&dev->txwait))
1953 		dd_dev_err(dd, "txwait list not empty!\n");
1954 	if (!list_empty(&dev->memwait))
1955 		dd_dev_err(dd, "memwait list not empty!\n");
1956 
1957 	del_timer_sync(&dev->mem_timer);
1958 	verbs_txreq_exit(dev);
1959 
1960 	mutex_lock(&cntr_names_lock);
1961 	kfree(dev_cntr_names);
1962 	kfree(port_cntr_names);
1963 	dev_cntr_names = NULL;
1964 	port_cntr_names = NULL;
1965 	cntr_names_initialized = 0;
1966 	mutex_unlock(&cntr_names_lock);
1967 }
1968 
1969 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1970 {
1971 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1972 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1973 	struct ib_header *hdr = packet->hdr;
1974 	struct rvt_qp *qp = packet->qp;
1975 	u32 lqpn, rqpn = 0;
1976 	u16 rlid = 0;
1977 	u8 sl, sc5, svc_type;
1978 
1979 	switch (packet->qp->ibqp.qp_type) {
1980 	case IB_QPT_UC:
1981 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1982 		rqpn = qp->remote_qpn;
1983 		svc_type = IB_CC_SVCTYPE_UC;
1984 		break;
1985 	case IB_QPT_RC:
1986 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1987 		rqpn = qp->remote_qpn;
1988 		svc_type = IB_CC_SVCTYPE_RC;
1989 		break;
1990 	case IB_QPT_SMI:
1991 	case IB_QPT_GSI:
1992 	case IB_QPT_UD:
1993 		svc_type = IB_CC_SVCTYPE_UD;
1994 		break;
1995 	default:
1996 		ibp->rvp.n_pkt_drops++;
1997 		return;
1998 	}
1999 
2000 	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2001 	sl = ibp->sc_to_sl[sc5];
2002 	lqpn = qp->ibqp.qp_num;
2003 
2004 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2005 }
2006