1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2020 - Cornelis Networks, Inc. 4 * Copyright(c) 2015 - 2018 Intel Corporation. 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/types.h> 9 #include <linux/device.h> 10 #include <linux/dmapool.h> 11 #include <linux/slab.h> 12 #include <linux/list.h> 13 #include <linux/highmem.h> 14 #include <linux/io.h> 15 #include <linux/uio.h> 16 #include <linux/rbtree.h> 17 #include <linux/spinlock.h> 18 #include <linux/delay.h> 19 #include <linux/kthread.h> 20 #include <linux/mmu_context.h> 21 #include <linux/module.h> 22 #include <linux/vmalloc.h> 23 #include <linux/string.h> 24 25 #include "hfi.h" 26 #include "sdma.h" 27 #include "mmu_rb.h" 28 #include "user_sdma.h" 29 #include "verbs.h" /* for the headers */ 30 #include "common.h" /* for struct hfi1_tid_info */ 31 #include "trace.h" 32 33 static uint hfi1_sdma_comp_ring_size = 128; 34 module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO); 35 MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128"); 36 37 static unsigned initial_pkt_count = 8; 38 39 static int user_sdma_send_pkts(struct user_sdma_request *req, u16 maxpkts); 40 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status); 41 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq); 42 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin); 43 static int pin_vector_pages(struct user_sdma_request *req, 44 struct user_sdma_iovec *iovec); 45 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages, 46 unsigned start, unsigned npages); 47 static int check_header_template(struct user_sdma_request *req, 48 struct hfi1_pkt_header *hdr, u32 lrhlen, 49 u32 datalen); 50 static int set_txreq_header(struct user_sdma_request *req, 51 struct user_sdma_txreq *tx, u32 datalen); 52 static int set_txreq_header_ahg(struct user_sdma_request *req, 53 struct user_sdma_txreq *tx, u32 len); 54 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq, 55 struct hfi1_user_sdma_comp_q *cq, 56 u16 idx, enum hfi1_sdma_comp_state state, 57 int ret); 58 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags); 59 static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len); 60 61 static int defer_packet_queue( 62 struct sdma_engine *sde, 63 struct iowait_work *wait, 64 struct sdma_txreq *txreq, 65 uint seq, 66 bool pkts_sent); 67 static void activate_packet_queue(struct iowait *wait, int reason); 68 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr, 69 unsigned long len); 70 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode); 71 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode, 72 void *arg2, bool *stop); 73 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode); 74 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode); 75 76 static struct mmu_rb_ops sdma_rb_ops = { 77 .filter = sdma_rb_filter, 78 .insert = sdma_rb_insert, 79 .evict = sdma_rb_evict, 80 .remove = sdma_rb_remove, 81 .invalidate = sdma_rb_invalidate 82 }; 83 84 static int defer_packet_queue( 85 struct sdma_engine *sde, 86 struct iowait_work *wait, 87 struct sdma_txreq *txreq, 88 uint seq, 89 bool pkts_sent) 90 { 91 struct hfi1_user_sdma_pkt_q *pq = 92 container_of(wait->iow, struct hfi1_user_sdma_pkt_q, busy); 93 94 write_seqlock(&sde->waitlock); 95 trace_hfi1_usdma_defer(pq, sde, &pq->busy); 96 if (sdma_progress(sde, seq, txreq)) 97 goto eagain; 98 /* 99 * We are assuming that if the list is enqueued somewhere, it 100 * is to the dmawait list since that is the only place where 101 * it is supposed to be enqueued. 102 */ 103 xchg(&pq->state, SDMA_PKT_Q_DEFERRED); 104 if (list_empty(&pq->busy.list)) { 105 pq->busy.lock = &sde->waitlock; 106 iowait_get_priority(&pq->busy); 107 iowait_queue(pkts_sent, &pq->busy, &sde->dmawait); 108 } 109 write_sequnlock(&sde->waitlock); 110 return -EBUSY; 111 eagain: 112 write_sequnlock(&sde->waitlock); 113 return -EAGAIN; 114 } 115 116 static void activate_packet_queue(struct iowait *wait, int reason) 117 { 118 struct hfi1_user_sdma_pkt_q *pq = 119 container_of(wait, struct hfi1_user_sdma_pkt_q, busy); 120 121 trace_hfi1_usdma_activate(pq, wait, reason); 122 xchg(&pq->state, SDMA_PKT_Q_ACTIVE); 123 wake_up(&wait->wait_dma); 124 }; 125 126 int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, 127 struct hfi1_filedata *fd) 128 { 129 int ret = -ENOMEM; 130 char buf[64]; 131 struct hfi1_devdata *dd; 132 struct hfi1_user_sdma_comp_q *cq; 133 struct hfi1_user_sdma_pkt_q *pq; 134 135 if (!uctxt || !fd) 136 return -EBADF; 137 138 if (!hfi1_sdma_comp_ring_size) 139 return -EINVAL; 140 141 dd = uctxt->dd; 142 143 pq = kzalloc(sizeof(*pq), GFP_KERNEL); 144 if (!pq) 145 return -ENOMEM; 146 pq->dd = dd; 147 pq->ctxt = uctxt->ctxt; 148 pq->subctxt = fd->subctxt; 149 pq->n_max_reqs = hfi1_sdma_comp_ring_size; 150 atomic_set(&pq->n_reqs, 0); 151 init_waitqueue_head(&pq->wait); 152 atomic_set(&pq->n_locked, 0); 153 154 iowait_init(&pq->busy, 0, NULL, NULL, defer_packet_queue, 155 activate_packet_queue, NULL, NULL); 156 pq->reqidx = 0; 157 158 pq->reqs = kcalloc(hfi1_sdma_comp_ring_size, 159 sizeof(*pq->reqs), 160 GFP_KERNEL); 161 if (!pq->reqs) 162 goto pq_reqs_nomem; 163 164 pq->req_in_use = bitmap_zalloc(hfi1_sdma_comp_ring_size, GFP_KERNEL); 165 if (!pq->req_in_use) 166 goto pq_reqs_no_in_use; 167 168 snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt, 169 fd->subctxt); 170 pq->txreq_cache = kmem_cache_create(buf, 171 sizeof(struct user_sdma_txreq), 172 L1_CACHE_BYTES, 173 SLAB_HWCACHE_ALIGN, 174 NULL); 175 if (!pq->txreq_cache) { 176 dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n", 177 uctxt->ctxt); 178 goto pq_txreq_nomem; 179 } 180 181 cq = kzalloc(sizeof(*cq), GFP_KERNEL); 182 if (!cq) 183 goto cq_nomem; 184 185 cq->comps = vmalloc_user(PAGE_ALIGN(sizeof(*cq->comps) 186 * hfi1_sdma_comp_ring_size)); 187 if (!cq->comps) 188 goto cq_comps_nomem; 189 190 cq->nentries = hfi1_sdma_comp_ring_size; 191 192 ret = hfi1_mmu_rb_register(pq, &sdma_rb_ops, dd->pport->hfi1_wq, 193 &pq->handler); 194 if (ret) { 195 dd_dev_err(dd, "Failed to register with MMU %d", ret); 196 goto pq_mmu_fail; 197 } 198 199 rcu_assign_pointer(fd->pq, pq); 200 fd->cq = cq; 201 202 return 0; 203 204 pq_mmu_fail: 205 vfree(cq->comps); 206 cq_comps_nomem: 207 kfree(cq); 208 cq_nomem: 209 kmem_cache_destroy(pq->txreq_cache); 210 pq_txreq_nomem: 211 bitmap_free(pq->req_in_use); 212 pq_reqs_no_in_use: 213 kfree(pq->reqs); 214 pq_reqs_nomem: 215 kfree(pq); 216 217 return ret; 218 } 219 220 static void flush_pq_iowait(struct hfi1_user_sdma_pkt_q *pq) 221 { 222 unsigned long flags; 223 seqlock_t *lock = pq->busy.lock; 224 225 if (!lock) 226 return; 227 write_seqlock_irqsave(lock, flags); 228 if (!list_empty(&pq->busy.list)) { 229 list_del_init(&pq->busy.list); 230 pq->busy.lock = NULL; 231 } 232 write_sequnlock_irqrestore(lock, flags); 233 } 234 235 int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd, 236 struct hfi1_ctxtdata *uctxt) 237 { 238 struct hfi1_user_sdma_pkt_q *pq; 239 240 trace_hfi1_sdma_user_free_queues(uctxt->dd, uctxt->ctxt, fd->subctxt); 241 242 spin_lock(&fd->pq_rcu_lock); 243 pq = srcu_dereference_check(fd->pq, &fd->pq_srcu, 244 lockdep_is_held(&fd->pq_rcu_lock)); 245 if (pq) { 246 rcu_assign_pointer(fd->pq, NULL); 247 spin_unlock(&fd->pq_rcu_lock); 248 synchronize_srcu(&fd->pq_srcu); 249 /* at this point there can be no more new requests */ 250 if (pq->handler) 251 hfi1_mmu_rb_unregister(pq->handler); 252 iowait_sdma_drain(&pq->busy); 253 /* Wait until all requests have been freed. */ 254 wait_event_interruptible( 255 pq->wait, 256 !atomic_read(&pq->n_reqs)); 257 kfree(pq->reqs); 258 bitmap_free(pq->req_in_use); 259 kmem_cache_destroy(pq->txreq_cache); 260 flush_pq_iowait(pq); 261 kfree(pq); 262 } else { 263 spin_unlock(&fd->pq_rcu_lock); 264 } 265 if (fd->cq) { 266 vfree(fd->cq->comps); 267 kfree(fd->cq); 268 fd->cq = NULL; 269 } 270 return 0; 271 } 272 273 static u8 dlid_to_selector(u16 dlid) 274 { 275 static u8 mapping[256]; 276 static int initialized; 277 static u8 next; 278 int hash; 279 280 if (!initialized) { 281 memset(mapping, 0xFF, 256); 282 initialized = 1; 283 } 284 285 hash = ((dlid >> 8) ^ dlid) & 0xFF; 286 if (mapping[hash] == 0xFF) { 287 mapping[hash] = next; 288 next = (next + 1) & 0x7F; 289 } 290 291 return mapping[hash]; 292 } 293 294 /** 295 * hfi1_user_sdma_process_request() - Process and start a user sdma request 296 * @fd: valid file descriptor 297 * @iovec: array of io vectors to process 298 * @dim: overall iovec array size 299 * @count: number of io vector array entries processed 300 */ 301 int hfi1_user_sdma_process_request(struct hfi1_filedata *fd, 302 struct iovec *iovec, unsigned long dim, 303 unsigned long *count) 304 { 305 int ret = 0, i; 306 struct hfi1_ctxtdata *uctxt = fd->uctxt; 307 struct hfi1_user_sdma_pkt_q *pq = 308 srcu_dereference(fd->pq, &fd->pq_srcu); 309 struct hfi1_user_sdma_comp_q *cq = fd->cq; 310 struct hfi1_devdata *dd = pq->dd; 311 unsigned long idx = 0; 312 u8 pcount = initial_pkt_count; 313 struct sdma_req_info info; 314 struct user_sdma_request *req; 315 u8 opcode, sc, vl; 316 u16 pkey; 317 u32 slid; 318 u16 dlid; 319 u32 selector; 320 321 if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) { 322 hfi1_cdbg( 323 SDMA, 324 "[%u:%u:%u] First vector not big enough for header %lu/%lu", 325 dd->unit, uctxt->ctxt, fd->subctxt, 326 iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr)); 327 return -EINVAL; 328 } 329 ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info)); 330 if (ret) { 331 hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)", 332 dd->unit, uctxt->ctxt, fd->subctxt, ret); 333 return -EFAULT; 334 } 335 336 trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt, 337 (u16 *)&info); 338 if (info.comp_idx >= hfi1_sdma_comp_ring_size) { 339 hfi1_cdbg(SDMA, 340 "[%u:%u:%u:%u] Invalid comp index", 341 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); 342 return -EINVAL; 343 } 344 345 /* 346 * Sanity check the header io vector count. Need at least 1 vector 347 * (header) and cannot be larger than the actual io vector count. 348 */ 349 if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) { 350 hfi1_cdbg(SDMA, 351 "[%u:%u:%u:%u] Invalid iov count %d, dim %ld", 352 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx, 353 req_iovcnt(info.ctrl), dim); 354 return -EINVAL; 355 } 356 357 if (!info.fragsize) { 358 hfi1_cdbg(SDMA, 359 "[%u:%u:%u:%u] Request does not specify fragsize", 360 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); 361 return -EINVAL; 362 } 363 364 /* Try to claim the request. */ 365 if (test_and_set_bit(info.comp_idx, pq->req_in_use)) { 366 hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use", 367 dd->unit, uctxt->ctxt, fd->subctxt, 368 info.comp_idx); 369 return -EBADSLT; 370 } 371 /* 372 * All safety checks have been done and this request has been claimed. 373 */ 374 trace_hfi1_sdma_user_process_request(dd, uctxt->ctxt, fd->subctxt, 375 info.comp_idx); 376 req = pq->reqs + info.comp_idx; 377 req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */ 378 req->data_len = 0; 379 req->pq = pq; 380 req->cq = cq; 381 req->ahg_idx = -1; 382 req->iov_idx = 0; 383 req->sent = 0; 384 req->seqnum = 0; 385 req->seqcomp = 0; 386 req->seqsubmitted = 0; 387 req->tids = NULL; 388 req->has_error = 0; 389 INIT_LIST_HEAD(&req->txps); 390 391 memcpy(&req->info, &info, sizeof(info)); 392 393 /* The request is initialized, count it */ 394 atomic_inc(&pq->n_reqs); 395 396 if (req_opcode(info.ctrl) == EXPECTED) { 397 /* expected must have a TID info and at least one data vector */ 398 if (req->data_iovs < 2) { 399 SDMA_DBG(req, 400 "Not enough vectors for expected request"); 401 ret = -EINVAL; 402 goto free_req; 403 } 404 req->data_iovs--; 405 } 406 407 if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) { 408 SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs, 409 MAX_VECTORS_PER_REQ); 410 ret = -EINVAL; 411 goto free_req; 412 } 413 /* Copy the header from the user buffer */ 414 ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info), 415 sizeof(req->hdr)); 416 if (ret) { 417 SDMA_DBG(req, "Failed to copy header template (%d)", ret); 418 ret = -EFAULT; 419 goto free_req; 420 } 421 422 /* If Static rate control is not enabled, sanitize the header. */ 423 if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL)) 424 req->hdr.pbc[2] = 0; 425 426 /* Validate the opcode. Do not trust packets from user space blindly. */ 427 opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff; 428 if ((opcode & USER_OPCODE_CHECK_MASK) != 429 USER_OPCODE_CHECK_VAL) { 430 SDMA_DBG(req, "Invalid opcode (%d)", opcode); 431 ret = -EINVAL; 432 goto free_req; 433 } 434 /* 435 * Validate the vl. Do not trust packets from user space blindly. 436 * VL comes from PBC, SC comes from LRH, and the VL needs to 437 * match the SC look up. 438 */ 439 vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF; 440 sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) | 441 (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4)); 442 if (vl >= dd->pport->vls_operational || 443 vl != sc_to_vlt(dd, sc)) { 444 SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl); 445 ret = -EINVAL; 446 goto free_req; 447 } 448 449 /* Checking P_KEY for requests from user-space */ 450 pkey = (u16)be32_to_cpu(req->hdr.bth[0]); 451 slid = be16_to_cpu(req->hdr.lrh[3]); 452 if (egress_pkey_check(dd->pport, slid, pkey, sc, PKEY_CHECK_INVALID)) { 453 ret = -EINVAL; 454 goto free_req; 455 } 456 457 /* 458 * Also should check the BTH.lnh. If it says the next header is GRH then 459 * the RXE parsing will be off and will land in the middle of the KDETH 460 * or miss it entirely. 461 */ 462 if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) { 463 SDMA_DBG(req, "User tried to pass in a GRH"); 464 ret = -EINVAL; 465 goto free_req; 466 } 467 468 req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]); 469 /* 470 * Calculate the initial TID offset based on the values of 471 * KDETH.OFFSET and KDETH.OM that are passed in. 472 */ 473 req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) * 474 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ? 475 KDETH_OM_LARGE : KDETH_OM_SMALL); 476 trace_hfi1_sdma_user_initial_tidoffset(dd, uctxt->ctxt, fd->subctxt, 477 info.comp_idx, req->tidoffset); 478 idx++; 479 480 /* Save all the IO vector structures */ 481 for (i = 0; i < req->data_iovs; i++) { 482 req->iovs[i].offset = 0; 483 INIT_LIST_HEAD(&req->iovs[i].list); 484 memcpy(&req->iovs[i].iov, 485 iovec + idx++, 486 sizeof(req->iovs[i].iov)); 487 ret = pin_vector_pages(req, &req->iovs[i]); 488 if (ret) { 489 req->data_iovs = i; 490 goto free_req; 491 } 492 req->data_len += req->iovs[i].iov.iov_len; 493 } 494 trace_hfi1_sdma_user_data_length(dd, uctxt->ctxt, fd->subctxt, 495 info.comp_idx, req->data_len); 496 if (pcount > req->info.npkts) 497 pcount = req->info.npkts; 498 /* 499 * Copy any TID info 500 * User space will provide the TID info only when the 501 * request type is EXPECTED. This is true even if there is 502 * only one packet in the request and the header is already 503 * setup. The reason for the singular TID case is that the 504 * driver needs to perform safety checks. 505 */ 506 if (req_opcode(req->info.ctrl) == EXPECTED) { 507 u16 ntids = iovec[idx].iov_len / sizeof(*req->tids); 508 u32 *tmp; 509 510 if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) { 511 ret = -EINVAL; 512 goto free_req; 513 } 514 515 /* 516 * We have to copy all of the tids because they may vary 517 * in size and, therefore, the TID count might not be 518 * equal to the pkt count. However, there is no way to 519 * tell at this point. 520 */ 521 tmp = memdup_user(iovec[idx].iov_base, 522 ntids * sizeof(*req->tids)); 523 if (IS_ERR(tmp)) { 524 ret = PTR_ERR(tmp); 525 SDMA_DBG(req, "Failed to copy %d TIDs (%d)", 526 ntids, ret); 527 goto free_req; 528 } 529 req->tids = tmp; 530 req->n_tids = ntids; 531 req->tididx = 0; 532 idx++; 533 } 534 535 dlid = be16_to_cpu(req->hdr.lrh[1]); 536 selector = dlid_to_selector(dlid); 537 selector += uctxt->ctxt + fd->subctxt; 538 req->sde = sdma_select_user_engine(dd, selector, vl); 539 540 if (!req->sde || !sdma_running(req->sde)) { 541 ret = -ECOMM; 542 goto free_req; 543 } 544 545 /* We don't need an AHG entry if the request contains only one packet */ 546 if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) 547 req->ahg_idx = sdma_ahg_alloc(req->sde); 548 549 set_comp_state(pq, cq, info.comp_idx, QUEUED, 0); 550 pq->state = SDMA_PKT_Q_ACTIVE; 551 552 /* 553 * This is a somewhat blocking send implementation. 554 * The driver will block the caller until all packets of the 555 * request have been submitted to the SDMA engine. However, it 556 * will not wait for send completions. 557 */ 558 while (req->seqsubmitted != req->info.npkts) { 559 ret = user_sdma_send_pkts(req, pcount); 560 if (ret < 0) { 561 int we_ret; 562 563 if (ret != -EBUSY) 564 goto free_req; 565 we_ret = wait_event_interruptible_timeout( 566 pq->busy.wait_dma, 567 pq->state == SDMA_PKT_Q_ACTIVE, 568 msecs_to_jiffies( 569 SDMA_IOWAIT_TIMEOUT)); 570 trace_hfi1_usdma_we(pq, we_ret); 571 if (we_ret <= 0) 572 flush_pq_iowait(pq); 573 } 574 } 575 *count += idx; 576 return 0; 577 free_req: 578 /* 579 * If the submitted seqsubmitted == npkts, the completion routine 580 * controls the final state. If sequbmitted < npkts, wait for any 581 * outstanding packets to finish before cleaning up. 582 */ 583 if (req->seqsubmitted < req->info.npkts) { 584 if (req->seqsubmitted) 585 wait_event(pq->busy.wait_dma, 586 (req->seqcomp == req->seqsubmitted - 1)); 587 user_sdma_free_request(req, true); 588 pq_update(pq); 589 set_comp_state(pq, cq, info.comp_idx, ERROR, ret); 590 } 591 return ret; 592 } 593 594 static inline u32 compute_data_length(struct user_sdma_request *req, 595 struct user_sdma_txreq *tx) 596 { 597 /* 598 * Determine the proper size of the packet data. 599 * The size of the data of the first packet is in the header 600 * template. However, it includes the header and ICRC, which need 601 * to be subtracted. 602 * The minimum representable packet data length in a header is 4 bytes, 603 * therefore, when the data length request is less than 4 bytes, there's 604 * only one packet, and the packet data length is equal to that of the 605 * request data length. 606 * The size of the remaining packets is the minimum of the frag 607 * size (MTU) or remaining data in the request. 608 */ 609 u32 len; 610 611 if (!req->seqnum) { 612 if (req->data_len < sizeof(u32)) 613 len = req->data_len; 614 else 615 len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) - 616 (sizeof(tx->hdr) - 4)); 617 } else if (req_opcode(req->info.ctrl) == EXPECTED) { 618 u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) * 619 PAGE_SIZE; 620 /* 621 * Get the data length based on the remaining space in the 622 * TID pair. 623 */ 624 len = min(tidlen - req->tidoffset, (u32)req->info.fragsize); 625 /* If we've filled up the TID pair, move to the next one. */ 626 if (unlikely(!len) && ++req->tididx < req->n_tids && 627 req->tids[req->tididx]) { 628 tidlen = EXP_TID_GET(req->tids[req->tididx], 629 LEN) * PAGE_SIZE; 630 req->tidoffset = 0; 631 len = min_t(u32, tidlen, req->info.fragsize); 632 } 633 /* 634 * Since the TID pairs map entire pages, make sure that we 635 * are not going to try to send more data that we have 636 * remaining. 637 */ 638 len = min(len, req->data_len - req->sent); 639 } else { 640 len = min(req->data_len - req->sent, (u32)req->info.fragsize); 641 } 642 trace_hfi1_sdma_user_compute_length(req->pq->dd, 643 req->pq->ctxt, 644 req->pq->subctxt, 645 req->info.comp_idx, 646 len); 647 return len; 648 } 649 650 static inline u32 pad_len(u32 len) 651 { 652 if (len & (sizeof(u32) - 1)) 653 len += sizeof(u32) - (len & (sizeof(u32) - 1)); 654 return len; 655 } 656 657 static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len) 658 { 659 /* (Size of complete header - size of PBC) + 4B ICRC + data length */ 660 return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len); 661 } 662 663 static int user_sdma_txadd_ahg(struct user_sdma_request *req, 664 struct user_sdma_txreq *tx, 665 u32 datalen) 666 { 667 int ret; 668 u16 pbclen = le16_to_cpu(req->hdr.pbc[0]); 669 u32 lrhlen = get_lrh_len(req->hdr, pad_len(datalen)); 670 struct hfi1_user_sdma_pkt_q *pq = req->pq; 671 672 /* 673 * Copy the request header into the tx header 674 * because the HW needs a cacheline-aligned 675 * address. 676 * This copy can be optimized out if the hdr 677 * member of user_sdma_request were also 678 * cacheline aligned. 679 */ 680 memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr)); 681 if (PBC2LRH(pbclen) != lrhlen) { 682 pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen); 683 tx->hdr.pbc[0] = cpu_to_le16(pbclen); 684 } 685 ret = check_header_template(req, &tx->hdr, lrhlen, datalen); 686 if (ret) 687 return ret; 688 ret = sdma_txinit_ahg(&tx->txreq, SDMA_TXREQ_F_AHG_COPY, 689 sizeof(tx->hdr) + datalen, req->ahg_idx, 690 0, NULL, 0, user_sdma_txreq_cb); 691 if (ret) 692 return ret; 693 ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq, &tx->hdr, sizeof(tx->hdr)); 694 if (ret) 695 sdma_txclean(pq->dd, &tx->txreq); 696 return ret; 697 } 698 699 static int user_sdma_txadd(struct user_sdma_request *req, 700 struct user_sdma_txreq *tx, 701 struct user_sdma_iovec *iovec, u32 datalen, 702 u32 *queued_ptr, u32 *data_sent_ptr, 703 u64 *iov_offset_ptr) 704 { 705 int ret; 706 unsigned int pageidx, len; 707 unsigned long base, offset; 708 u64 iov_offset = *iov_offset_ptr; 709 u32 queued = *queued_ptr, data_sent = *data_sent_ptr; 710 struct hfi1_user_sdma_pkt_q *pq = req->pq; 711 712 base = (unsigned long)iovec->iov.iov_base; 713 offset = offset_in_page(base + iovec->offset + iov_offset); 714 pageidx = (((iovec->offset + iov_offset + base) - (base & PAGE_MASK)) >> 715 PAGE_SHIFT); 716 len = offset + req->info.fragsize > PAGE_SIZE ? 717 PAGE_SIZE - offset : req->info.fragsize; 718 len = min((datalen - queued), len); 719 ret = sdma_txadd_page(pq->dd, &tx->txreq, iovec->pages[pageidx], 720 offset, len); 721 if (ret) { 722 SDMA_DBG(req, "SDMA txreq add page failed %d\n", ret); 723 return ret; 724 } 725 iov_offset += len; 726 queued += len; 727 data_sent += len; 728 if (unlikely(queued < datalen && pageidx == iovec->npages && 729 req->iov_idx < req->data_iovs - 1)) { 730 iovec->offset += iov_offset; 731 iovec = &req->iovs[++req->iov_idx]; 732 iov_offset = 0; 733 } 734 735 *queued_ptr = queued; 736 *data_sent_ptr = data_sent; 737 *iov_offset_ptr = iov_offset; 738 return ret; 739 } 740 741 static int user_sdma_send_pkts(struct user_sdma_request *req, u16 maxpkts) 742 { 743 int ret = 0; 744 u16 count; 745 unsigned npkts = 0; 746 struct user_sdma_txreq *tx = NULL; 747 struct hfi1_user_sdma_pkt_q *pq = NULL; 748 struct user_sdma_iovec *iovec = NULL; 749 750 if (!req->pq) 751 return -EINVAL; 752 753 pq = req->pq; 754 755 /* If tx completion has reported an error, we are done. */ 756 if (READ_ONCE(req->has_error)) 757 return -EFAULT; 758 759 /* 760 * Check if we might have sent the entire request already 761 */ 762 if (unlikely(req->seqnum == req->info.npkts)) { 763 if (!list_empty(&req->txps)) 764 goto dosend; 765 return ret; 766 } 767 768 if (!maxpkts || maxpkts > req->info.npkts - req->seqnum) 769 maxpkts = req->info.npkts - req->seqnum; 770 771 while (npkts < maxpkts) { 772 u32 datalen = 0, queued = 0, data_sent = 0; 773 u64 iov_offset = 0; 774 775 /* 776 * Check whether any of the completions have come back 777 * with errors. If so, we are not going to process any 778 * more packets from this request. 779 */ 780 if (READ_ONCE(req->has_error)) 781 return -EFAULT; 782 783 tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL); 784 if (!tx) 785 return -ENOMEM; 786 787 tx->flags = 0; 788 tx->req = req; 789 INIT_LIST_HEAD(&tx->list); 790 791 /* 792 * For the last packet set the ACK request 793 * and disable header suppression. 794 */ 795 if (req->seqnum == req->info.npkts - 1) 796 tx->flags |= (TXREQ_FLAGS_REQ_ACK | 797 TXREQ_FLAGS_REQ_DISABLE_SH); 798 799 /* 800 * Calculate the payload size - this is min of the fragment 801 * (MTU) size or the remaining bytes in the request but only 802 * if we have payload data. 803 */ 804 if (req->data_len) { 805 iovec = &req->iovs[req->iov_idx]; 806 if (READ_ONCE(iovec->offset) == iovec->iov.iov_len) { 807 if (++req->iov_idx == req->data_iovs) { 808 ret = -EFAULT; 809 goto free_tx; 810 } 811 iovec = &req->iovs[req->iov_idx]; 812 WARN_ON(iovec->offset); 813 } 814 815 datalen = compute_data_length(req, tx); 816 817 /* 818 * Disable header suppression for the payload <= 8DWS. 819 * If there is an uncorrectable error in the receive 820 * data FIFO when the received payload size is less than 821 * or equal to 8DWS then the RxDmaDataFifoRdUncErr is 822 * not reported.There is set RHF.EccErr if the header 823 * is not suppressed. 824 */ 825 if (!datalen) { 826 SDMA_DBG(req, 827 "Request has data but pkt len is 0"); 828 ret = -EFAULT; 829 goto free_tx; 830 } else if (datalen <= 32) { 831 tx->flags |= TXREQ_FLAGS_REQ_DISABLE_SH; 832 } 833 } 834 835 if (req->ahg_idx >= 0) { 836 if (!req->seqnum) { 837 ret = user_sdma_txadd_ahg(req, tx, datalen); 838 if (ret) 839 goto free_tx; 840 } else { 841 int changes; 842 843 changes = set_txreq_header_ahg(req, tx, 844 datalen); 845 if (changes < 0) { 846 ret = changes; 847 goto free_tx; 848 } 849 } 850 } else { 851 ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) + 852 datalen, user_sdma_txreq_cb); 853 if (ret) 854 goto free_tx; 855 /* 856 * Modify the header for this packet. This only needs 857 * to be done if we are not going to use AHG. Otherwise, 858 * the HW will do it based on the changes we gave it 859 * during sdma_txinit_ahg(). 860 */ 861 ret = set_txreq_header(req, tx, datalen); 862 if (ret) 863 goto free_txreq; 864 } 865 866 /* 867 * If the request contains any data vectors, add up to 868 * fragsize bytes to the descriptor. 869 */ 870 while (queued < datalen && 871 (req->sent + data_sent) < req->data_len) { 872 ret = user_sdma_txadd(req, tx, iovec, datalen, 873 &queued, &data_sent, &iov_offset); 874 if (ret) 875 goto free_txreq; 876 } 877 /* 878 * The txreq was submitted successfully so we can update 879 * the counters. 880 */ 881 req->koffset += datalen; 882 if (req_opcode(req->info.ctrl) == EXPECTED) 883 req->tidoffset += datalen; 884 req->sent += data_sent; 885 if (req->data_len) 886 iovec->offset += iov_offset; 887 list_add_tail(&tx->txreq.list, &req->txps); 888 /* 889 * It is important to increment this here as it is used to 890 * generate the BTH.PSN and, therefore, can't be bulk-updated 891 * outside of the loop. 892 */ 893 tx->seqnum = req->seqnum++; 894 npkts++; 895 } 896 dosend: 897 ret = sdma_send_txlist(req->sde, 898 iowait_get_ib_work(&pq->busy), 899 &req->txps, &count); 900 req->seqsubmitted += count; 901 if (req->seqsubmitted == req->info.npkts) { 902 /* 903 * The txreq has already been submitted to the HW queue 904 * so we can free the AHG entry now. Corruption will not 905 * happen due to the sequential manner in which 906 * descriptors are processed. 907 */ 908 if (req->ahg_idx >= 0) 909 sdma_ahg_free(req->sde, req->ahg_idx); 910 } 911 return ret; 912 913 free_txreq: 914 sdma_txclean(pq->dd, &tx->txreq); 915 free_tx: 916 kmem_cache_free(pq->txreq_cache, tx); 917 return ret; 918 } 919 920 static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages) 921 { 922 struct evict_data evict_data; 923 924 evict_data.cleared = 0; 925 evict_data.target = npages; 926 hfi1_mmu_rb_evict(pq->handler, &evict_data); 927 return evict_data.cleared; 928 } 929 930 static int pin_sdma_pages(struct user_sdma_request *req, 931 struct user_sdma_iovec *iovec, 932 struct sdma_mmu_node *node, 933 int npages) 934 { 935 int pinned, cleared; 936 struct page **pages; 937 struct hfi1_user_sdma_pkt_q *pq = req->pq; 938 939 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); 940 if (!pages) 941 return -ENOMEM; 942 memcpy(pages, node->pages, node->npages * sizeof(*pages)); 943 944 npages -= node->npages; 945 retry: 946 if (!hfi1_can_pin_pages(pq->dd, current->mm, 947 atomic_read(&pq->n_locked), npages)) { 948 cleared = sdma_cache_evict(pq, npages); 949 if (cleared >= npages) 950 goto retry; 951 } 952 pinned = hfi1_acquire_user_pages(current->mm, 953 ((unsigned long)iovec->iov.iov_base + 954 (node->npages * PAGE_SIZE)), npages, 0, 955 pages + node->npages); 956 if (pinned < 0) { 957 kfree(pages); 958 return pinned; 959 } 960 if (pinned != npages) { 961 unpin_vector_pages(current->mm, pages, node->npages, pinned); 962 return -EFAULT; 963 } 964 kfree(node->pages); 965 node->rb.len = iovec->iov.iov_len; 966 node->pages = pages; 967 atomic_add(pinned, &pq->n_locked); 968 return pinned; 969 } 970 971 static void unpin_sdma_pages(struct sdma_mmu_node *node) 972 { 973 if (node->npages) { 974 unpin_vector_pages(mm_from_sdma_node(node), node->pages, 0, 975 node->npages); 976 atomic_sub(node->npages, &node->pq->n_locked); 977 } 978 } 979 980 static int pin_vector_pages(struct user_sdma_request *req, 981 struct user_sdma_iovec *iovec) 982 { 983 int ret = 0, pinned, npages; 984 struct hfi1_user_sdma_pkt_q *pq = req->pq; 985 struct sdma_mmu_node *node = NULL; 986 struct mmu_rb_node *rb_node; 987 struct iovec *iov; 988 bool extracted; 989 990 extracted = 991 hfi1_mmu_rb_remove_unless_exact(pq->handler, 992 (unsigned long) 993 iovec->iov.iov_base, 994 iovec->iov.iov_len, &rb_node); 995 if (rb_node) { 996 node = container_of(rb_node, struct sdma_mmu_node, rb); 997 if (!extracted) { 998 atomic_inc(&node->refcount); 999 iovec->pages = node->pages; 1000 iovec->npages = node->npages; 1001 iovec->node = node; 1002 return 0; 1003 } 1004 } 1005 1006 if (!node) { 1007 node = kzalloc(sizeof(*node), GFP_KERNEL); 1008 if (!node) 1009 return -ENOMEM; 1010 1011 node->rb.addr = (unsigned long)iovec->iov.iov_base; 1012 node->pq = pq; 1013 atomic_set(&node->refcount, 0); 1014 } 1015 1016 iov = &iovec->iov; 1017 npages = num_user_pages((unsigned long)iov->iov_base, iov->iov_len); 1018 if (node->npages < npages) { 1019 pinned = pin_sdma_pages(req, iovec, node, npages); 1020 if (pinned < 0) { 1021 ret = pinned; 1022 goto bail; 1023 } 1024 node->npages += pinned; 1025 npages = node->npages; 1026 } 1027 iovec->pages = node->pages; 1028 iovec->npages = npages; 1029 iovec->node = node; 1030 1031 ret = hfi1_mmu_rb_insert(req->pq->handler, &node->rb); 1032 if (ret) { 1033 iovec->node = NULL; 1034 goto bail; 1035 } 1036 return 0; 1037 bail: 1038 unpin_sdma_pages(node); 1039 kfree(node); 1040 return ret; 1041 } 1042 1043 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages, 1044 unsigned start, unsigned npages) 1045 { 1046 hfi1_release_user_pages(mm, pages + start, npages, false); 1047 kfree(pages); 1048 } 1049 1050 static int check_header_template(struct user_sdma_request *req, 1051 struct hfi1_pkt_header *hdr, u32 lrhlen, 1052 u32 datalen) 1053 { 1054 /* 1055 * Perform safety checks for any type of packet: 1056 * - transfer size is multiple of 64bytes 1057 * - packet length is multiple of 4 bytes 1058 * - packet length is not larger than MTU size 1059 * 1060 * These checks are only done for the first packet of the 1061 * transfer since the header is "given" to us by user space. 1062 * For the remainder of the packets we compute the values. 1063 */ 1064 if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 || 1065 lrhlen > get_lrh_len(*hdr, req->info.fragsize)) 1066 return -EINVAL; 1067 1068 if (req_opcode(req->info.ctrl) == EXPECTED) { 1069 /* 1070 * The header is checked only on the first packet. Furthermore, 1071 * we ensure that at least one TID entry is copied when the 1072 * request is submitted. Therefore, we don't have to verify that 1073 * tididx points to something sane. 1074 */ 1075 u32 tidval = req->tids[req->tididx], 1076 tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE, 1077 tididx = EXP_TID_GET(tidval, IDX), 1078 tidctrl = EXP_TID_GET(tidval, CTRL), 1079 tidoff; 1080 __le32 kval = hdr->kdeth.ver_tid_offset; 1081 1082 tidoff = KDETH_GET(kval, OFFSET) * 1083 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ? 1084 KDETH_OM_LARGE : KDETH_OM_SMALL); 1085 /* 1086 * Expected receive packets have the following 1087 * additional checks: 1088 * - offset is not larger than the TID size 1089 * - TIDCtrl values match between header and TID array 1090 * - TID indexes match between header and TID array 1091 */ 1092 if ((tidoff + datalen > tidlen) || 1093 KDETH_GET(kval, TIDCTRL) != tidctrl || 1094 KDETH_GET(kval, TID) != tididx) 1095 return -EINVAL; 1096 } 1097 return 0; 1098 } 1099 1100 /* 1101 * Correctly set the BTH.PSN field based on type of 1102 * transfer - eager packets can just increment the PSN but 1103 * expected packets encode generation and sequence in the 1104 * BTH.PSN field so just incrementing will result in errors. 1105 */ 1106 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags) 1107 { 1108 u32 val = be32_to_cpu(bthpsn), 1109 mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull : 1110 0xffffffull), 1111 psn = val & mask; 1112 if (expct) 1113 psn = (psn & ~HFI1_KDETH_BTH_SEQ_MASK) | 1114 ((psn + frags) & HFI1_KDETH_BTH_SEQ_MASK); 1115 else 1116 psn = psn + frags; 1117 return psn & mask; 1118 } 1119 1120 static int set_txreq_header(struct user_sdma_request *req, 1121 struct user_sdma_txreq *tx, u32 datalen) 1122 { 1123 struct hfi1_user_sdma_pkt_q *pq = req->pq; 1124 struct hfi1_pkt_header *hdr = &tx->hdr; 1125 u8 omfactor; /* KDETH.OM */ 1126 u16 pbclen; 1127 int ret; 1128 u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen)); 1129 1130 /* Copy the header template to the request before modification */ 1131 memcpy(hdr, &req->hdr, sizeof(*hdr)); 1132 1133 /* 1134 * Check if the PBC and LRH length are mismatched. If so 1135 * adjust both in the header. 1136 */ 1137 pbclen = le16_to_cpu(hdr->pbc[0]); 1138 if (PBC2LRH(pbclen) != lrhlen) { 1139 pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen); 1140 hdr->pbc[0] = cpu_to_le16(pbclen); 1141 hdr->lrh[2] = cpu_to_be16(lrhlen >> 2); 1142 /* 1143 * Third packet 1144 * This is the first packet in the sequence that has 1145 * a "static" size that can be used for the rest of 1146 * the packets (besides the last one). 1147 */ 1148 if (unlikely(req->seqnum == 2)) { 1149 /* 1150 * From this point on the lengths in both the 1151 * PBC and LRH are the same until the last 1152 * packet. 1153 * Adjust the template so we don't have to update 1154 * every packet 1155 */ 1156 req->hdr.pbc[0] = hdr->pbc[0]; 1157 req->hdr.lrh[2] = hdr->lrh[2]; 1158 } 1159 } 1160 /* 1161 * We only have to modify the header if this is not the 1162 * first packet in the request. Otherwise, we use the 1163 * header given to us. 1164 */ 1165 if (unlikely(!req->seqnum)) { 1166 ret = check_header_template(req, hdr, lrhlen, datalen); 1167 if (ret) 1168 return ret; 1169 goto done; 1170 } 1171 1172 hdr->bth[2] = cpu_to_be32( 1173 set_pkt_bth_psn(hdr->bth[2], 1174 (req_opcode(req->info.ctrl) == EXPECTED), 1175 req->seqnum)); 1176 1177 /* Set ACK request on last packet */ 1178 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK)) 1179 hdr->bth[2] |= cpu_to_be32(1UL << 31); 1180 1181 /* Set the new offset */ 1182 hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset); 1183 /* Expected packets have to fill in the new TID information */ 1184 if (req_opcode(req->info.ctrl) == EXPECTED) { 1185 tidval = req->tids[req->tididx]; 1186 /* 1187 * If the offset puts us at the end of the current TID, 1188 * advance everything. 1189 */ 1190 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) * 1191 PAGE_SIZE)) { 1192 req->tidoffset = 0; 1193 /* 1194 * Since we don't copy all the TIDs, all at once, 1195 * we have to check again. 1196 */ 1197 if (++req->tididx > req->n_tids - 1 || 1198 !req->tids[req->tididx]) { 1199 return -EINVAL; 1200 } 1201 tidval = req->tids[req->tididx]; 1202 } 1203 omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >= 1204 KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE_SHIFT : 1205 KDETH_OM_SMALL_SHIFT; 1206 /* Set KDETH.TIDCtrl based on value for this TID. */ 1207 KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL, 1208 EXP_TID_GET(tidval, CTRL)); 1209 /* Set KDETH.TID based on value for this TID */ 1210 KDETH_SET(hdr->kdeth.ver_tid_offset, TID, 1211 EXP_TID_GET(tidval, IDX)); 1212 /* Clear KDETH.SH when DISABLE_SH flag is set */ 1213 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH)) 1214 KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0); 1215 /* 1216 * Set the KDETH.OFFSET and KDETH.OM based on size of 1217 * transfer. 1218 */ 1219 trace_hfi1_sdma_user_tid_info( 1220 pq->dd, pq->ctxt, pq->subctxt, req->info.comp_idx, 1221 req->tidoffset, req->tidoffset >> omfactor, 1222 omfactor != KDETH_OM_SMALL_SHIFT); 1223 KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET, 1224 req->tidoffset >> omfactor); 1225 KDETH_SET(hdr->kdeth.ver_tid_offset, OM, 1226 omfactor != KDETH_OM_SMALL_SHIFT); 1227 } 1228 done: 1229 trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt, 1230 req->info.comp_idx, hdr, tidval); 1231 return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr)); 1232 } 1233 1234 static int set_txreq_header_ahg(struct user_sdma_request *req, 1235 struct user_sdma_txreq *tx, u32 datalen) 1236 { 1237 u32 ahg[AHG_KDETH_ARRAY_SIZE]; 1238 int idx = 0; 1239 u8 omfactor; /* KDETH.OM */ 1240 struct hfi1_user_sdma_pkt_q *pq = req->pq; 1241 struct hfi1_pkt_header *hdr = &req->hdr; 1242 u16 pbclen = le16_to_cpu(hdr->pbc[0]); 1243 u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen)); 1244 size_t array_size = ARRAY_SIZE(ahg); 1245 1246 if (PBC2LRH(pbclen) != lrhlen) { 1247 /* PBC.PbcLengthDWs */ 1248 idx = ahg_header_set(ahg, idx, array_size, 0, 0, 12, 1249 (__force u16)cpu_to_le16(LRH2PBC(lrhlen))); 1250 if (idx < 0) 1251 return idx; 1252 /* LRH.PktLen (we need the full 16 bits due to byte swap) */ 1253 idx = ahg_header_set(ahg, idx, array_size, 3, 0, 16, 1254 (__force u16)cpu_to_be16(lrhlen >> 2)); 1255 if (idx < 0) 1256 return idx; 1257 } 1258 1259 /* 1260 * Do the common updates 1261 */ 1262 /* BTH.PSN and BTH.A */ 1263 val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) & 1264 (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff); 1265 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK)) 1266 val32 |= 1UL << 31; 1267 idx = ahg_header_set(ahg, idx, array_size, 6, 0, 16, 1268 (__force u16)cpu_to_be16(val32 >> 16)); 1269 if (idx < 0) 1270 return idx; 1271 idx = ahg_header_set(ahg, idx, array_size, 6, 16, 16, 1272 (__force u16)cpu_to_be16(val32 & 0xffff)); 1273 if (idx < 0) 1274 return idx; 1275 /* KDETH.Offset */ 1276 idx = ahg_header_set(ahg, idx, array_size, 15, 0, 16, 1277 (__force u16)cpu_to_le16(req->koffset & 0xffff)); 1278 if (idx < 0) 1279 return idx; 1280 idx = ahg_header_set(ahg, idx, array_size, 15, 16, 16, 1281 (__force u16)cpu_to_le16(req->koffset >> 16)); 1282 if (idx < 0) 1283 return idx; 1284 if (req_opcode(req->info.ctrl) == EXPECTED) { 1285 __le16 val; 1286 1287 tidval = req->tids[req->tididx]; 1288 1289 /* 1290 * If the offset puts us at the end of the current TID, 1291 * advance everything. 1292 */ 1293 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) * 1294 PAGE_SIZE)) { 1295 req->tidoffset = 0; 1296 /* 1297 * Since we don't copy all the TIDs, all at once, 1298 * we have to check again. 1299 */ 1300 if (++req->tididx > req->n_tids - 1 || 1301 !req->tids[req->tididx]) 1302 return -EINVAL; 1303 tidval = req->tids[req->tididx]; 1304 } 1305 omfactor = ((EXP_TID_GET(tidval, LEN) * 1306 PAGE_SIZE) >= 1307 KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE_SHIFT : 1308 KDETH_OM_SMALL_SHIFT; 1309 /* KDETH.OM and KDETH.OFFSET (TID) */ 1310 idx = ahg_header_set( 1311 ahg, idx, array_size, 7, 0, 16, 1312 ((!!(omfactor - KDETH_OM_SMALL_SHIFT)) << 15 | 1313 ((req->tidoffset >> omfactor) 1314 & 0x7fff))); 1315 if (idx < 0) 1316 return idx; 1317 /* KDETH.TIDCtrl, KDETH.TID, KDETH.Intr, KDETH.SH */ 1318 val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) | 1319 (EXP_TID_GET(tidval, IDX) & 0x3ff)); 1320 1321 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH)) { 1322 val |= cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset, 1323 INTR) << 1324 AHG_KDETH_INTR_SHIFT)); 1325 } else { 1326 val |= KDETH_GET(hdr->kdeth.ver_tid_offset, SH) ? 1327 cpu_to_le16(0x1 << AHG_KDETH_SH_SHIFT) : 1328 cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset, 1329 INTR) << 1330 AHG_KDETH_INTR_SHIFT)); 1331 } 1332 1333 idx = ahg_header_set(ahg, idx, array_size, 1334 7, 16, 14, (__force u16)val); 1335 if (idx < 0) 1336 return idx; 1337 } 1338 1339 trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt, 1340 req->info.comp_idx, req->sde->this_idx, 1341 req->ahg_idx, ahg, idx, tidval); 1342 sdma_txinit_ahg(&tx->txreq, 1343 SDMA_TXREQ_F_USE_AHG, 1344 datalen, req->ahg_idx, idx, 1345 ahg, sizeof(req->hdr), 1346 user_sdma_txreq_cb); 1347 1348 return idx; 1349 } 1350 1351 /** 1352 * user_sdma_txreq_cb() - SDMA tx request completion callback. 1353 * @txreq: valid sdma tx request 1354 * @status: success/failure of request 1355 * 1356 * Called when the SDMA progress state machine gets notification that 1357 * the SDMA descriptors for this tx request have been processed by the 1358 * DMA engine. Called in interrupt context. 1359 * Only do work on completed sequences. 1360 */ 1361 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status) 1362 { 1363 struct user_sdma_txreq *tx = 1364 container_of(txreq, struct user_sdma_txreq, txreq); 1365 struct user_sdma_request *req; 1366 struct hfi1_user_sdma_pkt_q *pq; 1367 struct hfi1_user_sdma_comp_q *cq; 1368 enum hfi1_sdma_comp_state state = COMPLETE; 1369 1370 if (!tx->req) 1371 return; 1372 1373 req = tx->req; 1374 pq = req->pq; 1375 cq = req->cq; 1376 1377 if (status != SDMA_TXREQ_S_OK) { 1378 SDMA_DBG(req, "SDMA completion with error %d", 1379 status); 1380 WRITE_ONCE(req->has_error, 1); 1381 state = ERROR; 1382 } 1383 1384 req->seqcomp = tx->seqnum; 1385 kmem_cache_free(pq->txreq_cache, tx); 1386 1387 /* sequence isn't complete? We are done */ 1388 if (req->seqcomp != req->info.npkts - 1) 1389 return; 1390 1391 user_sdma_free_request(req, false); 1392 set_comp_state(pq, cq, req->info.comp_idx, state, status); 1393 pq_update(pq); 1394 } 1395 1396 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq) 1397 { 1398 if (atomic_dec_and_test(&pq->n_reqs)) 1399 wake_up(&pq->wait); 1400 } 1401 1402 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin) 1403 { 1404 int i; 1405 1406 if (!list_empty(&req->txps)) { 1407 struct sdma_txreq *t, *p; 1408 1409 list_for_each_entry_safe(t, p, &req->txps, list) { 1410 struct user_sdma_txreq *tx = 1411 container_of(t, struct user_sdma_txreq, txreq); 1412 list_del_init(&t->list); 1413 sdma_txclean(req->pq->dd, t); 1414 kmem_cache_free(req->pq->txreq_cache, tx); 1415 } 1416 } 1417 1418 for (i = 0; i < req->data_iovs; i++) { 1419 struct sdma_mmu_node *node = req->iovs[i].node; 1420 1421 if (!node) 1422 continue; 1423 1424 req->iovs[i].node = NULL; 1425 1426 if (unpin) 1427 hfi1_mmu_rb_remove(req->pq->handler, 1428 &node->rb); 1429 else 1430 atomic_dec(&node->refcount); 1431 } 1432 1433 kfree(req->tids); 1434 clear_bit(req->info.comp_idx, req->pq->req_in_use); 1435 } 1436 1437 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq, 1438 struct hfi1_user_sdma_comp_q *cq, 1439 u16 idx, enum hfi1_sdma_comp_state state, 1440 int ret) 1441 { 1442 if (state == ERROR) 1443 cq->comps[idx].errcode = -ret; 1444 smp_wmb(); /* make sure errcode is visible first */ 1445 cq->comps[idx].status = state; 1446 trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt, 1447 idx, state, ret); 1448 } 1449 1450 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr, 1451 unsigned long len) 1452 { 1453 return (bool)(node->addr == addr); 1454 } 1455 1456 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode) 1457 { 1458 struct sdma_mmu_node *node = 1459 container_of(mnode, struct sdma_mmu_node, rb); 1460 1461 atomic_inc(&node->refcount); 1462 return 0; 1463 } 1464 1465 /* 1466 * Return 1 to remove the node from the rb tree and call the remove op. 1467 * 1468 * Called with the rb tree lock held. 1469 */ 1470 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode, 1471 void *evict_arg, bool *stop) 1472 { 1473 struct sdma_mmu_node *node = 1474 container_of(mnode, struct sdma_mmu_node, rb); 1475 struct evict_data *evict_data = evict_arg; 1476 1477 /* is this node still being used? */ 1478 if (atomic_read(&node->refcount)) 1479 return 0; /* keep this node */ 1480 1481 /* this node will be evicted, add its pages to our count */ 1482 evict_data->cleared += node->npages; 1483 1484 /* have enough pages been cleared? */ 1485 if (evict_data->cleared >= evict_data->target) 1486 *stop = true; 1487 1488 return 1; /* remove this node */ 1489 } 1490 1491 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode) 1492 { 1493 struct sdma_mmu_node *node = 1494 container_of(mnode, struct sdma_mmu_node, rb); 1495 1496 unpin_sdma_pages(node); 1497 kfree(node); 1498 } 1499 1500 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode) 1501 { 1502 struct sdma_mmu_node *node = 1503 container_of(mnode, struct sdma_mmu_node, rb); 1504 1505 if (!atomic_read(&node->refcount)) 1506 return 1; 1507 return 0; 1508 } 1509