1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <asm/page.h> 48 #include <linux/string.h> 49 50 #include "user_exp_rcv.h" 51 #include "trace.h" 52 #include "mmu_rb.h" 53 54 struct tid_group { 55 struct list_head list; 56 u32 base; 57 u8 size; 58 u8 used; 59 u8 map; 60 }; 61 62 struct tid_rb_node { 63 struct mmu_rb_node mmu; 64 unsigned long phys; 65 struct tid_group *grp; 66 u32 rcventry; 67 dma_addr_t dma_addr; 68 bool freed; 69 unsigned npages; 70 struct page *pages[0]; 71 }; 72 73 struct tid_pageset { 74 u16 idx; 75 u16 count; 76 }; 77 78 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list)) 79 80 #define num_user_pages(vaddr, len) \ 81 (1 + (((((unsigned long)(vaddr) + \ 82 (unsigned long)(len) - 1) & PAGE_MASK) - \ 83 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT)) 84 85 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 86 struct exp_tid_set *set, 87 struct hfi1_filedata *fd); 88 static u32 find_phys_blocks(struct page **pages, unsigned npages, 89 struct tid_pageset *list); 90 static int set_rcvarray_entry(struct hfi1_filedata *fd, unsigned long vaddr, 91 u32 rcventry, struct tid_group *grp, 92 struct page **pages, unsigned npages); 93 static int tid_rb_insert(void *arg, struct mmu_rb_node *node); 94 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 95 struct tid_rb_node *tnode); 96 static void tid_rb_remove(void *arg, struct mmu_rb_node *node); 97 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode); 98 static int program_rcvarray(struct hfi1_filedata *fd, unsigned long vaddr, 99 struct tid_group *grp, struct tid_pageset *sets, 100 unsigned start, u16 count, struct page **pages, 101 u32 *tidlist, unsigned *tididx, unsigned *pmapped); 102 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, 103 struct tid_group **grp); 104 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); 105 106 static struct mmu_rb_ops tid_rb_ops = { 107 .insert = tid_rb_insert, 108 .remove = tid_rb_remove, 109 .invalidate = tid_rb_invalidate 110 }; 111 112 static inline u32 rcventry2tidinfo(u32 rcventry) 113 { 114 u32 pair = rcventry & ~0x1; 115 116 return EXP_TID_SET(IDX, pair >> 1) | 117 EXP_TID_SET(CTRL, 1 << (rcventry - pair)); 118 } 119 120 static inline void exp_tid_group_init(struct exp_tid_set *set) 121 { 122 INIT_LIST_HEAD(&set->list); 123 set->count = 0; 124 } 125 126 static inline void tid_group_remove(struct tid_group *grp, 127 struct exp_tid_set *set) 128 { 129 list_del_init(&grp->list); 130 set->count--; 131 } 132 133 static inline void tid_group_add_tail(struct tid_group *grp, 134 struct exp_tid_set *set) 135 { 136 list_add_tail(&grp->list, &set->list); 137 set->count++; 138 } 139 140 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set) 141 { 142 struct tid_group *grp = 143 list_first_entry(&set->list, struct tid_group, list); 144 list_del_init(&grp->list); 145 set->count--; 146 return grp; 147 } 148 149 static inline void tid_group_move(struct tid_group *group, 150 struct exp_tid_set *s1, 151 struct exp_tid_set *s2) 152 { 153 tid_group_remove(group, s1); 154 tid_group_add_tail(group, s2); 155 } 156 157 int hfi1_user_exp_rcv_grp_init(struct hfi1_filedata *fd) 158 { 159 struct hfi1_ctxtdata *uctxt = fd->uctxt; 160 struct hfi1_devdata *dd = fd->dd; 161 u32 tidbase; 162 u32 i; 163 struct tid_group *grp, *gptr; 164 165 exp_tid_group_init(&uctxt->tid_group_list); 166 exp_tid_group_init(&uctxt->tid_used_list); 167 exp_tid_group_init(&uctxt->tid_full_list); 168 169 tidbase = uctxt->expected_base; 170 for (i = 0; i < uctxt->expected_count / 171 dd->rcv_entries.group_size; i++) { 172 grp = kzalloc(sizeof(*grp), GFP_KERNEL); 173 if (!grp) 174 goto grp_failed; 175 176 grp->size = dd->rcv_entries.group_size; 177 grp->base = tidbase; 178 tid_group_add_tail(grp, &uctxt->tid_group_list); 179 tidbase += dd->rcv_entries.group_size; 180 } 181 182 return 0; 183 184 grp_failed: 185 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list, 186 list) { 187 list_del_init(&grp->list); 188 kfree(grp); 189 } 190 191 return -ENOMEM; 192 } 193 194 /* 195 * Initialize context and file private data needed for Expected 196 * receive caching. This needs to be done after the context has 197 * been configured with the eager/expected RcvEntry counts. 198 */ 199 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd) 200 { 201 struct hfi1_ctxtdata *uctxt = fd->uctxt; 202 struct hfi1_devdata *dd = uctxt->dd; 203 int ret = 0; 204 205 spin_lock_init(&fd->tid_lock); 206 spin_lock_init(&fd->invalid_lock); 207 208 fd->entry_to_rb = kcalloc(uctxt->expected_count, 209 sizeof(struct rb_node *), 210 GFP_KERNEL); 211 if (!fd->entry_to_rb) 212 return -ENOMEM; 213 214 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { 215 fd->invalid_tid_idx = 0; 216 fd->invalid_tids = kcalloc(uctxt->expected_count, 217 sizeof(*fd->invalid_tids), 218 GFP_KERNEL); 219 if (!fd->invalid_tids) { 220 kfree(fd->entry_to_rb); 221 fd->entry_to_rb = NULL; 222 return -ENOMEM; 223 } 224 225 /* 226 * Register MMU notifier callbacks. If the registration 227 * fails, continue without TID caching for this context. 228 */ 229 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops, 230 dd->pport->hfi1_wq, 231 &fd->handler); 232 if (ret) { 233 dd_dev_info(dd, 234 "Failed MMU notifier registration %d\n", 235 ret); 236 ret = 0; 237 } 238 } 239 240 /* 241 * PSM does not have a good way to separate, count, and 242 * effectively enforce a limit on RcvArray entries used by 243 * subctxts (when context sharing is used) when TID caching 244 * is enabled. To help with that, we calculate a per-process 245 * RcvArray entry share and enforce that. 246 * If TID caching is not in use, PSM deals with usage on its 247 * own. In that case, we allow any subctxt to take all of the 248 * entries. 249 * 250 * Make sure that we set the tid counts only after successful 251 * init. 252 */ 253 spin_lock(&fd->tid_lock); 254 if (uctxt->subctxt_cnt && fd->handler) { 255 u16 remainder; 256 257 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; 258 remainder = uctxt->expected_count % uctxt->subctxt_cnt; 259 if (remainder && fd->subctxt < remainder) 260 fd->tid_limit++; 261 } else { 262 fd->tid_limit = uctxt->expected_count; 263 } 264 spin_unlock(&fd->tid_lock); 265 266 return ret; 267 } 268 269 void hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata *uctxt) 270 { 271 struct tid_group *grp, *gptr; 272 273 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list, 274 list) { 275 list_del_init(&grp->list); 276 kfree(grp); 277 } 278 hfi1_clear_tids(uctxt); 279 } 280 281 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) 282 { 283 struct hfi1_ctxtdata *uctxt = fd->uctxt; 284 285 /* 286 * The notifier would have been removed when the process'es mm 287 * was freed. 288 */ 289 if (fd->handler) { 290 hfi1_mmu_rb_unregister(fd->handler); 291 } else { 292 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) 293 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); 294 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) 295 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); 296 } 297 298 kfree(fd->invalid_tids); 299 fd->invalid_tids = NULL; 300 301 kfree(fd->entry_to_rb); 302 fd->entry_to_rb = NULL; 303 } 304 305 /* 306 * Write an "empty" RcvArray entry. 307 * This function exists so the TID registaration code can use it 308 * to write to unused/unneeded entries and still take advantage 309 * of the WC performance improvements. The HFI will ignore this 310 * write to the RcvArray entry. 311 */ 312 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index) 313 { 314 /* 315 * Doing the WC fill writes only makes sense if the device is 316 * present and the RcvArray has been mapped as WC memory. 317 */ 318 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc) 319 writeq(0, dd->rcvarray_wc + (index * 8)); 320 } 321 322 /* 323 * RcvArray entry allocation for Expected Receives is done by the 324 * following algorithm: 325 * 326 * The context keeps 3 lists of groups of RcvArray entries: 327 * 1. List of empty groups - tid_group_list 328 * This list is created during user context creation and 329 * contains elements which describe sets (of 8) of empty 330 * RcvArray entries. 331 * 2. List of partially used groups - tid_used_list 332 * This list contains sets of RcvArray entries which are 333 * not completely used up. Another mapping request could 334 * use some of all of the remaining entries. 335 * 3. List of full groups - tid_full_list 336 * This is the list where sets that are completely used 337 * up go. 338 * 339 * An attempt to optimize the usage of RcvArray entries is 340 * made by finding all sets of physically contiguous pages in a 341 * user's buffer. 342 * These physically contiguous sets are further split into 343 * sizes supported by the receive engine of the HFI. The 344 * resulting sets of pages are stored in struct tid_pageset, 345 * which describes the sets as: 346 * * .count - number of pages in this set 347 * * .idx - starting index into struct page ** array 348 * of this set 349 * 350 * From this point on, the algorithm deals with the page sets 351 * described above. The number of pagesets is divided by the 352 * RcvArray group size to produce the number of full groups 353 * needed. 354 * 355 * Groups from the 3 lists are manipulated using the following 356 * rules: 357 * 1. For each set of 8 pagesets, a complete group from 358 * tid_group_list is taken, programmed, and moved to 359 * the tid_full_list list. 360 * 2. For all remaining pagesets: 361 * 2.1 If the tid_used_list is empty and the tid_group_list 362 * is empty, stop processing pageset and return only 363 * what has been programmed up to this point. 364 * 2.2 If the tid_used_list is empty and the tid_group_list 365 * is not empty, move a group from tid_group_list to 366 * tid_used_list. 367 * 2.3 For each group is tid_used_group, program as much as 368 * can fit into the group. If the group becomes fully 369 * used, move it to tid_full_list. 370 */ 371 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, 372 struct hfi1_tid_info *tinfo) 373 { 374 int ret = 0, need_group = 0, pinned; 375 struct hfi1_ctxtdata *uctxt = fd->uctxt; 376 struct hfi1_devdata *dd = uctxt->dd; 377 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets, 378 tididx = 0, mapped, mapped_pages = 0; 379 unsigned long vaddr = tinfo->vaddr; 380 struct page **pages = NULL; 381 u32 *tidlist = NULL; 382 struct tid_pageset *pagesets = NULL; 383 384 /* Get the number of pages the user buffer spans */ 385 npages = num_user_pages(vaddr, tinfo->length); 386 if (!npages) 387 return -EINVAL; 388 389 if (npages > uctxt->expected_count) { 390 dd_dev_err(dd, "Expected buffer too big\n"); 391 return -EINVAL; 392 } 393 394 /* Verify that access is OK for the user buffer */ 395 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr, 396 npages * PAGE_SIZE)) { 397 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n", 398 (void *)vaddr, npages); 399 return -EFAULT; 400 } 401 402 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets), 403 GFP_KERNEL); 404 if (!pagesets) 405 return -ENOMEM; 406 407 /* Allocate the array of struct page pointers needed for pinning */ 408 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); 409 if (!pages) { 410 ret = -ENOMEM; 411 goto bail; 412 } 413 414 /* 415 * Pin all the pages of the user buffer. If we can't pin all the 416 * pages, accept the amount pinned so far and program only that. 417 * User space knows how to deal with partially programmed buffers. 418 */ 419 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) { 420 ret = -ENOMEM; 421 goto bail; 422 } 423 424 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages); 425 if (pinned <= 0) { 426 ret = pinned; 427 goto bail; 428 } 429 fd->tid_n_pinned += npages; 430 431 /* Find sets of physically contiguous pages */ 432 npagesets = find_phys_blocks(pages, pinned, pagesets); 433 434 /* 435 * We don't need to access this under a lock since tid_used is per 436 * process and the same process cannot be in hfi1_user_exp_rcv_clear() 437 * and hfi1_user_exp_rcv_setup() at the same time. 438 */ 439 spin_lock(&fd->tid_lock); 440 if (fd->tid_used + npagesets > fd->tid_limit) 441 pageset_count = fd->tid_limit - fd->tid_used; 442 else 443 pageset_count = npagesets; 444 spin_unlock(&fd->tid_lock); 445 446 if (!pageset_count) 447 goto bail; 448 449 ngroups = pageset_count / dd->rcv_entries.group_size; 450 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); 451 if (!tidlist) { 452 ret = -ENOMEM; 453 goto nomem; 454 } 455 456 tididx = 0; 457 458 /* 459 * From this point on, we are going to be using shared (between master 460 * and subcontexts) context resources. We need to take the lock. 461 */ 462 mutex_lock(&uctxt->exp_lock); 463 /* 464 * The first step is to program the RcvArray entries which are complete 465 * groups. 466 */ 467 while (ngroups && uctxt->tid_group_list.count) { 468 struct tid_group *grp = 469 tid_group_pop(&uctxt->tid_group_list); 470 471 ret = program_rcvarray(fd, vaddr, grp, pagesets, 472 pageidx, dd->rcv_entries.group_size, 473 pages, tidlist, &tididx, &mapped); 474 /* 475 * If there was a failure to program the RcvArray 476 * entries for the entire group, reset the grp fields 477 * and add the grp back to the free group list. 478 */ 479 if (ret <= 0) { 480 tid_group_add_tail(grp, &uctxt->tid_group_list); 481 hfi1_cdbg(TID, 482 "Failed to program RcvArray group %d", ret); 483 goto unlock; 484 } 485 486 tid_group_add_tail(grp, &uctxt->tid_full_list); 487 ngroups--; 488 pageidx += ret; 489 mapped_pages += mapped; 490 } 491 492 while (pageidx < pageset_count) { 493 struct tid_group *grp, *ptr; 494 /* 495 * If we don't have any partially used tid groups, check 496 * if we have empty groups. If so, take one from there and 497 * put in the partially used list. 498 */ 499 if (!uctxt->tid_used_list.count || need_group) { 500 if (!uctxt->tid_group_list.count) 501 goto unlock; 502 503 grp = tid_group_pop(&uctxt->tid_group_list); 504 tid_group_add_tail(grp, &uctxt->tid_used_list); 505 need_group = 0; 506 } 507 /* 508 * There is an optimization opportunity here - instead of 509 * fitting as many page sets as we can, check for a group 510 * later on in the list that could fit all of them. 511 */ 512 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, 513 list) { 514 unsigned use = min_t(unsigned, pageset_count - pageidx, 515 grp->size - grp->used); 516 517 ret = program_rcvarray(fd, vaddr, grp, pagesets, 518 pageidx, use, pages, tidlist, 519 &tididx, &mapped); 520 if (ret < 0) { 521 hfi1_cdbg(TID, 522 "Failed to program RcvArray entries %d", 523 ret); 524 ret = -EFAULT; 525 goto unlock; 526 } else if (ret > 0) { 527 if (grp->used == grp->size) 528 tid_group_move(grp, 529 &uctxt->tid_used_list, 530 &uctxt->tid_full_list); 531 pageidx += ret; 532 mapped_pages += mapped; 533 need_group = 0; 534 /* Check if we are done so we break out early */ 535 if (pageidx >= pageset_count) 536 break; 537 } else if (WARN_ON(ret == 0)) { 538 /* 539 * If ret is 0, we did not program any entries 540 * into this group, which can only happen if 541 * we've screwed up the accounting somewhere. 542 * Warn and try to continue. 543 */ 544 need_group = 1; 545 } 546 } 547 } 548 unlock: 549 mutex_unlock(&uctxt->exp_lock); 550 nomem: 551 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, 552 mapped_pages, ret); 553 if (tididx) { 554 spin_lock(&fd->tid_lock); 555 fd->tid_used += tididx; 556 spin_unlock(&fd->tid_lock); 557 tinfo->tidcnt = tididx; 558 tinfo->length = mapped_pages * PAGE_SIZE; 559 560 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist, 561 tidlist, sizeof(tidlist[0]) * tididx)) { 562 /* 563 * On failure to copy to the user level, we need to undo 564 * everything done so far so we don't leak resources. 565 */ 566 tinfo->tidlist = (unsigned long)&tidlist; 567 hfi1_user_exp_rcv_clear(fd, tinfo); 568 tinfo->tidlist = 0; 569 ret = -EFAULT; 570 goto bail; 571 } 572 } 573 574 /* 575 * If not everything was mapped (due to insufficient RcvArray entries, 576 * for example), unpin all unmapped pages so we can pin them nex time. 577 */ 578 if (mapped_pages != pinned) { 579 hfi1_release_user_pages(fd->mm, &pages[mapped_pages], 580 pinned - mapped_pages, 581 false); 582 fd->tid_n_pinned -= pinned - mapped_pages; 583 } 584 bail: 585 kfree(pagesets); 586 kfree(pages); 587 kfree(tidlist); 588 return ret > 0 ? 0 : ret; 589 } 590 591 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, 592 struct hfi1_tid_info *tinfo) 593 { 594 int ret = 0; 595 struct hfi1_ctxtdata *uctxt = fd->uctxt; 596 u32 *tidinfo; 597 unsigned tididx; 598 599 if (unlikely(tinfo->tidcnt > fd->tid_used)) 600 return -EINVAL; 601 602 tidinfo = memdup_user((void __user *)(unsigned long)tinfo->tidlist, 603 sizeof(tidinfo[0]) * tinfo->tidcnt); 604 if (IS_ERR(tidinfo)) 605 return PTR_ERR(tidinfo); 606 607 mutex_lock(&uctxt->exp_lock); 608 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { 609 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL); 610 if (ret) { 611 hfi1_cdbg(TID, "Failed to unprogram rcv array %d", 612 ret); 613 break; 614 } 615 } 616 spin_lock(&fd->tid_lock); 617 fd->tid_used -= tididx; 618 spin_unlock(&fd->tid_lock); 619 tinfo->tidcnt = tididx; 620 mutex_unlock(&uctxt->exp_lock); 621 622 kfree(tidinfo); 623 return ret; 624 } 625 626 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, 627 struct hfi1_tid_info *tinfo) 628 { 629 struct hfi1_ctxtdata *uctxt = fd->uctxt; 630 unsigned long *ev = uctxt->dd->events + 631 (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 632 HFI1_MAX_SHARED_CTXTS) + fd->subctxt); 633 u32 *array; 634 int ret = 0; 635 636 if (!fd->invalid_tids) 637 return -EINVAL; 638 639 /* 640 * copy_to_user() can sleep, which will leave the invalid_lock 641 * locked and cause the MMU notifier to be blocked on the lock 642 * for a long time. 643 * Copy the data to a local buffer so we can release the lock. 644 */ 645 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); 646 if (!array) 647 return -EFAULT; 648 649 spin_lock(&fd->invalid_lock); 650 if (fd->invalid_tid_idx) { 651 memcpy(array, fd->invalid_tids, sizeof(*array) * 652 fd->invalid_tid_idx); 653 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * 654 fd->invalid_tid_idx); 655 tinfo->tidcnt = fd->invalid_tid_idx; 656 fd->invalid_tid_idx = 0; 657 /* 658 * Reset the user flag while still holding the lock. 659 * Otherwise, PSM can miss events. 660 */ 661 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 662 } else { 663 tinfo->tidcnt = 0; 664 } 665 spin_unlock(&fd->invalid_lock); 666 667 if (tinfo->tidcnt) { 668 if (copy_to_user((void __user *)tinfo->tidlist, 669 array, sizeof(*array) * tinfo->tidcnt)) 670 ret = -EFAULT; 671 } 672 kfree(array); 673 674 return ret; 675 } 676 677 static u32 find_phys_blocks(struct page **pages, unsigned npages, 678 struct tid_pageset *list) 679 { 680 unsigned pagecount, pageidx, setcount = 0, i; 681 unsigned long pfn, this_pfn; 682 683 if (!npages) 684 return 0; 685 686 /* 687 * Look for sets of physically contiguous pages in the user buffer. 688 * This will allow us to optimize Expected RcvArray entry usage by 689 * using the bigger supported sizes. 690 */ 691 pfn = page_to_pfn(pages[0]); 692 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 693 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; 694 695 /* 696 * If the pfn's are not sequential, pages are not physically 697 * contiguous. 698 */ 699 if (this_pfn != ++pfn) { 700 /* 701 * At this point we have to loop over the set of 702 * physically contiguous pages and break them down it 703 * sizes supported by the HW. 704 * There are two main constraints: 705 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 706 * If the total set size is bigger than that 707 * program only a MAX_EXPECTED_BUFFER chunk. 708 * 2. The buffer size has to be a power of two. If 709 * it is not, round down to the closes power of 710 * 2 and program that size. 711 */ 712 while (pagecount) { 713 int maxpages = pagecount; 714 u32 bufsize = pagecount * PAGE_SIZE; 715 716 if (bufsize > MAX_EXPECTED_BUFFER) 717 maxpages = 718 MAX_EXPECTED_BUFFER >> 719 PAGE_SHIFT; 720 else if (!is_power_of_2(bufsize)) 721 maxpages = 722 rounddown_pow_of_two(bufsize) >> 723 PAGE_SHIFT; 724 725 list[setcount].idx = pageidx; 726 list[setcount].count = maxpages; 727 pagecount -= maxpages; 728 pageidx += maxpages; 729 setcount++; 730 } 731 pageidx = i; 732 pagecount = 1; 733 pfn = this_pfn; 734 } else { 735 pagecount++; 736 } 737 } 738 return setcount; 739 } 740 741 /** 742 * program_rcvarray() - program an RcvArray group with receive buffers 743 * @fd: filedata pointer 744 * @vaddr: starting user virtual address 745 * @grp: RcvArray group 746 * @sets: array of struct tid_pageset holding information on physically 747 * contiguous chunks from the user buffer 748 * @start: starting index into sets array 749 * @count: number of struct tid_pageset's to program 750 * @pages: an array of struct page * for the user buffer 751 * @tidlist: the array of u32 elements when the information about the 752 * programmed RcvArray entries is to be encoded. 753 * @tididx: starting offset into tidlist 754 * @pmapped: (output parameter) number of pages programmed into the RcvArray 755 * entries. 756 * 757 * This function will program up to 'count' number of RcvArray entries from the 758 * group 'grp'. To make best use of write-combining writes, the function will 759 * perform writes to the unused RcvArray entries which will be ignored by the 760 * HW. Each RcvArray entry will be programmed with a physically contiguous 761 * buffer chunk from the user's virtual buffer. 762 * 763 * Return: 764 * -EINVAL if the requested count is larger than the size of the group, 765 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or 766 * number of RcvArray entries programmed. 767 */ 768 static int program_rcvarray(struct hfi1_filedata *fd, unsigned long vaddr, 769 struct tid_group *grp, 770 struct tid_pageset *sets, 771 unsigned start, u16 count, struct page **pages, 772 u32 *tidlist, unsigned *tididx, unsigned *pmapped) 773 { 774 struct hfi1_ctxtdata *uctxt = fd->uctxt; 775 struct hfi1_devdata *dd = uctxt->dd; 776 u16 idx; 777 u32 tidinfo = 0, rcventry, useidx = 0; 778 int mapped = 0; 779 780 /* Count should never be larger than the group size */ 781 if (count > grp->size) 782 return -EINVAL; 783 784 /* Find the first unused entry in the group */ 785 for (idx = 0; idx < grp->size; idx++) { 786 if (!(grp->map & (1 << idx))) { 787 useidx = idx; 788 break; 789 } 790 rcv_array_wc_fill(dd, grp->base + idx); 791 } 792 793 idx = 0; 794 while (idx < count) { 795 u16 npages, pageidx, setidx = start + idx; 796 int ret = 0; 797 798 /* 799 * If this entry in the group is used, move to the next one. 800 * If we go past the end of the group, exit the loop. 801 */ 802 if (useidx >= grp->size) { 803 break; 804 } else if (grp->map & (1 << useidx)) { 805 rcv_array_wc_fill(dd, grp->base + useidx); 806 useidx++; 807 continue; 808 } 809 810 rcventry = grp->base + useidx; 811 npages = sets[setidx].count; 812 pageidx = sets[setidx].idx; 813 814 ret = set_rcvarray_entry(fd, vaddr + (pageidx * PAGE_SIZE), 815 rcventry, grp, pages + pageidx, 816 npages); 817 if (ret) 818 return ret; 819 mapped += npages; 820 821 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) | 822 EXP_TID_SET(LEN, npages); 823 tidlist[(*tididx)++] = tidinfo; 824 grp->used++; 825 grp->map |= 1 << useidx++; 826 idx++; 827 } 828 829 /* Fill the rest of the group with "blank" writes */ 830 for (; useidx < grp->size; useidx++) 831 rcv_array_wc_fill(dd, grp->base + useidx); 832 *pmapped = mapped; 833 return idx; 834 } 835 836 static int set_rcvarray_entry(struct hfi1_filedata *fd, unsigned long vaddr, 837 u32 rcventry, struct tid_group *grp, 838 struct page **pages, unsigned npages) 839 { 840 int ret; 841 struct hfi1_ctxtdata *uctxt = fd->uctxt; 842 struct tid_rb_node *node; 843 struct hfi1_devdata *dd = uctxt->dd; 844 dma_addr_t phys; 845 846 /* 847 * Allocate the node first so we can handle a potential 848 * failure before we've programmed anything. 849 */ 850 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages), 851 GFP_KERNEL); 852 if (!node) 853 return -ENOMEM; 854 855 phys = pci_map_single(dd->pcidev, 856 __va(page_to_phys(pages[0])), 857 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE); 858 if (dma_mapping_error(&dd->pcidev->dev, phys)) { 859 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", 860 phys); 861 kfree(node); 862 return -EFAULT; 863 } 864 865 node->mmu.addr = vaddr; 866 node->mmu.len = npages * PAGE_SIZE; 867 node->phys = page_to_phys(pages[0]); 868 node->npages = npages; 869 node->rcventry = rcventry; 870 node->dma_addr = phys; 871 node->grp = grp; 872 node->freed = false; 873 memcpy(node->pages, pages, sizeof(struct page *) * npages); 874 875 if (!fd->handler) 876 ret = tid_rb_insert(fd, &node->mmu); 877 else 878 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu); 879 880 if (ret) { 881 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", 882 node->rcventry, node->mmu.addr, node->phys, ret); 883 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE, 884 PCI_DMA_FROMDEVICE); 885 kfree(node); 886 return -EFAULT; 887 } 888 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); 889 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, 890 node->mmu.addr, node->phys, phys); 891 return 0; 892 } 893 894 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, 895 struct tid_group **grp) 896 { 897 struct hfi1_ctxtdata *uctxt = fd->uctxt; 898 struct hfi1_devdata *dd = uctxt->dd; 899 struct tid_rb_node *node; 900 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL); 901 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; 902 903 if (tididx >= uctxt->expected_count) { 904 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", 905 tididx, uctxt->ctxt); 906 return -EINVAL; 907 } 908 909 if (tidctrl == 0x3) 910 return -EINVAL; 911 912 rcventry = tididx + (tidctrl - 1); 913 914 node = fd->entry_to_rb[rcventry]; 915 if (!node || node->rcventry != (uctxt->expected_base + rcventry)) 916 return -EBADF; 917 918 if (grp) 919 *grp = node->grp; 920 921 if (!fd->handler) 922 cacheless_tid_rb_remove(fd, node); 923 else 924 hfi1_mmu_rb_remove(fd->handler, &node->mmu); 925 926 return 0; 927 } 928 929 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 930 { 931 struct hfi1_ctxtdata *uctxt = fd->uctxt; 932 struct hfi1_devdata *dd = uctxt->dd; 933 934 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, 935 node->npages, node->mmu.addr, node->phys, 936 node->dma_addr); 937 938 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0); 939 /* 940 * Make sure device has seen the write before we unpin the 941 * pages. 942 */ 943 flush_wc(); 944 945 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len, 946 PCI_DMA_FROMDEVICE); 947 hfi1_release_user_pages(fd->mm, node->pages, node->npages, true); 948 fd->tid_n_pinned -= node->npages; 949 950 node->grp->used--; 951 node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); 952 953 if (node->grp->used == node->grp->size - 1) 954 tid_group_move(node->grp, &uctxt->tid_full_list, 955 &uctxt->tid_used_list); 956 else if (!node->grp->used) 957 tid_group_move(node->grp, &uctxt->tid_used_list, 958 &uctxt->tid_group_list); 959 kfree(node); 960 } 961 962 /* 963 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with 964 * clearing nodes in the non-cached case. 965 */ 966 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 967 struct exp_tid_set *set, 968 struct hfi1_filedata *fd) 969 { 970 struct tid_group *grp, *ptr; 971 int i; 972 973 list_for_each_entry_safe(grp, ptr, &set->list, list) { 974 list_del_init(&grp->list); 975 976 for (i = 0; i < grp->size; i++) { 977 if (grp->map & (1 << i)) { 978 u16 rcventry = grp->base + i; 979 struct tid_rb_node *node; 980 981 node = fd->entry_to_rb[rcventry - 982 uctxt->expected_base]; 983 if (!node || node->rcventry != rcventry) 984 continue; 985 986 cacheless_tid_rb_remove(fd, node); 987 } 988 } 989 } 990 } 991 992 /* 993 * Always return 0 from this function. A non-zero return indicates that the 994 * remove operation will be called and that memory should be unpinned. 995 * However, the driver cannot unpin out from under PSM. Instead, retain the 996 * memory (by returning 0) and inform PSM that the memory is going away. PSM 997 * will call back later when it has removed the memory from its list. 998 */ 999 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode) 1000 { 1001 struct hfi1_filedata *fdata = arg; 1002 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 1003 struct tid_rb_node *node = 1004 container_of(mnode, struct tid_rb_node, mmu); 1005 1006 if (node->freed) 1007 return 0; 1008 1009 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr, 1010 node->rcventry, node->npages, node->dma_addr); 1011 node->freed = true; 1012 1013 spin_lock(&fdata->invalid_lock); 1014 if (fdata->invalid_tid_idx < uctxt->expected_count) { 1015 fdata->invalid_tids[fdata->invalid_tid_idx] = 1016 rcventry2tidinfo(node->rcventry - uctxt->expected_base); 1017 fdata->invalid_tids[fdata->invalid_tid_idx] |= 1018 EXP_TID_SET(LEN, node->npages); 1019 if (!fdata->invalid_tid_idx) { 1020 unsigned long *ev; 1021 1022 /* 1023 * hfi1_set_uevent_bits() sets a user event flag 1024 * for all processes. Because calling into the 1025 * driver to process TID cache invalidations is 1026 * expensive and TID cache invalidations are 1027 * handled on a per-process basis, we can 1028 * optimize this to set the flag only for the 1029 * process in question. 1030 */ 1031 ev = uctxt->dd->events + 1032 (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1033 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt); 1034 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 1035 } 1036 fdata->invalid_tid_idx++; 1037 } 1038 spin_unlock(&fdata->invalid_lock); 1039 return 0; 1040 } 1041 1042 static int tid_rb_insert(void *arg, struct mmu_rb_node *node) 1043 { 1044 struct hfi1_filedata *fdata = arg; 1045 struct tid_rb_node *tnode = 1046 container_of(node, struct tid_rb_node, mmu); 1047 u32 base = fdata->uctxt->expected_base; 1048 1049 fdata->entry_to_rb[tnode->rcventry - base] = tnode; 1050 return 0; 1051 } 1052 1053 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 1054 struct tid_rb_node *tnode) 1055 { 1056 u32 base = fdata->uctxt->expected_base; 1057 1058 fdata->entry_to_rb[tnode->rcventry - base] = NULL; 1059 clear_tid_node(fdata, tnode); 1060 } 1061 1062 static void tid_rb_remove(void *arg, struct mmu_rb_node *node) 1063 { 1064 struct hfi1_filedata *fdata = arg; 1065 struct tid_rb_node *tnode = 1066 container_of(node, struct tid_rb_node, mmu); 1067 1068 cacheless_tid_rb_remove(fdata, tnode); 1069 } 1070