1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2020 Cornelis Networks, Inc. 4 * Copyright(c) 2015-2018 Intel Corporation. 5 */ 6 #include <asm/page.h> 7 #include <linux/string.h> 8 9 #include "mmu_rb.h" 10 #include "user_exp_rcv.h" 11 #include "trace.h" 12 13 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 14 struct exp_tid_set *set, 15 struct hfi1_filedata *fd); 16 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages); 17 static int set_rcvarray_entry(struct hfi1_filedata *fd, 18 struct tid_user_buf *tbuf, 19 u32 rcventry, struct tid_group *grp, 20 u16 pageidx, unsigned int npages); 21 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 22 struct tid_rb_node *tnode); 23 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, 24 const struct mmu_notifier_range *range, 25 unsigned long cur_seq); 26 static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, 27 const struct mmu_notifier_range *range, 28 unsigned long cur_seq); 29 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *, 30 struct tid_group *grp, 31 unsigned int start, u16 count, 32 u32 *tidlist, unsigned int *tididx, 33 unsigned int *pmapped); 34 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo); 35 static void __clear_tid_node(struct hfi1_filedata *fd, 36 struct tid_rb_node *node); 37 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); 38 39 static const struct mmu_interval_notifier_ops tid_mn_ops = { 40 .invalidate = tid_rb_invalidate, 41 }; 42 static const struct mmu_interval_notifier_ops tid_cover_ops = { 43 .invalidate = tid_cover_invalidate, 44 }; 45 46 /* 47 * Initialize context and file private data needed for Expected 48 * receive caching. This needs to be done after the context has 49 * been configured with the eager/expected RcvEntry counts. 50 */ 51 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd, 52 struct hfi1_ctxtdata *uctxt) 53 { 54 int ret = 0; 55 56 fd->entry_to_rb = kcalloc(uctxt->expected_count, 57 sizeof(struct rb_node *), 58 GFP_KERNEL); 59 if (!fd->entry_to_rb) 60 return -ENOMEM; 61 62 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { 63 fd->invalid_tid_idx = 0; 64 fd->invalid_tids = kcalloc(uctxt->expected_count, 65 sizeof(*fd->invalid_tids), 66 GFP_KERNEL); 67 if (!fd->invalid_tids) { 68 kfree(fd->entry_to_rb); 69 fd->entry_to_rb = NULL; 70 return -ENOMEM; 71 } 72 fd->use_mn = true; 73 } 74 75 /* 76 * PSM does not have a good way to separate, count, and 77 * effectively enforce a limit on RcvArray entries used by 78 * subctxts (when context sharing is used) when TID caching 79 * is enabled. To help with that, we calculate a per-process 80 * RcvArray entry share and enforce that. 81 * If TID caching is not in use, PSM deals with usage on its 82 * own. In that case, we allow any subctxt to take all of the 83 * entries. 84 * 85 * Make sure that we set the tid counts only after successful 86 * init. 87 */ 88 spin_lock(&fd->tid_lock); 89 if (uctxt->subctxt_cnt && fd->use_mn) { 90 u16 remainder; 91 92 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; 93 remainder = uctxt->expected_count % uctxt->subctxt_cnt; 94 if (remainder && fd->subctxt < remainder) 95 fd->tid_limit++; 96 } else { 97 fd->tid_limit = uctxt->expected_count; 98 } 99 spin_unlock(&fd->tid_lock); 100 101 return ret; 102 } 103 104 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) 105 { 106 struct hfi1_ctxtdata *uctxt = fd->uctxt; 107 108 mutex_lock(&uctxt->exp_mutex); 109 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) 110 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); 111 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) 112 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); 113 mutex_unlock(&uctxt->exp_mutex); 114 115 kfree(fd->invalid_tids); 116 fd->invalid_tids = NULL; 117 118 kfree(fd->entry_to_rb); 119 fd->entry_to_rb = NULL; 120 } 121 122 /* 123 * Release pinned receive buffer pages. 124 * 125 * @mapped: true if the pages have been DMA mapped. false otherwise. 126 * @idx: Index of the first page to unpin. 127 * @npages: No of pages to unpin. 128 * 129 * If the pages have been DMA mapped (indicated by mapped parameter), their 130 * info will be passed via a struct tid_rb_node. If they haven't been mapped, 131 * their info will be passed via a struct tid_user_buf. 132 */ 133 static void unpin_rcv_pages(struct hfi1_filedata *fd, 134 struct tid_user_buf *tidbuf, 135 struct tid_rb_node *node, 136 unsigned int idx, 137 unsigned int npages, 138 bool mapped) 139 { 140 struct page **pages; 141 struct hfi1_devdata *dd = fd->uctxt->dd; 142 struct mm_struct *mm; 143 144 if (mapped) { 145 dma_unmap_single(&dd->pcidev->dev, node->dma_addr, 146 node->npages * PAGE_SIZE, DMA_FROM_DEVICE); 147 pages = &node->pages[idx]; 148 mm = mm_from_tid_node(node); 149 } else { 150 pages = &tidbuf->pages[idx]; 151 mm = current->mm; 152 } 153 hfi1_release_user_pages(mm, pages, npages, mapped); 154 fd->tid_n_pinned -= npages; 155 } 156 157 /* 158 * Pin receive buffer pages. 159 */ 160 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf) 161 { 162 int pinned; 163 unsigned int npages = tidbuf->npages; 164 unsigned long vaddr = tidbuf->vaddr; 165 struct page **pages = NULL; 166 struct hfi1_devdata *dd = fd->uctxt->dd; 167 168 if (npages > fd->uctxt->expected_count) { 169 dd_dev_err(dd, "Expected buffer too big\n"); 170 return -EINVAL; 171 } 172 173 /* Allocate the array of struct page pointers needed for pinning */ 174 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); 175 if (!pages) 176 return -ENOMEM; 177 178 /* 179 * Pin all the pages of the user buffer. If we can't pin all the 180 * pages, accept the amount pinned so far and program only that. 181 * User space knows how to deal with partially programmed buffers. 182 */ 183 if (!hfi1_can_pin_pages(dd, current->mm, fd->tid_n_pinned, npages)) { 184 kfree(pages); 185 return -ENOMEM; 186 } 187 188 pinned = hfi1_acquire_user_pages(current->mm, vaddr, npages, true, pages); 189 if (pinned <= 0) { 190 kfree(pages); 191 return pinned; 192 } 193 tidbuf->pages = pages; 194 fd->tid_n_pinned += pinned; 195 return pinned; 196 } 197 198 /* 199 * RcvArray entry allocation for Expected Receives is done by the 200 * following algorithm: 201 * 202 * The context keeps 3 lists of groups of RcvArray entries: 203 * 1. List of empty groups - tid_group_list 204 * This list is created during user context creation and 205 * contains elements which describe sets (of 8) of empty 206 * RcvArray entries. 207 * 2. List of partially used groups - tid_used_list 208 * This list contains sets of RcvArray entries which are 209 * not completely used up. Another mapping request could 210 * use some of all of the remaining entries. 211 * 3. List of full groups - tid_full_list 212 * This is the list where sets that are completely used 213 * up go. 214 * 215 * An attempt to optimize the usage of RcvArray entries is 216 * made by finding all sets of physically contiguous pages in a 217 * user's buffer. 218 * These physically contiguous sets are further split into 219 * sizes supported by the receive engine of the HFI. The 220 * resulting sets of pages are stored in struct tid_pageset, 221 * which describes the sets as: 222 * * .count - number of pages in this set 223 * * .idx - starting index into struct page ** array 224 * of this set 225 * 226 * From this point on, the algorithm deals with the page sets 227 * described above. The number of pagesets is divided by the 228 * RcvArray group size to produce the number of full groups 229 * needed. 230 * 231 * Groups from the 3 lists are manipulated using the following 232 * rules: 233 * 1. For each set of 8 pagesets, a complete group from 234 * tid_group_list is taken, programmed, and moved to 235 * the tid_full_list list. 236 * 2. For all remaining pagesets: 237 * 2.1 If the tid_used_list is empty and the tid_group_list 238 * is empty, stop processing pageset and return only 239 * what has been programmed up to this point. 240 * 2.2 If the tid_used_list is empty and the tid_group_list 241 * is not empty, move a group from tid_group_list to 242 * tid_used_list. 243 * 2.3 For each group is tid_used_group, program as much as 244 * can fit into the group. If the group becomes fully 245 * used, move it to tid_full_list. 246 */ 247 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, 248 struct hfi1_tid_info *tinfo) 249 { 250 int ret = 0, need_group = 0, pinned; 251 struct hfi1_ctxtdata *uctxt = fd->uctxt; 252 struct hfi1_devdata *dd = uctxt->dd; 253 unsigned int ngroups, pageidx = 0, pageset_count, 254 tididx = 0, mapped, mapped_pages = 0; 255 u32 *tidlist = NULL; 256 struct tid_user_buf *tidbuf; 257 unsigned long mmu_seq = 0; 258 259 if (!PAGE_ALIGNED(tinfo->vaddr)) 260 return -EINVAL; 261 if (tinfo->length == 0) 262 return -EINVAL; 263 264 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL); 265 if (!tidbuf) 266 return -ENOMEM; 267 268 mutex_init(&tidbuf->cover_mutex); 269 tidbuf->vaddr = tinfo->vaddr; 270 tidbuf->length = tinfo->length; 271 tidbuf->npages = num_user_pages(tidbuf->vaddr, tidbuf->length); 272 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets), 273 GFP_KERNEL); 274 if (!tidbuf->psets) { 275 ret = -ENOMEM; 276 goto fail_release_mem; 277 } 278 279 if (fd->use_mn) { 280 ret = mmu_interval_notifier_insert( 281 &tidbuf->notifier, current->mm, 282 tidbuf->vaddr, tidbuf->npages * PAGE_SIZE, 283 &tid_cover_ops); 284 if (ret) 285 goto fail_release_mem; 286 mmu_seq = mmu_interval_read_begin(&tidbuf->notifier); 287 } 288 289 pinned = pin_rcv_pages(fd, tidbuf); 290 if (pinned <= 0) { 291 ret = (pinned < 0) ? pinned : -ENOSPC; 292 goto fail_unpin; 293 } 294 295 /* Find sets of physically contiguous pages */ 296 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned); 297 298 /* Reserve the number of expected tids to be used. */ 299 spin_lock(&fd->tid_lock); 300 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit) 301 pageset_count = fd->tid_limit - fd->tid_used; 302 else 303 pageset_count = tidbuf->n_psets; 304 fd->tid_used += pageset_count; 305 spin_unlock(&fd->tid_lock); 306 307 if (!pageset_count) { 308 ret = -ENOSPC; 309 goto fail_unreserve; 310 } 311 312 ngroups = pageset_count / dd->rcv_entries.group_size; 313 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); 314 if (!tidlist) { 315 ret = -ENOMEM; 316 goto fail_unreserve; 317 } 318 319 tididx = 0; 320 321 /* 322 * From this point on, we are going to be using shared (between master 323 * and subcontexts) context resources. We need to take the lock. 324 */ 325 mutex_lock(&uctxt->exp_mutex); 326 /* 327 * The first step is to program the RcvArray entries which are complete 328 * groups. 329 */ 330 while (ngroups && uctxt->tid_group_list.count) { 331 struct tid_group *grp = 332 tid_group_pop(&uctxt->tid_group_list); 333 334 ret = program_rcvarray(fd, tidbuf, grp, 335 pageidx, dd->rcv_entries.group_size, 336 tidlist, &tididx, &mapped); 337 /* 338 * If there was a failure to program the RcvArray 339 * entries for the entire group, reset the grp fields 340 * and add the grp back to the free group list. 341 */ 342 if (ret <= 0) { 343 tid_group_add_tail(grp, &uctxt->tid_group_list); 344 hfi1_cdbg(TID, 345 "Failed to program RcvArray group %d", ret); 346 goto unlock; 347 } 348 349 tid_group_add_tail(grp, &uctxt->tid_full_list); 350 ngroups--; 351 pageidx += ret; 352 mapped_pages += mapped; 353 } 354 355 while (pageidx < pageset_count) { 356 struct tid_group *grp, *ptr; 357 /* 358 * If we don't have any partially used tid groups, check 359 * if we have empty groups. If so, take one from there and 360 * put in the partially used list. 361 */ 362 if (!uctxt->tid_used_list.count || need_group) { 363 if (!uctxt->tid_group_list.count) 364 goto unlock; 365 366 grp = tid_group_pop(&uctxt->tid_group_list); 367 tid_group_add_tail(grp, &uctxt->tid_used_list); 368 need_group = 0; 369 } 370 /* 371 * There is an optimization opportunity here - instead of 372 * fitting as many page sets as we can, check for a group 373 * later on in the list that could fit all of them. 374 */ 375 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, 376 list) { 377 unsigned use = min_t(unsigned, pageset_count - pageidx, 378 grp->size - grp->used); 379 380 ret = program_rcvarray(fd, tidbuf, grp, 381 pageidx, use, tidlist, 382 &tididx, &mapped); 383 if (ret < 0) { 384 hfi1_cdbg(TID, 385 "Failed to program RcvArray entries %d", 386 ret); 387 goto unlock; 388 } else if (ret > 0) { 389 if (grp->used == grp->size) 390 tid_group_move(grp, 391 &uctxt->tid_used_list, 392 &uctxt->tid_full_list); 393 pageidx += ret; 394 mapped_pages += mapped; 395 need_group = 0; 396 /* Check if we are done so we break out early */ 397 if (pageidx >= pageset_count) 398 break; 399 } else if (WARN_ON(ret == 0)) { 400 /* 401 * If ret is 0, we did not program any entries 402 * into this group, which can only happen if 403 * we've screwed up the accounting somewhere. 404 * Warn and try to continue. 405 */ 406 need_group = 1; 407 } 408 } 409 } 410 unlock: 411 mutex_unlock(&uctxt->exp_mutex); 412 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, 413 mapped_pages, ret); 414 415 /* fail if nothing was programmed, set error if none provided */ 416 if (tididx == 0) { 417 if (ret >= 0) 418 ret = -ENOSPC; 419 goto fail_unreserve; 420 } 421 422 /* adjust reserved tid_used to actual count */ 423 spin_lock(&fd->tid_lock); 424 fd->tid_used -= pageset_count - tididx; 425 spin_unlock(&fd->tid_lock); 426 427 /* unpin all pages not covered by a TID */ 428 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages, pinned - mapped_pages, 429 false); 430 431 if (fd->use_mn) { 432 /* check for an invalidate during setup */ 433 bool fail = false; 434 435 mutex_lock(&tidbuf->cover_mutex); 436 fail = mmu_interval_read_retry(&tidbuf->notifier, mmu_seq); 437 mutex_unlock(&tidbuf->cover_mutex); 438 439 if (fail) { 440 ret = -EBUSY; 441 goto fail_unprogram; 442 } 443 } 444 445 tinfo->tidcnt = tididx; 446 tinfo->length = mapped_pages * PAGE_SIZE; 447 448 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist), 449 tidlist, sizeof(tidlist[0]) * tididx)) { 450 ret = -EFAULT; 451 goto fail_unprogram; 452 } 453 454 if (fd->use_mn) 455 mmu_interval_notifier_remove(&tidbuf->notifier); 456 kfree(tidbuf->pages); 457 kfree(tidbuf->psets); 458 kfree(tidbuf); 459 kfree(tidlist); 460 return 0; 461 462 fail_unprogram: 463 /* unprogram, unmap, and unpin all allocated TIDs */ 464 tinfo->tidlist = (unsigned long)tidlist; 465 hfi1_user_exp_rcv_clear(fd, tinfo); 466 tinfo->tidlist = 0; 467 pinned = 0; /* nothing left to unpin */ 468 pageset_count = 0; /* nothing left reserved */ 469 fail_unreserve: 470 spin_lock(&fd->tid_lock); 471 fd->tid_used -= pageset_count; 472 spin_unlock(&fd->tid_lock); 473 fail_unpin: 474 if (fd->use_mn) 475 mmu_interval_notifier_remove(&tidbuf->notifier); 476 if (pinned > 0) 477 unpin_rcv_pages(fd, tidbuf, NULL, 0, pinned, false); 478 fail_release_mem: 479 kfree(tidbuf->pages); 480 kfree(tidbuf->psets); 481 kfree(tidbuf); 482 kfree(tidlist); 483 return ret; 484 } 485 486 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, 487 struct hfi1_tid_info *tinfo) 488 { 489 int ret = 0; 490 struct hfi1_ctxtdata *uctxt = fd->uctxt; 491 u32 *tidinfo; 492 unsigned tididx; 493 494 if (unlikely(tinfo->tidcnt > fd->tid_used)) 495 return -EINVAL; 496 497 tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist), 498 sizeof(tidinfo[0]) * tinfo->tidcnt); 499 if (IS_ERR(tidinfo)) 500 return PTR_ERR(tidinfo); 501 502 mutex_lock(&uctxt->exp_mutex); 503 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { 504 ret = unprogram_rcvarray(fd, tidinfo[tididx]); 505 if (ret) { 506 hfi1_cdbg(TID, "Failed to unprogram rcv array %d", 507 ret); 508 break; 509 } 510 } 511 spin_lock(&fd->tid_lock); 512 fd->tid_used -= tididx; 513 spin_unlock(&fd->tid_lock); 514 tinfo->tidcnt = tididx; 515 mutex_unlock(&uctxt->exp_mutex); 516 517 kfree(tidinfo); 518 return ret; 519 } 520 521 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, 522 struct hfi1_tid_info *tinfo) 523 { 524 struct hfi1_ctxtdata *uctxt = fd->uctxt; 525 unsigned long *ev = uctxt->dd->events + 526 (uctxt_offset(uctxt) + fd->subctxt); 527 u32 *array; 528 int ret = 0; 529 530 /* 531 * copy_to_user() can sleep, which will leave the invalid_lock 532 * locked and cause the MMU notifier to be blocked on the lock 533 * for a long time. 534 * Copy the data to a local buffer so we can release the lock. 535 */ 536 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); 537 if (!array) 538 return -EFAULT; 539 540 spin_lock(&fd->invalid_lock); 541 if (fd->invalid_tid_idx) { 542 memcpy(array, fd->invalid_tids, sizeof(*array) * 543 fd->invalid_tid_idx); 544 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * 545 fd->invalid_tid_idx); 546 tinfo->tidcnt = fd->invalid_tid_idx; 547 fd->invalid_tid_idx = 0; 548 /* 549 * Reset the user flag while still holding the lock. 550 * Otherwise, PSM can miss events. 551 */ 552 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 553 } else { 554 tinfo->tidcnt = 0; 555 } 556 spin_unlock(&fd->invalid_lock); 557 558 if (tinfo->tidcnt) { 559 if (copy_to_user((void __user *)tinfo->tidlist, 560 array, sizeof(*array) * tinfo->tidcnt)) 561 ret = -EFAULT; 562 } 563 kfree(array); 564 565 return ret; 566 } 567 568 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages) 569 { 570 unsigned pagecount, pageidx, setcount = 0, i; 571 unsigned long pfn, this_pfn; 572 struct page **pages = tidbuf->pages; 573 struct tid_pageset *list = tidbuf->psets; 574 575 if (!npages) 576 return 0; 577 578 /* 579 * Look for sets of physically contiguous pages in the user buffer. 580 * This will allow us to optimize Expected RcvArray entry usage by 581 * using the bigger supported sizes. 582 */ 583 pfn = page_to_pfn(pages[0]); 584 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 585 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; 586 587 /* 588 * If the pfn's are not sequential, pages are not physically 589 * contiguous. 590 */ 591 if (this_pfn != ++pfn) { 592 /* 593 * At this point we have to loop over the set of 594 * physically contiguous pages and break them down it 595 * sizes supported by the HW. 596 * There are two main constraints: 597 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 598 * If the total set size is bigger than that 599 * program only a MAX_EXPECTED_BUFFER chunk. 600 * 2. The buffer size has to be a power of two. If 601 * it is not, round down to the closes power of 602 * 2 and program that size. 603 */ 604 while (pagecount) { 605 int maxpages = pagecount; 606 u32 bufsize = pagecount * PAGE_SIZE; 607 608 if (bufsize > MAX_EXPECTED_BUFFER) 609 maxpages = 610 MAX_EXPECTED_BUFFER >> 611 PAGE_SHIFT; 612 else if (!is_power_of_2(bufsize)) 613 maxpages = 614 rounddown_pow_of_two(bufsize) >> 615 PAGE_SHIFT; 616 617 list[setcount].idx = pageidx; 618 list[setcount].count = maxpages; 619 pagecount -= maxpages; 620 pageidx += maxpages; 621 setcount++; 622 } 623 pageidx = i; 624 pagecount = 1; 625 pfn = this_pfn; 626 } else { 627 pagecount++; 628 } 629 } 630 return setcount; 631 } 632 633 /** 634 * program_rcvarray() - program an RcvArray group with receive buffers 635 * @fd: filedata pointer 636 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting 637 * virtual address, buffer length, page pointers, pagesets (array of 638 * struct tid_pageset holding information on physically contiguous 639 * chunks from the user buffer), and other fields. 640 * @grp: RcvArray group 641 * @start: starting index into sets array 642 * @count: number of struct tid_pageset's to program 643 * @tidlist: the array of u32 elements when the information about the 644 * programmed RcvArray entries is to be encoded. 645 * @tididx: starting offset into tidlist 646 * @pmapped: (output parameter) number of pages programmed into the RcvArray 647 * entries. 648 * 649 * This function will program up to 'count' number of RcvArray entries from the 650 * group 'grp'. To make best use of write-combining writes, the function will 651 * perform writes to the unused RcvArray entries which will be ignored by the 652 * HW. Each RcvArray entry will be programmed with a physically contiguous 653 * buffer chunk from the user's virtual buffer. 654 * 655 * Return: 656 * -EINVAL if the requested count is larger than the size of the group, 657 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or 658 * number of RcvArray entries programmed. 659 */ 660 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, 661 struct tid_group *grp, 662 unsigned int start, u16 count, 663 u32 *tidlist, unsigned int *tididx, 664 unsigned int *pmapped) 665 { 666 struct hfi1_ctxtdata *uctxt = fd->uctxt; 667 struct hfi1_devdata *dd = uctxt->dd; 668 u16 idx; 669 u32 tidinfo = 0, rcventry, useidx = 0; 670 int mapped = 0; 671 672 /* Count should never be larger than the group size */ 673 if (count > grp->size) 674 return -EINVAL; 675 676 /* Find the first unused entry in the group */ 677 for (idx = 0; idx < grp->size; idx++) { 678 if (!(grp->map & (1 << idx))) { 679 useidx = idx; 680 break; 681 } 682 rcv_array_wc_fill(dd, grp->base + idx); 683 } 684 685 idx = 0; 686 while (idx < count) { 687 u16 npages, pageidx, setidx = start + idx; 688 int ret = 0; 689 690 /* 691 * If this entry in the group is used, move to the next one. 692 * If we go past the end of the group, exit the loop. 693 */ 694 if (useidx >= grp->size) { 695 break; 696 } else if (grp->map & (1 << useidx)) { 697 rcv_array_wc_fill(dd, grp->base + useidx); 698 useidx++; 699 continue; 700 } 701 702 rcventry = grp->base + useidx; 703 npages = tbuf->psets[setidx].count; 704 pageidx = tbuf->psets[setidx].idx; 705 706 ret = set_rcvarray_entry(fd, tbuf, 707 rcventry, grp, pageidx, 708 npages); 709 if (ret) 710 return ret; 711 mapped += npages; 712 713 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) | 714 EXP_TID_SET(LEN, npages); 715 tidlist[(*tididx)++] = tidinfo; 716 grp->used++; 717 grp->map |= 1 << useidx++; 718 idx++; 719 } 720 721 /* Fill the rest of the group with "blank" writes */ 722 for (; useidx < grp->size; useidx++) 723 rcv_array_wc_fill(dd, grp->base + useidx); 724 *pmapped = mapped; 725 return idx; 726 } 727 728 static int set_rcvarray_entry(struct hfi1_filedata *fd, 729 struct tid_user_buf *tbuf, 730 u32 rcventry, struct tid_group *grp, 731 u16 pageidx, unsigned int npages) 732 { 733 int ret; 734 struct hfi1_ctxtdata *uctxt = fd->uctxt; 735 struct tid_rb_node *node; 736 struct hfi1_devdata *dd = uctxt->dd; 737 dma_addr_t phys; 738 struct page **pages = tbuf->pages + pageidx; 739 740 /* 741 * Allocate the node first so we can handle a potential 742 * failure before we've programmed anything. 743 */ 744 node = kzalloc(struct_size(node, pages, npages), GFP_KERNEL); 745 if (!node) 746 return -ENOMEM; 747 748 phys = dma_map_single(&dd->pcidev->dev, __va(page_to_phys(pages[0])), 749 npages * PAGE_SIZE, DMA_FROM_DEVICE); 750 if (dma_mapping_error(&dd->pcidev->dev, phys)) { 751 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", 752 phys); 753 kfree(node); 754 return -EFAULT; 755 } 756 757 node->fdata = fd; 758 mutex_init(&node->invalidate_mutex); 759 node->phys = page_to_phys(pages[0]); 760 node->npages = npages; 761 node->rcventry = rcventry; 762 node->dma_addr = phys; 763 node->grp = grp; 764 node->freed = false; 765 memcpy(node->pages, pages, flex_array_size(node, pages, npages)); 766 767 if (fd->use_mn) { 768 ret = mmu_interval_notifier_insert( 769 &node->notifier, current->mm, 770 tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE, 771 &tid_mn_ops); 772 if (ret) 773 goto out_unmap; 774 } 775 fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node; 776 777 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); 778 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, 779 node->notifier.interval_tree.start, node->phys, 780 phys); 781 return 0; 782 783 out_unmap: 784 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", 785 node->rcventry, node->notifier.interval_tree.start, 786 node->phys, ret); 787 dma_unmap_single(&dd->pcidev->dev, phys, npages * PAGE_SIZE, 788 DMA_FROM_DEVICE); 789 kfree(node); 790 return -EFAULT; 791 } 792 793 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo) 794 { 795 struct hfi1_ctxtdata *uctxt = fd->uctxt; 796 struct hfi1_devdata *dd = uctxt->dd; 797 struct tid_rb_node *node; 798 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL); 799 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; 800 801 if (tididx >= uctxt->expected_count) { 802 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", 803 tididx, uctxt->ctxt); 804 return -EINVAL; 805 } 806 807 if (tidctrl == 0x3) 808 return -EINVAL; 809 810 rcventry = tididx + (tidctrl - 1); 811 812 node = fd->entry_to_rb[rcventry]; 813 if (!node || node->rcventry != (uctxt->expected_base + rcventry)) 814 return -EBADF; 815 816 if (fd->use_mn) 817 mmu_interval_notifier_remove(&node->notifier); 818 cacheless_tid_rb_remove(fd, node); 819 820 return 0; 821 } 822 823 static void __clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 824 { 825 struct hfi1_ctxtdata *uctxt = fd->uctxt; 826 struct hfi1_devdata *dd = uctxt->dd; 827 828 mutex_lock(&node->invalidate_mutex); 829 if (node->freed) 830 goto done; 831 node->freed = true; 832 833 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, 834 node->npages, 835 node->notifier.interval_tree.start, node->phys, 836 node->dma_addr); 837 838 /* Make sure device has seen the write before pages are unpinned */ 839 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0); 840 841 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true); 842 done: 843 mutex_unlock(&node->invalidate_mutex); 844 } 845 846 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 847 { 848 struct hfi1_ctxtdata *uctxt = fd->uctxt; 849 850 __clear_tid_node(fd, node); 851 852 node->grp->used--; 853 node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); 854 855 if (node->grp->used == node->grp->size - 1) 856 tid_group_move(node->grp, &uctxt->tid_full_list, 857 &uctxt->tid_used_list); 858 else if (!node->grp->used) 859 tid_group_move(node->grp, &uctxt->tid_used_list, 860 &uctxt->tid_group_list); 861 kfree(node); 862 } 863 864 /* 865 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with 866 * clearing nodes in the non-cached case. 867 */ 868 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 869 struct exp_tid_set *set, 870 struct hfi1_filedata *fd) 871 { 872 struct tid_group *grp, *ptr; 873 int i; 874 875 list_for_each_entry_safe(grp, ptr, &set->list, list) { 876 list_del_init(&grp->list); 877 878 for (i = 0; i < grp->size; i++) { 879 if (grp->map & (1 << i)) { 880 u16 rcventry = grp->base + i; 881 struct tid_rb_node *node; 882 883 node = fd->entry_to_rb[rcventry - 884 uctxt->expected_base]; 885 if (!node || node->rcventry != rcventry) 886 continue; 887 888 if (fd->use_mn) 889 mmu_interval_notifier_remove( 890 &node->notifier); 891 cacheless_tid_rb_remove(fd, node); 892 } 893 } 894 } 895 } 896 897 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, 898 const struct mmu_notifier_range *range, 899 unsigned long cur_seq) 900 { 901 struct tid_rb_node *node = 902 container_of(mni, struct tid_rb_node, notifier); 903 struct hfi1_filedata *fdata = node->fdata; 904 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 905 906 if (node->freed) 907 return true; 908 909 /* take action only if unmapping */ 910 if (range->event != MMU_NOTIFY_UNMAP) 911 return true; 912 913 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, 914 node->notifier.interval_tree.start, 915 node->rcventry, node->npages, node->dma_addr); 916 917 /* clear the hardware rcvarray entry */ 918 __clear_tid_node(fdata, node); 919 920 spin_lock(&fdata->invalid_lock); 921 if (fdata->invalid_tid_idx < uctxt->expected_count) { 922 fdata->invalid_tids[fdata->invalid_tid_idx] = 923 rcventry2tidinfo(node->rcventry - uctxt->expected_base); 924 fdata->invalid_tids[fdata->invalid_tid_idx] |= 925 EXP_TID_SET(LEN, node->npages); 926 if (!fdata->invalid_tid_idx) { 927 unsigned long *ev; 928 929 /* 930 * hfi1_set_uevent_bits() sets a user event flag 931 * for all processes. Because calling into the 932 * driver to process TID cache invalidations is 933 * expensive and TID cache invalidations are 934 * handled on a per-process basis, we can 935 * optimize this to set the flag only for the 936 * process in question. 937 */ 938 ev = uctxt->dd->events + 939 (uctxt_offset(uctxt) + fdata->subctxt); 940 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 941 } 942 fdata->invalid_tid_idx++; 943 } 944 spin_unlock(&fdata->invalid_lock); 945 return true; 946 } 947 948 static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, 949 const struct mmu_notifier_range *range, 950 unsigned long cur_seq) 951 { 952 struct tid_user_buf *tidbuf = 953 container_of(mni, struct tid_user_buf, notifier); 954 955 /* take action only if unmapping */ 956 if (range->event == MMU_NOTIFY_UNMAP) { 957 mutex_lock(&tidbuf->cover_mutex); 958 mmu_interval_set_seq(mni, cur_seq); 959 mutex_unlock(&tidbuf->cover_mutex); 960 } 961 962 return true; 963 } 964 965 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 966 struct tid_rb_node *tnode) 967 { 968 u32 base = fdata->uctxt->expected_base; 969 970 fdata->entry_to_rb[tnode->rcventry - base] = NULL; 971 clear_tid_node(fdata, tnode); 972 } 973