1 /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6 #ifndef HFI1_TID_RDMA_H
7 #define HFI1_TID_RDMA_H
8 
9 #include <linux/circ_buf.h>
10 #include "common.h"
11 
12 /* Add a convenience helper */
13 #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1))
14 #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size)
15 #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size)
16 
17 #define TID_RDMA_MAX_SEGMENT_SIZE       BIT(18)   /* 256 KiB (for now) */
18 #define TID_RDMA_MAX_PAGES              (BIT(18) >> PAGE_SHIFT)
19 
20 /*
21  * Bit definitions for priv->s_flags.
22  * These bit flags overload the bit flags defined for the QP's s_flags.
23  * Due to the fact that these bit fields are used only for the QP priv
24  * s_flags, there are no collisions.
25  *
26  * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock
27  */
28 #define HFI1_S_TID_WAIT_INTERLCK  BIT(5)
29 
30 struct tid_rdma_params {
31 	struct rcu_head rcu_head;
32 	u32 qp;
33 	u32 max_len;
34 	u16 jkey;
35 	u8 max_read;
36 	u8 max_write;
37 	u8 timeout;
38 	u8 urg;
39 	u8 version;
40 };
41 
42 struct tid_rdma_qp_params {
43 	struct work_struct trigger_work;
44 	struct tid_rdma_params local;
45 	struct tid_rdma_params __rcu *remote;
46 };
47 
48 /* Track state for each hardware flow */
49 struct tid_flow_state {
50 	u32 generation;
51 	u32 psn;
52 	u32 r_next_psn;      /* next PSN to be received (in TID space) */
53 	u8 index;
54 	u8 last_index;
55 	u8 flags;
56 };
57 
58 enum tid_rdma_req_state {
59 	TID_REQUEST_INACTIVE = 0,
60 	TID_REQUEST_INIT,
61 	TID_REQUEST_INIT_RESEND,
62 	TID_REQUEST_ACTIVE,
63 	TID_REQUEST_RESEND,
64 	TID_REQUEST_RESEND_ACTIVE,
65 	TID_REQUEST_QUEUED,
66 	TID_REQUEST_SYNC,
67 	TID_REQUEST_RNR_NAK,
68 	TID_REQUEST_COMPLETE,
69 };
70 
71 struct tid_rdma_request {
72 	struct rvt_qp *qp;
73 	struct hfi1_ctxtdata *rcd;
74 	union {
75 		struct rvt_swqe *swqe;
76 		struct rvt_ack_entry *ack;
77 	} e;
78 
79 	struct tid_rdma_flow *flows;	/* array of tid flows */
80 	u16 n_flows;		/* size of the flow buffer window */
81 	u16 setup_head;		/* flow index we are setting up */
82 	u16 clear_tail;		/* flow index we are clearing */
83 	u16 flow_idx;		/* flow index most recently set up */
84 
85 	u32 seg_len;
86 	u32 total_len;
87 	u32 r_flow_psn;         /* IB PSN of next segment start */
88 	u32 s_next_psn;		/* IB PSN of next segment start for read */
89 
90 	u32 total_segs;		/* segments required to complete a request */
91 	u32 cur_seg;		/* index of current segment */
92 	u32 comp_seg;           /* index of last completed segment */
93 	u32 ack_seg;            /* index of last ack'ed segment */
94 	u32 isge;		/* index of "current" sge */
95 	u32 ack_pending;        /* num acks pending for this request */
96 
97 	enum tid_rdma_req_state state;
98 };
99 
100 /*
101  * When header suppression is used, PSNs associated with a "flow" are
102  * relevant (and not the PSNs maintained by verbs). Track per-flow
103  * PSNs here for a TID RDMA segment.
104  *
105  */
106 struct flow_state {
107 	u32 flags;
108 	u32 resp_ib_psn;     /* The IB PSN of the response for this flow */
109 	u32 generation;      /* generation of flow */
110 	u32 spsn;            /* starting PSN in TID space */
111 	u32 lpsn;            /* last PSN in TID space */
112 	u32 r_next_psn;      /* next PSN to be received (in TID space) */
113 
114 	/* For tid rdma read */
115 	u32 ib_spsn;         /* starting PSN in Verbs space */
116 	u32 ib_lpsn;         /* last PSn in Verbs space */
117 };
118 
119 struct tid_rdma_pageset {
120 	dma_addr_t addr : 48; /* Only needed for the first page */
121 	u8 idx: 8;
122 	u8 count : 7;
123 	u8 mapped: 1;
124 };
125 
126 /**
127  * kern_tid_node - used for managing TID's in TID groups
128  *
129  * @grp_idx: rcd relative index to tid_group
130  * @map: grp->map captured prior to programming this TID group in HW
131  * @cnt: Only @cnt of available group entries are actually programmed
132  */
133 struct kern_tid_node {
134 	struct tid_group *grp;
135 	u8 map;
136 	u8 cnt;
137 };
138 
139 /* Overall info for a TID RDMA segment */
140 struct tid_rdma_flow {
141 	/*
142 	 * While a TID RDMA segment is being transferred, it uses a QP number
143 	 * from the "KDETH section of QP numbers" (which is different from the
144 	 * QP number that originated the request). Bits 11-15 of these QP
145 	 * numbers identify the "TID flow" for the segment.
146 	 */
147 	struct flow_state flow_state;
148 	struct tid_rdma_request *req;
149 	u32 tid_qpn;
150 	u32 tid_offset;
151 	u32 length;
152 	u32 sent;
153 	u8 tnode_cnt;
154 	u8 tidcnt;
155 	u8 tid_idx;
156 	u8 idx;
157 	u8 npagesets;
158 	u8 npkts;
159 	u8 pkt;
160 	struct kern_tid_node tnode[TID_RDMA_MAX_PAGES];
161 	struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES];
162 	u32 tid_entry[TID_RDMA_MAX_PAGES];
163 };
164 
165 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data);
166 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data);
167 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data);
168 void tid_rdma_conn_error(struct rvt_qp *qp);
169 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p);
170 
171 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit);
172 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
173 			    struct rvt_sge_state *ss, bool *last);
174 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req);
175 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req);
176 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
177 
178 /**
179  * trdma_clean_swqe - clean flows for swqe if large send queue
180  * @qp: the qp
181  * @wqe: the send wqe
182  */
183 static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
184 {
185 	if (!wqe->priv)
186 		return;
187 	__trdma_clean_swqe(qp, wqe);
188 }
189 
190 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp);
191 
192 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
193 		      struct ib_qp_init_attr *init_attr);
194 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp);
195 
196 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp);
197 
198 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
199 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
200 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd);
201 
202 struct cntr_entry;
203 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
204 			    void *context, int vl, int mode, u64 data);
205 
206 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
207 				    struct ib_other_headers *ohdr,
208 				    u32 *bth1, u32 *bth2, u32 *len);
209 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
210 				 struct ib_other_headers *ohdr, u32 *bth1,
211 				 u32 *bth2, u32 *len);
212 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet);
213 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
214 				  struct ib_other_headers *ohdr, u32 *bth0,
215 				  u32 *bth1, u32 *bth2, u32 *len, bool *last);
216 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet);
217 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
218 			      struct hfi1_pportdata *ppd,
219 			      struct hfi1_packet *packet);
220 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
221 			       u32 *bth2);
222 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp);
223 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe);
224 
225 #endif /* HFI1_TID_RDMA_H */
226