1 /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6 #ifndef HFI1_TID_RDMA_H
7 #define HFI1_TID_RDMA_H
8 
9 #include <linux/circ_buf.h>
10 #include "common.h"
11 
12 /* Add a convenience helper */
13 #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1))
14 #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size)
15 #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size)
16 
17 #define TID_RDMA_MIN_SEGMENT_SIZE       BIT(18)   /* 256 KiB (for now) */
18 #define TID_RDMA_MAX_SEGMENT_SIZE       BIT(18)   /* 256 KiB (for now) */
19 #define TID_RDMA_MAX_PAGES              (BIT(18) >> PAGE_SHIFT)
20 
21 /*
22  * Bit definitions for priv->s_flags.
23  * These bit flags overload the bit flags defined for the QP's s_flags.
24  * Due to the fact that these bit fields are used only for the QP priv
25  * s_flags, there are no collisions.
26  *
27  * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock
28  */
29 #define HFI1_R_TID_RSC_TIMER      BIT(2)
30 /* BIT(4) reserved for RVT_S_ACK_PENDING. */
31 #define HFI1_S_TID_WAIT_INTERLCK  BIT(5)
32 #define HFI1_R_TID_SW_PSN         BIT(19)
33 
34 /*
35  * Unlike regular IB RDMA VERBS, which do not require an entry
36  * in the s_ack_queue, TID RDMA WRITE requests do because they
37  * generate responses.
38  * Therefore, the s_ack_queue needs to be extended by a certain
39  * amount. The key point is that the queue needs to be extended
40  * without letting the "user" know so they user doesn't end up
41  * using these extra entries.
42  */
43 #define HFI1_TID_RDMA_WRITE_CNT 8
44 
45 struct tid_rdma_params {
46 	struct rcu_head rcu_head;
47 	u32 qp;
48 	u32 max_len;
49 	u16 jkey;
50 	u8 max_read;
51 	u8 max_write;
52 	u8 timeout;
53 	u8 urg;
54 	u8 version;
55 };
56 
57 struct tid_rdma_qp_params {
58 	struct work_struct trigger_work;
59 	struct tid_rdma_params local;
60 	struct tid_rdma_params __rcu *remote;
61 };
62 
63 /* Track state for each hardware flow */
64 struct tid_flow_state {
65 	u32 generation;
66 	u32 psn;
67 	u32 r_next_psn;      /* next PSN to be received (in TID space) */
68 	u8 index;
69 	u8 last_index;
70 	u8 flags;
71 };
72 
73 enum tid_rdma_req_state {
74 	TID_REQUEST_INACTIVE = 0,
75 	TID_REQUEST_INIT,
76 	TID_REQUEST_INIT_RESEND,
77 	TID_REQUEST_ACTIVE,
78 	TID_REQUEST_RESEND,
79 	TID_REQUEST_RESEND_ACTIVE,
80 	TID_REQUEST_QUEUED,
81 	TID_REQUEST_SYNC,
82 	TID_REQUEST_RNR_NAK,
83 	TID_REQUEST_COMPLETE,
84 };
85 
86 struct tid_rdma_request {
87 	struct rvt_qp *qp;
88 	struct hfi1_ctxtdata *rcd;
89 	union {
90 		struct rvt_swqe *swqe;
91 		struct rvt_ack_entry *ack;
92 	} e;
93 
94 	struct tid_rdma_flow *flows;	/* array of tid flows */
95 	struct rvt_sge_state ss; /* SGE state for TID RDMA requests */
96 	u16 n_flows;		/* size of the flow buffer window */
97 	u16 setup_head;		/* flow index we are setting up */
98 	u16 clear_tail;		/* flow index we are clearing */
99 	u16 flow_idx;		/* flow index most recently set up */
100 	u16 acked_tail;
101 
102 	u32 seg_len;
103 	u32 total_len;
104 	u32 r_flow_psn;         /* IB PSN of next segment start */
105 	u32 r_last_acked;       /* IB PSN of last ACK'ed packet */
106 	u32 s_next_psn;		/* IB PSN of next segment start for read */
107 
108 	u32 total_segs;		/* segments required to complete a request */
109 	u32 cur_seg;		/* index of current segment */
110 	u32 comp_seg;           /* index of last completed segment */
111 	u32 ack_seg;            /* index of last ack'ed segment */
112 	u32 alloc_seg;          /* index of next segment to be allocated */
113 	u32 isge;		/* index of "current" sge */
114 	u32 ack_pending;        /* num acks pending for this request */
115 
116 	enum tid_rdma_req_state state;
117 };
118 
119 /*
120  * When header suppression is used, PSNs associated with a "flow" are
121  * relevant (and not the PSNs maintained by verbs). Track per-flow
122  * PSNs here for a TID RDMA segment.
123  *
124  */
125 struct flow_state {
126 	u32 flags;
127 	u32 resp_ib_psn;     /* The IB PSN of the response for this flow */
128 	u32 generation;      /* generation of flow */
129 	u32 spsn;            /* starting PSN in TID space */
130 	u32 lpsn;            /* last PSN in TID space */
131 	u32 r_next_psn;      /* next PSN to be received (in TID space) */
132 
133 	/* For tid rdma read */
134 	u32 ib_spsn;         /* starting PSN in Verbs space */
135 	u32 ib_lpsn;         /* last PSn in Verbs space */
136 };
137 
138 struct tid_rdma_pageset {
139 	dma_addr_t addr : 48; /* Only needed for the first page */
140 	u8 idx: 8;
141 	u8 count : 7;
142 	u8 mapped: 1;
143 };
144 
145 /**
146  * kern_tid_node - used for managing TID's in TID groups
147  *
148  * @grp_idx: rcd relative index to tid_group
149  * @map: grp->map captured prior to programming this TID group in HW
150  * @cnt: Only @cnt of available group entries are actually programmed
151  */
152 struct kern_tid_node {
153 	struct tid_group *grp;
154 	u8 map;
155 	u8 cnt;
156 };
157 
158 /* Overall info for a TID RDMA segment */
159 struct tid_rdma_flow {
160 	/*
161 	 * While a TID RDMA segment is being transferred, it uses a QP number
162 	 * from the "KDETH section of QP numbers" (which is different from the
163 	 * QP number that originated the request). Bits 11-15 of these QP
164 	 * numbers identify the "TID flow" for the segment.
165 	 */
166 	struct flow_state flow_state;
167 	struct tid_rdma_request *req;
168 	u32 tid_qpn;
169 	u32 tid_offset;
170 	u32 length;
171 	u32 sent;
172 	u8 tnode_cnt;
173 	u8 tidcnt;
174 	u8 tid_idx;
175 	u8 idx;
176 	u8 npagesets;
177 	u8 npkts;
178 	u8 pkt;
179 	u8 resync_npkts;
180 	struct kern_tid_node tnode[TID_RDMA_MAX_PAGES];
181 	struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES];
182 	u32 tid_entry[TID_RDMA_MAX_PAGES];
183 };
184 
185 enum tid_rnr_nak_state {
186 	TID_RNR_NAK_INIT = 0,
187 	TID_RNR_NAK_SEND,
188 	TID_RNR_NAK_SENT,
189 };
190 
191 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data);
192 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data);
193 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data);
194 void tid_rdma_conn_error(struct rvt_qp *qp);
195 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p);
196 
197 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit);
198 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
199 			    struct rvt_sge_state *ss, bool *last);
200 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req);
201 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req);
202 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
203 
204 /**
205  * trdma_clean_swqe - clean flows for swqe if large send queue
206  * @qp: the qp
207  * @wqe: the send wqe
208  */
209 static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
210 {
211 	if (!wqe->priv)
212 		return;
213 	__trdma_clean_swqe(qp, wqe);
214 }
215 
216 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp);
217 
218 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
219 		      struct ib_qp_init_attr *init_attr);
220 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp);
221 
222 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp);
223 
224 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
225 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
226 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd);
227 
228 struct cntr_entry;
229 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
230 			    void *context, int vl, int mode, u64 data);
231 
232 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
233 				    struct ib_other_headers *ohdr,
234 				    u32 *bth1, u32 *bth2, u32 *len);
235 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
236 				 struct ib_other_headers *ohdr, u32 *bth1,
237 				 u32 *bth2, u32 *len);
238 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet);
239 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
240 				  struct ib_other_headers *ohdr, u32 *bth0,
241 				  u32 *bth1, u32 *bth2, u32 *len, bool *last);
242 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet);
243 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
244 			      struct hfi1_pportdata *ppd,
245 			      struct hfi1_packet *packet);
246 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
247 			       u32 *bth2);
248 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp);
249 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe);
250 
251 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
252 static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp,
253 					   struct rvt_swqe *wqe)
254 {
255 	if (wqe->priv &&
256 	    wqe->wr.opcode == IB_WR_RDMA_READ &&
257 	    wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE)
258 		setup_tid_rdma_wqe(qp, wqe);
259 }
260 
261 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
262 				  struct ib_other_headers *ohdr,
263 				  u32 *bth1, u32 *bth2, u32 *len);
264 
265 void hfi1_compute_tid_rdma_flow_wt(void);
266 
267 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet);
268 
269 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
270 				   struct ib_other_headers *ohdr, u32 *bth1,
271 				   u32 bth2, u32 *len,
272 				   struct rvt_sge_state **ss);
273 
274 void hfi1_del_tid_reap_timer(struct rvt_qp *qp);
275 
276 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet);
277 
278 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
279 				struct ib_other_headers *ohdr,
280 				u32 *bth1, u32 *bth2, u32 *len);
281 
282 #endif /* HFI1_TID_RDMA_H */
283