1 /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */ 2 /* 3 * Copyright(c) 2018 Intel Corporation. 4 * 5 */ 6 #ifndef HFI1_TID_RDMA_H 7 #define HFI1_TID_RDMA_H 8 9 #include <linux/circ_buf.h> 10 #include "common.h" 11 12 /* Add a convenience helper */ 13 #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1)) 14 #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size) 15 #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size) 16 17 #define TID_RDMA_MIN_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */ 18 #define TID_RDMA_MAX_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */ 19 #define TID_RDMA_MAX_PAGES (BIT(18) >> PAGE_SHIFT) 20 #define TID_RDMA_SEGMENT_SHIFT 18 21 22 /* 23 * Bit definitions for priv->s_flags. 24 * These bit flags overload the bit flags defined for the QP's s_flags. 25 * Due to the fact that these bit fields are used only for the QP priv 26 * s_flags, there are no collisions. 27 * 28 * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock 29 * HFI1_R_TID_WAIT_INTERLCK - QP is waiting for responder interlock 30 */ 31 #define HFI1_S_TID_BUSY_SET BIT(0) 32 /* BIT(1) reserved for RVT_S_BUSY. */ 33 #define HFI1_R_TID_RSC_TIMER BIT(2) 34 /* BIT(3) reserved for RVT_S_RESP_PENDING. */ 35 /* BIT(4) reserved for RVT_S_ACK_PENDING. */ 36 #define HFI1_S_TID_WAIT_INTERLCK BIT(5) 37 #define HFI1_R_TID_WAIT_INTERLCK BIT(6) 38 /* BIT(7) - BIT(15) reserved for RVT_S_WAIT_*. */ 39 /* BIT(16) reserved for RVT_S_SEND_ONE */ 40 #define HFI1_S_TID_RETRY_TIMER BIT(17) 41 /* BIT(18) reserved for RVT_S_ECN. */ 42 #define HFI1_R_TID_SW_PSN BIT(19) 43 /* BIT(26) reserved for HFI1_S_WAIT_HALT */ 44 /* BIT(27) reserved for HFI1_S_WAIT_TID_RESP */ 45 /* BIT(28) reserved for HFI1_S_WAIT_TID_SPACE */ 46 47 /* 48 * Unlike regular IB RDMA VERBS, which do not require an entry 49 * in the s_ack_queue, TID RDMA WRITE requests do because they 50 * generate responses. 51 * Therefore, the s_ack_queue needs to be extended by a certain 52 * amount. The key point is that the queue needs to be extended 53 * without letting the "user" know so they user doesn't end up 54 * using these extra entries. 55 */ 56 #define HFI1_TID_RDMA_WRITE_CNT 8 57 58 struct tid_rdma_params { 59 struct rcu_head rcu_head; 60 u32 qp; 61 u32 max_len; 62 u16 jkey; 63 u8 max_read; 64 u8 max_write; 65 u8 timeout; 66 u8 urg; 67 u8 version; 68 }; 69 70 struct tid_rdma_qp_params { 71 struct work_struct trigger_work; 72 struct tid_rdma_params local; 73 struct tid_rdma_params __rcu *remote; 74 }; 75 76 /* Track state for each hardware flow */ 77 struct tid_flow_state { 78 u32 generation; 79 u32 psn; 80 u8 index; 81 u8 last_index; 82 }; 83 84 enum tid_rdma_req_state { 85 TID_REQUEST_INACTIVE = 0, 86 TID_REQUEST_INIT, 87 TID_REQUEST_INIT_RESEND, 88 TID_REQUEST_ACTIVE, 89 TID_REQUEST_RESEND, 90 TID_REQUEST_RESEND_ACTIVE, 91 TID_REQUEST_QUEUED, 92 TID_REQUEST_SYNC, 93 TID_REQUEST_RNR_NAK, 94 TID_REQUEST_COMPLETE, 95 }; 96 97 struct tid_rdma_request { 98 struct rvt_qp *qp; 99 struct hfi1_ctxtdata *rcd; 100 union { 101 struct rvt_swqe *swqe; 102 struct rvt_ack_entry *ack; 103 } e; 104 105 struct tid_rdma_flow *flows; /* array of tid flows */ 106 struct rvt_sge_state ss; /* SGE state for TID RDMA requests */ 107 u16 n_flows; /* size of the flow buffer window */ 108 u16 setup_head; /* flow index we are setting up */ 109 u16 clear_tail; /* flow index we are clearing */ 110 u16 flow_idx; /* flow index most recently set up */ 111 u16 acked_tail; 112 113 u32 seg_len; 114 u32 total_len; 115 u32 r_ack_psn; /* next expected ack PSN */ 116 u32 r_flow_psn; /* IB PSN of next segment start */ 117 u32 r_last_acked; /* IB PSN of last ACK'ed packet */ 118 u32 s_next_psn; /* IB PSN of next segment start for read */ 119 120 u32 total_segs; /* segments required to complete a request */ 121 u32 cur_seg; /* index of current segment */ 122 u32 comp_seg; /* index of last completed segment */ 123 u32 ack_seg; /* index of last ack'ed segment */ 124 u32 alloc_seg; /* index of next segment to be allocated */ 125 u32 isge; /* index of "current" sge */ 126 u32 ack_pending; /* num acks pending for this request */ 127 128 enum tid_rdma_req_state state; 129 }; 130 131 /* 132 * When header suppression is used, PSNs associated with a "flow" are 133 * relevant (and not the PSNs maintained by verbs). Track per-flow 134 * PSNs here for a TID RDMA segment. 135 * 136 */ 137 struct flow_state { 138 u32 flags; 139 u32 resp_ib_psn; /* The IB PSN of the response for this flow */ 140 u32 generation; /* generation of flow */ 141 u32 spsn; /* starting PSN in TID space */ 142 u32 lpsn; /* last PSN in TID space */ 143 u32 r_next_psn; /* next PSN to be received (in TID space) */ 144 145 /* For tid rdma read */ 146 u32 ib_spsn; /* starting PSN in Verbs space */ 147 u32 ib_lpsn; /* last PSn in Verbs space */ 148 }; 149 150 struct tid_rdma_pageset { 151 dma_addr_t addr : 48; /* Only needed for the first page */ 152 u8 idx: 8; 153 u8 count : 7; 154 u8 mapped: 1; 155 }; 156 157 /** 158 * kern_tid_node - used for managing TID's in TID groups 159 * 160 * @grp_idx: rcd relative index to tid_group 161 * @map: grp->map captured prior to programming this TID group in HW 162 * @cnt: Only @cnt of available group entries are actually programmed 163 */ 164 struct kern_tid_node { 165 struct tid_group *grp; 166 u8 map; 167 u8 cnt; 168 }; 169 170 /* Overall info for a TID RDMA segment */ 171 struct tid_rdma_flow { 172 /* 173 * While a TID RDMA segment is being transferred, it uses a QP number 174 * from the "KDETH section of QP numbers" (which is different from the 175 * QP number that originated the request). Bits 11-15 of these QP 176 * numbers identify the "TID flow" for the segment. 177 */ 178 struct flow_state flow_state; 179 struct tid_rdma_request *req; 180 u32 tid_qpn; 181 u32 tid_offset; 182 u32 length; 183 u32 sent; 184 u8 tnode_cnt; 185 u8 tidcnt; 186 u8 tid_idx; 187 u8 idx; 188 u8 npagesets; 189 u8 npkts; 190 u8 pkt; 191 u8 resync_npkts; 192 struct kern_tid_node tnode[TID_RDMA_MAX_PAGES]; 193 struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES]; 194 u32 tid_entry[TID_RDMA_MAX_PAGES]; 195 }; 196 197 enum tid_rnr_nak_state { 198 TID_RNR_NAK_INIT = 0, 199 TID_RNR_NAK_SEND, 200 TID_RNR_NAK_SENT, 201 }; 202 203 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data); 204 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data); 205 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data); 206 void tid_rdma_conn_error(struct rvt_qp *qp); 207 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p); 208 209 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit); 210 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req, 211 struct rvt_sge_state *ss, bool *last); 212 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req); 213 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req); 214 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe); 215 216 /** 217 * trdma_clean_swqe - clean flows for swqe if large send queue 218 * @qp: the qp 219 * @wqe: the send wqe 220 */ 221 static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 222 { 223 if (!wqe->priv) 224 return; 225 __trdma_clean_swqe(qp, wqe); 226 } 227 228 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp); 229 230 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp, 231 struct ib_qp_init_attr *init_attr); 232 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp); 233 234 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp); 235 236 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp); 237 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp); 238 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd); 239 240 struct cntr_entry; 241 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry, 242 void *context, int vl, int mode, u64 data); 243 244 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe, 245 struct ib_other_headers *ohdr, 246 u32 *bth1, u32 *bth2, u32 *len); 247 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 248 struct ib_other_headers *ohdr, u32 *bth1, 249 u32 *bth2, u32 *len); 250 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet); 251 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 252 struct ib_other_headers *ohdr, u32 *bth0, 253 u32 *bth1, u32 *bth2, u32 *len, bool *last); 254 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet); 255 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd, 256 struct hfi1_pportdata *ppd, 257 struct hfi1_packet *packet); 258 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 259 u32 *bth2); 260 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp); 261 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe); 262 263 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe); 264 static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp, 265 struct rvt_swqe *wqe) 266 { 267 if (wqe->priv && 268 (wqe->wr.opcode == IB_WR_RDMA_READ || 269 wqe->wr.opcode == IB_WR_RDMA_WRITE) && 270 wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE) 271 setup_tid_rdma_wqe(qp, wqe); 272 } 273 274 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 275 struct ib_other_headers *ohdr, 276 u32 *bth1, u32 *bth2, u32 *len); 277 278 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet); 279 280 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 281 struct ib_other_headers *ohdr, u32 *bth1, 282 u32 bth2, u32 *len, 283 struct rvt_sge_state **ss); 284 285 void hfi1_del_tid_reap_timer(struct rvt_qp *qp); 286 287 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet); 288 289 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe, 290 struct ib_other_headers *ohdr, 291 u32 *bth1, u32 *bth2, u32 *len); 292 293 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet); 294 295 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e, 296 struct ib_other_headers *ohdr, u16 iflow, 297 u32 *bth1, u32 *bth2); 298 299 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet); 300 301 void hfi1_add_tid_retry_timer(struct rvt_qp *qp); 302 void hfi1_del_tid_retry_timer(struct rvt_qp *qp); 303 304 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe, 305 struct ib_other_headers *ohdr, u32 *bth1, 306 u32 *bth2, u16 fidx); 307 308 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet); 309 310 struct hfi1_pkt_state; 311 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps); 312 313 void _hfi1_do_tid_send(struct work_struct *work); 314 315 bool hfi1_schedule_tid_send(struct rvt_qp *qp); 316 317 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e); 318 319 #endif /* HFI1_TID_RDMA_H */ 320