1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6 
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14 
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29 
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36 
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39 
40 #define GENERATION_MASK 0xFFFFF
41 
42 static u32 mask_generation(u32 a)
43 {
44 	return a & GENERATION_MASK;
45 }
46 
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49 
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57 
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64 
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66 
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69 
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90 
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109 
110 static u32 tid_rdma_flow_wt;
111 
112 static void tid_rdma_trigger_resume(struct work_struct *work);
113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
115 					 gfp_t gfp);
116 static void hfi1_init_trdma_req(struct rvt_qp *qp,
117 				struct tid_rdma_request *req);
118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
119 static void hfi1_tid_timeout(struct timer_list *t);
120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
124 static void hfi1_tid_retry_timeout(struct timer_list *t);
125 static int make_tid_rdma_ack(struct rvt_qp *qp,
126 			     struct ib_other_headers *ohdr,
127 			     struct hfi1_pkt_state *ps);
128 static void hfi1_do_tid_send(struct rvt_qp *qp);
129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
130 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
131 			     struct ib_other_headers *ohdr,
132 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn);
133 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
134 				   struct hfi1_qp_priv *priv,
135 				   struct hfi1_ctxtdata *rcd,
136 				   struct tid_rdma_flow *flow,
137 				   bool fecn);
138 
139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
140 {
141 	return
142 		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
143 			TID_OPFN_QP_CTXT_SHIFT) |
144 		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
145 			TID_OPFN_QP_KDETH_SHIFT) |
146 		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
147 			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
148 		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
149 			TID_OPFN_TIMEOUT_SHIFT) |
150 		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
151 		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
152 		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
153 			TID_OPFN_MAX_READ_SHIFT) |
154 		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
155 			TID_OPFN_MAX_WRITE_SHIFT);
156 }
157 
158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
159 {
160 	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
161 		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
162 	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
163 	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
164 		TID_OPFN_MAX_WRITE_MASK;
165 	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
166 		TID_OPFN_MAX_READ_MASK;
167 	p->qp =
168 		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
169 			<< 16) |
170 		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
171 	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
172 	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
173 }
174 
175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
176 {
177 	struct hfi1_qp_priv *priv = qp->priv;
178 
179 	p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
180 	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
181 	p->jkey = priv->rcd->jkey;
182 	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
183 	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
184 	p->timeout = qp->timeout;
185 	p->urg = is_urg_masked(priv->rcd);
186 }
187 
188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
189 {
190 	struct hfi1_qp_priv *priv = qp->priv;
191 
192 	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
193 	return true;
194 }
195 
196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
197 {
198 	struct hfi1_qp_priv *priv = qp->priv;
199 	struct tid_rdma_params *remote, *old;
200 	bool ret = true;
201 
202 	old = rcu_dereference_protected(priv->tid_rdma.remote,
203 					lockdep_is_held(&priv->opfn.lock));
204 	data &= ~0xfULL;
205 	/*
206 	 * If data passed in is zero, return true so as not to continue the
207 	 * negotiation process
208 	 */
209 	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
210 		goto null;
211 	/*
212 	 * If kzalloc fails, return false. This will result in:
213 	 * * at the requester a new OPFN request being generated to retry
214 	 *   the negotiation
215 	 * * at the responder, 0 being returned to the requester so as to
216 	 *   disable TID RDMA at both the requester and the responder
217 	 */
218 	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
219 	if (!remote) {
220 		ret = false;
221 		goto null;
222 	}
223 
224 	tid_rdma_opfn_decode(remote, data);
225 	priv->tid_timer_timeout_jiffies =
226 		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
227 				   1000UL) << 3) * 7);
228 	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
229 	trace_hfi1_opfn_param(qp, 1, remote);
230 	rcu_assign_pointer(priv->tid_rdma.remote, remote);
231 	/*
232 	 * A TID RDMA READ request's segment size is not equal to
233 	 * remote->max_len only when the request's data length is smaller
234 	 * than remote->max_len. In that case, there will be only one segment.
235 	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
236 	 * during retry, it will lead to req->cur_seg = 0, which is exactly
237 	 * what is expected.
238 	 */
239 	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
240 	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
241 	goto free;
242 null:
243 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
244 	priv->timeout_shift = 0;
245 free:
246 	if (old)
247 		kfree_rcu(old, rcu_head);
248 	return ret;
249 }
250 
251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
252 {
253 	bool ret;
254 
255 	ret = tid_rdma_conn_reply(qp, *data);
256 	*data = 0;
257 	/*
258 	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
259 	 * TID RDMA could not be enabled. This will result in TID RDMA being
260 	 * disabled at the requester too.
261 	 */
262 	if (ret)
263 		(void)tid_rdma_conn_req(qp, data);
264 	return ret;
265 }
266 
267 void tid_rdma_conn_error(struct rvt_qp *qp)
268 {
269 	struct hfi1_qp_priv *priv = qp->priv;
270 	struct tid_rdma_params *old;
271 
272 	old = rcu_dereference_protected(priv->tid_rdma.remote,
273 					lockdep_is_held(&priv->opfn.lock));
274 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
275 	if (old)
276 		kfree_rcu(old, rcu_head);
277 }
278 
279 /* This is called at context initialization time */
280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
281 {
282 	if (reinit)
283 		return 0;
284 
285 	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
286 	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
287 	rcd->jkey = TID_RDMA_JKEY;
288 	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
289 	return hfi1_alloc_ctxt_rcv_groups(rcd);
290 }
291 
292 /**
293  * qp_to_rcd - determine the receive context used by a qp
294  * @qp - the qp
295  *
296  * This routine returns the receive context associated
297  * with a a qp's qpn.
298  *
299  * Returns the context.
300  */
301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
302 				       struct rvt_qp *qp)
303 {
304 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
305 						    struct hfi1_ibdev,
306 						    rdi);
307 	struct hfi1_devdata *dd = container_of(verbs_dev,
308 					       struct hfi1_devdata,
309 					       verbs_dev);
310 	unsigned int ctxt;
311 
312 	if (qp->ibqp.qp_num == 0)
313 		ctxt = 0;
314 	else
315 		ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
316 	return dd->rcd[ctxt];
317 }
318 
319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
320 		      struct ib_qp_init_attr *init_attr)
321 {
322 	struct hfi1_qp_priv *qpriv = qp->priv;
323 	int i, ret;
324 
325 	qpriv->rcd = qp_to_rcd(rdi, qp);
326 
327 	spin_lock_init(&qpriv->opfn.lock);
328 	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
329 	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
330 	qpriv->flow_state.psn = 0;
331 	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
332 	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
333 	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
334 	qpriv->s_state = TID_OP(WRITE_RESP);
335 	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
336 	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
337 	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
338 	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
339 	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
340 	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
341 	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
342 	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
343 	atomic_set(&qpriv->n_requests, 0);
344 	atomic_set(&qpriv->n_tid_requests, 0);
345 	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
346 	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
347 	INIT_LIST_HEAD(&qpriv->tid_wait);
348 
349 	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
350 		struct hfi1_devdata *dd = qpriv->rcd->dd;
351 
352 		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
353 						sizeof(*qpriv->pages),
354 					    GFP_KERNEL, dd->node);
355 		if (!qpriv->pages)
356 			return -ENOMEM;
357 		for (i = 0; i < qp->s_size; i++) {
358 			struct hfi1_swqe_priv *priv;
359 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
360 
361 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
362 					    dd->node);
363 			if (!priv)
364 				return -ENOMEM;
365 
366 			hfi1_init_trdma_req(qp, &priv->tid_req);
367 			priv->tid_req.e.swqe = wqe;
368 			wqe->priv = priv;
369 		}
370 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
371 			struct hfi1_ack_priv *priv;
372 
373 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
374 					    dd->node);
375 			if (!priv)
376 				return -ENOMEM;
377 
378 			hfi1_init_trdma_req(qp, &priv->tid_req);
379 			priv->tid_req.e.ack = &qp->s_ack_queue[i];
380 
381 			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
382 							    GFP_KERNEL);
383 			if (ret) {
384 				kfree(priv);
385 				return ret;
386 			}
387 			qp->s_ack_queue[i].priv = priv;
388 		}
389 	}
390 
391 	return 0;
392 }
393 
394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
395 {
396 	struct hfi1_qp_priv *qpriv = qp->priv;
397 	struct rvt_swqe *wqe;
398 	u32 i;
399 
400 	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
401 		for (i = 0; i < qp->s_size; i++) {
402 			wqe = rvt_get_swqe_ptr(qp, i);
403 			kfree(wqe->priv);
404 			wqe->priv = NULL;
405 		}
406 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
407 			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
408 
409 			if (priv)
410 				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
411 			kfree(priv);
412 			qp->s_ack_queue[i].priv = NULL;
413 		}
414 		cancel_work_sync(&qpriv->opfn.opfn_work);
415 		kfree(qpriv->pages);
416 		qpriv->pages = NULL;
417 	}
418 }
419 
420 /* Flow and tid waiter functions */
421 /**
422  * DOC: lock ordering
423  *
424  * There are two locks involved with the queuing
425  * routines: the qp s_lock and the exp_lock.
426  *
427  * Since the tid space allocation is called from
428  * the send engine, the qp s_lock is already held.
429  *
430  * The allocation routines will get the exp_lock.
431  *
432  * The first_qp() call is provided to allow the head of
433  * the rcd wait queue to be fetched under the exp_lock and
434  * followed by a drop of the exp_lock.
435  *
436  * Any qp in the wait list will have the qp reference count held
437  * to hold the qp in memory.
438  */
439 
440 /*
441  * return head of rcd wait list
442  *
443  * Must hold the exp_lock.
444  *
445  * Get a reference to the QP to hold the QP in memory.
446  *
447  * The caller must release the reference when the local
448  * is no longer being used.
449  */
450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
451 			       struct tid_queue *queue)
452 	__must_hold(&rcd->exp_lock)
453 {
454 	struct hfi1_qp_priv *priv;
455 
456 	lockdep_assert_held(&rcd->exp_lock);
457 	priv = list_first_entry_or_null(&queue->queue_head,
458 					struct hfi1_qp_priv,
459 					tid_wait);
460 	if (!priv)
461 		return NULL;
462 	rvt_get_qp(priv->owner);
463 	return priv->owner;
464 }
465 
466 /**
467  * kernel_tid_waiters - determine rcd wait
468  * @rcd: the receive context
469  * @qp: the head of the qp being processed
470  *
471  * This routine will return false IFF
472  * the list is NULL or the head of the
473  * list is the indicated qp.
474  *
475  * Must hold the qp s_lock and the exp_lock.
476  *
477  * Return:
478  * false if either of the conditions below are satisfied:
479  * 1. The list is empty or
480  * 2. The indicated qp is at the head of the list and the
481  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
482  * true is returned otherwise.
483  */
484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
485 			       struct tid_queue *queue, struct rvt_qp *qp)
486 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
487 {
488 	struct rvt_qp *fqp;
489 	bool ret = true;
490 
491 	lockdep_assert_held(&qp->s_lock);
492 	lockdep_assert_held(&rcd->exp_lock);
493 	fqp = first_qp(rcd, queue);
494 	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
495 		ret = false;
496 	rvt_put_qp(fqp);
497 	return ret;
498 }
499 
500 /**
501  * dequeue_tid_waiter - dequeue the qp from the list
502  * @qp - the qp to remove the wait list
503  *
504  * This routine removes the indicated qp from the
505  * wait list if it is there.
506  *
507  * This should be done after the hardware flow and
508  * tid array resources have been allocated.
509  *
510  * Must hold the qp s_lock and the rcd exp_lock.
511  *
512  * It assumes the s_lock to protect the s_flags
513  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
514  */
515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
516 			       struct tid_queue *queue, struct rvt_qp *qp)
517 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
518 {
519 	struct hfi1_qp_priv *priv = qp->priv;
520 
521 	lockdep_assert_held(&qp->s_lock);
522 	lockdep_assert_held(&rcd->exp_lock);
523 	if (list_empty(&priv->tid_wait))
524 		return;
525 	list_del_init(&priv->tid_wait);
526 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
527 	queue->dequeue++;
528 	rvt_put_qp(qp);
529 }
530 
531 /**
532  * queue_qp_for_tid_wait - suspend QP on tid space
533  * @rcd: the receive context
534  * @qp: the qp
535  *
536  * The qp is inserted at the tail of the rcd
537  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
538  *
539  * Must hold the qp s_lock and the exp_lock.
540  */
541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
542 				  struct tid_queue *queue, struct rvt_qp *qp)
543 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
544 {
545 	struct hfi1_qp_priv *priv = qp->priv;
546 
547 	lockdep_assert_held(&qp->s_lock);
548 	lockdep_assert_held(&rcd->exp_lock);
549 	if (list_empty(&priv->tid_wait)) {
550 		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
551 		list_add_tail(&priv->tid_wait, &queue->queue_head);
552 		priv->tid_enqueue = ++queue->enqueue;
553 		rcd->dd->verbs_dev.n_tidwait++;
554 		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
555 		rvt_get_qp(qp);
556 	}
557 }
558 
559 /**
560  * __trigger_tid_waiter - trigger tid waiter
561  * @qp: the qp
562  *
563  * This is a private entrance to schedule the qp
564  * assuming the caller is holding the qp->s_lock.
565  */
566 static void __trigger_tid_waiter(struct rvt_qp *qp)
567 	__must_hold(&qp->s_lock)
568 {
569 	lockdep_assert_held(&qp->s_lock);
570 	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
571 		return;
572 	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
573 	hfi1_schedule_send(qp);
574 }
575 
576 /**
577  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
578  * @qp - the qp
579  *
580  * trigger a schedule or a waiting qp in a deadlock
581  * safe manner.  The qp reference is held prior
582  * to this call via first_qp().
583  *
584  * If the qp trigger was already scheduled (!rval)
585  * the the reference is dropped, otherwise the resume
586  * or the destroy cancel will dispatch the reference.
587  */
588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
589 {
590 	struct hfi1_qp_priv *priv;
591 	struct hfi1_ibport *ibp;
592 	struct hfi1_pportdata *ppd;
593 	struct hfi1_devdata *dd;
594 	bool rval;
595 
596 	if (!qp)
597 		return;
598 
599 	priv = qp->priv;
600 	ibp = to_iport(qp->ibqp.device, qp->port_num);
601 	ppd = ppd_from_ibp(ibp);
602 	dd = dd_from_ibdev(qp->ibqp.device);
603 
604 	rval = queue_work_on(priv->s_sde ?
605 			     priv->s_sde->cpu :
606 			     cpumask_first(cpumask_of_node(dd->node)),
607 			     ppd->hfi1_wq,
608 			     &priv->tid_rdma.trigger_work);
609 	if (!rval)
610 		rvt_put_qp(qp);
611 }
612 
613 /**
614  * tid_rdma_trigger_resume - field a trigger work request
615  * @work - the work item
616  *
617  * Complete the off qp trigger processing by directly
618  * calling the progress routine.
619  */
620 static void tid_rdma_trigger_resume(struct work_struct *work)
621 {
622 	struct tid_rdma_qp_params *tr;
623 	struct hfi1_qp_priv *priv;
624 	struct rvt_qp *qp;
625 
626 	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
627 	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
628 	qp = priv->owner;
629 	spin_lock_irq(&qp->s_lock);
630 	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
631 		spin_unlock_irq(&qp->s_lock);
632 		hfi1_do_send(priv->owner, true);
633 	} else {
634 		spin_unlock_irq(&qp->s_lock);
635 	}
636 	rvt_put_qp(qp);
637 }
638 
639 /**
640  * tid_rdma_flush_wait - unwind any tid space wait
641  *
642  * This is called when resetting a qp to
643  * allow a destroy or reset to get rid
644  * of any tid space linkage and reference counts.
645  */
646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
647 	__must_hold(&qp->s_lock)
648 {
649 	struct hfi1_qp_priv *priv;
650 
651 	if (!qp)
652 		return;
653 	lockdep_assert_held(&qp->s_lock);
654 	priv = qp->priv;
655 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
656 	spin_lock(&priv->rcd->exp_lock);
657 	if (!list_empty(&priv->tid_wait)) {
658 		list_del_init(&priv->tid_wait);
659 		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
660 		queue->dequeue++;
661 		rvt_put_qp(qp);
662 	}
663 	spin_unlock(&priv->rcd->exp_lock);
664 }
665 
666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
667 	__must_hold(&qp->s_lock)
668 {
669 	struct hfi1_qp_priv *priv = qp->priv;
670 
671 	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
672 	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
673 }
674 
675 /* Flow functions */
676 /**
677  * kern_reserve_flow - allocate a hardware flow
678  * @rcd - the context to use for allocation
679  * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
680  *         signify "don't care".
681  *
682  * Use a bit mask based allocation to reserve a hardware
683  * flow for use in receiving KDETH data packets. If a preferred flow is
684  * specified the function will attempt to reserve that flow again, if
685  * available.
686  *
687  * The exp_lock must be held.
688  *
689  * Return:
690  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
691  * On failure: -EAGAIN
692  */
693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
694 	__must_hold(&rcd->exp_lock)
695 {
696 	int nr;
697 
698 	/* Attempt to reserve the preferred flow index */
699 	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
700 	    !test_and_set_bit(last, &rcd->flow_mask))
701 		return last;
702 
703 	nr = ffz(rcd->flow_mask);
704 	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
705 		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
706 	if (nr > (RXE_NUM_TID_FLOWS - 1))
707 		return -EAGAIN;
708 	set_bit(nr, &rcd->flow_mask);
709 	return nr;
710 }
711 
712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
713 			     u32 flow_idx)
714 {
715 	u64 reg;
716 
717 	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
718 		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
719 		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
720 		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
721 		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
722 		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
723 
724 	if (generation != KERN_GENERATION_RESERVED)
725 		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
726 
727 	write_uctxt_csr(rcd->dd, rcd->ctxt,
728 			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
729 }
730 
731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
732 	__must_hold(&rcd->exp_lock)
733 {
734 	u32 generation = rcd->flows[flow_idx].generation;
735 
736 	kern_set_hw_flow(rcd, generation, flow_idx);
737 	return generation;
738 }
739 
740 static u32 kern_flow_generation_next(u32 gen)
741 {
742 	u32 generation = mask_generation(gen + 1);
743 
744 	if (generation == KERN_GENERATION_RESERVED)
745 		generation = mask_generation(generation + 1);
746 	return generation;
747 }
748 
749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750 	__must_hold(&rcd->exp_lock)
751 {
752 	rcd->flows[flow_idx].generation =
753 		kern_flow_generation_next(rcd->flows[flow_idx].generation);
754 	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
755 }
756 
757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
758 {
759 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
760 	struct tid_flow_state *fs = &qpriv->flow_state;
761 	struct rvt_qp *fqp;
762 	unsigned long flags;
763 	int ret = 0;
764 
765 	/* The QP already has an allocated flow */
766 	if (fs->index != RXE_NUM_TID_FLOWS)
767 		return ret;
768 
769 	spin_lock_irqsave(&rcd->exp_lock, flags);
770 	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
771 		goto queue;
772 
773 	ret = kern_reserve_flow(rcd, fs->last_index);
774 	if (ret < 0)
775 		goto queue;
776 	fs->index = ret;
777 	fs->last_index = fs->index;
778 
779 	/* Generation received in a RESYNC overrides default flow generation */
780 	if (fs->generation != KERN_GENERATION_RESERVED)
781 		rcd->flows[fs->index].generation = fs->generation;
782 	fs->generation = kern_setup_hw_flow(rcd, fs->index);
783 	fs->psn = 0;
784 	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
785 	/* get head before dropping lock */
786 	fqp = first_qp(rcd, &rcd->flow_queue);
787 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
788 
789 	tid_rdma_schedule_tid_wakeup(fqp);
790 	return 0;
791 queue:
792 	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
793 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
794 	return -EAGAIN;
795 }
796 
797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
798 {
799 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
800 	struct tid_flow_state *fs = &qpriv->flow_state;
801 	struct rvt_qp *fqp;
802 	unsigned long flags;
803 
804 	if (fs->index >= RXE_NUM_TID_FLOWS)
805 		return;
806 	spin_lock_irqsave(&rcd->exp_lock, flags);
807 	kern_clear_hw_flow(rcd, fs->index);
808 	clear_bit(fs->index, &rcd->flow_mask);
809 	fs->index = RXE_NUM_TID_FLOWS;
810 	fs->psn = 0;
811 	fs->generation = KERN_GENERATION_RESERVED;
812 
813 	/* get head before dropping lock */
814 	fqp = first_qp(rcd, &rcd->flow_queue);
815 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
816 
817 	if (fqp == qp) {
818 		__trigger_tid_waiter(fqp);
819 		rvt_put_qp(fqp);
820 	} else {
821 		tid_rdma_schedule_tid_wakeup(fqp);
822 	}
823 }
824 
825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
826 {
827 	int i;
828 
829 	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
830 		rcd->flows[i].generation = mask_generation(prandom_u32());
831 		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
832 	}
833 }
834 
835 /* TID allocation functions */
836 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
837 {
838 	u8 count = s->count;
839 
840 	return ilog2(count) + 1;
841 }
842 
843 /**
844  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
845  * @npages - number of pages
846  * @pages - pointer to an array of page structs
847  * @list - page set array to return
848  *
849  * This routine returns the number of groups associated with
850  * the current sge information.  This implementation is based
851  * on the expected receive find_phys_blocks() adjusted to
852  * use the MR information vs. the pfn.
853  *
854  * Return:
855  * the number of RcvArray entries
856  */
857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
858 					struct page **pages,
859 					u32 npages,
860 					struct tid_rdma_pageset *list)
861 {
862 	u32 pagecount, pageidx, setcount = 0, i;
863 	void *vaddr, *this_vaddr;
864 
865 	if (!npages)
866 		return 0;
867 
868 	/*
869 	 * Look for sets of physically contiguous pages in the user buffer.
870 	 * This will allow us to optimize Expected RcvArray entry usage by
871 	 * using the bigger supported sizes.
872 	 */
873 	vaddr = page_address(pages[0]);
874 	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
875 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
876 		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
877 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
878 					 this_vaddr);
879 		/*
880 		 * If the vaddr's are not sequential, pages are not physically
881 		 * contiguous.
882 		 */
883 		if (this_vaddr != (vaddr + PAGE_SIZE)) {
884 			/*
885 			 * At this point we have to loop over the set of
886 			 * physically contiguous pages and break them down it
887 			 * sizes supported by the HW.
888 			 * There are two main constraints:
889 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
890 			 *        If the total set size is bigger than that
891 			 *        program only a MAX_EXPECTED_BUFFER chunk.
892 			 *     2. The buffer size has to be a power of two. If
893 			 *        it is not, round down to the closes power of
894 			 *        2 and program that size.
895 			 */
896 			while (pagecount) {
897 				int maxpages = pagecount;
898 				u32 bufsize = pagecount * PAGE_SIZE;
899 
900 				if (bufsize > MAX_EXPECTED_BUFFER)
901 					maxpages =
902 						MAX_EXPECTED_BUFFER >>
903 						PAGE_SHIFT;
904 				else if (!is_power_of_2(bufsize))
905 					maxpages =
906 						rounddown_pow_of_two(bufsize) >>
907 						PAGE_SHIFT;
908 
909 				list[setcount].idx = pageidx;
910 				list[setcount].count = maxpages;
911 				trace_hfi1_tid_pageset(flow->req->qp, setcount,
912 						       list[setcount].idx,
913 						       list[setcount].count);
914 				pagecount -= maxpages;
915 				pageidx += maxpages;
916 				setcount++;
917 			}
918 			pageidx = i;
919 			pagecount = 1;
920 			vaddr = this_vaddr;
921 		} else {
922 			vaddr += PAGE_SIZE;
923 			pagecount++;
924 		}
925 	}
926 	/* insure we always return an even number of sets */
927 	if (setcount & 1)
928 		list[setcount++].count = 0;
929 	return setcount;
930 }
931 
932 /**
933  * tid_flush_pages - dump out pages into pagesets
934  * @list - list of pagesets
935  * @idx - pointer to current page index
936  * @pages - number of pages to dump
937  * @sets - current number of pagesset
938  *
939  * This routine flushes out accumuated pages.
940  *
941  * To insure an even number of sets the
942  * code may add a filler.
943  *
944  * This can happen with when pages is not
945  * a power of 2 or pages is a power of 2
946  * less than the maximum pages.
947  *
948  * Return:
949  * The new number of sets
950  */
951 
952 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
953 			   u32 *idx, u32 pages, u32 sets)
954 {
955 	while (pages) {
956 		u32 maxpages = pages;
957 
958 		if (maxpages > MAX_EXPECTED_PAGES)
959 			maxpages = MAX_EXPECTED_PAGES;
960 		else if (!is_power_of_2(maxpages))
961 			maxpages = rounddown_pow_of_two(maxpages);
962 		list[sets].idx = *idx;
963 		list[sets++].count = maxpages;
964 		*idx += maxpages;
965 		pages -= maxpages;
966 	}
967 	/* might need a filler */
968 	if (sets & 1)
969 		list[sets++].count = 0;
970 	return sets;
971 }
972 
973 /**
974  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
975  * @pages - pointer to an array of page structs
976  * @npages - number of pages
977  * @list - page set array to return
978  *
979  * This routine parses an array of pages to compute pagesets
980  * in an 8k compatible way.
981  *
982  * pages are tested two at a time, i, i + 1 for contiguous
983  * pages and i - 1 and i contiguous pages.
984  *
985  * If any condition is false, any accumlated pages are flushed and
986  * v0,v1 are emitted as separate PAGE_SIZE pagesets
987  *
988  * Otherwise, the current 8k is totaled for a future flush.
989  *
990  * Return:
991  * The number of pagesets
992  * list set with the returned number of pagesets
993  *
994  */
995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
996 					struct page **pages,
997 					u32 npages,
998 					struct tid_rdma_pageset *list)
999 {
1000 	u32 idx, sets = 0, i;
1001 	u32 pagecnt = 0;
1002 	void *v0, *v1, *vm1;
1003 
1004 	if (!npages)
1005 		return 0;
1006 	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1007 		/* get a new v0 */
1008 		v0 = page_address(pages[i]);
1009 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1010 		v1 = i + 1 < npages ?
1011 				page_address(pages[i + 1]) : NULL;
1012 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1013 		/* compare i, i + 1 vaddr */
1014 		if (v1 != (v0 + PAGE_SIZE)) {
1015 			/* flush out pages */
1016 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1017 			/* output v0,v1 as two pagesets */
1018 			list[sets].idx = idx++;
1019 			list[sets++].count = 1;
1020 			if (v1) {
1021 				list[sets].count = 1;
1022 				list[sets++].idx = idx++;
1023 			} else {
1024 				list[sets++].count = 0;
1025 			}
1026 			vm1 = NULL;
1027 			pagecnt = 0;
1028 			continue;
1029 		}
1030 		/* i,i+1 consecutive, look at i-1,i */
1031 		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1032 			/* flush out pages */
1033 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1034 			pagecnt = 0;
1035 		}
1036 		/* pages will always be a multiple of 8k */
1037 		pagecnt += 2;
1038 		/* save i-1 */
1039 		vm1 = v1;
1040 		/* move to next pair */
1041 	}
1042 	/* dump residual pages at end */
1043 	sets = tid_flush_pages(list, &idx, npages - idx, sets);
1044 	/* by design cannot be odd sets */
1045 	WARN_ON(sets & 1);
1046 	return sets;
1047 }
1048 
1049 /**
1050  * Find pages for one segment of a sge array represented by @ss. The function
1051  * does not check the sge, the sge must have been checked for alignment with a
1052  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1053  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1054  * copy maintained in @ss->sge, the original sge is not modified.
1055  *
1056  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1057  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1058  * references to the MR. This difference requires that we keep track of progress
1059  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1060  * structure.
1061  */
1062 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1063 			   struct page **pages,
1064 			   struct rvt_sge_state *ss, bool *last)
1065 {
1066 	struct tid_rdma_request *req = flow->req;
1067 	struct rvt_sge *sge = &ss->sge;
1068 	u32 length = flow->req->seg_len;
1069 	u32 len = PAGE_SIZE;
1070 	u32 i = 0;
1071 
1072 	while (length && req->isge < ss->num_sge) {
1073 		pages[i++] = virt_to_page(sge->vaddr);
1074 
1075 		sge->vaddr += len;
1076 		sge->length -= len;
1077 		sge->sge_length -= len;
1078 		if (!sge->sge_length) {
1079 			if (++req->isge < ss->num_sge)
1080 				*sge = ss->sg_list[req->isge - 1];
1081 		} else if (sge->length == 0 && sge->mr->lkey) {
1082 			if (++sge->n >= RVT_SEGSZ) {
1083 				++sge->m;
1084 				sge->n = 0;
1085 			}
1086 			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1087 			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1088 		}
1089 		length -= len;
1090 	}
1091 
1092 	flow->length = flow->req->seg_len - length;
1093 	*last = req->isge == ss->num_sge ? false : true;
1094 	return i;
1095 }
1096 
1097 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1098 {
1099 	struct hfi1_devdata *dd;
1100 	int i;
1101 	struct tid_rdma_pageset *pset;
1102 
1103 	dd = flow->req->rcd->dd;
1104 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1105 			i++, pset++) {
1106 		if (pset->count && pset->addr) {
1107 			dma_unmap_page(&dd->pcidev->dev,
1108 				       pset->addr,
1109 				       PAGE_SIZE * pset->count,
1110 				       DMA_FROM_DEVICE);
1111 			pset->mapped = 0;
1112 		}
1113 	}
1114 }
1115 
1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1117 {
1118 	int i;
1119 	struct hfi1_devdata *dd = flow->req->rcd->dd;
1120 	struct tid_rdma_pageset *pset;
1121 
1122 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123 			i++, pset++) {
1124 		if (pset->count) {
1125 			pset->addr = dma_map_page(&dd->pcidev->dev,
1126 						  pages[pset->idx],
1127 						  0,
1128 						  PAGE_SIZE * pset->count,
1129 						  DMA_FROM_DEVICE);
1130 
1131 			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1132 				dma_unmap_flow(flow);
1133 				return -ENOMEM;
1134 			}
1135 			pset->mapped = 1;
1136 		}
1137 	}
1138 	return 0;
1139 }
1140 
1141 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1142 {
1143 	return !!flow->pagesets[0].mapped;
1144 }
1145 
1146 /*
1147  * Get pages pointers and identify contiguous physical memory chunks for a
1148  * segment. All segments are of length flow->req->seg_len.
1149  */
1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1151 				struct page **pages,
1152 				struct rvt_sge_state *ss, bool *last)
1153 {
1154 	u8 npages;
1155 
1156 	/* Reuse previously computed pagesets, if any */
1157 	if (flow->npagesets) {
1158 		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1159 					  flow);
1160 		if (!dma_mapped(flow))
1161 			return dma_map_flow(flow, pages);
1162 		return 0;
1163 	}
1164 
1165 	npages = kern_find_pages(flow, pages, ss, last);
1166 
1167 	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1168 		flow->npagesets =
1169 			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1170 						     flow->pagesets);
1171 	else
1172 		flow->npagesets =
1173 			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1174 						     flow->pagesets);
1175 
1176 	return dma_map_flow(flow, pages);
1177 }
1178 
1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1180 				     struct hfi1_ctxtdata *rcd, char *s,
1181 				     struct tid_group *grp, u8 cnt)
1182 {
1183 	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1184 
1185 	WARN_ON_ONCE(flow->tnode_cnt >=
1186 		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1187 	if (WARN_ON_ONCE(cnt & 1))
1188 		dd_dev_err(rcd->dd,
1189 			   "unexpected odd allocation cnt %u map 0x%x used %u",
1190 			   cnt, grp->map, grp->used);
1191 
1192 	node->grp = grp;
1193 	node->map = grp->map;
1194 	node->cnt = cnt;
1195 	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1196 				grp->base, grp->map, grp->used, cnt);
1197 }
1198 
1199 /*
1200  * Try to allocate pageset_count TID's from TID groups for a context
1201  *
1202  * This function allocates TID's without moving groups between lists or
1203  * modifying grp->map. This is done as follows, being cogizant of the lists
1204  * between which the TID groups will move:
1205  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1206  *    these groups will move from group->full without affecting used
1207  * 2. If more TID's are needed allocate from used (will move from used->full or
1208  *    stay in used)
1209  * 3. If we still don't have the required number of TID's go back and look again
1210  *    at a complete group (will move from group->used)
1211  */
1212 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1213 {
1214 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1215 	struct hfi1_devdata *dd = rcd->dd;
1216 	u32 ngroups, pageidx = 0;
1217 	struct tid_group *group = NULL, *used;
1218 	u8 use;
1219 
1220 	flow->tnode_cnt = 0;
1221 	ngroups = flow->npagesets / dd->rcv_entries.group_size;
1222 	if (!ngroups)
1223 		goto used_list;
1224 
1225 	/* First look at complete groups */
1226 	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1227 		kern_add_tid_node(flow, rcd, "complete groups", group,
1228 				  group->size);
1229 
1230 		pageidx += group->size;
1231 		if (!--ngroups)
1232 			break;
1233 	}
1234 
1235 	if (pageidx >= flow->npagesets)
1236 		goto ok;
1237 
1238 used_list:
1239 	/* Now look at partially used groups */
1240 	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1241 		use = min_t(u32, flow->npagesets - pageidx,
1242 			    used->size - used->used);
1243 		kern_add_tid_node(flow, rcd, "used groups", used, use);
1244 
1245 		pageidx += use;
1246 		if (pageidx >= flow->npagesets)
1247 			goto ok;
1248 	}
1249 
1250 	/*
1251 	 * Look again at a complete group, continuing from where we left.
1252 	 * However, if we are at the head, we have reached the end of the
1253 	 * complete groups list from the first loop above
1254 	 */
1255 	if (group && &group->list == &rcd->tid_group_list.list)
1256 		goto bail_eagain;
1257 	group = list_prepare_entry(group, &rcd->tid_group_list.list,
1258 				   list);
1259 	if (list_is_last(&group->list, &rcd->tid_group_list.list))
1260 		goto bail_eagain;
1261 	group = list_next_entry(group, list);
1262 	use = min_t(u32, flow->npagesets - pageidx, group->size);
1263 	kern_add_tid_node(flow, rcd, "complete continue", group, use);
1264 	pageidx += use;
1265 	if (pageidx >= flow->npagesets)
1266 		goto ok;
1267 bail_eagain:
1268 	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1269 				  (u64)flow->npagesets);
1270 	return -EAGAIN;
1271 ok:
1272 	return 0;
1273 }
1274 
1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1276 				   u32 *pset_idx)
1277 {
1278 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1279 	struct hfi1_devdata *dd = rcd->dd;
1280 	struct kern_tid_node *node = &flow->tnode[grp_num];
1281 	struct tid_group *grp = node->grp;
1282 	struct tid_rdma_pageset *pset;
1283 	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1284 	u32 rcventry, npages = 0, pair = 0, tidctrl;
1285 	u8 i, cnt = 0;
1286 
1287 	for (i = 0; i < grp->size; i++) {
1288 		rcventry = grp->base + i;
1289 
1290 		if (node->map & BIT(i) || cnt >= node->cnt) {
1291 			rcv_array_wc_fill(dd, rcventry);
1292 			continue;
1293 		}
1294 		pset = &flow->pagesets[(*pset_idx)++];
1295 		if (pset->count) {
1296 			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1297 				     pset->addr, trdma_pset_order(pset));
1298 		} else {
1299 			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1300 		}
1301 		npages += pset->count;
1302 
1303 		rcventry -= rcd->expected_base;
1304 		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1305 		/*
1306 		 * A single TID entry will be used to use a rcvarr pair (with
1307 		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1308 		 * (b) the group map shows current and the next bits as free
1309 		 * indicating two consecutive rcvarry entries are available (c)
1310 		 * we actually need 2 more entries
1311 		 */
1312 		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1313 			node->cnt >= cnt + 2;
1314 		if (!pair) {
1315 			if (!pset->count)
1316 				tidctrl = 0x1;
1317 			flow->tid_entry[flow->tidcnt++] =
1318 				EXP_TID_SET(IDX, rcventry >> 1) |
1319 				EXP_TID_SET(CTRL, tidctrl) |
1320 				EXP_TID_SET(LEN, npages);
1321 			trace_hfi1_tid_entry_alloc(/* entry */
1322 			   flow->req->qp, flow->tidcnt - 1,
1323 			   flow->tid_entry[flow->tidcnt - 1]);
1324 
1325 			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1326 			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1327 			npages = 0;
1328 		}
1329 
1330 		if (grp->used == grp->size - 1)
1331 			tid_group_move(grp, &rcd->tid_used_list,
1332 				       &rcd->tid_full_list);
1333 		else if (!grp->used)
1334 			tid_group_move(grp, &rcd->tid_group_list,
1335 				       &rcd->tid_used_list);
1336 
1337 		grp->used++;
1338 		grp->map |= BIT(i);
1339 		cnt++;
1340 	}
1341 }
1342 
1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1344 {
1345 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1346 	struct hfi1_devdata *dd = rcd->dd;
1347 	struct kern_tid_node *node = &flow->tnode[grp_num];
1348 	struct tid_group *grp = node->grp;
1349 	u32 rcventry;
1350 	u8 i, cnt = 0;
1351 
1352 	for (i = 0; i < grp->size; i++) {
1353 		rcventry = grp->base + i;
1354 
1355 		if (node->map & BIT(i) || cnt >= node->cnt) {
1356 			rcv_array_wc_fill(dd, rcventry);
1357 			continue;
1358 		}
1359 
1360 		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1361 
1362 		grp->used--;
1363 		grp->map &= ~BIT(i);
1364 		cnt++;
1365 
1366 		if (grp->used == grp->size - 1)
1367 			tid_group_move(grp, &rcd->tid_full_list,
1368 				       &rcd->tid_used_list);
1369 		else if (!grp->used)
1370 			tid_group_move(grp, &rcd->tid_used_list,
1371 				       &rcd->tid_group_list);
1372 	}
1373 	if (WARN_ON_ONCE(cnt & 1)) {
1374 		struct hfi1_ctxtdata *rcd = flow->req->rcd;
1375 		struct hfi1_devdata *dd = rcd->dd;
1376 
1377 		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1378 			   cnt, grp->map, grp->used);
1379 	}
1380 }
1381 
1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1383 {
1384 	u32 pset_idx = 0;
1385 	int i;
1386 
1387 	flow->npkts = 0;
1388 	flow->tidcnt = 0;
1389 	for (i = 0; i < flow->tnode_cnt; i++)
1390 		kern_program_rcv_group(flow, i, &pset_idx);
1391 	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1392 }
1393 
1394 /**
1395  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1396  * TID RDMA request
1397  *
1398  * @req: TID RDMA request for which the segment/flow is being set up
1399  * @ss: sge state, maintains state across successive segments of a sge
1400  * @last: set to true after the last sge segment has been processed
1401  *
1402  * This function
1403  * (1) finds a free flow entry in the flow circular buffer
1404  * (2) finds pages and continuous physical chunks constituing one segment
1405  *     of an sge
1406  * (3) allocates TID group entries for those chunks
1407  * (4) programs rcvarray entries in the hardware corresponding to those
1408  *     TID's
1409  * (5) computes a tidarray with formatted TID entries which can be sent
1410  *     to the sender
1411  * (6) Reserves and programs HW flows.
1412  * (7) It also manages queing the QP when TID/flow resources are not
1413  *     available.
1414  *
1415  * @req points to struct tid_rdma_request of which the segments are a part. The
1416  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1417  * req->flow_idx is the index of the flow which has been prepared in this
1418  * invocation of function call. With flow = &req->flows[req->flow_idx],
1419  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1420  * sends and flow->npkts contains number of packets required to send the
1421  * segment.
1422  *
1423  * hfi1_check_sge_align should be called prior to calling this function and if
1424  * it signals error TID RDMA cannot be used for this sge and this function
1425  * should not be called.
1426  *
1427  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1428  * engine and the function will procure the exp_lock.
1429  *
1430  * Return:
1431  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1432  * map the segment could not be allocated. In this case the function should be
1433  * called again with previous arguments to retry the TID allocation. There are
1434  * no other error returns. The function returns 0 on success.
1435  */
1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1437 			    struct rvt_sge_state *ss, bool *last)
1438 	__must_hold(&req->qp->s_lock)
1439 {
1440 	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1441 	struct hfi1_ctxtdata *rcd = req->rcd;
1442 	struct hfi1_qp_priv *qpriv = req->qp->priv;
1443 	unsigned long flags;
1444 	struct rvt_qp *fqp;
1445 	u16 clear_tail = req->clear_tail;
1446 
1447 	lockdep_assert_held(&req->qp->s_lock);
1448 	/*
1449 	 * We return error if either (a) we don't have space in the flow
1450 	 * circular buffer, or (b) we already have max entries in the buffer.
1451 	 * Max entries depend on the type of request we are processing and the
1452 	 * negotiated TID RDMA parameters.
1453 	 */
1454 	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1455 	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1456 	    req->n_flows)
1457 		return -EINVAL;
1458 
1459 	/*
1460 	 * Get pages, identify contiguous physical memory chunks for the segment
1461 	 * If we can not determine a DMA address mapping we will treat it just
1462 	 * like if we ran out of space above.
1463 	 */
1464 	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1465 		hfi1_wait_kmem(flow->req->qp);
1466 		return -ENOMEM;
1467 	}
1468 
1469 	spin_lock_irqsave(&rcd->exp_lock, flags);
1470 	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1471 		goto queue;
1472 
1473 	/*
1474 	 * At this point we know the number of pagesets and hence the number of
1475 	 * TID's to map the segment. Allocate the TID's from the TID groups. If
1476 	 * we cannot allocate the required number we exit and try again later
1477 	 */
1478 	if (kern_alloc_tids(flow))
1479 		goto queue;
1480 	/*
1481 	 * Finally program the TID entries with the pagesets, compute the
1482 	 * tidarray and enable the HW flow
1483 	 */
1484 	kern_program_rcvarray(flow);
1485 
1486 	/*
1487 	 * Setup the flow state with relevant information.
1488 	 * This information is used for tracking the sequence of data packets
1489 	 * for the segment.
1490 	 * The flow is setup here as this is the most accurate time and place
1491 	 * to do so. Doing at a later time runs the risk of the flow data in
1492 	 * qpriv getting out of sync.
1493 	 */
1494 	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1495 	flow->idx = qpriv->flow_state.index;
1496 	flow->flow_state.generation = qpriv->flow_state.generation;
1497 	flow->flow_state.spsn = qpriv->flow_state.psn;
1498 	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1499 	flow->flow_state.r_next_psn =
1500 		full_flow_psn(flow, flow->flow_state.spsn);
1501 	qpriv->flow_state.psn += flow->npkts;
1502 
1503 	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1504 	/* get head before dropping lock */
1505 	fqp = first_qp(rcd, &rcd->rarr_queue);
1506 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1507 	tid_rdma_schedule_tid_wakeup(fqp);
1508 
1509 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1510 	return 0;
1511 queue:
1512 	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1513 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1514 	return -EAGAIN;
1515 }
1516 
1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1518 {
1519 	flow->npagesets = 0;
1520 }
1521 
1522 /*
1523  * This function is called after one segment has been successfully sent to
1524  * release the flow and TID HW/SW resources for that segment. The segments for a
1525  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1526  * circular buffer.
1527  */
1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1529 	__must_hold(&req->qp->s_lock)
1530 {
1531 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1532 	struct hfi1_ctxtdata *rcd = req->rcd;
1533 	unsigned long flags;
1534 	int i;
1535 	struct rvt_qp *fqp;
1536 
1537 	lockdep_assert_held(&req->qp->s_lock);
1538 	/* Exit if we have nothing in the flow circular buffer */
1539 	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1540 		return -EINVAL;
1541 
1542 	spin_lock_irqsave(&rcd->exp_lock, flags);
1543 
1544 	for (i = 0; i < flow->tnode_cnt; i++)
1545 		kern_unprogram_rcv_group(flow, i);
1546 	/* To prevent double unprogramming */
1547 	flow->tnode_cnt = 0;
1548 	/* get head before dropping lock */
1549 	fqp = first_qp(rcd, &rcd->rarr_queue);
1550 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1551 
1552 	dma_unmap_flow(flow);
1553 
1554 	hfi1_tid_rdma_reset_flow(flow);
1555 	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1556 
1557 	if (fqp == req->qp) {
1558 		__trigger_tid_waiter(fqp);
1559 		rvt_put_qp(fqp);
1560 	} else {
1561 		tid_rdma_schedule_tid_wakeup(fqp);
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * This function is called to release all the tid entries for
1569  * a request.
1570  */
1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1572 	__must_hold(&req->qp->s_lock)
1573 {
1574 	/* Use memory barrier for proper ordering */
1575 	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1576 		if (hfi1_kern_exp_rcv_clear(req))
1577 			break;
1578 	}
1579 }
1580 
1581 /**
1582  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1583  * @req - the tid rdma request to be cleaned
1584  */
1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1586 {
1587 	kfree(req->flows);
1588 	req->flows = NULL;
1589 }
1590 
1591 /**
1592  * __trdma_clean_swqe - clean up for large sized QPs
1593  * @qp: the queue patch
1594  * @wqe: the send wqe
1595  */
1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1597 {
1598 	struct hfi1_swqe_priv *p = wqe->priv;
1599 
1600 	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1601 }
1602 
1603 /*
1604  * This can be called at QP create time or in the data path.
1605  */
1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1607 					 gfp_t gfp)
1608 {
1609 	struct tid_rdma_flow *flows;
1610 	int i;
1611 
1612 	if (likely(req->flows))
1613 		return 0;
1614 	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1615 			     req->rcd->numa_id);
1616 	if (!flows)
1617 		return -ENOMEM;
1618 	/* mini init */
1619 	for (i = 0; i < MAX_FLOWS; i++) {
1620 		flows[i].req = req;
1621 		flows[i].npagesets = 0;
1622 		flows[i].pagesets[0].mapped =  0;
1623 	}
1624 	req->flows = flows;
1625 	return 0;
1626 }
1627 
1628 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1629 				struct tid_rdma_request *req)
1630 {
1631 	struct hfi1_qp_priv *qpriv = qp->priv;
1632 
1633 	/*
1634 	 * Initialize various TID RDMA request variables.
1635 	 * These variables are "static", which is why they
1636 	 * can be pre-initialized here before the WRs has
1637 	 * even been submitted.
1638 	 * However, non-NULL values for these variables do not
1639 	 * imply that this WQE has been enabled for TID RDMA.
1640 	 * Drivers should check the WQE's opcode to determine
1641 	 * if a request is a TID RDMA one or not.
1642 	 */
1643 	req->qp = qp;
1644 	req->rcd = qpriv->rcd;
1645 }
1646 
1647 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1648 			    void *context, int vl, int mode, u64 data)
1649 {
1650 	struct hfi1_devdata *dd = context;
1651 
1652 	return dd->verbs_dev.n_tidwait;
1653 }
1654 
1655 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1656 					  u32 psn, u16 *fidx)
1657 {
1658 	u16 head, tail;
1659 	struct tid_rdma_flow *flow;
1660 
1661 	head = req->setup_head;
1662 	tail = req->clear_tail;
1663 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1664 	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1665 		flow = &req->flows[tail];
1666 		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1667 		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1668 			if (fidx)
1669 				*fidx = tail;
1670 			return flow;
1671 		}
1672 	}
1673 	return NULL;
1674 }
1675 
1676 static struct tid_rdma_flow *
1677 __find_flow_ranged(struct tid_rdma_request *req, u16 head, u16 tail,
1678 		   u32 psn, u16 *fidx)
1679 {
1680 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1681 	      tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1682 		struct tid_rdma_flow *flow = &req->flows[tail];
1683 		u32 spsn, lpsn;
1684 
1685 		spsn = full_flow_psn(flow, flow->flow_state.spsn);
1686 		lpsn = full_flow_psn(flow, flow->flow_state.lpsn);
1687 
1688 		if (cmp_psn(psn, spsn) >= 0 && cmp_psn(psn, lpsn) <= 0) {
1689 			if (fidx)
1690 				*fidx = tail;
1691 			return flow;
1692 		}
1693 	}
1694 	return NULL;
1695 }
1696 
1697 static struct tid_rdma_flow *find_flow(struct tid_rdma_request *req,
1698 				       u32 psn, u16 *fidx)
1699 {
1700 	return __find_flow_ranged(req, req->setup_head, req->clear_tail, psn,
1701 				  fidx);
1702 }
1703 
1704 /* TID RDMA READ functions */
1705 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1706 				    struct ib_other_headers *ohdr, u32 *bth1,
1707 				    u32 *bth2, u32 *len)
1708 {
1709 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1710 	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1711 	struct rvt_qp *qp = req->qp;
1712 	struct hfi1_qp_priv *qpriv = qp->priv;
1713 	struct hfi1_swqe_priv *wpriv = wqe->priv;
1714 	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1715 	struct tid_rdma_params *remote;
1716 	u32 req_len = 0;
1717 	void *req_addr = NULL;
1718 
1719 	/* This is the IB psn used to send the request */
1720 	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1721 	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1722 
1723 	/* TID Entries for TID RDMA READ payload */
1724 	req_addr = &flow->tid_entry[flow->tid_idx];
1725 	req_len = sizeof(*flow->tid_entry) *
1726 			(flow->tidcnt - flow->tid_idx);
1727 
1728 	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1729 	wpriv->ss.sge.vaddr = req_addr;
1730 	wpriv->ss.sge.sge_length = req_len;
1731 	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1732 	/*
1733 	 * We can safely zero these out. Since the first SGE covers the
1734 	 * entire packet, nothing else should even look at the MR.
1735 	 */
1736 	wpriv->ss.sge.mr = NULL;
1737 	wpriv->ss.sge.m = 0;
1738 	wpriv->ss.sge.n = 0;
1739 
1740 	wpriv->ss.sg_list = NULL;
1741 	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1742 	wpriv->ss.num_sge = 1;
1743 
1744 	/* Construct the TID RDMA READ REQ packet header */
1745 	rcu_read_lock();
1746 	remote = rcu_dereference(qpriv->tid_rdma.remote);
1747 
1748 	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1749 	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1750 	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1751 			   req->cur_seg * req->seg_len + flow->sent);
1752 	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1753 	rreq->reth.length = cpu_to_be32(*len);
1754 	rreq->tid_flow_psn =
1755 		cpu_to_be32((flow->flow_state.generation <<
1756 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
1757 			    ((flow->flow_state.spsn + flow->pkt) &
1758 			     HFI1_KDETH_BTH_SEQ_MASK));
1759 	rreq->tid_flow_qp =
1760 		cpu_to_be32(qpriv->tid_rdma.local.qp |
1761 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1762 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
1763 			    qpriv->rcd->ctxt);
1764 	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1765 	*bth1 &= ~RVT_QPN_MASK;
1766 	*bth1 |= remote->qp;
1767 	*bth2 |= IB_BTH_REQ_ACK;
1768 	rcu_read_unlock();
1769 
1770 	/* We are done with this segment */
1771 	flow->sent += *len;
1772 	req->cur_seg++;
1773 	qp->s_state = TID_OP(READ_REQ);
1774 	req->ack_pending++;
1775 	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1776 	qpriv->pending_tid_r_segs++;
1777 	qp->s_num_rd_atomic++;
1778 
1779 	/* Set the TID RDMA READ request payload size */
1780 	*len = req_len;
1781 
1782 	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1783 }
1784 
1785 /*
1786  * @len: contains the data length to read upon entry and the read request
1787  *       payload length upon exit.
1788  */
1789 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1790 				 struct ib_other_headers *ohdr, u32 *bth1,
1791 				 u32 *bth2, u32 *len)
1792 	__must_hold(&qp->s_lock)
1793 {
1794 	struct hfi1_qp_priv *qpriv = qp->priv;
1795 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1796 	struct tid_rdma_flow *flow = NULL;
1797 	u32 hdwords = 0;
1798 	bool last;
1799 	bool retry = true;
1800 	u32 npkts = rvt_div_round_up_mtu(qp, *len);
1801 
1802 	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1803 					  wqe->lpsn, req);
1804 	/*
1805 	 * Check sync conditions. Make sure that there are no pending
1806 	 * segments before freeing the flow.
1807 	 */
1808 sync_check:
1809 	if (req->state == TID_REQUEST_SYNC) {
1810 		if (qpriv->pending_tid_r_segs)
1811 			goto done;
1812 
1813 		hfi1_kern_clear_hw_flow(req->rcd, qp);
1814 		qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1815 		req->state = TID_REQUEST_ACTIVE;
1816 	}
1817 
1818 	/*
1819 	 * If the request for this segment is resent, the tid resources should
1820 	 * have been allocated before. In this case, req->flow_idx should
1821 	 * fall behind req->setup_head.
1822 	 */
1823 	if (req->flow_idx == req->setup_head) {
1824 		retry = false;
1825 		if (req->state == TID_REQUEST_RESEND) {
1826 			/*
1827 			 * This is the first new segment for a request whose
1828 			 * earlier segments have been re-sent. We need to
1829 			 * set up the sge pointer correctly.
1830 			 */
1831 			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1832 				    qp->pmtu);
1833 			req->isge = 0;
1834 			req->state = TID_REQUEST_ACTIVE;
1835 		}
1836 
1837 		/*
1838 		 * Check sync. The last PSN of each generation is reserved for
1839 		 * RESYNC.
1840 		 */
1841 		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1842 			req->state = TID_REQUEST_SYNC;
1843 			goto sync_check;
1844 		}
1845 
1846 		/* Allocate the flow if not yet */
1847 		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1848 			goto done;
1849 
1850 		/*
1851 		 * The following call will advance req->setup_head after
1852 		 * allocating the tid entries.
1853 		 */
1854 		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1855 			req->state = TID_REQUEST_QUEUED;
1856 
1857 			/*
1858 			 * We don't have resources for this segment. The QP has
1859 			 * already been queued.
1860 			 */
1861 			goto done;
1862 		}
1863 	}
1864 
1865 	/* req->flow_idx should only be one slot behind req->setup_head */
1866 	flow = &req->flows[req->flow_idx];
1867 	flow->pkt = 0;
1868 	flow->tid_idx = 0;
1869 	flow->sent = 0;
1870 	if (!retry) {
1871 		/* Set the first and last IB PSN for the flow in use.*/
1872 		flow->flow_state.ib_spsn = req->s_next_psn;
1873 		flow->flow_state.ib_lpsn =
1874 			flow->flow_state.ib_spsn + flow->npkts - 1;
1875 	}
1876 
1877 	/* Calculate the next segment start psn.*/
1878 	req->s_next_psn += flow->npkts;
1879 
1880 	/* Build the packet header */
1881 	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1882 done:
1883 	return hdwords;
1884 }
1885 
1886 /*
1887  * Validate and accept the TID RDMA READ request parameters.
1888  * Return 0 if the request is accepted successfully;
1889  * Return 1 otherwise.
1890  */
1891 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1892 				     struct rvt_ack_entry *e,
1893 				     struct hfi1_packet *packet,
1894 				     struct ib_other_headers *ohdr,
1895 				     u32 bth0, u32 psn, u64 vaddr, u32 len)
1896 {
1897 	struct hfi1_qp_priv *qpriv = qp->priv;
1898 	struct tid_rdma_request *req;
1899 	struct tid_rdma_flow *flow;
1900 	u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1901 
1902 	req = ack_to_tid_req(e);
1903 
1904 	/* Validate the payload first */
1905 	flow = &req->flows[req->setup_head];
1906 
1907 	/* payload length = packet length - (header length + ICRC length) */
1908 	pktlen = packet->tlen - (packet->hlen + 4);
1909 	if (pktlen > sizeof(flow->tid_entry))
1910 		return 1;
1911 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
1912 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1913 
1914 	/*
1915 	 * Walk the TID_ENTRY list to make sure we have enough space for a
1916 	 * complete segment. Also calculate the number of required packets.
1917 	 */
1918 	flow->npkts = rvt_div_round_up_mtu(qp, len);
1919 	for (i = 0; i < flow->tidcnt; i++) {
1920 		trace_hfi1_tid_entry_rcv_read_req(qp, i,
1921 						  flow->tid_entry[i]);
1922 		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1923 		if (!tlen)
1924 			return 1;
1925 
1926 		/*
1927 		 * For tid pair (tidctr == 3), the buffer size of the pair
1928 		 * should be the sum of the buffer size described by each
1929 		 * tid entry. However, only the first entry needs to be
1930 		 * specified in the request (see WFR HAS Section 8.5.7.1).
1931 		 */
1932 		tidlen += tlen;
1933 	}
1934 	if (tidlen * PAGE_SIZE < len)
1935 		return 1;
1936 
1937 	/* Empty the flow array */
1938 	req->clear_tail = req->setup_head;
1939 	flow->pkt = 0;
1940 	flow->tid_idx = 0;
1941 	flow->tid_offset = 0;
1942 	flow->sent = 0;
1943 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1944 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1945 		    TID_RDMA_DESTQP_FLOW_MASK;
1946 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1947 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1948 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1949 	flow->length = len;
1950 
1951 	flow->flow_state.lpsn = flow->flow_state.spsn +
1952 		flow->npkts - 1;
1953 	flow->flow_state.ib_spsn = psn;
1954 	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1955 
1956 	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1957 	/* Set the initial flow index to the current flow. */
1958 	req->flow_idx = req->setup_head;
1959 
1960 	/* advance circular buffer head */
1961 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1962 
1963 	/*
1964 	 * Compute last PSN for request.
1965 	 */
1966 	e->opcode = (bth0 >> 24) & 0xff;
1967 	e->psn = psn;
1968 	e->lpsn = psn + flow->npkts - 1;
1969 	e->sent = 0;
1970 
1971 	req->n_flows = qpriv->tid_rdma.local.max_read;
1972 	req->state = TID_REQUEST_ACTIVE;
1973 	req->cur_seg = 0;
1974 	req->comp_seg = 0;
1975 	req->ack_seg = 0;
1976 	req->isge = 0;
1977 	req->seg_len = qpriv->tid_rdma.local.max_len;
1978 	req->total_len = len;
1979 	req->total_segs = 1;
1980 	req->r_flow_psn = e->psn;
1981 
1982 	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1983 					req);
1984 	return 0;
1985 }
1986 
1987 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1988 			      struct ib_other_headers *ohdr,
1989 			      struct rvt_qp *qp, u32 psn, int diff)
1990 {
1991 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1992 	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1993 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1994 	struct hfi1_qp_priv *qpriv = qp->priv;
1995 	struct rvt_ack_entry *e;
1996 	struct tid_rdma_request *req;
1997 	unsigned long flags;
1998 	u8 prev;
1999 	bool old_req;
2000 
2001 	trace_hfi1_rsp_tid_rcv_error(qp, psn);
2002 	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
2003 	if (diff > 0) {
2004 		/* sequence error */
2005 		if (!qp->r_nak_state) {
2006 			ibp->rvp.n_rc_seqnak++;
2007 			qp->r_nak_state = IB_NAK_PSN_ERROR;
2008 			qp->r_ack_psn = qp->r_psn;
2009 			rc_defered_ack(rcd, qp);
2010 		}
2011 		goto done;
2012 	}
2013 
2014 	ibp->rvp.n_rc_dupreq++;
2015 
2016 	spin_lock_irqsave(&qp->s_lock, flags);
2017 	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2018 	if (!e || (e->opcode != TID_OP(READ_REQ) &&
2019 		   e->opcode != TID_OP(WRITE_REQ)))
2020 		goto unlock;
2021 
2022 	req = ack_to_tid_req(e);
2023 	req->r_flow_psn = psn;
2024 	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2025 	if (e->opcode == TID_OP(READ_REQ)) {
2026 		struct ib_reth *reth;
2027 		u32 len;
2028 		u32 rkey;
2029 		u64 vaddr;
2030 		int ok;
2031 		u32 bth0;
2032 
2033 		reth = &ohdr->u.tid_rdma.r_req.reth;
2034 		/*
2035 		 * The requester always restarts from the start of the original
2036 		 * request.
2037 		 */
2038 		len = be32_to_cpu(reth->length);
2039 		if (psn != e->psn || len != req->total_len)
2040 			goto unlock;
2041 
2042 		release_rdma_sge_mr(e);
2043 
2044 		rkey = be32_to_cpu(reth->rkey);
2045 		vaddr = get_ib_reth_vaddr(reth);
2046 
2047 		qp->r_len = len;
2048 		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2049 				 IB_ACCESS_REMOTE_READ);
2050 		if (unlikely(!ok))
2051 			goto unlock;
2052 
2053 		/*
2054 		 * If all the response packets for the current request have
2055 		 * been sent out and this request is complete (old_request
2056 		 * == false) and the TID flow may be unusable (the
2057 		 * req->clear_tail is advanced). However, when an earlier
2058 		 * request is received, this request will not be complete any
2059 		 * more (qp->s_tail_ack_queue is moved back, see below).
2060 		 * Consequently, we need to update the TID flow info everytime
2061 		 * a duplicate request is received.
2062 		 */
2063 		bth0 = be32_to_cpu(ohdr->bth[0]);
2064 		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2065 					      vaddr, len))
2066 			goto unlock;
2067 
2068 		/*
2069 		 * True if the request is already scheduled (between
2070 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2071 		 */
2072 		if (old_req)
2073 			goto unlock;
2074 	} else {
2075 		struct flow_state *fstate;
2076 		bool schedule = false;
2077 		u8 i;
2078 
2079 		if (req->state == TID_REQUEST_RESEND) {
2080 			req->state = TID_REQUEST_RESEND_ACTIVE;
2081 		} else if (req->state == TID_REQUEST_INIT_RESEND) {
2082 			req->state = TID_REQUEST_INIT;
2083 			schedule = true;
2084 		}
2085 
2086 		/*
2087 		 * True if the request is already scheduled (between
2088 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2089 		 * Also, don't change requests, which are at the SYNC
2090 		 * point and haven't generated any responses yet.
2091 		 * There is nothing to retransmit for them yet.
2092 		 */
2093 		if (old_req || req->state == TID_REQUEST_INIT ||
2094 		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2095 			for (i = prev + 1; ; i++) {
2096 				if (i > rvt_size_atomic(&dev->rdi))
2097 					i = 0;
2098 				if (i == qp->r_head_ack_queue)
2099 					break;
2100 				e = &qp->s_ack_queue[i];
2101 				req = ack_to_tid_req(e);
2102 				if (e->opcode == TID_OP(WRITE_REQ) &&
2103 				    req->state == TID_REQUEST_INIT)
2104 					req->state = TID_REQUEST_INIT_RESEND;
2105 			}
2106 			/*
2107 			 * If the state of the request has been changed,
2108 			 * the first leg needs to get scheduled in order to
2109 			 * pick up the change. Otherwise, normal response
2110 			 * processing should take care of it.
2111 			 */
2112 			if (!schedule)
2113 				goto unlock;
2114 		}
2115 
2116 		/*
2117 		 * If there is no more allocated segment, just schedule the qp
2118 		 * without changing any state.
2119 		 */
2120 		if (req->clear_tail == req->setup_head)
2121 			goto schedule;
2122 		/*
2123 		 * If this request has sent responses for segments, which have
2124 		 * not received data yet (flow_idx != clear_tail), the flow_idx
2125 		 * pointer needs to be adjusted so the same responses can be
2126 		 * re-sent.
2127 		 */
2128 		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2129 			fstate = &req->flows[req->clear_tail].flow_state;
2130 			qpriv->pending_tid_w_segs -=
2131 				CIRC_CNT(req->flow_idx, req->clear_tail,
2132 					 MAX_FLOWS);
2133 			req->flow_idx =
2134 				CIRC_ADD(req->clear_tail,
2135 					 delta_psn(psn, fstate->resp_ib_psn),
2136 					 MAX_FLOWS);
2137 			qpriv->pending_tid_w_segs +=
2138 				delta_psn(psn, fstate->resp_ib_psn);
2139 			/*
2140 			 * When flow_idx == setup_head, we've gotten a duplicate
2141 			 * request for a segment, which has not been allocated
2142 			 * yet. In that case, don't adjust this request.
2143 			 * However, we still want to go through the loop below
2144 			 * to adjust all subsequent requests.
2145 			 */
2146 			if (CIRC_CNT(req->setup_head, req->flow_idx,
2147 				     MAX_FLOWS)) {
2148 				req->cur_seg = delta_psn(psn, e->psn);
2149 				req->state = TID_REQUEST_RESEND_ACTIVE;
2150 			}
2151 		}
2152 
2153 		for (i = prev + 1; ; i++) {
2154 			/*
2155 			 * Look at everything up to and including
2156 			 * s_tail_ack_queue
2157 			 */
2158 			if (i > rvt_size_atomic(&dev->rdi))
2159 				i = 0;
2160 			if (i == qp->r_head_ack_queue)
2161 				break;
2162 			e = &qp->s_ack_queue[i];
2163 			req = ack_to_tid_req(e);
2164 			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2165 						   e->lpsn, req);
2166 			if (e->opcode != TID_OP(WRITE_REQ) ||
2167 			    req->cur_seg == req->comp_seg ||
2168 			    req->state == TID_REQUEST_INIT ||
2169 			    req->state == TID_REQUEST_INIT_RESEND) {
2170 				if (req->state == TID_REQUEST_INIT)
2171 					req->state = TID_REQUEST_INIT_RESEND;
2172 				continue;
2173 			}
2174 			qpriv->pending_tid_w_segs -=
2175 				CIRC_CNT(req->flow_idx,
2176 					 req->clear_tail,
2177 					 MAX_FLOWS);
2178 			req->flow_idx = req->clear_tail;
2179 			req->state = TID_REQUEST_RESEND;
2180 			req->cur_seg = req->comp_seg;
2181 		}
2182 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2183 	}
2184 	/* Re-process old requests.*/
2185 	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2186 		qp->s_acked_ack_queue = prev;
2187 	qp->s_tail_ack_queue = prev;
2188 	/*
2189 	 * Since the qp->s_tail_ack_queue is modified, the
2190 	 * qp->s_ack_state must be changed to re-initialize
2191 	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2192 	 * wrong memory region.
2193 	 */
2194 	qp->s_ack_state = OP(ACKNOWLEDGE);
2195 schedule:
2196 	/*
2197 	 * It's possible to receive a retry psn that is earlier than an RNRNAK
2198 	 * psn. In this case, the rnrnak state should be cleared.
2199 	 */
2200 	if (qpriv->rnr_nak_state) {
2201 		qp->s_nak_state = 0;
2202 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2203 		qp->r_psn = e->lpsn + 1;
2204 		hfi1_tid_write_alloc_resources(qp, true);
2205 	}
2206 
2207 	qp->r_state = e->opcode;
2208 	qp->r_nak_state = 0;
2209 	qp->s_flags |= RVT_S_RESP_PENDING;
2210 	hfi1_schedule_send(qp);
2211 unlock:
2212 	spin_unlock_irqrestore(&qp->s_lock, flags);
2213 done:
2214 	return 1;
2215 }
2216 
2217 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2218 {
2219 	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2220 
2221 	/*
2222 	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2223 	 *    (see hfi1_rc_rcv())
2224 	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2225 	 *     - Setup struct tid_rdma_req with request info
2226 	 *     - Initialize struct tid_rdma_flow info;
2227 	 *     - Copy TID entries;
2228 	 * 3. Set the qp->s_ack_state.
2229 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
2230 	 * 5. Kick the send engine (hfi1_schedule_send())
2231 	 */
2232 	struct hfi1_ctxtdata *rcd = packet->rcd;
2233 	struct rvt_qp *qp = packet->qp;
2234 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2235 	struct ib_other_headers *ohdr = packet->ohdr;
2236 	struct rvt_ack_entry *e;
2237 	unsigned long flags;
2238 	struct ib_reth *reth;
2239 	struct hfi1_qp_priv *qpriv = qp->priv;
2240 	u32 bth0, psn, len, rkey;
2241 	bool fecn;
2242 	u8 next;
2243 	u64 vaddr;
2244 	int diff;
2245 	u8 nack_state = IB_NAK_INVALID_REQUEST;
2246 
2247 	bth0 = be32_to_cpu(ohdr->bth[0]);
2248 	if (hfi1_ruc_check_hdr(ibp, packet))
2249 		return;
2250 
2251 	fecn = process_ecn(qp, packet);
2252 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2253 	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2254 
2255 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2256 		rvt_comm_est(qp);
2257 
2258 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2259 		goto nack_inv;
2260 
2261 	reth = &ohdr->u.tid_rdma.r_req.reth;
2262 	vaddr = be64_to_cpu(reth->vaddr);
2263 	len = be32_to_cpu(reth->length);
2264 	/* The length needs to be in multiples of PAGE_SIZE */
2265 	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2266 		goto nack_inv;
2267 
2268 	diff = delta_psn(psn, qp->r_psn);
2269 	if (unlikely(diff)) {
2270 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2271 		return;
2272 	}
2273 
2274 	/* We've verified the request, insert it into the ack queue. */
2275 	next = qp->r_head_ack_queue + 1;
2276 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2277 		next = 0;
2278 	spin_lock_irqsave(&qp->s_lock, flags);
2279 	if (unlikely(next == qp->s_tail_ack_queue)) {
2280 		if (!qp->s_ack_queue[next].sent) {
2281 			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2282 			goto nack_inv_unlock;
2283 		}
2284 		update_ack_queue(qp, next);
2285 	}
2286 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2287 	release_rdma_sge_mr(e);
2288 
2289 	rkey = be32_to_cpu(reth->rkey);
2290 	qp->r_len = len;
2291 
2292 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2293 				  rkey, IB_ACCESS_REMOTE_READ)))
2294 		goto nack_acc;
2295 
2296 	/* Accept the request parameters */
2297 	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2298 				      len))
2299 		goto nack_inv_unlock;
2300 
2301 	qp->r_state = e->opcode;
2302 	qp->r_nak_state = 0;
2303 	/*
2304 	 * We need to increment the MSN here instead of when we
2305 	 * finish sending the result since a duplicate request would
2306 	 * increment it more than once.
2307 	 */
2308 	qp->r_msn++;
2309 	qp->r_psn += e->lpsn - e->psn + 1;
2310 
2311 	qp->r_head_ack_queue = next;
2312 
2313 	/*
2314 	 * For all requests other than TID WRITE which are added to the ack
2315 	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2316 	 * do this because of interlocks between these and TID WRITE
2317 	 * requests. The same change has also been made in hfi1_rc_rcv().
2318 	 */
2319 	qpriv->r_tid_alloc = qp->r_head_ack_queue;
2320 
2321 	/* Schedule the send tasklet. */
2322 	qp->s_flags |= RVT_S_RESP_PENDING;
2323 	if (fecn)
2324 		qp->s_flags |= RVT_S_ECN;
2325 	hfi1_schedule_send(qp);
2326 
2327 	spin_unlock_irqrestore(&qp->s_lock, flags);
2328 	return;
2329 
2330 nack_inv_unlock:
2331 	spin_unlock_irqrestore(&qp->s_lock, flags);
2332 nack_inv:
2333 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2334 	qp->r_nak_state = nack_state;
2335 	qp->r_ack_psn = qp->r_psn;
2336 	/* Queue NAK for later */
2337 	rc_defered_ack(rcd, qp);
2338 	return;
2339 nack_acc:
2340 	spin_unlock_irqrestore(&qp->s_lock, flags);
2341 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2342 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2343 	qp->r_ack_psn = qp->r_psn;
2344 }
2345 
2346 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2347 				  struct ib_other_headers *ohdr, u32 *bth0,
2348 				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
2349 {
2350 	struct hfi1_ack_priv *epriv = e->priv;
2351 	struct tid_rdma_request *req = &epriv->tid_req;
2352 	struct hfi1_qp_priv *qpriv = qp->priv;
2353 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2354 	u32 tidentry = flow->tid_entry[flow->tid_idx];
2355 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2356 	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2357 	u32 next_offset, om = KDETH_OM_LARGE;
2358 	bool last_pkt;
2359 	u32 hdwords = 0;
2360 	struct tid_rdma_params *remote;
2361 
2362 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2363 	flow->sent += *len;
2364 	next_offset = flow->tid_offset + *len;
2365 	last_pkt = (flow->sent >= flow->length);
2366 
2367 	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2368 	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2369 
2370 	rcu_read_lock();
2371 	remote = rcu_dereference(qpriv->tid_rdma.remote);
2372 	if (!remote) {
2373 		rcu_read_unlock();
2374 		goto done;
2375 	}
2376 	KDETH_RESET(resp->kdeth0, KVER, 0x1);
2377 	KDETH_SET(resp->kdeth0, SH, !last_pkt);
2378 	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2379 	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2380 	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2381 	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2382 	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2383 	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2384 	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2385 	rcu_read_unlock();
2386 
2387 	resp->aeth = rvt_compute_aeth(qp);
2388 	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2389 					       flow->pkt));
2390 
2391 	*bth0 = TID_OP(READ_RESP) << 24;
2392 	*bth1 = flow->tid_qpn;
2393 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2394 			  HFI1_KDETH_BTH_SEQ_MASK) |
2395 			 (flow->flow_state.generation <<
2396 			  HFI1_KDETH_BTH_SEQ_SHIFT));
2397 	*last = last_pkt;
2398 	if (last_pkt)
2399 		/* Advance to next flow */
2400 		req->clear_tail = (req->clear_tail + 1) &
2401 				  (MAX_FLOWS - 1);
2402 
2403 	if (next_offset >= tidlen) {
2404 		flow->tid_offset = 0;
2405 		flow->tid_idx++;
2406 	} else {
2407 		flow->tid_offset = next_offset;
2408 	}
2409 
2410 	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2411 
2412 done:
2413 	return hdwords;
2414 }
2415 
2416 static inline struct tid_rdma_request *
2417 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2418 	__must_hold(&qp->s_lock)
2419 {
2420 	struct rvt_swqe *wqe;
2421 	struct tid_rdma_request *req = NULL;
2422 	u32 i, end;
2423 
2424 	end = qp->s_cur + 1;
2425 	if (end == qp->s_size)
2426 		end = 0;
2427 	for (i = qp->s_acked; i != end;) {
2428 		wqe = rvt_get_swqe_ptr(qp, i);
2429 		if (cmp_psn(psn, wqe->psn) >= 0 &&
2430 		    cmp_psn(psn, wqe->lpsn) <= 0) {
2431 			if (wqe->wr.opcode == opcode)
2432 				req = wqe_to_tid_req(wqe);
2433 			break;
2434 		}
2435 		if (++i == qp->s_size)
2436 			i = 0;
2437 	}
2438 
2439 	return req;
2440 }
2441 
2442 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2443 {
2444 	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2445 
2446 	/*
2447 	 * 1. Find matching SWQE
2448 	 * 2. Check that the entire segment has been read.
2449 	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2450 	 * 4. Free the TID flow resources.
2451 	 * 5. Kick the send engine (hfi1_schedule_send())
2452 	 */
2453 	struct ib_other_headers *ohdr = packet->ohdr;
2454 	struct rvt_qp *qp = packet->qp;
2455 	struct hfi1_qp_priv *priv = qp->priv;
2456 	struct hfi1_ctxtdata *rcd = packet->rcd;
2457 	struct tid_rdma_request *req;
2458 	struct tid_rdma_flow *flow;
2459 	u32 opcode, aeth;
2460 	bool fecn;
2461 	unsigned long flags;
2462 	u32 kpsn, ipsn;
2463 
2464 	trace_hfi1_sender_rcv_tid_read_resp(qp);
2465 	fecn = process_ecn(qp, packet);
2466 	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2467 	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2468 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2469 
2470 	spin_lock_irqsave(&qp->s_lock, flags);
2471 	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2472 	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2473 	if (unlikely(!req))
2474 		goto ack_op_err;
2475 
2476 	flow = &req->flows[req->clear_tail];
2477 	/* When header suppression is disabled */
2478 	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2479 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2480 
2481 		if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2482 			goto ack_done;
2483 		flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2484 		/*
2485 		 * Copy the payload to destination buffer if this packet is
2486 		 * delivered as an eager packet due to RSM rule and FECN.
2487 		 * The RSM rule selects FECN bit in BTH and SH bit in
2488 		 * KDETH header and therefore will not match the last
2489 		 * packet of each segment that has SH bit cleared.
2490 		 */
2491 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2492 			struct rvt_sge_state ss;
2493 			u32 len;
2494 			u32 tlen = packet->tlen;
2495 			u16 hdrsize = packet->hlen;
2496 			u8 pad = packet->pad;
2497 			u8 extra_bytes = pad + packet->extra_byte +
2498 				(SIZE_OF_CRC << 2);
2499 			u32 pmtu = qp->pmtu;
2500 
2501 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2502 				goto ack_op_err;
2503 			len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2504 			if (unlikely(len < pmtu))
2505 				goto ack_op_err;
2506 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2507 				     false);
2508 			/* Raise the sw sequence check flag for next packet */
2509 			priv->s_flags |= HFI1_R_TID_SW_PSN;
2510 		}
2511 
2512 		goto ack_done;
2513 	}
2514 	flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2515 	req->ack_pending--;
2516 	priv->pending_tid_r_segs--;
2517 	qp->s_num_rd_atomic--;
2518 	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2519 	    !qp->s_num_rd_atomic) {
2520 		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2521 				 RVT_S_WAIT_ACK);
2522 		hfi1_schedule_send(qp);
2523 	}
2524 	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2525 		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2526 		hfi1_schedule_send(qp);
2527 	}
2528 
2529 	trace_hfi1_ack(qp, ipsn);
2530 	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2531 					 req->e.swqe->psn, req->e.swqe->lpsn,
2532 					 req);
2533 	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2534 
2535 	/* Release the tid resources */
2536 	hfi1_kern_exp_rcv_clear(req);
2537 
2538 	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2539 		goto ack_done;
2540 
2541 	/* If not done yet, build next read request */
2542 	if (++req->comp_seg >= req->total_segs) {
2543 		priv->tid_r_comp++;
2544 		req->state = TID_REQUEST_COMPLETE;
2545 	}
2546 
2547 	/*
2548 	 * Clear the hw flow under two conditions:
2549 	 * 1. This request is a sync point and it is complete;
2550 	 * 2. Current request is completed and there are no more requests.
2551 	 */
2552 	if ((req->state == TID_REQUEST_SYNC &&
2553 	     req->comp_seg == req->cur_seg) ||
2554 	    priv->tid_r_comp == priv->tid_r_reqs) {
2555 		hfi1_kern_clear_hw_flow(priv->rcd, qp);
2556 		priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2557 		if (req->state == TID_REQUEST_SYNC)
2558 			req->state = TID_REQUEST_ACTIVE;
2559 	}
2560 
2561 	hfi1_schedule_send(qp);
2562 	goto ack_done;
2563 
2564 ack_op_err:
2565 	/*
2566 	 * The test indicates that the send engine has finished its cleanup
2567 	 * after sending the request and it's now safe to put the QP into error
2568 	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2569 	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2570 	 * qp->s_acked here. Putting the qp into error state will safely flush
2571 	 * all remaining requests.
2572 	 */
2573 	if (qp->s_last == qp->s_acked)
2574 		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2575 
2576 ack_done:
2577 	spin_unlock_irqrestore(&qp->s_lock, flags);
2578 }
2579 
2580 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2581 	__must_hold(&qp->s_lock)
2582 {
2583 	u32 n = qp->s_acked;
2584 	struct rvt_swqe *wqe;
2585 	struct tid_rdma_request *req;
2586 	struct hfi1_qp_priv *priv = qp->priv;
2587 
2588 	lockdep_assert_held(&qp->s_lock);
2589 	/* Free any TID entries */
2590 	while (n != qp->s_tail) {
2591 		wqe = rvt_get_swqe_ptr(qp, n);
2592 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2593 			req = wqe_to_tid_req(wqe);
2594 			hfi1_kern_exp_rcv_clear_all(req);
2595 		}
2596 
2597 		if (++n == qp->s_size)
2598 			n = 0;
2599 	}
2600 	/* Free flow */
2601 	hfi1_kern_clear_hw_flow(priv->rcd, qp);
2602 }
2603 
2604 static bool tid_rdma_tid_err(struct hfi1_ctxtdata *rcd,
2605 			     struct hfi1_packet *packet, u8 rcv_type,
2606 			     u8 opcode)
2607 {
2608 	struct rvt_qp *qp = packet->qp;
2609 	struct hfi1_qp_priv *qpriv = qp->priv;
2610 	u32 ipsn;
2611 	struct ib_other_headers *ohdr = packet->ohdr;
2612 	struct rvt_ack_entry *e;
2613 	struct tid_rdma_request *req;
2614 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2615 	u32 i;
2616 
2617 	if (rcv_type >= RHF_RCV_TYPE_IB)
2618 		goto done;
2619 
2620 	spin_lock(&qp->s_lock);
2621 
2622 	/*
2623 	 * We've ran out of space in the eager buffer.
2624 	 * Eagerly received KDETH packets which require space in the
2625 	 * Eager buffer (packet that have payload) are TID RDMA WRITE
2626 	 * response packets. In this case, we have to re-transmit the
2627 	 * TID RDMA WRITE request.
2628 	 */
2629 	if (rcv_type == RHF_RCV_TYPE_EAGER) {
2630 		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2631 		hfi1_schedule_send(qp);
2632 		goto done_unlock;
2633 	}
2634 
2635 	/*
2636 	 * For TID READ response, error out QP after freeing the tid
2637 	 * resources.
2638 	 */
2639 	if (opcode == TID_OP(READ_RESP)) {
2640 		ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2641 		if (cmp_psn(ipsn, qp->s_last_psn) > 0 &&
2642 		    cmp_psn(ipsn, qp->s_psn) < 0) {
2643 			hfi1_kern_read_tid_flow_free(qp);
2644 			spin_unlock(&qp->s_lock);
2645 			rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2646 			goto done;
2647 		}
2648 		goto done_unlock;
2649 	}
2650 
2651 	/*
2652 	 * Error out the qp for TID RDMA WRITE
2653 	 */
2654 	hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
2655 	for (i = 0; i < rvt_max_atomic(rdi); i++) {
2656 		e = &qp->s_ack_queue[i];
2657 		if (e->opcode == TID_OP(WRITE_REQ)) {
2658 			req = ack_to_tid_req(e);
2659 			hfi1_kern_exp_rcv_clear_all(req);
2660 		}
2661 	}
2662 	spin_unlock(&qp->s_lock);
2663 	rvt_rc_error(qp, IB_WC_LOC_LEN_ERR);
2664 	goto done;
2665 
2666 done_unlock:
2667 	spin_unlock(&qp->s_lock);
2668 done:
2669 	return true;
2670 }
2671 
2672 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2673 				      struct rvt_qp *qp, struct rvt_swqe *wqe)
2674 {
2675 	struct tid_rdma_request *req;
2676 	struct tid_rdma_flow *flow;
2677 
2678 	/* Start from the right segment */
2679 	qp->r_flags |= RVT_R_RDMAR_SEQ;
2680 	req = wqe_to_tid_req(wqe);
2681 	flow = &req->flows[req->clear_tail];
2682 	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2683 	if (list_empty(&qp->rspwait)) {
2684 		qp->r_flags |= RVT_R_RSP_SEND;
2685 		rvt_get_qp(qp);
2686 		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2687 	}
2688 }
2689 
2690 /*
2691  * Handle the KDETH eflags for TID RDMA READ response.
2692  *
2693  * Return true if the last packet for a segment has been received and it is
2694  * time to process the response normally; otherwise, return true.
2695  *
2696  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2697  */
2698 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2699 				     struct hfi1_packet *packet, u8 rcv_type,
2700 				     u8 rte, u32 psn, u32 ibpsn)
2701 	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
2702 {
2703 	struct hfi1_pportdata *ppd = rcd->ppd;
2704 	struct hfi1_devdata *dd = ppd->dd;
2705 	struct hfi1_ibport *ibp;
2706 	struct rvt_swqe *wqe;
2707 	struct tid_rdma_request *req;
2708 	struct tid_rdma_flow *flow;
2709 	u32 ack_psn;
2710 	struct rvt_qp *qp = packet->qp;
2711 	struct hfi1_qp_priv *priv = qp->priv;
2712 	bool ret = true;
2713 	int diff = 0;
2714 	u32 fpsn;
2715 
2716 	lockdep_assert_held(&qp->r_lock);
2717 	/* If the psn is out of valid range, drop the packet */
2718 	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2719 	    cmp_psn(ibpsn, qp->s_psn) > 0)
2720 		return ret;
2721 
2722 	spin_lock(&qp->s_lock);
2723 	/*
2724 	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2725 	 * requests and implicitly NAK RDMA read and atomic requests issued
2726 	 * before the NAK'ed request.
2727 	 */
2728 	ack_psn = ibpsn - 1;
2729 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2730 	ibp = to_iport(qp->ibqp.device, qp->port_num);
2731 
2732 	/* Complete WQEs that the PSN finishes. */
2733 	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2734 		/*
2735 		 * If this request is a RDMA read or atomic, and the NACK is
2736 		 * for a later operation, this NACK NAKs the RDMA read or
2737 		 * atomic.
2738 		 */
2739 		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2740 		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2741 		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2742 		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2743 			/* Retry this request. */
2744 			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2745 				qp->r_flags |= RVT_R_RDMAR_SEQ;
2746 				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2747 					restart_tid_rdma_read_req(rcd, qp,
2748 								  wqe);
2749 				} else {
2750 					hfi1_restart_rc(qp, qp->s_last_psn + 1,
2751 							0);
2752 					if (list_empty(&qp->rspwait)) {
2753 						qp->r_flags |= RVT_R_RSP_SEND;
2754 						rvt_get_qp(qp);
2755 						list_add_tail(/* wait */
2756 						   &qp->rspwait,
2757 						   &rcd->qp_wait_list);
2758 					}
2759 				}
2760 			}
2761 			/*
2762 			 * No need to process the NAK since we are
2763 			 * restarting an earlier request.
2764 			 */
2765 			break;
2766 		}
2767 
2768 		wqe = do_rc_completion(qp, wqe, ibp);
2769 		if (qp->s_acked == qp->s_tail)
2770 			break;
2771 	}
2772 
2773 	/* Handle the eflags for the request */
2774 	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2775 		goto s_unlock;
2776 
2777 	req = wqe_to_tid_req(wqe);
2778 	switch (rcv_type) {
2779 	case RHF_RCV_TYPE_EXPECTED:
2780 		switch (rte) {
2781 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2782 			/*
2783 			 * On the first occurrence of a Flow Sequence error,
2784 			 * the flag TID_FLOW_SW_PSN is set.
2785 			 *
2786 			 * After that, the flow is *not* reprogrammed and the
2787 			 * protocol falls back to SW PSN checking. This is done
2788 			 * to prevent continuous Flow Sequence errors for any
2789 			 * packets that could be still in the fabric.
2790 			 */
2791 			flow = find_flow(req, psn, NULL);
2792 			if (!flow) {
2793 				/*
2794 				 * We can't find the IB PSN matching the
2795 				 * received KDETH PSN. The only thing we can
2796 				 * do at this point is report the error to
2797 				 * the QP.
2798 				 */
2799 				hfi1_kern_read_tid_flow_free(qp);
2800 				spin_unlock(&qp->s_lock);
2801 				rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2802 				return ret;
2803 			}
2804 			if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2805 				diff = cmp_psn(psn,
2806 					       flow->flow_state.r_next_psn);
2807 				if (diff > 0) {
2808 					if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2809 						restart_tid_rdma_read_req(rcd,
2810 									  qp,
2811 									  wqe);
2812 
2813 					/* Drop the packet.*/
2814 					goto s_unlock;
2815 				} else if (diff < 0) {
2816 					/*
2817 					 * If a response packet for a restarted
2818 					 * request has come back, reset the
2819 					 * restart flag.
2820 					 */
2821 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2822 						qp->r_flags &=
2823 							~RVT_R_RDMAR_SEQ;
2824 
2825 					/* Drop the packet.*/
2826 					goto s_unlock;
2827 				}
2828 
2829 				/*
2830 				 * If SW PSN verification is successful and
2831 				 * this is the last packet in the segment, tell
2832 				 * the caller to process it as a normal packet.
2833 				 */
2834 				fpsn = full_flow_psn(flow,
2835 						     flow->flow_state.lpsn);
2836 				if (cmp_psn(fpsn, psn) == 0) {
2837 					ret = false;
2838 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2839 						qp->r_flags &=
2840 							~RVT_R_RDMAR_SEQ;
2841 				}
2842 				flow->flow_state.r_next_psn =
2843 					mask_psn(psn + 1);
2844 			} else {
2845 				u32 last_psn;
2846 
2847 				last_psn = read_r_next_psn(dd, rcd->ctxt,
2848 							   flow->idx);
2849 				flow->flow_state.r_next_psn = last_psn;
2850 				priv->s_flags |= HFI1_R_TID_SW_PSN;
2851 				/*
2852 				 * If no request has been restarted yet,
2853 				 * restart the current one.
2854 				 */
2855 				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2856 					restart_tid_rdma_read_req(rcd, qp,
2857 								  wqe);
2858 			}
2859 
2860 			break;
2861 
2862 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2863 			/*
2864 			 * Since the TID flow is able to ride through
2865 			 * generation mismatch, drop this stale packet.
2866 			 */
2867 			break;
2868 
2869 		default:
2870 			break;
2871 		}
2872 		break;
2873 
2874 	case RHF_RCV_TYPE_ERROR:
2875 		switch (rte) {
2876 		case RHF_RTE_ERROR_OP_CODE_ERR:
2877 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2878 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2879 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
2880 		case RHF_RTE_ERROR_CONTEXT_ERR:
2881 		case RHF_RTE_ERROR_KHDR_TID_ERR:
2882 		default:
2883 			break;
2884 		}
2885 	default:
2886 		break;
2887 	}
2888 s_unlock:
2889 	spin_unlock(&qp->s_lock);
2890 	return ret;
2891 }
2892 
2893 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2894 			      struct hfi1_pportdata *ppd,
2895 			      struct hfi1_packet *packet)
2896 {
2897 	struct hfi1_ibport *ibp = &ppd->ibport_data;
2898 	struct hfi1_devdata *dd = ppd->dd;
2899 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2900 	u8 rcv_type = rhf_rcv_type(packet->rhf);
2901 	u8 rte = rhf_rcv_type_err(packet->rhf);
2902 	struct ib_header *hdr = packet->hdr;
2903 	struct ib_other_headers *ohdr = NULL;
2904 	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2905 	u16 lid  = be16_to_cpu(hdr->lrh[1]);
2906 	u8 opcode;
2907 	u32 qp_num, psn, ibpsn;
2908 	struct rvt_qp *qp;
2909 	struct hfi1_qp_priv *qpriv;
2910 	unsigned long flags;
2911 	bool ret = true;
2912 	struct rvt_ack_entry *e;
2913 	struct tid_rdma_request *req;
2914 	struct tid_rdma_flow *flow;
2915 	int diff = 0;
2916 
2917 	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2918 					   packet->rhf);
2919 	if (packet->rhf & RHF_ICRC_ERR)
2920 		return ret;
2921 
2922 	packet->ohdr = &hdr->u.oth;
2923 	ohdr = packet->ohdr;
2924 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2925 
2926 	/* Get the destination QP number. */
2927 	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2928 		RVT_QPN_MASK;
2929 	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2930 		goto drop;
2931 
2932 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2933 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2934 
2935 	rcu_read_lock();
2936 	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2937 	if (!qp)
2938 		goto rcu_unlock;
2939 
2940 	packet->qp = qp;
2941 
2942 	/* Check for valid receive state. */
2943 	spin_lock_irqsave(&qp->r_lock, flags);
2944 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2945 		ibp->rvp.n_pkt_drops++;
2946 		goto r_unlock;
2947 	}
2948 
2949 	if (packet->rhf & RHF_TID_ERR) {
2950 		/* For TIDERR and RC QPs preemptively schedule a NAK */
2951 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2952 
2953 		/* Sanity check packet */
2954 		if (tlen < 24)
2955 			goto r_unlock;
2956 
2957 		/*
2958 		 * Check for GRH. We should never get packets with GRH in this
2959 		 * path.
2960 		 */
2961 		if (lnh == HFI1_LRH_GRH)
2962 			goto r_unlock;
2963 
2964 		if (tid_rdma_tid_err(rcd, packet, rcv_type, opcode))
2965 			goto r_unlock;
2966 	}
2967 
2968 	/* handle TID RDMA READ */
2969 	if (opcode == TID_OP(READ_RESP)) {
2970 		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2971 		ibpsn = mask_psn(ibpsn);
2972 		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2973 					       ibpsn);
2974 		goto r_unlock;
2975 	}
2976 
2977 	/*
2978 	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2979 	 * processed. These a completed sequentially so we can be sure that
2980 	 * the pointer will not change until the entire request has completed.
2981 	 */
2982 	spin_lock(&qp->s_lock);
2983 	qpriv = qp->priv;
2984 	e = &qp->s_ack_queue[qpriv->r_tid_tail];
2985 	req = ack_to_tid_req(e);
2986 	flow = &req->flows[req->clear_tail];
2987 	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2988 	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2989 	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2990 	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2991 					       e->lpsn, req);
2992 	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2993 
2994 	switch (rcv_type) {
2995 	case RHF_RCV_TYPE_EXPECTED:
2996 		switch (rte) {
2997 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2998 			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2999 				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
3000 				flow->flow_state.r_next_psn =
3001 					read_r_next_psn(dd, rcd->ctxt,
3002 							flow->idx);
3003 				qpriv->r_next_psn_kdeth =
3004 					flow->flow_state.r_next_psn;
3005 				goto nak_psn;
3006 			} else {
3007 				/*
3008 				 * If the received PSN does not match the next
3009 				 * expected PSN, NAK the packet.
3010 				 * However, only do that if we know that the a
3011 				 * NAK has already been sent. Otherwise, this
3012 				 * mismatch could be due to packets that were
3013 				 * already in flight.
3014 				 */
3015 				diff = cmp_psn(psn,
3016 					       flow->flow_state.r_next_psn);
3017 				if (diff > 0)
3018 					goto nak_psn;
3019 				else if (diff < 0)
3020 					break;
3021 
3022 				qpriv->s_nak_state = 0;
3023 				/*
3024 				 * If SW PSN verification is successful and this
3025 				 * is the last packet in the segment, tell the
3026 				 * caller to process it as a normal packet.
3027 				 */
3028 				if (psn == full_flow_psn(flow,
3029 							 flow->flow_state.lpsn))
3030 					ret = false;
3031 				flow->flow_state.r_next_psn =
3032 					mask_psn(psn + 1);
3033 				qpriv->r_next_psn_kdeth =
3034 					flow->flow_state.r_next_psn;
3035 			}
3036 			break;
3037 
3038 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
3039 			goto nak_psn;
3040 
3041 		default:
3042 			break;
3043 		}
3044 		break;
3045 
3046 	case RHF_RCV_TYPE_ERROR:
3047 		switch (rte) {
3048 		case RHF_RTE_ERROR_OP_CODE_ERR:
3049 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3050 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3051 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
3052 		case RHF_RTE_ERROR_CONTEXT_ERR:
3053 		case RHF_RTE_ERROR_KHDR_TID_ERR:
3054 		default:
3055 			break;
3056 		}
3057 	default:
3058 		break;
3059 	}
3060 
3061 unlock:
3062 	spin_unlock(&qp->s_lock);
3063 r_unlock:
3064 	spin_unlock_irqrestore(&qp->r_lock, flags);
3065 rcu_unlock:
3066 	rcu_read_unlock();
3067 drop:
3068 	return ret;
3069 nak_psn:
3070 	ibp->rvp.n_rc_seqnak++;
3071 	if (!qpriv->s_nak_state) {
3072 		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3073 		/* We are NAK'ing the next expected PSN */
3074 		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3075 		qpriv->s_flags |= RVT_S_ACK_PENDING;
3076 		if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
3077 			qpriv->r_tid_ack = qpriv->r_tid_tail;
3078 		hfi1_schedule_tid_send(qp);
3079 	}
3080 	goto unlock;
3081 }
3082 
3083 /*
3084  * "Rewind" the TID request information.
3085  * This means that we reset the state back to ACTIVE,
3086  * find the proper flow, set the flow index to that flow,
3087  * and reset the flow information.
3088  */
3089 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3090 			       u32 *bth2)
3091 {
3092 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3093 	struct tid_rdma_flow *flow;
3094 	struct hfi1_qp_priv *qpriv = qp->priv;
3095 	int diff, delta_pkts;
3096 	u32 tididx = 0, i;
3097 	u16 fidx;
3098 
3099 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3100 		*bth2 = mask_psn(qp->s_psn);
3101 		flow = find_flow_ib(req, *bth2, &fidx);
3102 		if (!flow) {
3103 			trace_hfi1_msg_tid_restart_req(/* msg */
3104 			   qp, "!!!!!! Could not find flow to restart: bth2 ",
3105 			   (u64)*bth2);
3106 			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3107 						       wqe->psn, wqe->lpsn,
3108 						       req);
3109 			return;
3110 		}
3111 	} else {
3112 		fidx = req->acked_tail;
3113 		flow = &req->flows[fidx];
3114 		*bth2 = mask_psn(req->r_ack_psn);
3115 	}
3116 
3117 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3118 		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3119 	else
3120 		delta_pkts = delta_psn(*bth2,
3121 				       full_flow_psn(flow,
3122 						     flow->flow_state.spsn));
3123 
3124 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3125 	diff = delta_pkts + flow->resync_npkts;
3126 
3127 	flow->sent = 0;
3128 	flow->pkt = 0;
3129 	flow->tid_idx = 0;
3130 	flow->tid_offset = 0;
3131 	if (diff) {
3132 		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3133 			u32 tidentry = flow->tid_entry[tididx], tidlen,
3134 				tidnpkts, npkts;
3135 
3136 			flow->tid_offset = 0;
3137 			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3138 			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3139 			npkts = min_t(u32, diff, tidnpkts);
3140 			flow->pkt += npkts;
3141 			flow->sent += (npkts == tidnpkts ? tidlen :
3142 				       npkts * qp->pmtu);
3143 			flow->tid_offset += npkts * qp->pmtu;
3144 			diff -= npkts;
3145 			if (!diff)
3146 				break;
3147 		}
3148 	}
3149 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3150 		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3151 			     flow->sent, 0);
3152 		/*
3153 		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3154 		 * during a RESYNC, the generation is incremented and the
3155 		 * sequence is reset to 0. Since we've adjusted the npkts in the
3156 		 * flow and the SGE has been sufficiently advanced, we have to
3157 		 * adjust flow->pkt in order to calculate the correct PSN.
3158 		 */
3159 		flow->pkt -= flow->resync_npkts;
3160 	}
3161 
3162 	if (flow->tid_offset ==
3163 	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3164 		tididx++;
3165 		flow->tid_offset = 0;
3166 	}
3167 	flow->tid_idx = tididx;
3168 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3169 		/* Move flow_idx to correct index */
3170 		req->flow_idx = fidx;
3171 	else
3172 		req->clear_tail = fidx;
3173 
3174 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3175 	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3176 				       wqe->lpsn, req);
3177 	req->state = TID_REQUEST_ACTIVE;
3178 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3179 		/* Reset all the flows that we are going to resend */
3180 		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3181 		i = qpriv->s_tid_tail;
3182 		do {
3183 			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3184 			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3185 				req->flows[fidx].sent = 0;
3186 				req->flows[fidx].pkt = 0;
3187 				req->flows[fidx].tid_idx = 0;
3188 				req->flows[fidx].tid_offset = 0;
3189 				req->flows[fidx].resync_npkts = 0;
3190 			}
3191 			if (i == qpriv->s_tid_cur)
3192 				break;
3193 			do {
3194 				i = (++i == qp->s_size ? 0 : i);
3195 				wqe = rvt_get_swqe_ptr(qp, i);
3196 			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3197 			req = wqe_to_tid_req(wqe);
3198 			req->cur_seg = req->ack_seg;
3199 			fidx = req->acked_tail;
3200 			/* Pull req->clear_tail back */
3201 			req->clear_tail = fidx;
3202 		} while (1);
3203 	}
3204 }
3205 
3206 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3207 {
3208 	int i, ret;
3209 	struct hfi1_qp_priv *qpriv = qp->priv;
3210 	struct tid_flow_state *fs;
3211 
3212 	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3213 		return;
3214 
3215 	/*
3216 	 * First, clear the flow to help prevent any delayed packets from
3217 	 * being delivered.
3218 	 */
3219 	fs = &qpriv->flow_state;
3220 	if (fs->index != RXE_NUM_TID_FLOWS)
3221 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3222 
3223 	for (i = qp->s_acked; i != qp->s_head;) {
3224 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3225 
3226 		if (++i == qp->s_size)
3227 			i = 0;
3228 		/* Free only locally allocated TID entries */
3229 		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3230 			continue;
3231 		do {
3232 			struct hfi1_swqe_priv *priv = wqe->priv;
3233 
3234 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3235 		} while (!ret);
3236 	}
3237 	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3238 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3239 
3240 		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3241 			i = 0;
3242 		/* Free only locally allocated TID entries */
3243 		if (e->opcode != TID_OP(WRITE_REQ))
3244 			continue;
3245 		do {
3246 			struct hfi1_ack_priv *priv = e->priv;
3247 
3248 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3249 		} while (!ret);
3250 	}
3251 }
3252 
3253 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3254 {
3255 	struct rvt_swqe *prev;
3256 	struct hfi1_qp_priv *priv = qp->priv;
3257 	u32 s_prev;
3258 	struct tid_rdma_request *req;
3259 
3260 	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3261 	prev = rvt_get_swqe_ptr(qp, s_prev);
3262 
3263 	switch (wqe->wr.opcode) {
3264 	case IB_WR_SEND:
3265 	case IB_WR_SEND_WITH_IMM:
3266 	case IB_WR_SEND_WITH_INV:
3267 	case IB_WR_ATOMIC_CMP_AND_SWP:
3268 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3269 	case IB_WR_RDMA_WRITE:
3270 		switch (prev->wr.opcode) {
3271 		case IB_WR_TID_RDMA_WRITE:
3272 			req = wqe_to_tid_req(prev);
3273 			if (req->ack_seg != req->total_segs)
3274 				goto interlock;
3275 		default:
3276 			break;
3277 		}
3278 		break;
3279 	case IB_WR_RDMA_READ:
3280 		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3281 			break;
3282 		/* fall through */
3283 	case IB_WR_TID_RDMA_READ:
3284 		switch (prev->wr.opcode) {
3285 		case IB_WR_RDMA_READ:
3286 			if (qp->s_acked != qp->s_cur)
3287 				goto interlock;
3288 			break;
3289 		case IB_WR_TID_RDMA_WRITE:
3290 			req = wqe_to_tid_req(prev);
3291 			if (req->ack_seg != req->total_segs)
3292 				goto interlock;
3293 		default:
3294 			break;
3295 		}
3296 	default:
3297 		break;
3298 	}
3299 	return false;
3300 
3301 interlock:
3302 	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3303 	return true;
3304 }
3305 
3306 /* Does @sge meet the alignment requirements for tid rdma? */
3307 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3308 					struct rvt_sge *sge, int num_sge)
3309 {
3310 	int i;
3311 
3312 	for (i = 0; i < num_sge; i++, sge++) {
3313 		trace_hfi1_sge_check_align(qp, i, sge);
3314 		if ((u64)sge->vaddr & ~PAGE_MASK ||
3315 		    sge->sge_length & ~PAGE_MASK)
3316 			return false;
3317 	}
3318 	return true;
3319 }
3320 
3321 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3322 {
3323 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3324 	struct hfi1_swqe_priv *priv = wqe->priv;
3325 	struct tid_rdma_params *remote;
3326 	enum ib_wr_opcode new_opcode;
3327 	bool do_tid_rdma = false;
3328 	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3329 
3330 	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3331 				ppd->lid)
3332 		return;
3333 	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3334 		return;
3335 
3336 	rcu_read_lock();
3337 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3338 	/*
3339 	 * If TID RDMA is disabled by the negotiation, don't
3340 	 * use it.
3341 	 */
3342 	if (!remote)
3343 		goto exit;
3344 
3345 	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3346 		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3347 					 wqe->wr.num_sge)) {
3348 			new_opcode = IB_WR_TID_RDMA_READ;
3349 			do_tid_rdma = true;
3350 		}
3351 	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3352 		/*
3353 		 * TID RDMA is enabled for this RDMA WRITE request iff:
3354 		 *   1. The remote address is page-aligned,
3355 		 *   2. The length is larger than the minimum segment size,
3356 		 *   3. The length is page-multiple.
3357 		 */
3358 		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3359 		    !(wqe->length & ~PAGE_MASK)) {
3360 			new_opcode = IB_WR_TID_RDMA_WRITE;
3361 			do_tid_rdma = true;
3362 		}
3363 	}
3364 
3365 	if (do_tid_rdma) {
3366 		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3367 			goto exit;
3368 		wqe->wr.opcode = new_opcode;
3369 		priv->tid_req.seg_len =
3370 			min_t(u32, remote->max_len, wqe->length);
3371 		priv->tid_req.total_segs =
3372 			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3373 		/* Compute the last PSN of the request */
3374 		wqe->lpsn = wqe->psn;
3375 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3376 			priv->tid_req.n_flows = remote->max_read;
3377 			qpriv->tid_r_reqs++;
3378 			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3379 		} else {
3380 			wqe->lpsn += priv->tid_req.total_segs - 1;
3381 			atomic_inc(&qpriv->n_requests);
3382 		}
3383 
3384 		priv->tid_req.cur_seg = 0;
3385 		priv->tid_req.comp_seg = 0;
3386 		priv->tid_req.ack_seg = 0;
3387 		priv->tid_req.state = TID_REQUEST_INACTIVE;
3388 		/*
3389 		 * Reset acked_tail.
3390 		 * TID RDMA READ does not have ACKs so it does not
3391 		 * update the pointer. We have to reset it so TID RDMA
3392 		 * WRITE does not get confused.
3393 		 */
3394 		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3395 		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3396 						 wqe->psn, wqe->lpsn,
3397 						 &priv->tid_req);
3398 	}
3399 exit:
3400 	rcu_read_unlock();
3401 }
3402 
3403 /* TID RDMA WRITE functions */
3404 
3405 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3406 				  struct ib_other_headers *ohdr,
3407 				  u32 *bth1, u32 *bth2, u32 *len)
3408 {
3409 	struct hfi1_qp_priv *qpriv = qp->priv;
3410 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3411 	struct tid_rdma_params *remote;
3412 
3413 	rcu_read_lock();
3414 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3415 	/*
3416 	 * Set the number of flow to be used based on negotiated
3417 	 * parameters.
3418 	 */
3419 	req->n_flows = remote->max_write;
3420 	req->state = TID_REQUEST_ACTIVE;
3421 
3422 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3423 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3424 	ohdr->u.tid_rdma.w_req.reth.vaddr =
3425 		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3426 	ohdr->u.tid_rdma.w_req.reth.rkey =
3427 		cpu_to_be32(wqe->rdma_wr.rkey);
3428 	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3429 	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3430 	*bth1 &= ~RVT_QPN_MASK;
3431 	*bth1 |= remote->qp;
3432 	qp->s_state = TID_OP(WRITE_REQ);
3433 	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3434 	*bth2 |= IB_BTH_REQ_ACK;
3435 	*len = 0;
3436 
3437 	rcu_read_unlock();
3438 	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3439 }
3440 
3441 void hfi1_compute_tid_rdma_flow_wt(void)
3442 {
3443 	/*
3444 	 * Heuristic for computing the RNR timeout when waiting on the flow
3445 	 * queue. Rather than a computationaly expensive exact estimate of when
3446 	 * a flow will be available, we assume that if a QP is at position N in
3447 	 * the flow queue it has to wait approximately (N + 1) * (number of
3448 	 * segments between two sync points), assuming PMTU of 4K. The rationale
3449 	 * for this is that flows are released and recycled at each sync point.
3450 	 */
3451 	tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
3452 		TID_RDMA_MAX_SEGMENT_SIZE;
3453 }
3454 
3455 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3456 			     struct tid_queue *queue)
3457 {
3458 	return qpriv->tid_enqueue - queue->dequeue;
3459 }
3460 
3461 /*
3462  * @qp: points to rvt_qp context.
3463  * @to_seg: desired RNR timeout in segments.
3464  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3465  */
3466 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3467 {
3468 	struct hfi1_qp_priv *qpriv = qp->priv;
3469 	u64 timeout;
3470 	u32 bytes_per_us;
3471 	u8 i;
3472 
3473 	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3474 	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3475 	/*
3476 	 * Find the next highest value in the RNR table to the required
3477 	 * timeout. This gives the responder some padding.
3478 	 */
3479 	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3480 		if (rvt_rnr_tbl_to_usec(i) >= timeout)
3481 			return i;
3482 	return 0;
3483 }
3484 
3485 /**
3486  * Central place for resource allocation at TID write responder,
3487  * is called from write_req and write_data interrupt handlers as
3488  * well as the send thread when a queued QP is scheduled for
3489  * resource allocation.
3490  *
3491  * Iterates over (a) segments of a request and then (b) queued requests
3492  * themselves to allocate resources for up to local->max_write
3493  * segments across multiple requests. Stop allocating when we
3494  * hit a sync point, resume allocating after data packets at
3495  * sync point have been received.
3496  *
3497  * Resource allocation and sending of responses is decoupled. The
3498  * request/segment which are being allocated and sent are as follows.
3499  * Resources are allocated for:
3500  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3501  * The send thread sends:
3502  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3503  */
3504 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3505 {
3506 	struct tid_rdma_request *req;
3507 	struct hfi1_qp_priv *qpriv = qp->priv;
3508 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
3509 	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3510 	struct rvt_ack_entry *e;
3511 	u32 npkts, to_seg;
3512 	bool last;
3513 	int ret = 0;
3514 
3515 	lockdep_assert_held(&qp->s_lock);
3516 
3517 	while (1) {
3518 		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3519 		trace_hfi1_tid_write_rsp_alloc_res(qp);
3520 		/*
3521 		 * Don't allocate more segments if a RNR NAK has already been
3522 		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3523 		 * be sent only when all allocated segments have been sent.
3524 		 * However, if more segments are allocated before that, TID RDMA
3525 		 * WRITE RESP packets will be sent out for these new segments
3526 		 * before the RNR NAK packet. When the requester receives the
3527 		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3528 		 * which does not match qp->r_psn and will be dropped.
3529 		 * Consequently, the requester will exhaust its retries and
3530 		 * put the qp into error state.
3531 		 */
3532 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3533 			break;
3534 
3535 		/* No requests left to process */
3536 		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3537 			/* If all data has been received, clear the flow */
3538 			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3539 			    !qpriv->alloc_w_segs) {
3540 				hfi1_kern_clear_hw_flow(rcd, qp);
3541 				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3542 			}
3543 			break;
3544 		}
3545 
3546 		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3547 		if (e->opcode != TID_OP(WRITE_REQ))
3548 			goto next_req;
3549 		req = ack_to_tid_req(e);
3550 		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3551 						   e->lpsn, req);
3552 		/* Finished allocating for all segments of this request */
3553 		if (req->alloc_seg >= req->total_segs)
3554 			goto next_req;
3555 
3556 		/* Can allocate only a maximum of local->max_write for a QP */
3557 		if (qpriv->alloc_w_segs >= local->max_write)
3558 			break;
3559 
3560 		/* Don't allocate at a sync point with data packets pending */
3561 		if (qpriv->sync_pt && qpriv->alloc_w_segs)
3562 			break;
3563 
3564 		/* All data received at the sync point, continue */
3565 		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3566 			hfi1_kern_clear_hw_flow(rcd, qp);
3567 			qpriv->sync_pt = false;
3568 			qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3569 		}
3570 
3571 		/* Allocate flow if we don't have one */
3572 		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3573 			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3574 			if (ret) {
3575 				to_seg = tid_rdma_flow_wt *
3576 					position_in_queue(qpriv,
3577 							  &rcd->flow_queue);
3578 				break;
3579 			}
3580 		}
3581 
3582 		npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3583 
3584 		/*
3585 		 * We are at a sync point if we run out of KDETH PSN space.
3586 		 * Last PSN of every generation is reserved for RESYNC.
3587 		 */
3588 		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3589 			qpriv->sync_pt = true;
3590 			break;
3591 		}
3592 
3593 		/*
3594 		 * If overtaking req->acked_tail, send an RNR NAK. Because the
3595 		 * QP is not queued in this case, and the issue can only be
3596 		 * caused due a delay in scheduling the second leg which we
3597 		 * cannot estimate, we use a rather arbitrary RNR timeout of
3598 		 * (MAX_FLOWS / 2) segments
3599 		 */
3600 		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3601 				MAX_FLOWS)) {
3602 			ret = -EAGAIN;
3603 			to_seg = MAX_FLOWS >> 1;
3604 			qpriv->s_flags |= RVT_S_ACK_PENDING;
3605 			hfi1_schedule_tid_send(qp);
3606 			break;
3607 		}
3608 
3609 		/* Try to allocate rcv array / TID entries */
3610 		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3611 		if (ret == -EAGAIN)
3612 			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3613 		if (ret)
3614 			break;
3615 
3616 		qpriv->alloc_w_segs++;
3617 		req->alloc_seg++;
3618 		continue;
3619 next_req:
3620 		/* Begin processing the next request */
3621 		if (++qpriv->r_tid_alloc >
3622 		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3623 			qpriv->r_tid_alloc = 0;
3624 	}
3625 
3626 	/*
3627 	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3628 	 * has failed (b) we are called from the rcv handler interrupt context
3629 	 * (c) an RNR NAK has not already been scheduled
3630 	 */
3631 	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3632 		goto send_rnr_nak;
3633 
3634 	return;
3635 
3636 send_rnr_nak:
3637 	lockdep_assert_held(&qp->r_lock);
3638 
3639 	/* Set r_nak_state to prevent unrelated events from generating NAK's */
3640 	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3641 
3642 	/* Pull back r_psn to the segment being RNR NAK'd */
3643 	qp->r_psn = e->psn + req->alloc_seg;
3644 	qp->r_ack_psn = qp->r_psn;
3645 	/*
3646 	 * Pull back r_head_ack_queue to the ack entry following the request
3647 	 * being RNR NAK'd. This allows resources to be allocated to the request
3648 	 * if the queued QP is scheduled.
3649 	 */
3650 	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3651 	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3652 		qp->r_head_ack_queue = 0;
3653 	qpriv->r_tid_head = qp->r_head_ack_queue;
3654 	/*
3655 	 * These send side fields are used in make_rc_ack(). They are set in
3656 	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3657 	 * for consistency
3658 	 */
3659 	qp->s_nak_state = qp->r_nak_state;
3660 	qp->s_ack_psn = qp->r_ack_psn;
3661 	/*
3662 	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3663 	 * have modified qp->s_ack_psn here.
3664 	 */
3665 	qp->s_flags &= ~(RVT_S_ACK_PENDING);
3666 
3667 	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3668 	/*
3669 	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3670 	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3671 	 * used for this because qp->s_lock is dropped before calling
3672 	 * hfi1_send_rc_ack() leading to inconsistency between the receive
3673 	 * interrupt handlers and the send thread in make_rc_ack()
3674 	 */
3675 	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3676 
3677 	/*
3678 	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3679 	 * interrupt handlers but will be sent from the send engine behind any
3680 	 * previous responses that may have been scheduled
3681 	 */
3682 	rc_defered_ack(rcd, qp);
3683 }
3684 
3685 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3686 {
3687 	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3688 
3689 	/*
3690 	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3691 	 *    (see hfi1_rc_rcv())
3692 	 *     - Don't allow 0-length requests.
3693 	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3694 	 *     - Setup struct tid_rdma_req with request info
3695 	 *     - Prepare struct tid_rdma_flow array?
3696 	 * 3. Set the qp->s_ack_state as state diagram in design doc.
3697 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
3698 	 * 5. Kick the send engine (hfi1_schedule_send())
3699 	 */
3700 	struct hfi1_ctxtdata *rcd = packet->rcd;
3701 	struct rvt_qp *qp = packet->qp;
3702 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3703 	struct ib_other_headers *ohdr = packet->ohdr;
3704 	struct rvt_ack_entry *e;
3705 	unsigned long flags;
3706 	struct ib_reth *reth;
3707 	struct hfi1_qp_priv *qpriv = qp->priv;
3708 	struct tid_rdma_request *req;
3709 	u32 bth0, psn, len, rkey, num_segs;
3710 	bool fecn;
3711 	u8 next;
3712 	u64 vaddr;
3713 	int diff;
3714 
3715 	bth0 = be32_to_cpu(ohdr->bth[0]);
3716 	if (hfi1_ruc_check_hdr(ibp, packet))
3717 		return;
3718 
3719 	fecn = process_ecn(qp, packet);
3720 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3721 	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3722 
3723 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3724 		rvt_comm_est(qp);
3725 
3726 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3727 		goto nack_inv;
3728 
3729 	reth = &ohdr->u.tid_rdma.w_req.reth;
3730 	vaddr = be64_to_cpu(reth->vaddr);
3731 	len = be32_to_cpu(reth->length);
3732 
3733 	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3734 	diff = delta_psn(psn, qp->r_psn);
3735 	if (unlikely(diff)) {
3736 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3737 		return;
3738 	}
3739 
3740 	/*
3741 	 * The resent request which was previously RNR NAK'd is inserted at the
3742 	 * location of the original request, which is one entry behind
3743 	 * r_head_ack_queue
3744 	 */
3745 	if (qpriv->rnr_nak_state)
3746 		qp->r_head_ack_queue = qp->r_head_ack_queue ?
3747 			qp->r_head_ack_queue - 1 :
3748 			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3749 
3750 	/* We've verified the request, insert it into the ack queue. */
3751 	next = qp->r_head_ack_queue + 1;
3752 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3753 		next = 0;
3754 	spin_lock_irqsave(&qp->s_lock, flags);
3755 	if (unlikely(next == qp->s_acked_ack_queue)) {
3756 		if (!qp->s_ack_queue[next].sent)
3757 			goto nack_inv_unlock;
3758 		update_ack_queue(qp, next);
3759 	}
3760 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
3761 	req = ack_to_tid_req(e);
3762 
3763 	/* Bring previously RNR NAK'd request back to life */
3764 	if (qpriv->rnr_nak_state) {
3765 		qp->r_nak_state = 0;
3766 		qp->s_nak_state = 0;
3767 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3768 		qp->r_psn = e->lpsn + 1;
3769 		req->state = TID_REQUEST_INIT;
3770 		goto update_head;
3771 	}
3772 
3773 	release_rdma_sge_mr(e);
3774 
3775 	/* The length needs to be in multiples of PAGE_SIZE */
3776 	if (!len || len & ~PAGE_MASK)
3777 		goto nack_inv_unlock;
3778 
3779 	rkey = be32_to_cpu(reth->rkey);
3780 	qp->r_len = len;
3781 
3782 	if (e->opcode == TID_OP(WRITE_REQ) &&
3783 	    (req->setup_head != req->clear_tail ||
3784 	     req->clear_tail != req->acked_tail))
3785 		goto nack_inv_unlock;
3786 
3787 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3788 				  rkey, IB_ACCESS_REMOTE_WRITE)))
3789 		goto nack_acc;
3790 
3791 	qp->r_psn += num_segs - 1;
3792 
3793 	e->opcode = (bth0 >> 24) & 0xff;
3794 	e->psn = psn;
3795 	e->lpsn = qp->r_psn;
3796 	e->sent = 0;
3797 
3798 	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3799 	req->state = TID_REQUEST_INIT;
3800 	req->cur_seg = 0;
3801 	req->comp_seg = 0;
3802 	req->ack_seg = 0;
3803 	req->alloc_seg = 0;
3804 	req->isge = 0;
3805 	req->seg_len = qpriv->tid_rdma.local.max_len;
3806 	req->total_len = len;
3807 	req->total_segs = num_segs;
3808 	req->r_flow_psn = e->psn;
3809 	req->ss.sge = e->rdma_sge;
3810 	req->ss.num_sge = 1;
3811 
3812 	req->flow_idx = req->setup_head;
3813 	req->clear_tail = req->setup_head;
3814 	req->acked_tail = req->setup_head;
3815 
3816 	qp->r_state = e->opcode;
3817 	qp->r_nak_state = 0;
3818 	/*
3819 	 * We need to increment the MSN here instead of when we
3820 	 * finish sending the result since a duplicate request would
3821 	 * increment it more than once.
3822 	 */
3823 	qp->r_msn++;
3824 	qp->r_psn++;
3825 
3826 	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3827 					 req);
3828 
3829 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3830 		qpriv->r_tid_tail = qp->r_head_ack_queue;
3831 	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3832 		struct tid_rdma_request *ptr;
3833 
3834 		e = &qp->s_ack_queue[qpriv->r_tid_tail];
3835 		ptr = ack_to_tid_req(e);
3836 
3837 		if (e->opcode != TID_OP(WRITE_REQ) ||
3838 		    ptr->comp_seg == ptr->total_segs) {
3839 			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3840 				qpriv->r_tid_ack = qp->r_head_ack_queue;
3841 			qpriv->r_tid_tail = qp->r_head_ack_queue;
3842 		}
3843 	}
3844 update_head:
3845 	qp->r_head_ack_queue = next;
3846 	qpriv->r_tid_head = qp->r_head_ack_queue;
3847 
3848 	hfi1_tid_write_alloc_resources(qp, true);
3849 	trace_hfi1_tid_write_rsp_rcv_req(qp);
3850 
3851 	/* Schedule the send tasklet. */
3852 	qp->s_flags |= RVT_S_RESP_PENDING;
3853 	if (fecn)
3854 		qp->s_flags |= RVT_S_ECN;
3855 	hfi1_schedule_send(qp);
3856 
3857 	spin_unlock_irqrestore(&qp->s_lock, flags);
3858 	return;
3859 
3860 nack_inv_unlock:
3861 	spin_unlock_irqrestore(&qp->s_lock, flags);
3862 nack_inv:
3863 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3864 	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3865 	qp->r_ack_psn = qp->r_psn;
3866 	/* Queue NAK for later */
3867 	rc_defered_ack(rcd, qp);
3868 	return;
3869 nack_acc:
3870 	spin_unlock_irqrestore(&qp->s_lock, flags);
3871 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3872 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3873 	qp->r_ack_psn = qp->r_psn;
3874 }
3875 
3876 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3877 				   struct ib_other_headers *ohdr, u32 *bth1,
3878 				   u32 bth2, u32 *len,
3879 				   struct rvt_sge_state **ss)
3880 {
3881 	struct hfi1_ack_priv *epriv = e->priv;
3882 	struct tid_rdma_request *req = &epriv->tid_req;
3883 	struct hfi1_qp_priv *qpriv = qp->priv;
3884 	struct tid_rdma_flow *flow = NULL;
3885 	u32 resp_len = 0, hdwords = 0;
3886 	void *resp_addr = NULL;
3887 	struct tid_rdma_params *remote;
3888 
3889 	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3890 					    req);
3891 	trace_hfi1_tid_write_rsp_build_resp(qp);
3892 	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3893 	flow = &req->flows[req->flow_idx];
3894 	switch (req->state) {
3895 	default:
3896 		/*
3897 		 * Try to allocate resources here in case QP was queued and was
3898 		 * later scheduled when resources became available
3899 		 */
3900 		hfi1_tid_write_alloc_resources(qp, false);
3901 
3902 		/* We've already sent everything which is ready */
3903 		if (req->cur_seg >= req->alloc_seg)
3904 			goto done;
3905 
3906 		/*
3907 		 * Resources can be assigned but responses cannot be sent in
3908 		 * rnr_nak state, till the resent request is received
3909 		 */
3910 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3911 			goto done;
3912 
3913 		req->state = TID_REQUEST_ACTIVE;
3914 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3915 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3916 		hfi1_add_tid_reap_timer(qp);
3917 		break;
3918 
3919 	case TID_REQUEST_RESEND_ACTIVE:
3920 	case TID_REQUEST_RESEND:
3921 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3922 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3923 		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3924 			req->state = TID_REQUEST_ACTIVE;
3925 
3926 		hfi1_mod_tid_reap_timer(qp);
3927 		break;
3928 	}
3929 	flow->flow_state.resp_ib_psn = bth2;
3930 	resp_addr = (void *)flow->tid_entry;
3931 	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3932 	req->cur_seg++;
3933 
3934 	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3935 	epriv->ss.sge.vaddr = resp_addr;
3936 	epriv->ss.sge.sge_length = resp_len;
3937 	epriv->ss.sge.length = epriv->ss.sge.sge_length;
3938 	/*
3939 	 * We can safely zero these out. Since the first SGE covers the
3940 	 * entire packet, nothing else should even look at the MR.
3941 	 */
3942 	epriv->ss.sge.mr = NULL;
3943 	epriv->ss.sge.m = 0;
3944 	epriv->ss.sge.n = 0;
3945 
3946 	epriv->ss.sg_list = NULL;
3947 	epriv->ss.total_len = epriv->ss.sge.sge_length;
3948 	epriv->ss.num_sge = 1;
3949 
3950 	*ss = &epriv->ss;
3951 	*len = epriv->ss.total_len;
3952 
3953 	/* Construct the TID RDMA WRITE RESP packet header */
3954 	rcu_read_lock();
3955 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3956 
3957 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3958 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3959 	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3960 	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3961 		cpu_to_be32((flow->flow_state.generation <<
3962 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
3963 			    (flow->flow_state.spsn &
3964 			     HFI1_KDETH_BTH_SEQ_MASK));
3965 	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3966 		cpu_to_be32(qpriv->tid_rdma.local.qp |
3967 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3968 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
3969 			    qpriv->rcd->ctxt);
3970 	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3971 	*bth1 = remote->qp;
3972 	rcu_read_unlock();
3973 	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3974 	qpriv->pending_tid_w_segs++;
3975 done:
3976 	return hdwords;
3977 }
3978 
3979 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3980 {
3981 	struct hfi1_qp_priv *qpriv = qp->priv;
3982 
3983 	lockdep_assert_held(&qp->s_lock);
3984 	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3985 		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3986 		qpriv->s_tid_timer.expires = jiffies +
3987 			qpriv->tid_timer_timeout_jiffies;
3988 		add_timer(&qpriv->s_tid_timer);
3989 	}
3990 }
3991 
3992 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3993 {
3994 	struct hfi1_qp_priv *qpriv = qp->priv;
3995 
3996 	lockdep_assert_held(&qp->s_lock);
3997 	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3998 	mod_timer(&qpriv->s_tid_timer, jiffies +
3999 		  qpriv->tid_timer_timeout_jiffies);
4000 }
4001 
4002 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
4003 {
4004 	struct hfi1_qp_priv *qpriv = qp->priv;
4005 	int rval = 0;
4006 
4007 	lockdep_assert_held(&qp->s_lock);
4008 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
4009 		rval = del_timer(&qpriv->s_tid_timer);
4010 		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
4011 	}
4012 	return rval;
4013 }
4014 
4015 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
4016 {
4017 	struct hfi1_qp_priv *qpriv = qp->priv;
4018 
4019 	del_timer_sync(&qpriv->s_tid_timer);
4020 	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
4021 }
4022 
4023 static void hfi1_tid_timeout(struct timer_list *t)
4024 {
4025 	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
4026 	struct rvt_qp *qp = qpriv->owner;
4027 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
4028 	unsigned long flags;
4029 	u32 i;
4030 
4031 	spin_lock_irqsave(&qp->r_lock, flags);
4032 	spin_lock(&qp->s_lock);
4033 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
4034 		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
4035 			    qp->ibqp.qp_num, __func__, __LINE__);
4036 		trace_hfi1_msg_tid_timeout(/* msg */
4037 			qp, "resource timeout = ",
4038 			(u64)qpriv->tid_timer_timeout_jiffies);
4039 		hfi1_stop_tid_reap_timer(qp);
4040 		/*
4041 		 * Go though the entire ack queue and clear any outstanding
4042 		 * HW flow and RcvArray resources.
4043 		 */
4044 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
4045 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
4046 			struct tid_rdma_request *req =
4047 				ack_to_tid_req(&qp->s_ack_queue[i]);
4048 
4049 			hfi1_kern_exp_rcv_clear_all(req);
4050 		}
4051 		spin_unlock(&qp->s_lock);
4052 		if (qp->ibqp.event_handler) {
4053 			struct ib_event ev;
4054 
4055 			ev.device = qp->ibqp.device;
4056 			ev.element.qp = &qp->ibqp;
4057 			ev.event = IB_EVENT_QP_FATAL;
4058 			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4059 		}
4060 		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4061 		goto unlock_r_lock;
4062 	}
4063 	spin_unlock(&qp->s_lock);
4064 unlock_r_lock:
4065 	spin_unlock_irqrestore(&qp->r_lock, flags);
4066 }
4067 
4068 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4069 {
4070 	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4071 
4072 	/*
4073 	 * 1. Find matching SWQE
4074 	 * 2. Check that TIDENTRY array has enough space for a complete
4075 	 *    segment. If not, put QP in error state.
4076 	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4077 	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4078 	 * 5. Set qp->s_state
4079 	 * 6. Kick the send engine (hfi1_schedule_send())
4080 	 */
4081 	struct ib_other_headers *ohdr = packet->ohdr;
4082 	struct rvt_qp *qp = packet->qp;
4083 	struct hfi1_qp_priv *qpriv = qp->priv;
4084 	struct hfi1_ctxtdata *rcd = packet->rcd;
4085 	struct rvt_swqe *wqe;
4086 	struct tid_rdma_request *req;
4087 	struct tid_rdma_flow *flow;
4088 	enum ib_wc_status status;
4089 	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4090 	bool fecn;
4091 	unsigned long flags;
4092 
4093 	fecn = process_ecn(qp, packet);
4094 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4095 	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4096 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4097 
4098 	spin_lock_irqsave(&qp->s_lock, flags);
4099 
4100 	/* Ignore invalid responses */
4101 	if (cmp_psn(psn, qp->s_next_psn) >= 0)
4102 		goto ack_done;
4103 
4104 	/* Ignore duplicate responses. */
4105 	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4106 		goto ack_done;
4107 
4108 	if (unlikely(qp->s_acked == qp->s_tail))
4109 		goto ack_done;
4110 
4111 	/*
4112 	 * If we are waiting for a particular packet sequence number
4113 	 * due to a request being resent, check for it. Otherwise,
4114 	 * ensure that we haven't missed anything.
4115 	 */
4116 	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4117 		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4118 			goto ack_done;
4119 		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4120 	}
4121 
4122 	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4123 	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4124 		goto ack_op_err;
4125 
4126 	req = wqe_to_tid_req(wqe);
4127 	/*
4128 	 * If we've lost ACKs and our acked_tail pointer is too far
4129 	 * behind, don't overwrite segments. Just drop the packet and
4130 	 * let the reliability protocol take care of it.
4131 	 */
4132 	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4133 		goto ack_done;
4134 
4135 	/*
4136 	 * The call to do_rc_ack() should be last in the chain of
4137 	 * packet checks because it will end up updating the QP state.
4138 	 * Therefore, anything that would prevent the packet from
4139 	 * being accepted as a successful response should be prior
4140 	 * to it.
4141 	 */
4142 	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4143 		goto ack_done;
4144 
4145 	trace_hfi1_ack(qp, psn);
4146 
4147 	flow = &req->flows[req->setup_head];
4148 	flow->pkt = 0;
4149 	flow->tid_idx = 0;
4150 	flow->tid_offset = 0;
4151 	flow->sent = 0;
4152 	flow->resync_npkts = 0;
4153 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4154 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4155 		TID_RDMA_DESTQP_FLOW_MASK;
4156 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4157 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4158 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4159 	flow->flow_state.resp_ib_psn = psn;
4160 	flow->length = min_t(u32, req->seg_len,
4161 			     (wqe->length - (req->comp_seg * req->seg_len)));
4162 
4163 	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4164 	flow->flow_state.lpsn = flow->flow_state.spsn +
4165 		flow->npkts - 1;
4166 	/* payload length = packet length - (header length + ICRC length) */
4167 	pktlen = packet->tlen - (packet->hlen + 4);
4168 	if (pktlen > sizeof(flow->tid_entry)) {
4169 		status = IB_WC_LOC_LEN_ERR;
4170 		goto ack_err;
4171 	}
4172 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
4173 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4174 	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4175 
4176 	req->comp_seg++;
4177 	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4178 	/*
4179 	 * Walk the TID_ENTRY list to make sure we have enough space for a
4180 	 * complete segment.
4181 	 */
4182 	for (i = 0; i < flow->tidcnt; i++) {
4183 		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4184 			qp, i, flow->tid_entry[i]);
4185 		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4186 			status = IB_WC_LOC_LEN_ERR;
4187 			goto ack_err;
4188 		}
4189 		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4190 	}
4191 	if (tidlen * PAGE_SIZE < flow->length) {
4192 		status = IB_WC_LOC_LEN_ERR;
4193 		goto ack_err;
4194 	}
4195 
4196 	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4197 					  wqe->lpsn, req);
4198 	/*
4199 	 * If this is the first response for this request, set the initial
4200 	 * flow index to the current flow.
4201 	 */
4202 	if (!cmp_psn(psn, wqe->psn)) {
4203 		req->r_last_acked = mask_psn(wqe->psn - 1);
4204 		/* Set acked flow index to head index */
4205 		req->acked_tail = req->setup_head;
4206 	}
4207 
4208 	/* advance circular buffer head */
4209 	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4210 	req->state = TID_REQUEST_ACTIVE;
4211 
4212 	/*
4213 	 * If all responses for this TID RDMA WRITE request have been received
4214 	 * advance the pointer to the next one.
4215 	 * Since TID RDMA requests could be mixed in with regular IB requests,
4216 	 * they might not appear sequentially in the queue. Therefore, the
4217 	 * next request needs to be "found".
4218 	 */
4219 	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4220 	    req->comp_seg == req->total_segs) {
4221 		for (i = qpriv->s_tid_cur + 1; ; i++) {
4222 			if (i == qp->s_size)
4223 				i = 0;
4224 			wqe = rvt_get_swqe_ptr(qp, i);
4225 			if (i == qpriv->s_tid_head)
4226 				break;
4227 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4228 				break;
4229 		}
4230 		qpriv->s_tid_cur = i;
4231 	}
4232 	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4233 	hfi1_schedule_tid_send(qp);
4234 	goto ack_done;
4235 
4236 ack_op_err:
4237 	status = IB_WC_LOC_QP_OP_ERR;
4238 ack_err:
4239 	rvt_error_qp(qp, status);
4240 ack_done:
4241 	if (fecn)
4242 		qp->s_flags |= RVT_S_ECN;
4243 	spin_unlock_irqrestore(&qp->s_lock, flags);
4244 }
4245 
4246 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4247 				struct ib_other_headers *ohdr,
4248 				u32 *bth1, u32 *bth2, u32 *len)
4249 {
4250 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4251 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4252 	struct tid_rdma_params *remote;
4253 	struct rvt_qp *qp = req->qp;
4254 	struct hfi1_qp_priv *qpriv = qp->priv;
4255 	u32 tidentry = flow->tid_entry[flow->tid_idx];
4256 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4257 	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4258 	u32 next_offset, om = KDETH_OM_LARGE;
4259 	bool last_pkt;
4260 
4261 	if (!tidlen) {
4262 		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4263 		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4264 	}
4265 
4266 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4267 	flow->sent += *len;
4268 	next_offset = flow->tid_offset + *len;
4269 	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4270 		    next_offset >= tidlen) || (flow->sent >= flow->length);
4271 	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4272 	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4273 
4274 	rcu_read_lock();
4275 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4276 	KDETH_RESET(wd->kdeth0, KVER, 0x1);
4277 	KDETH_SET(wd->kdeth0, SH, !last_pkt);
4278 	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4279 	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4280 	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4281 	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4282 	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4283 	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4284 	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4285 	rcu_read_unlock();
4286 
4287 	*bth1 = flow->tid_qpn;
4288 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4289 			 HFI1_KDETH_BTH_SEQ_MASK) |
4290 			 (flow->flow_state.generation <<
4291 			  HFI1_KDETH_BTH_SEQ_SHIFT));
4292 	if (last_pkt) {
4293 		/* PSNs are zero-based, so +1 to count number of packets */
4294 		if (flow->flow_state.lpsn + 1 +
4295 		    rvt_div_round_up_mtu(qp, req->seg_len) >
4296 		    MAX_TID_FLOW_PSN)
4297 			req->state = TID_REQUEST_SYNC;
4298 		*bth2 |= IB_BTH_REQ_ACK;
4299 	}
4300 
4301 	if (next_offset >= tidlen) {
4302 		flow->tid_offset = 0;
4303 		flow->tid_idx++;
4304 	} else {
4305 		flow->tid_offset = next_offset;
4306 	}
4307 	return last_pkt;
4308 }
4309 
4310 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4311 {
4312 	struct rvt_qp *qp = packet->qp;
4313 	struct hfi1_qp_priv *priv = qp->priv;
4314 	struct hfi1_ctxtdata *rcd = priv->rcd;
4315 	struct ib_other_headers *ohdr = packet->ohdr;
4316 	struct rvt_ack_entry *e;
4317 	struct tid_rdma_request *req;
4318 	struct tid_rdma_flow *flow;
4319 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4320 	unsigned long flags;
4321 	u32 psn, next;
4322 	u8 opcode;
4323 	bool fecn;
4324 
4325 	fecn = process_ecn(qp, packet);
4326 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4327 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4328 
4329 	/*
4330 	 * All error handling should be done by now. If we are here, the packet
4331 	 * is either good or been accepted by the error handler.
4332 	 */
4333 	spin_lock_irqsave(&qp->s_lock, flags);
4334 	e = &qp->s_ack_queue[priv->r_tid_tail];
4335 	req = ack_to_tid_req(e);
4336 	flow = &req->flows[req->clear_tail];
4337 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4338 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4339 
4340 		if (cmp_psn(psn, flow->flow_state.r_next_psn))
4341 			goto send_nak;
4342 
4343 		flow->flow_state.r_next_psn = mask_psn(psn + 1);
4344 		/*
4345 		 * Copy the payload to destination buffer if this packet is
4346 		 * delivered as an eager packet due to RSM rule and FECN.
4347 		 * The RSM rule selects FECN bit in BTH and SH bit in
4348 		 * KDETH header and therefore will not match the last
4349 		 * packet of each segment that has SH bit cleared.
4350 		 */
4351 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4352 			struct rvt_sge_state ss;
4353 			u32 len;
4354 			u32 tlen = packet->tlen;
4355 			u16 hdrsize = packet->hlen;
4356 			u8 pad = packet->pad;
4357 			u8 extra_bytes = pad + packet->extra_byte +
4358 				(SIZE_OF_CRC << 2);
4359 			u32 pmtu = qp->pmtu;
4360 
4361 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4362 				goto send_nak;
4363 			len = req->comp_seg * req->seg_len;
4364 			len += delta_psn(psn,
4365 				full_flow_psn(flow, flow->flow_state.spsn)) *
4366 				pmtu;
4367 			if (unlikely(req->total_len - len < pmtu))
4368 				goto send_nak;
4369 
4370 			/*
4371 			 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4372 			 * is first received and is never modified thereafter.
4373 			 */
4374 			ss.sge = e->rdma_sge;
4375 			ss.sg_list = NULL;
4376 			ss.num_sge = 1;
4377 			ss.total_len = req->total_len;
4378 			rvt_skip_sge(&ss, len, false);
4379 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4380 				     false);
4381 			/* Raise the sw sequence check flag for next packet */
4382 			priv->r_next_psn_kdeth = mask_psn(psn + 1);
4383 			priv->s_flags |= HFI1_R_TID_SW_PSN;
4384 		}
4385 		goto exit;
4386 	}
4387 	flow->flow_state.r_next_psn = mask_psn(psn + 1);
4388 	hfi1_kern_exp_rcv_clear(req);
4389 	priv->alloc_w_segs--;
4390 	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4391 	req->comp_seg++;
4392 	priv->s_nak_state = 0;
4393 
4394 	/*
4395 	 * Release the flow if one of the following conditions has been met:
4396 	 *  - The request has reached a sync point AND all outstanding
4397 	 *    segments have been completed, or
4398 	 *  - The entire request is complete and there are no more requests
4399 	 *    (of any kind) in the queue.
4400 	 */
4401 	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4402 	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4403 					  req);
4404 	trace_hfi1_tid_write_rsp_rcv_data(qp);
4405 	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4406 		priv->r_tid_ack = priv->r_tid_tail;
4407 
4408 	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4409 		release_rdma_sge_mr(e);
4410 		for (next = priv->r_tid_tail + 1; ; next++) {
4411 			if (next > rvt_size_atomic(&dev->rdi))
4412 				next = 0;
4413 			if (next == priv->r_tid_head)
4414 				break;
4415 			e = &qp->s_ack_queue[next];
4416 			if (e->opcode == TID_OP(WRITE_REQ))
4417 				break;
4418 		}
4419 		priv->r_tid_tail = next;
4420 		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4421 			qp->s_acked_ack_queue = 0;
4422 	}
4423 
4424 	hfi1_tid_write_alloc_resources(qp, true);
4425 
4426 	/*
4427 	 * If we need to generate more responses, schedule the
4428 	 * send engine.
4429 	 */
4430 	if (req->cur_seg < req->total_segs ||
4431 	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4432 		qp->s_flags |= RVT_S_RESP_PENDING;
4433 		hfi1_schedule_send(qp);
4434 	}
4435 
4436 	priv->pending_tid_w_segs--;
4437 	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4438 		if (priv->pending_tid_w_segs)
4439 			hfi1_mod_tid_reap_timer(req->qp);
4440 		else
4441 			hfi1_stop_tid_reap_timer(req->qp);
4442 	}
4443 
4444 done:
4445 	priv->s_flags |= RVT_S_ACK_PENDING;
4446 	hfi1_schedule_tid_send(qp);
4447 exit:
4448 	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4449 	if (fecn)
4450 		qp->s_flags |= RVT_S_ECN;
4451 	spin_unlock_irqrestore(&qp->s_lock, flags);
4452 	return;
4453 
4454 send_nak:
4455 	if (!priv->s_nak_state) {
4456 		priv->s_nak_state = IB_NAK_PSN_ERROR;
4457 		priv->s_nak_psn = flow->flow_state.r_next_psn;
4458 		priv->s_flags |= RVT_S_ACK_PENDING;
4459 		if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4460 			priv->r_tid_ack = priv->r_tid_tail;
4461 		hfi1_schedule_tid_send(qp);
4462 	}
4463 	goto done;
4464 }
4465 
4466 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4467 {
4468 	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4469 		      HFI1_KDETH_BTH_SEQ_MASK);
4470 }
4471 
4472 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4473 				  struct ib_other_headers *ohdr, u16 iflow,
4474 				  u32 *bth1, u32 *bth2)
4475 {
4476 	struct hfi1_qp_priv *qpriv = qp->priv;
4477 	struct tid_flow_state *fs = &qpriv->flow_state;
4478 	struct tid_rdma_request *req = ack_to_tid_req(e);
4479 	struct tid_rdma_flow *flow = &req->flows[iflow];
4480 	struct tid_rdma_params *remote;
4481 
4482 	rcu_read_lock();
4483 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4484 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4485 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4486 	*bth1 = remote->qp;
4487 	rcu_read_unlock();
4488 
4489 	if (qpriv->resync) {
4490 		*bth2 = mask_psn((fs->generation <<
4491 				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4492 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4493 	} else if (qpriv->s_nak_state) {
4494 		*bth2 = mask_psn(qpriv->s_nak_psn);
4495 		ohdr->u.tid_rdma.ack.aeth =
4496 			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4497 				    (qpriv->s_nak_state <<
4498 				     IB_AETH_CREDIT_SHIFT));
4499 	} else {
4500 		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4501 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4502 	}
4503 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4504 	ohdr->u.tid_rdma.ack.tid_flow_qp =
4505 		cpu_to_be32(qpriv->tid_rdma.local.qp |
4506 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4507 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
4508 			    qpriv->rcd->ctxt);
4509 
4510 	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4511 	ohdr->u.tid_rdma.ack.verbs_psn =
4512 		cpu_to_be32(flow->flow_state.resp_ib_psn);
4513 
4514 	if (qpriv->resync) {
4515 		/*
4516 		 * If the PSN before the current expect KDETH PSN is the
4517 		 * RESYNC PSN, then we never received a good TID RDMA WRITE
4518 		 * DATA packet after a previous RESYNC.
4519 		 * In this case, the next expected KDETH PSN stays the same.
4520 		 */
4521 		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4522 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4523 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4524 		} else {
4525 			/*
4526 			 * Because the KDETH PSNs jump during a RESYNC, it's
4527 			 * not possible to infer (or compute) the previous value
4528 			 * of r_next_psn_kdeth in the case of back-to-back
4529 			 * RESYNC packets. Therefore, we save it.
4530 			 */
4531 			qpriv->r_next_psn_kdeth_save =
4532 				qpriv->r_next_psn_kdeth - 1;
4533 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4534 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4535 			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4536 		}
4537 		qpriv->resync = false;
4538 	}
4539 
4540 	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4541 }
4542 
4543 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4544 {
4545 	struct ib_other_headers *ohdr = packet->ohdr;
4546 	struct rvt_qp *qp = packet->qp;
4547 	struct hfi1_qp_priv *qpriv = qp->priv;
4548 	struct rvt_swqe *wqe;
4549 	struct tid_rdma_request *req;
4550 	struct tid_rdma_flow *flow;
4551 	u32 aeth, psn, req_psn, ack_psn, resync_psn, ack_kpsn;
4552 	unsigned long flags;
4553 	u16 fidx;
4554 
4555 	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4556 	process_ecn(qp, packet);
4557 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4558 	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4559 	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4560 	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4561 
4562 	spin_lock_irqsave(&qp->s_lock, flags);
4563 	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4564 
4565 	/* If we are waiting for an ACK to RESYNC, drop any other packets */
4566 	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4567 	    cmp_psn(psn, qpriv->s_resync_psn))
4568 		goto ack_op_err;
4569 
4570 	ack_psn = req_psn;
4571 	if (hfi1_tid_rdma_is_resync_psn(psn))
4572 		ack_kpsn = resync_psn;
4573 	else
4574 		ack_kpsn = psn;
4575 	if (aeth >> 29) {
4576 		ack_psn--;
4577 		ack_kpsn--;
4578 	}
4579 
4580 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4581 
4582 	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4583 		goto ack_op_err;
4584 
4585 	req = wqe_to_tid_req(wqe);
4586 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4587 				       wqe->lpsn, req);
4588 	flow = &req->flows[req->acked_tail];
4589 	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4590 
4591 	/* Drop stale ACK/NAK */
4592 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0)
4593 		goto ack_op_err;
4594 
4595 	while (cmp_psn(ack_kpsn,
4596 		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4597 	       req->ack_seg < req->cur_seg) {
4598 		req->ack_seg++;
4599 		/* advance acked segment pointer */
4600 		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4601 		req->r_last_acked = flow->flow_state.resp_ib_psn;
4602 		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4603 					       wqe->lpsn, req);
4604 		if (req->ack_seg == req->total_segs) {
4605 			req->state = TID_REQUEST_COMPLETE;
4606 			wqe = do_rc_completion(qp, wqe,
4607 					       to_iport(qp->ibqp.device,
4608 							qp->port_num));
4609 			trace_hfi1_sender_rcv_tid_ack(qp);
4610 			atomic_dec(&qpriv->n_tid_requests);
4611 			if (qp->s_acked == qp->s_tail)
4612 				break;
4613 			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4614 				break;
4615 			req = wqe_to_tid_req(wqe);
4616 		}
4617 		flow = &req->flows[req->acked_tail];
4618 		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4619 	}
4620 
4621 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4622 				       wqe->lpsn, req);
4623 	switch (aeth >> 29) {
4624 	case 0:         /* ACK */
4625 		if (qpriv->s_flags & RVT_S_WAIT_ACK)
4626 			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4627 		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4628 			/* Check if there is any pending TID ACK */
4629 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4630 			    req->ack_seg < req->cur_seg)
4631 				hfi1_mod_tid_retry_timer(qp);
4632 			else
4633 				hfi1_stop_tid_retry_timer(qp);
4634 			hfi1_schedule_send(qp);
4635 		} else {
4636 			u32 spsn, fpsn, last_acked, generation;
4637 			struct tid_rdma_request *rptr;
4638 
4639 			/* ACK(RESYNC) */
4640 			hfi1_stop_tid_retry_timer(qp);
4641 			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4642 			qp->s_flags &= ~HFI1_S_WAIT_HALT;
4643 			/*
4644 			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4645 			 * ACK is received after the TID retry timer is fired
4646 			 * again. In this case, do not send any more TID
4647 			 * RESYNC request or wait for any more TID ACK packet.
4648 			 */
4649 			qpriv->s_flags &= ~RVT_S_SEND_ONE;
4650 			hfi1_schedule_send(qp);
4651 
4652 			if ((qp->s_acked == qpriv->s_tid_tail &&
4653 			     req->ack_seg == req->total_segs) ||
4654 			    qp->s_acked == qp->s_tail) {
4655 				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4656 				goto done;
4657 			}
4658 
4659 			if (req->ack_seg == req->comp_seg) {
4660 				qpriv->s_state = TID_OP(WRITE_DATA);
4661 				goto done;
4662 			}
4663 
4664 			/*
4665 			 * The PSN to start with is the next PSN after the
4666 			 * RESYNC PSN.
4667 			 */
4668 			psn = mask_psn(psn + 1);
4669 			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4670 			spsn = 0;
4671 
4672 			/*
4673 			 * Update to the correct WQE when we get an ACK(RESYNC)
4674 			 * in the middle of a request.
4675 			 */
4676 			if (delta_psn(ack_psn, wqe->lpsn))
4677 				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4678 			req = wqe_to_tid_req(wqe);
4679 			flow = &req->flows[req->acked_tail];
4680 			/*
4681 			 * RESYNC re-numbers the PSN ranges of all remaining
4682 			 * segments. Also, PSN's start from 0 in the middle of a
4683 			 * segment and the first segment size is less than the
4684 			 * default number of packets. flow->resync_npkts is used
4685 			 * to track the number of packets from the start of the
4686 			 * real segment to the point of 0 PSN after the RESYNC
4687 			 * in order to later correctly rewind the SGE.
4688 			 */
4689 			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4690 			req->r_ack_psn = psn;
4691 			flow->resync_npkts +=
4692 				delta_psn(mask_psn(resync_psn + 1), fpsn);
4693 			/*
4694 			 * Renumber all packet sequence number ranges
4695 			 * based on the new generation.
4696 			 */
4697 			last_acked = qp->s_acked;
4698 			rptr = req;
4699 			while (1) {
4700 				/* start from last acked segment */
4701 				for (fidx = rptr->acked_tail;
4702 				     CIRC_CNT(rptr->setup_head, fidx,
4703 					      MAX_FLOWS);
4704 				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4705 					u32 lpsn;
4706 					u32 gen;
4707 
4708 					flow = &rptr->flows[fidx];
4709 					gen = flow->flow_state.generation;
4710 					if (WARN_ON(gen == generation &&
4711 						    flow->flow_state.spsn !=
4712 						     spsn))
4713 						continue;
4714 					lpsn = flow->flow_state.lpsn;
4715 					lpsn = full_flow_psn(flow, lpsn);
4716 					flow->npkts =
4717 						delta_psn(lpsn,
4718 							  mask_psn(resync_psn)
4719 							  );
4720 					flow->flow_state.generation =
4721 						generation;
4722 					flow->flow_state.spsn = spsn;
4723 					flow->flow_state.lpsn =
4724 						flow->flow_state.spsn +
4725 						flow->npkts - 1;
4726 					flow->pkt = 0;
4727 					spsn += flow->npkts;
4728 					resync_psn += flow->npkts;
4729 					trace_hfi1_tid_flow_rcv_tid_ack(qp,
4730 									fidx,
4731 									flow);
4732 				}
4733 				if (++last_acked == qpriv->s_tid_cur + 1)
4734 					break;
4735 				if (last_acked == qp->s_size)
4736 					last_acked = 0;
4737 				wqe = rvt_get_swqe_ptr(qp, last_acked);
4738 				rptr = wqe_to_tid_req(wqe);
4739 			}
4740 			req->cur_seg = req->ack_seg;
4741 			qpriv->s_tid_tail = qp->s_acked;
4742 			qpriv->s_state = TID_OP(WRITE_REQ);
4743 			hfi1_schedule_tid_send(qp);
4744 		}
4745 done:
4746 		qpriv->s_retry = qp->s_retry_cnt;
4747 		break;
4748 
4749 	case 3:         /* NAK */
4750 		hfi1_stop_tid_retry_timer(qp);
4751 		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4752 			IB_AETH_CREDIT_MASK) {
4753 		case 0: /* PSN sequence error */
4754 			flow = &req->flows[req->acked_tail];
4755 			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4756 							flow);
4757 			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4758 			req->cur_seg = req->ack_seg;
4759 			qpriv->s_tid_tail = qp->s_acked;
4760 			qpriv->s_state = TID_OP(WRITE_REQ);
4761 			qpriv->s_retry = qp->s_retry_cnt;
4762 			hfi1_schedule_tid_send(qp);
4763 			break;
4764 
4765 		default:
4766 			break;
4767 		}
4768 		break;
4769 
4770 	default:
4771 		break;
4772 	}
4773 
4774 ack_op_err:
4775 	spin_unlock_irqrestore(&qp->s_lock, flags);
4776 }
4777 
4778 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4779 {
4780 	struct hfi1_qp_priv *priv = qp->priv;
4781 	struct ib_qp *ibqp = &qp->ibqp;
4782 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4783 
4784 	lockdep_assert_held(&qp->s_lock);
4785 	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4786 		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4787 		priv->s_tid_retry_timer.expires = jiffies +
4788 			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4789 		add_timer(&priv->s_tid_retry_timer);
4790 	}
4791 }
4792 
4793 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4794 {
4795 	struct hfi1_qp_priv *priv = qp->priv;
4796 	struct ib_qp *ibqp = &qp->ibqp;
4797 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4798 
4799 	lockdep_assert_held(&qp->s_lock);
4800 	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4801 	mod_timer(&priv->s_tid_retry_timer, jiffies +
4802 		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4803 }
4804 
4805 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4806 {
4807 	struct hfi1_qp_priv *priv = qp->priv;
4808 	int rval = 0;
4809 
4810 	lockdep_assert_held(&qp->s_lock);
4811 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4812 		rval = del_timer(&priv->s_tid_retry_timer);
4813 		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4814 	}
4815 	return rval;
4816 }
4817 
4818 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4819 {
4820 	struct hfi1_qp_priv *priv = qp->priv;
4821 
4822 	del_timer_sync(&priv->s_tid_retry_timer);
4823 	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4824 }
4825 
4826 static void hfi1_tid_retry_timeout(struct timer_list *t)
4827 {
4828 	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4829 	struct rvt_qp *qp = priv->owner;
4830 	struct rvt_swqe *wqe;
4831 	unsigned long flags;
4832 	struct tid_rdma_request *req;
4833 
4834 	spin_lock_irqsave(&qp->r_lock, flags);
4835 	spin_lock(&qp->s_lock);
4836 	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4837 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4838 		hfi1_stop_tid_retry_timer(qp);
4839 		if (!priv->s_retry) {
4840 			trace_hfi1_msg_tid_retry_timeout(/* msg */
4841 				qp,
4842 				"Exhausted retries. Tid retry timeout = ",
4843 				(u64)priv->tid_retry_timeout_jiffies);
4844 
4845 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4846 			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4847 			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4848 		} else {
4849 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4850 			req = wqe_to_tid_req(wqe);
4851 			trace_hfi1_tid_req_tid_retry_timeout(/* req */
4852 			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4853 
4854 			priv->s_flags &= ~RVT_S_WAIT_ACK;
4855 			/* Only send one packet (the RESYNC) */
4856 			priv->s_flags |= RVT_S_SEND_ONE;
4857 			/*
4858 			 * No additional request shall be made by this QP until
4859 			 * the RESYNC has been complete.
4860 			 */
4861 			qp->s_flags |= HFI1_S_WAIT_HALT;
4862 			priv->s_state = TID_OP(RESYNC);
4863 			priv->s_retry--;
4864 			hfi1_schedule_tid_send(qp);
4865 		}
4866 	}
4867 	spin_unlock(&qp->s_lock);
4868 	spin_unlock_irqrestore(&qp->r_lock, flags);
4869 }
4870 
4871 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4872 			       struct ib_other_headers *ohdr, u32 *bth1,
4873 			       u32 *bth2, u16 fidx)
4874 {
4875 	struct hfi1_qp_priv *qpriv = qp->priv;
4876 	struct tid_rdma_params *remote;
4877 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4878 	struct tid_rdma_flow *flow = &req->flows[fidx];
4879 	u32 generation;
4880 
4881 	rcu_read_lock();
4882 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4883 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4884 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4885 	*bth1 = remote->qp;
4886 	rcu_read_unlock();
4887 
4888 	generation = kern_flow_generation_next(flow->flow_state.generation);
4889 	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4890 	qpriv->s_resync_psn = *bth2;
4891 	*bth2 |= IB_BTH_REQ_ACK;
4892 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4893 
4894 	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4895 }
4896 
4897 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4898 {
4899 	struct ib_other_headers *ohdr = packet->ohdr;
4900 	struct rvt_qp *qp = packet->qp;
4901 	struct hfi1_qp_priv *qpriv = qp->priv;
4902 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
4903 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4904 	struct rvt_ack_entry *e;
4905 	struct tid_rdma_request *req;
4906 	struct tid_rdma_flow *flow;
4907 	struct tid_flow_state *fs = &qpriv->flow_state;
4908 	u32 psn, generation, idx, gen_next;
4909 	bool fecn;
4910 	unsigned long flags;
4911 
4912 	fecn = process_ecn(qp, packet);
4913 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4914 
4915 	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4916 	spin_lock_irqsave(&qp->s_lock, flags);
4917 
4918 	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4919 		generation : kern_flow_generation_next(fs->generation);
4920 	/*
4921 	 * RESYNC packet contains the "next" generation and can only be
4922 	 * from the current or previous generations
4923 	 */
4924 	if (generation != mask_generation(gen_next - 1) &&
4925 	    generation != gen_next)
4926 		goto bail;
4927 	/* Already processing a resync */
4928 	if (qpriv->resync)
4929 		goto bail;
4930 
4931 	spin_lock(&rcd->exp_lock);
4932 	if (fs->index >= RXE_NUM_TID_FLOWS) {
4933 		/*
4934 		 * If we don't have a flow, save the generation so it can be
4935 		 * applied when a new flow is allocated
4936 		 */
4937 		fs->generation = generation;
4938 	} else {
4939 		/* Reprogram the QP flow with new generation */
4940 		rcd->flows[fs->index].generation = generation;
4941 		fs->generation = kern_setup_hw_flow(rcd, fs->index);
4942 	}
4943 	fs->psn = 0;
4944 	/*
4945 	 * Disable SW PSN checking since a RESYNC is equivalent to a
4946 	 * sync point and the flow has/will be reprogrammed
4947 	 */
4948 	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4949 	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4950 
4951 	/*
4952 	 * Reset all TID flow information with the new generation.
4953 	 * This is done for all requests and segments after the
4954 	 * last received segment
4955 	 */
4956 	for (idx = qpriv->r_tid_tail; ; idx++) {
4957 		u16 flow_idx;
4958 
4959 		if (idx > rvt_size_atomic(&dev->rdi))
4960 			idx = 0;
4961 		e = &qp->s_ack_queue[idx];
4962 		if (e->opcode == TID_OP(WRITE_REQ)) {
4963 			req = ack_to_tid_req(e);
4964 			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4965 						      e->lpsn, req);
4966 
4967 			/* start from last unacked segment */
4968 			for (flow_idx = req->clear_tail;
4969 			     CIRC_CNT(req->setup_head, flow_idx,
4970 				      MAX_FLOWS);
4971 			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4972 				u32 lpsn;
4973 				u32 next;
4974 
4975 				flow = &req->flows[flow_idx];
4976 				lpsn = full_flow_psn(flow,
4977 						     flow->flow_state.lpsn);
4978 				next = flow->flow_state.r_next_psn;
4979 				flow->npkts = delta_psn(lpsn, next - 1);
4980 				flow->flow_state.generation = fs->generation;
4981 				flow->flow_state.spsn = fs->psn;
4982 				flow->flow_state.lpsn =
4983 					flow->flow_state.spsn + flow->npkts - 1;
4984 				flow->flow_state.r_next_psn =
4985 					full_flow_psn(flow,
4986 						      flow->flow_state.spsn);
4987 				fs->psn += flow->npkts;
4988 				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4989 							       flow);
4990 			}
4991 		}
4992 		if (idx == qp->s_tail_ack_queue)
4993 			break;
4994 	}
4995 
4996 	spin_unlock(&rcd->exp_lock);
4997 	qpriv->resync = true;
4998 	/* RESYNC request always gets a TID RDMA ACK. */
4999 	qpriv->s_nak_state = 0;
5000 	qpriv->s_flags |= RVT_S_ACK_PENDING;
5001 	hfi1_schedule_tid_send(qp);
5002 bail:
5003 	if (fecn)
5004 		qp->s_flags |= RVT_S_ECN;
5005 	spin_unlock_irqrestore(&qp->s_lock, flags);
5006 }
5007 
5008 /*
5009  * Call this function when the last TID RDMA WRITE DATA packet for a request
5010  * is built.
5011  */
5012 static void update_tid_tail(struct rvt_qp *qp)
5013 	__must_hold(&qp->s_lock)
5014 {
5015 	struct hfi1_qp_priv *priv = qp->priv;
5016 	u32 i;
5017 	struct rvt_swqe *wqe;
5018 
5019 	lockdep_assert_held(&qp->s_lock);
5020 	/* Can't move beyond s_tid_cur */
5021 	if (priv->s_tid_tail == priv->s_tid_cur)
5022 		return;
5023 	for (i = priv->s_tid_tail + 1; ; i++) {
5024 		if (i == qp->s_size)
5025 			i = 0;
5026 
5027 		if (i == priv->s_tid_cur)
5028 			break;
5029 		wqe = rvt_get_swqe_ptr(qp, i);
5030 		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
5031 			break;
5032 	}
5033 	priv->s_tid_tail = i;
5034 	priv->s_state = TID_OP(WRITE_RESP);
5035 }
5036 
5037 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5038 	__must_hold(&qp->s_lock)
5039 {
5040 	struct hfi1_qp_priv *priv = qp->priv;
5041 	struct rvt_swqe *wqe;
5042 	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5043 	struct ib_other_headers *ohdr;
5044 	struct rvt_sge_state *ss = &qp->s_sge;
5045 	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5046 	struct tid_rdma_request *req = ack_to_tid_req(e);
5047 	bool last = false;
5048 	u8 opcode = TID_OP(WRITE_DATA);
5049 
5050 	lockdep_assert_held(&qp->s_lock);
5051 	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5052 	/*
5053 	 * Prioritize the sending of the requests and responses over the
5054 	 * sending of the TID RDMA data packets.
5055 	 */
5056 	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5057 	     atomic_read(&priv->n_requests) &&
5058 	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5059 			     HFI1_S_ANY_WAIT_IO))) ||
5060 	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5061 	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5062 		struct iowait_work *iowork;
5063 
5064 		iowork = iowait_get_ib_work(&priv->s_iowait);
5065 		ps->s_txreq = get_waiting_verbs_txreq(iowork);
5066 		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5067 			priv->s_flags |= HFI1_S_TID_BUSY_SET;
5068 			return 1;
5069 		}
5070 	}
5071 
5072 	ps->s_txreq = get_txreq(ps->dev, qp);
5073 	if (!ps->s_txreq)
5074 		goto bail_no_tx;
5075 
5076 	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5077 
5078 	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5079 	    make_tid_rdma_ack(qp, ohdr, ps))
5080 		return 1;
5081 
5082 	/*
5083 	 * Bail out if we can't send data.
5084 	 * Be reminded that this check must been done after the call to
5085 	 * make_tid_rdma_ack() because the responding QP could be in
5086 	 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5087 	 */
5088 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5089 		goto bail;
5090 
5091 	if (priv->s_flags & RVT_S_WAIT_ACK)
5092 		goto bail;
5093 
5094 	/* Check whether there is anything to do. */
5095 	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5096 		goto bail;
5097 	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5098 	req = wqe_to_tid_req(wqe);
5099 	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5100 					wqe->lpsn, req);
5101 	switch (priv->s_state) {
5102 	case TID_OP(WRITE_REQ):
5103 	case TID_OP(WRITE_RESP):
5104 		priv->tid_ss.sge = wqe->sg_list[0];
5105 		priv->tid_ss.sg_list = wqe->sg_list + 1;
5106 		priv->tid_ss.num_sge = wqe->wr.num_sge;
5107 		priv->tid_ss.total_len = wqe->length;
5108 
5109 		if (priv->s_state == TID_OP(WRITE_REQ))
5110 			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5111 		priv->s_state = TID_OP(WRITE_DATA);
5112 		/* fall through */
5113 
5114 	case TID_OP(WRITE_DATA):
5115 		/*
5116 		 * 1. Check whether TID RDMA WRITE RESP available.
5117 		 * 2. If no:
5118 		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
5119 		 *        set HFI1_S_WAIT_TID_RESP
5120 		 *    2.2 Return indicating no progress made.
5121 		 * 3. If yes:
5122 		 *    3.1 Build TID RDMA WRITE DATA packet.
5123 		 *    3.2 If last packet in segment:
5124 		 *        3.2.1 Change KDETH header bits
5125 		 *        3.2.2 Advance RESP pointers.
5126 		 *    3.3 Return indicating progress made.
5127 		 */
5128 		trace_hfi1_sender_make_tid_pkt(qp);
5129 		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5130 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5131 		req = wqe_to_tid_req(wqe);
5132 		len = wqe->length;
5133 
5134 		if (!req->comp_seg || req->cur_seg == req->comp_seg)
5135 			goto bail;
5136 
5137 		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5138 						wqe->psn, wqe->lpsn, req);
5139 		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5140 						  &len);
5141 
5142 		if (last) {
5143 			/* move pointer to next flow */
5144 			req->clear_tail = CIRC_NEXT(req->clear_tail,
5145 						    MAX_FLOWS);
5146 			if (++req->cur_seg < req->total_segs) {
5147 				if (!CIRC_CNT(req->setup_head, req->clear_tail,
5148 					      MAX_FLOWS))
5149 					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5150 			} else {
5151 				priv->s_state = TID_OP(WRITE_DATA_LAST);
5152 				opcode = TID_OP(WRITE_DATA_LAST);
5153 
5154 				/* Advance the s_tid_tail now */
5155 				update_tid_tail(qp);
5156 			}
5157 		}
5158 		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5159 		ss = &priv->tid_ss;
5160 		break;
5161 
5162 	case TID_OP(RESYNC):
5163 		trace_hfi1_sender_make_tid_pkt(qp);
5164 		/* Use generation from the most recently received response */
5165 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5166 		req = wqe_to_tid_req(wqe);
5167 		/* If no responses for this WQE look at the previous one */
5168 		if (!req->comp_seg) {
5169 			wqe = rvt_get_swqe_ptr(qp,
5170 					       (!priv->s_tid_cur ? qp->s_size :
5171 						priv->s_tid_cur) - 1);
5172 			req = wqe_to_tid_req(wqe);
5173 		}
5174 		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5175 						     &bth2,
5176 						     CIRC_PREV(req->setup_head,
5177 							       MAX_FLOWS));
5178 		ss = NULL;
5179 		len = 0;
5180 		opcode = TID_OP(RESYNC);
5181 		break;
5182 
5183 	default:
5184 		goto bail;
5185 	}
5186 	if (priv->s_flags & RVT_S_SEND_ONE) {
5187 		priv->s_flags &= ~RVT_S_SEND_ONE;
5188 		priv->s_flags |= RVT_S_WAIT_ACK;
5189 		bth2 |= IB_BTH_REQ_ACK;
5190 	}
5191 	qp->s_len -= len;
5192 	ps->s_txreq->hdr_dwords = hwords;
5193 	ps->s_txreq->sde = priv->s_sde;
5194 	ps->s_txreq->ss = ss;
5195 	ps->s_txreq->s_cur_size = len;
5196 	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5197 			     middle, ps);
5198 	return 1;
5199 bail:
5200 	hfi1_put_txreq(ps->s_txreq);
5201 bail_no_tx:
5202 	ps->s_txreq = NULL;
5203 	priv->s_flags &= ~RVT_S_BUSY;
5204 	/*
5205 	 * If we didn't get a txreq, the QP will be woken up later to try
5206 	 * again, set the flags to the the wake up which work item to wake
5207 	 * up.
5208 	 * (A better algorithm should be found to do this and generalize the
5209 	 * sleep/wakeup flags.)
5210 	 */
5211 	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5212 	return 0;
5213 }
5214 
5215 static int make_tid_rdma_ack(struct rvt_qp *qp,
5216 			     struct ib_other_headers *ohdr,
5217 			     struct hfi1_pkt_state *ps)
5218 {
5219 	struct rvt_ack_entry *e;
5220 	struct hfi1_qp_priv *qpriv = qp->priv;
5221 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5222 	u32 hwords, next;
5223 	u32 len = 0;
5224 	u32 bth1 = 0, bth2 = 0;
5225 	int middle = 0;
5226 	u16 flow;
5227 	struct tid_rdma_request *req, *nreq;
5228 
5229 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5230 	/* Don't send an ACK if we aren't supposed to. */
5231 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5232 		goto bail;
5233 
5234 	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
5235 	hwords = 5;
5236 
5237 	e = &qp->s_ack_queue[qpriv->r_tid_ack];
5238 	req = ack_to_tid_req(e);
5239 	/*
5240 	 * In the RESYNC case, we are exactly one segment past the
5241 	 * previously sent ack or at the previously sent NAK. So to send
5242 	 * the resync ack, we go back one segment (which might be part of
5243 	 * the previous request) and let the do-while loop execute again.
5244 	 * The advantage of executing the do-while loop is that any data
5245 	 * received after the previous ack is automatically acked in the
5246 	 * RESYNC ack. It turns out that for the do-while loop we only need
5247 	 * to pull back qpriv->r_tid_ack, not the segment
5248 	 * indices/counters. The scheme works even if the previous request
5249 	 * was not a TID WRITE request.
5250 	 */
5251 	if (qpriv->resync) {
5252 		if (!req->ack_seg || req->ack_seg == req->total_segs)
5253 			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5254 				rvt_size_atomic(&dev->rdi) :
5255 				qpriv->r_tid_ack - 1;
5256 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5257 		req = ack_to_tid_req(e);
5258 	}
5259 
5260 	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5261 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5262 					req);
5263 	/*
5264 	 * If we've sent all the ACKs that we can, we are done
5265 	 * until we get more segments...
5266 	 */
5267 	if (!qpriv->s_nak_state && !qpriv->resync &&
5268 	    req->ack_seg == req->comp_seg)
5269 		goto bail;
5270 
5271 	do {
5272 		/*
5273 		 * To deal with coalesced ACKs, the acked_tail pointer
5274 		 * into the flow array is used. The distance between it
5275 		 * and the clear_tail is the number of flows that are
5276 		 * being ACK'ed.
5277 		 */
5278 		req->ack_seg +=
5279 			/* Get up-to-date value */
5280 			CIRC_CNT(req->clear_tail, req->acked_tail,
5281 				 MAX_FLOWS);
5282 		/* Advance acked index */
5283 		req->acked_tail = req->clear_tail;
5284 
5285 		/*
5286 		 * req->clear_tail points to the segment currently being
5287 		 * received. So, when sending an ACK, the previous
5288 		 * segment is being ACK'ed.
5289 		 */
5290 		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5291 		if (req->ack_seg != req->total_segs)
5292 			break;
5293 		req->state = TID_REQUEST_COMPLETE;
5294 
5295 		next = qpriv->r_tid_ack + 1;
5296 		if (next > rvt_size_atomic(&dev->rdi))
5297 			next = 0;
5298 		qpriv->r_tid_ack = next;
5299 		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5300 			break;
5301 		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5302 		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5303 			break;
5304 
5305 		/* Move to the next ack entry now */
5306 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5307 		req = ack_to_tid_req(e);
5308 	} while (1);
5309 
5310 	/*
5311 	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5312 	 * req could be pointing at the previous ack queue entry
5313 	 */
5314 	if (qpriv->s_nak_state ||
5315 	    (qpriv->resync &&
5316 	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5317 	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5318 		      full_flow_psn(&req->flows[flow],
5319 				    req->flows[flow].flow_state.lpsn)) > 0))) {
5320 		/*
5321 		 * A NAK will implicitly acknowledge all previous TID RDMA
5322 		 * requests. Therefore, we NAK with the req->acked_tail
5323 		 * segment for the request at qpriv->r_tid_ack (same at
5324 		 * this point as the req->clear_tail segment for the
5325 		 * qpriv->r_tid_tail request)
5326 		 */
5327 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5328 		req = ack_to_tid_req(e);
5329 		flow = req->acked_tail;
5330 	} else if (req->ack_seg == req->total_segs &&
5331 		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5332 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5333 
5334 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5335 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5336 					req);
5337 	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5338 						&bth2);
5339 	len = 0;
5340 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5341 	ps->s_txreq->hdr_dwords = hwords;
5342 	ps->s_txreq->sde = qpriv->s_sde;
5343 	ps->s_txreq->s_cur_size = len;
5344 	ps->s_txreq->ss = NULL;
5345 	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5346 			     ps);
5347 	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5348 	return 1;
5349 bail:
5350 	/*
5351 	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5352 	 * RVT_S_RESP_PENDING
5353 	 */
5354 	smp_wmb();
5355 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5356 	return 0;
5357 }
5358 
5359 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5360 {
5361 	struct hfi1_qp_priv *priv = qp->priv;
5362 
5363 	return !(priv->s_flags & RVT_S_BUSY ||
5364 		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5365 		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5366 		 (priv->s_flags & RVT_S_RESP_PENDING) ||
5367 		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5368 }
5369 
5370 void _hfi1_do_tid_send(struct work_struct *work)
5371 {
5372 	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5373 	struct rvt_qp *qp = iowait_to_qp(w->iow);
5374 
5375 	hfi1_do_tid_send(qp);
5376 }
5377 
5378 static void hfi1_do_tid_send(struct rvt_qp *qp)
5379 {
5380 	struct hfi1_pkt_state ps;
5381 	struct hfi1_qp_priv *priv = qp->priv;
5382 
5383 	ps.dev = to_idev(qp->ibqp.device);
5384 	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5385 	ps.ppd = ppd_from_ibp(ps.ibp);
5386 	ps.wait = iowait_get_tid_work(&priv->s_iowait);
5387 	ps.in_thread = false;
5388 	ps.timeout_int = qp->timeout_jiffies / 8;
5389 
5390 	trace_hfi1_rc_do_tid_send(qp, false);
5391 	spin_lock_irqsave(&qp->s_lock, ps.flags);
5392 
5393 	/* Return if we are already busy processing a work request. */
5394 	if (!hfi1_send_tid_ok(qp)) {
5395 		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5396 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5397 		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5398 		return;
5399 	}
5400 
5401 	priv->s_flags |= RVT_S_BUSY;
5402 
5403 	ps.timeout = jiffies + ps.timeout_int;
5404 	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5405 		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5406 	ps.pkts_sent = false;
5407 
5408 	/* insure a pre-built packet is handled  */
5409 	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5410 	do {
5411 		/* Check for a constructed packet to be sent. */
5412 		if (ps.s_txreq) {
5413 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5414 				qp->s_flags |= RVT_S_BUSY;
5415 				ps.wait = iowait_get_ib_work(&priv->s_iowait);
5416 			}
5417 			spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5418 
5419 			/*
5420 			 * If the packet cannot be sent now, return and
5421 			 * the send tasklet will be woken up later.
5422 			 */
5423 			if (hfi1_verbs_send(qp, &ps))
5424 				return;
5425 
5426 			/* allow other tasks to run */
5427 			if (hfi1_schedule_send_yield(qp, &ps, true))
5428 				return;
5429 
5430 			spin_lock_irqsave(&qp->s_lock, ps.flags);
5431 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5432 				qp->s_flags &= ~RVT_S_BUSY;
5433 				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5434 				ps.wait = iowait_get_tid_work(&priv->s_iowait);
5435 				if (iowait_flag_set(&priv->s_iowait,
5436 						    IOWAIT_PENDING_IB))
5437 					hfi1_schedule_send(qp);
5438 			}
5439 		}
5440 	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
5441 	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5442 	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5443 }
5444 
5445 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5446 {
5447 	struct hfi1_qp_priv *priv = qp->priv;
5448 	struct hfi1_ibport *ibp =
5449 		to_iport(qp->ibqp.device, qp->port_num);
5450 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5451 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
5452 
5453 	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5454 				   priv->s_sde ?
5455 				   priv->s_sde->cpu :
5456 				   cpumask_first(cpumask_of_node(dd->node)));
5457 }
5458 
5459 /**
5460  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5461  * @qp: the QP
5462  *
5463  * This schedules qp progress on the TID RDMA state machine. Caller
5464  * should hold the s_lock.
5465  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5466  * the two state machines can step on each other with respect to the
5467  * RVT_S_BUSY flag.
5468  * Therefore, a modified test is used.
5469  * @return true if the second leg is scheduled;
5470  *  false if the second leg is not scheduled.
5471  */
5472 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5473 {
5474 	lockdep_assert_held(&qp->s_lock);
5475 	if (hfi1_send_tid_ok(qp)) {
5476 		/*
5477 		 * The following call returns true if the qp is not on the
5478 		 * queue and false if the qp is already on the queue before
5479 		 * this call. Either way, the qp will be on the queue when the
5480 		 * call returns.
5481 		 */
5482 		_hfi1_schedule_tid_send(qp);
5483 		return true;
5484 	}
5485 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5486 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5487 				IOWAIT_PENDING_TID);
5488 	return false;
5489 }
5490 
5491 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5492 {
5493 	struct rvt_ack_entry *prev;
5494 	struct tid_rdma_request *req;
5495 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5496 	struct hfi1_qp_priv *priv = qp->priv;
5497 	u32 s_prev;
5498 
5499 	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5500 		(qp->s_tail_ack_queue - 1);
5501 	prev = &qp->s_ack_queue[s_prev];
5502 
5503 	if ((e->opcode == TID_OP(READ_REQ) ||
5504 	     e->opcode == OP(RDMA_READ_REQUEST)) &&
5505 	    prev->opcode == TID_OP(WRITE_REQ)) {
5506 		req = ack_to_tid_req(prev);
5507 		if (req->ack_seg != req->total_segs) {
5508 			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5509 			return true;
5510 		}
5511 	}
5512 	return false;
5513 }
5514 
5515 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5516 {
5517 	u64 reg;
5518 
5519 	/*
5520 	 * The only sane way to get the amount of
5521 	 * progress is to read the HW flow state.
5522 	 */
5523 	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5524 	return mask_psn(reg);
5525 }
5526 
5527 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5528 			     struct ib_other_headers *ohdr,
5529 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5530 {
5531 	unsigned long flags;
5532 
5533 	tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5534 	if (fecn) {
5535 		spin_lock_irqsave(&qp->s_lock, flags);
5536 		qp->s_flags |= RVT_S_ECN;
5537 		spin_unlock_irqrestore(&qp->s_lock, flags);
5538 	}
5539 }
5540 
5541 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5542 				   struct hfi1_qp_priv *priv,
5543 				   struct hfi1_ctxtdata *rcd,
5544 				   struct tid_rdma_flow *flow,
5545 				   bool fecn)
5546 {
5547 	/*
5548 	 * If a start/middle packet is delivered here due to
5549 	 * RSM rule and FECN, we need to update the r_next_psn.
5550 	 */
5551 	if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5552 	    !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5553 		struct hfi1_devdata *dd = rcd->dd;
5554 
5555 		flow->flow_state.r_next_psn =
5556 			read_r_next_psn(dd, rcd->ctxt, flow->idx);
5557 	}
5558 }
5559