1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright(c) 2018 Intel Corporation. 4 * 5 */ 6 7 #include "hfi.h" 8 #include "qp.h" 9 #include "rc.h" 10 #include "verbs.h" 11 #include "tid_rdma.h" 12 #include "exp_rcv.h" 13 #include "trace.h" 14 15 /** 16 * DOC: TID RDMA READ protocol 17 * 18 * This is an end-to-end protocol at the hfi1 level between two nodes that 19 * improves performance by avoiding data copy on the requester side. It 20 * converts a qualified RDMA READ request into a TID RDMA READ request on 21 * the requester side and thereafter handles the request and response 22 * differently. To be qualified, the RDMA READ request should meet the 23 * following: 24 * -- The total data length should be greater than 256K; 25 * -- The total data length should be a multiple of 4K page size; 26 * -- Each local scatter-gather entry should be 4K page aligned; 27 * -- Each local scatter-gather entry should be a multiple of 4K page size; 28 */ 29 30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32) 31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33) 32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34) 33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35) 34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37) 35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38) 36 37 /* Maximum number of packets within a flow generation. */ 38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT) 39 40 #define GENERATION_MASK 0xFFFFF 41 42 static u32 mask_generation(u32 a) 43 { 44 return a & GENERATION_MASK; 45 } 46 47 /* Reserved generation value to set to unused flows for kernel contexts */ 48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX) 49 50 /* 51 * J_KEY for kernel contexts when TID RDMA is used. 52 * See generate_jkey() in hfi.h for more information. 53 */ 54 #define TID_RDMA_JKEY 32 55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE 56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1) 57 58 /* Maximum number of segments in flight per QP request. */ 59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ 6 60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4 61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \ 62 TID_RDMA_MAX_WRITE_SEGS_PER_REQ) 63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1) 64 65 #define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE) 66 67 #define TID_RDMA_DESTQP_FLOW_SHIFT 11 68 #define TID_RDMA_DESTQP_FLOW_MASK 0x1f 69 70 #define TID_OPFN_QP_CTXT_MASK 0xff 71 #define TID_OPFN_QP_CTXT_SHIFT 56 72 #define TID_OPFN_QP_KDETH_MASK 0xff 73 #define TID_OPFN_QP_KDETH_SHIFT 48 74 #define TID_OPFN_MAX_LEN_MASK 0x7ff 75 #define TID_OPFN_MAX_LEN_SHIFT 37 76 #define TID_OPFN_TIMEOUT_MASK 0x1f 77 #define TID_OPFN_TIMEOUT_SHIFT 32 78 #define TID_OPFN_RESERVED_MASK 0x3f 79 #define TID_OPFN_RESERVED_SHIFT 26 80 #define TID_OPFN_URG_MASK 0x1 81 #define TID_OPFN_URG_SHIFT 25 82 #define TID_OPFN_VER_MASK 0x7 83 #define TID_OPFN_VER_SHIFT 22 84 #define TID_OPFN_JKEY_MASK 0x3f 85 #define TID_OPFN_JKEY_SHIFT 16 86 #define TID_OPFN_MAX_READ_MASK 0x3f 87 #define TID_OPFN_MAX_READ_SHIFT 10 88 #define TID_OPFN_MAX_WRITE_MASK 0x3f 89 #define TID_OPFN_MAX_WRITE_SHIFT 4 90 91 /* 92 * OPFN TID layout 93 * 94 * 63 47 31 15 95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC 96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210 97 * N - the context Number 98 * K - the Kdeth_qp 99 * M - Max_len 100 * T - Timeout 101 * D - reserveD 102 * V - version 103 * U - Urg capable 104 * J - Jkey 105 * R - max_Read 106 * W - max_Write 107 * C - Capcode 108 */ 109 110 static u32 tid_rdma_flow_wt; 111 112 static void tid_rdma_trigger_resume(struct work_struct *work); 113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req); 114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req, 115 gfp_t gfp); 116 static void hfi1_init_trdma_req(struct rvt_qp *qp, 117 struct tid_rdma_request *req); 118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx); 119 static void hfi1_tid_timeout(struct timer_list *t); 120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp); 121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp); 122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp); 123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp); 124 static void hfi1_tid_retry_timeout(struct timer_list *t); 125 static int make_tid_rdma_ack(struct rvt_qp *qp, 126 struct ib_other_headers *ohdr, 127 struct hfi1_pkt_state *ps); 128 static void hfi1_do_tid_send(struct rvt_qp *qp); 129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx); 130 static void tid_rdma_rcv_err(struct hfi1_packet *packet, 131 struct ib_other_headers *ohdr, 132 struct rvt_qp *qp, u32 psn, int diff, bool fecn); 133 static void update_r_next_psn_fecn(struct hfi1_packet *packet, 134 struct hfi1_qp_priv *priv, 135 struct hfi1_ctxtdata *rcd, 136 struct tid_rdma_flow *flow, 137 bool fecn); 138 139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p) 140 { 141 return 142 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) << 143 TID_OPFN_QP_CTXT_SHIFT) | 144 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) << 145 TID_OPFN_QP_KDETH_SHIFT) | 146 (((u64)((p->max_len >> PAGE_SHIFT) - 1) & 147 TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) | 148 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) << 149 TID_OPFN_TIMEOUT_SHIFT) | 150 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) | 151 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) | 152 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) << 153 TID_OPFN_MAX_READ_SHIFT) | 154 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) << 155 TID_OPFN_MAX_WRITE_SHIFT); 156 } 157 158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data) 159 { 160 p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) & 161 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT; 162 p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK; 163 p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) & 164 TID_OPFN_MAX_WRITE_MASK; 165 p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) & 166 TID_OPFN_MAX_READ_MASK; 167 p->qp = 168 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK) 169 << 16) | 170 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK)); 171 p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK; 172 p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK; 173 } 174 175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p) 176 { 177 struct hfi1_qp_priv *priv = qp->priv; 178 179 p->qp = (kdeth_qp << 16) | priv->rcd->ctxt; 180 p->max_len = TID_RDMA_MAX_SEGMENT_SIZE; 181 p->jkey = priv->rcd->jkey; 182 p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ; 183 p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ; 184 p->timeout = qp->timeout; 185 p->urg = is_urg_masked(priv->rcd); 186 } 187 188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data) 189 { 190 struct hfi1_qp_priv *priv = qp->priv; 191 192 *data = tid_rdma_opfn_encode(&priv->tid_rdma.local); 193 return true; 194 } 195 196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data) 197 { 198 struct hfi1_qp_priv *priv = qp->priv; 199 struct tid_rdma_params *remote, *old; 200 bool ret = true; 201 202 old = rcu_dereference_protected(priv->tid_rdma.remote, 203 lockdep_is_held(&priv->opfn.lock)); 204 data &= ~0xfULL; 205 /* 206 * If data passed in is zero, return true so as not to continue the 207 * negotiation process 208 */ 209 if (!data || !HFI1_CAP_IS_KSET(TID_RDMA)) 210 goto null; 211 /* 212 * If kzalloc fails, return false. This will result in: 213 * * at the requester a new OPFN request being generated to retry 214 * the negotiation 215 * * at the responder, 0 being returned to the requester so as to 216 * disable TID RDMA at both the requester and the responder 217 */ 218 remote = kzalloc(sizeof(*remote), GFP_ATOMIC); 219 if (!remote) { 220 ret = false; 221 goto null; 222 } 223 224 tid_rdma_opfn_decode(remote, data); 225 priv->tid_timer_timeout_jiffies = 226 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) / 227 1000UL) << 3) * 7); 228 trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local); 229 trace_hfi1_opfn_param(qp, 1, remote); 230 rcu_assign_pointer(priv->tid_rdma.remote, remote); 231 /* 232 * A TID RDMA READ request's segment size is not equal to 233 * remote->max_len only when the request's data length is smaller 234 * than remote->max_len. In that case, there will be only one segment. 235 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg 236 * during retry, it will lead to req->cur_seg = 0, which is exactly 237 * what is expected. 238 */ 239 priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len); 240 priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1; 241 goto free; 242 null: 243 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL); 244 priv->timeout_shift = 0; 245 free: 246 if (old) 247 kfree_rcu(old, rcu_head); 248 return ret; 249 } 250 251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data) 252 { 253 bool ret; 254 255 ret = tid_rdma_conn_reply(qp, *data); 256 *data = 0; 257 /* 258 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate 259 * TID RDMA could not be enabled. This will result in TID RDMA being 260 * disabled at the requester too. 261 */ 262 if (ret) 263 (void)tid_rdma_conn_req(qp, data); 264 return ret; 265 } 266 267 void tid_rdma_conn_error(struct rvt_qp *qp) 268 { 269 struct hfi1_qp_priv *priv = qp->priv; 270 struct tid_rdma_params *old; 271 272 old = rcu_dereference_protected(priv->tid_rdma.remote, 273 lockdep_is_held(&priv->opfn.lock)); 274 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL); 275 if (old) 276 kfree_rcu(old, rcu_head); 277 } 278 279 /* This is called at context initialization time */ 280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit) 281 { 282 if (reinit) 283 return 0; 284 285 BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY); 286 BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY); 287 rcd->jkey = TID_RDMA_JKEY; 288 hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey); 289 return hfi1_alloc_ctxt_rcv_groups(rcd); 290 } 291 292 /** 293 * qp_to_rcd - determine the receive context used by a qp 294 * @qp - the qp 295 * 296 * This routine returns the receive context associated 297 * with a a qp's qpn. 298 * 299 * Returns the context. 300 */ 301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi, 302 struct rvt_qp *qp) 303 { 304 struct hfi1_ibdev *verbs_dev = container_of(rdi, 305 struct hfi1_ibdev, 306 rdi); 307 struct hfi1_devdata *dd = container_of(verbs_dev, 308 struct hfi1_devdata, 309 verbs_dev); 310 unsigned int ctxt; 311 312 if (qp->ibqp.qp_num == 0) 313 ctxt = 0; 314 else 315 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift); 316 return dd->rcd[ctxt]; 317 } 318 319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp, 320 struct ib_qp_init_attr *init_attr) 321 { 322 struct hfi1_qp_priv *qpriv = qp->priv; 323 int i, ret; 324 325 qpriv->rcd = qp_to_rcd(rdi, qp); 326 327 spin_lock_init(&qpriv->opfn.lock); 328 INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request); 329 INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume); 330 qpriv->flow_state.psn = 0; 331 qpriv->flow_state.index = RXE_NUM_TID_FLOWS; 332 qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS; 333 qpriv->flow_state.generation = KERN_GENERATION_RESERVED; 334 qpriv->s_state = TID_OP(WRITE_RESP); 335 qpriv->s_tid_cur = HFI1_QP_WQE_INVALID; 336 qpriv->s_tid_head = HFI1_QP_WQE_INVALID; 337 qpriv->s_tid_tail = HFI1_QP_WQE_INVALID; 338 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 339 qpriv->r_tid_head = HFI1_QP_WQE_INVALID; 340 qpriv->r_tid_tail = HFI1_QP_WQE_INVALID; 341 qpriv->r_tid_ack = HFI1_QP_WQE_INVALID; 342 qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID; 343 atomic_set(&qpriv->n_requests, 0); 344 atomic_set(&qpriv->n_tid_requests, 0); 345 timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0); 346 timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0); 347 INIT_LIST_HEAD(&qpriv->tid_wait); 348 349 if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) { 350 struct hfi1_devdata *dd = qpriv->rcd->dd; 351 352 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES * 353 sizeof(*qpriv->pages), 354 GFP_KERNEL, dd->node); 355 if (!qpriv->pages) 356 return -ENOMEM; 357 for (i = 0; i < qp->s_size; i++) { 358 struct hfi1_swqe_priv *priv; 359 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i); 360 361 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, 362 dd->node); 363 if (!priv) 364 return -ENOMEM; 365 366 hfi1_init_trdma_req(qp, &priv->tid_req); 367 priv->tid_req.e.swqe = wqe; 368 wqe->priv = priv; 369 } 370 for (i = 0; i < rvt_max_atomic(rdi); i++) { 371 struct hfi1_ack_priv *priv; 372 373 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, 374 dd->node); 375 if (!priv) 376 return -ENOMEM; 377 378 hfi1_init_trdma_req(qp, &priv->tid_req); 379 priv->tid_req.e.ack = &qp->s_ack_queue[i]; 380 381 ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, 382 GFP_KERNEL); 383 if (ret) { 384 kfree(priv); 385 return ret; 386 } 387 qp->s_ack_queue[i].priv = priv; 388 } 389 } 390 391 return 0; 392 } 393 394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp) 395 { 396 struct hfi1_qp_priv *qpriv = qp->priv; 397 struct rvt_swqe *wqe; 398 u32 i; 399 400 if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) { 401 for (i = 0; i < qp->s_size; i++) { 402 wqe = rvt_get_swqe_ptr(qp, i); 403 kfree(wqe->priv); 404 wqe->priv = NULL; 405 } 406 for (i = 0; i < rvt_max_atomic(rdi); i++) { 407 struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv; 408 409 if (priv) 410 hfi1_kern_exp_rcv_free_flows(&priv->tid_req); 411 kfree(priv); 412 qp->s_ack_queue[i].priv = NULL; 413 } 414 cancel_work_sync(&qpriv->opfn.opfn_work); 415 kfree(qpriv->pages); 416 qpriv->pages = NULL; 417 } 418 } 419 420 /* Flow and tid waiter functions */ 421 /** 422 * DOC: lock ordering 423 * 424 * There are two locks involved with the queuing 425 * routines: the qp s_lock and the exp_lock. 426 * 427 * Since the tid space allocation is called from 428 * the send engine, the qp s_lock is already held. 429 * 430 * The allocation routines will get the exp_lock. 431 * 432 * The first_qp() call is provided to allow the head of 433 * the rcd wait queue to be fetched under the exp_lock and 434 * followed by a drop of the exp_lock. 435 * 436 * Any qp in the wait list will have the qp reference count held 437 * to hold the qp in memory. 438 */ 439 440 /* 441 * return head of rcd wait list 442 * 443 * Must hold the exp_lock. 444 * 445 * Get a reference to the QP to hold the QP in memory. 446 * 447 * The caller must release the reference when the local 448 * is no longer being used. 449 */ 450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd, 451 struct tid_queue *queue) 452 __must_hold(&rcd->exp_lock) 453 { 454 struct hfi1_qp_priv *priv; 455 456 lockdep_assert_held(&rcd->exp_lock); 457 priv = list_first_entry_or_null(&queue->queue_head, 458 struct hfi1_qp_priv, 459 tid_wait); 460 if (!priv) 461 return NULL; 462 rvt_get_qp(priv->owner); 463 return priv->owner; 464 } 465 466 /** 467 * kernel_tid_waiters - determine rcd wait 468 * @rcd: the receive context 469 * @qp: the head of the qp being processed 470 * 471 * This routine will return false IFF 472 * the list is NULL or the head of the 473 * list is the indicated qp. 474 * 475 * Must hold the qp s_lock and the exp_lock. 476 * 477 * Return: 478 * false if either of the conditions below are satisfied: 479 * 1. The list is empty or 480 * 2. The indicated qp is at the head of the list and the 481 * HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags. 482 * true is returned otherwise. 483 */ 484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd, 485 struct tid_queue *queue, struct rvt_qp *qp) 486 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 487 { 488 struct rvt_qp *fqp; 489 bool ret = true; 490 491 lockdep_assert_held(&qp->s_lock); 492 lockdep_assert_held(&rcd->exp_lock); 493 fqp = first_qp(rcd, queue); 494 if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE))) 495 ret = false; 496 rvt_put_qp(fqp); 497 return ret; 498 } 499 500 /** 501 * dequeue_tid_waiter - dequeue the qp from the list 502 * @qp - the qp to remove the wait list 503 * 504 * This routine removes the indicated qp from the 505 * wait list if it is there. 506 * 507 * This should be done after the hardware flow and 508 * tid array resources have been allocated. 509 * 510 * Must hold the qp s_lock and the rcd exp_lock. 511 * 512 * It assumes the s_lock to protect the s_flags 513 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag. 514 */ 515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd, 516 struct tid_queue *queue, struct rvt_qp *qp) 517 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 518 { 519 struct hfi1_qp_priv *priv = qp->priv; 520 521 lockdep_assert_held(&qp->s_lock); 522 lockdep_assert_held(&rcd->exp_lock); 523 if (list_empty(&priv->tid_wait)) 524 return; 525 list_del_init(&priv->tid_wait); 526 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 527 queue->dequeue++; 528 rvt_put_qp(qp); 529 } 530 531 /** 532 * queue_qp_for_tid_wait - suspend QP on tid space 533 * @rcd: the receive context 534 * @qp: the qp 535 * 536 * The qp is inserted at the tail of the rcd 537 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set. 538 * 539 * Must hold the qp s_lock and the exp_lock. 540 */ 541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd, 542 struct tid_queue *queue, struct rvt_qp *qp) 543 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 544 { 545 struct hfi1_qp_priv *priv = qp->priv; 546 547 lockdep_assert_held(&qp->s_lock); 548 lockdep_assert_held(&rcd->exp_lock); 549 if (list_empty(&priv->tid_wait)) { 550 qp->s_flags |= HFI1_S_WAIT_TID_SPACE; 551 list_add_tail(&priv->tid_wait, &queue->queue_head); 552 priv->tid_enqueue = ++queue->enqueue; 553 rcd->dd->verbs_dev.n_tidwait++; 554 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE); 555 rvt_get_qp(qp); 556 } 557 } 558 559 /** 560 * __trigger_tid_waiter - trigger tid waiter 561 * @qp: the qp 562 * 563 * This is a private entrance to schedule the qp 564 * assuming the caller is holding the qp->s_lock. 565 */ 566 static void __trigger_tid_waiter(struct rvt_qp *qp) 567 __must_hold(&qp->s_lock) 568 { 569 lockdep_assert_held(&qp->s_lock); 570 if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE)) 571 return; 572 trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE); 573 hfi1_schedule_send(qp); 574 } 575 576 /** 577 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp 578 * @qp - the qp 579 * 580 * trigger a schedule or a waiting qp in a deadlock 581 * safe manner. The qp reference is held prior 582 * to this call via first_qp(). 583 * 584 * If the qp trigger was already scheduled (!rval) 585 * the the reference is dropped, otherwise the resume 586 * or the destroy cancel will dispatch the reference. 587 */ 588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp) 589 { 590 struct hfi1_qp_priv *priv; 591 struct hfi1_ibport *ibp; 592 struct hfi1_pportdata *ppd; 593 struct hfi1_devdata *dd; 594 bool rval; 595 596 if (!qp) 597 return; 598 599 priv = qp->priv; 600 ibp = to_iport(qp->ibqp.device, qp->port_num); 601 ppd = ppd_from_ibp(ibp); 602 dd = dd_from_ibdev(qp->ibqp.device); 603 604 rval = queue_work_on(priv->s_sde ? 605 priv->s_sde->cpu : 606 cpumask_first(cpumask_of_node(dd->node)), 607 ppd->hfi1_wq, 608 &priv->tid_rdma.trigger_work); 609 if (!rval) 610 rvt_put_qp(qp); 611 } 612 613 /** 614 * tid_rdma_trigger_resume - field a trigger work request 615 * @work - the work item 616 * 617 * Complete the off qp trigger processing by directly 618 * calling the progress routine. 619 */ 620 static void tid_rdma_trigger_resume(struct work_struct *work) 621 { 622 struct tid_rdma_qp_params *tr; 623 struct hfi1_qp_priv *priv; 624 struct rvt_qp *qp; 625 626 tr = container_of(work, struct tid_rdma_qp_params, trigger_work); 627 priv = container_of(tr, struct hfi1_qp_priv, tid_rdma); 628 qp = priv->owner; 629 spin_lock_irq(&qp->s_lock); 630 if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) { 631 spin_unlock_irq(&qp->s_lock); 632 hfi1_do_send(priv->owner, true); 633 } else { 634 spin_unlock_irq(&qp->s_lock); 635 } 636 rvt_put_qp(qp); 637 } 638 639 /** 640 * tid_rdma_flush_wait - unwind any tid space wait 641 * 642 * This is called when resetting a qp to 643 * allow a destroy or reset to get rid 644 * of any tid space linkage and reference counts. 645 */ 646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue) 647 __must_hold(&qp->s_lock) 648 { 649 struct hfi1_qp_priv *priv; 650 651 if (!qp) 652 return; 653 lockdep_assert_held(&qp->s_lock); 654 priv = qp->priv; 655 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 656 spin_lock(&priv->rcd->exp_lock); 657 if (!list_empty(&priv->tid_wait)) { 658 list_del_init(&priv->tid_wait); 659 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 660 queue->dequeue++; 661 rvt_put_qp(qp); 662 } 663 spin_unlock(&priv->rcd->exp_lock); 664 } 665 666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp) 667 __must_hold(&qp->s_lock) 668 { 669 struct hfi1_qp_priv *priv = qp->priv; 670 671 _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue); 672 _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue); 673 } 674 675 /* Flow functions */ 676 /** 677 * kern_reserve_flow - allocate a hardware flow 678 * @rcd - the context to use for allocation 679 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to 680 * signify "don't care". 681 * 682 * Use a bit mask based allocation to reserve a hardware 683 * flow for use in receiving KDETH data packets. If a preferred flow is 684 * specified the function will attempt to reserve that flow again, if 685 * available. 686 * 687 * The exp_lock must be held. 688 * 689 * Return: 690 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1 691 * On failure: -EAGAIN 692 */ 693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last) 694 __must_hold(&rcd->exp_lock) 695 { 696 int nr; 697 698 /* Attempt to reserve the preferred flow index */ 699 if (last >= 0 && last < RXE_NUM_TID_FLOWS && 700 !test_and_set_bit(last, &rcd->flow_mask)) 701 return last; 702 703 nr = ffz(rcd->flow_mask); 704 BUILD_BUG_ON(RXE_NUM_TID_FLOWS >= 705 (sizeof(rcd->flow_mask) * BITS_PER_BYTE)); 706 if (nr > (RXE_NUM_TID_FLOWS - 1)) 707 return -EAGAIN; 708 set_bit(nr, &rcd->flow_mask); 709 return nr; 710 } 711 712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation, 713 u32 flow_idx) 714 { 715 u64 reg; 716 717 reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) | 718 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK | 719 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK | 720 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK | 721 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK | 722 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK; 723 724 if (generation != KERN_GENERATION_RESERVED) 725 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK; 726 727 write_uctxt_csr(rcd->dd, rcd->ctxt, 728 RCV_TID_FLOW_TABLE + 8 * flow_idx, reg); 729 } 730 731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx) 732 __must_hold(&rcd->exp_lock) 733 { 734 u32 generation = rcd->flows[flow_idx].generation; 735 736 kern_set_hw_flow(rcd, generation, flow_idx); 737 return generation; 738 } 739 740 static u32 kern_flow_generation_next(u32 gen) 741 { 742 u32 generation = mask_generation(gen + 1); 743 744 if (generation == KERN_GENERATION_RESERVED) 745 generation = mask_generation(generation + 1); 746 return generation; 747 } 748 749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx) 750 __must_hold(&rcd->exp_lock) 751 { 752 rcd->flows[flow_idx].generation = 753 kern_flow_generation_next(rcd->flows[flow_idx].generation); 754 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx); 755 } 756 757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp) 758 { 759 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 760 struct tid_flow_state *fs = &qpriv->flow_state; 761 struct rvt_qp *fqp; 762 unsigned long flags; 763 int ret = 0; 764 765 /* The QP already has an allocated flow */ 766 if (fs->index != RXE_NUM_TID_FLOWS) 767 return ret; 768 769 spin_lock_irqsave(&rcd->exp_lock, flags); 770 if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp)) 771 goto queue; 772 773 ret = kern_reserve_flow(rcd, fs->last_index); 774 if (ret < 0) 775 goto queue; 776 fs->index = ret; 777 fs->last_index = fs->index; 778 779 /* Generation received in a RESYNC overrides default flow generation */ 780 if (fs->generation != KERN_GENERATION_RESERVED) 781 rcd->flows[fs->index].generation = fs->generation; 782 fs->generation = kern_setup_hw_flow(rcd, fs->index); 783 fs->psn = 0; 784 dequeue_tid_waiter(rcd, &rcd->flow_queue, qp); 785 /* get head before dropping lock */ 786 fqp = first_qp(rcd, &rcd->flow_queue); 787 spin_unlock_irqrestore(&rcd->exp_lock, flags); 788 789 tid_rdma_schedule_tid_wakeup(fqp); 790 return 0; 791 queue: 792 queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp); 793 spin_unlock_irqrestore(&rcd->exp_lock, flags); 794 return -EAGAIN; 795 } 796 797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp) 798 { 799 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 800 struct tid_flow_state *fs = &qpriv->flow_state; 801 struct rvt_qp *fqp; 802 unsigned long flags; 803 804 if (fs->index >= RXE_NUM_TID_FLOWS) 805 return; 806 spin_lock_irqsave(&rcd->exp_lock, flags); 807 kern_clear_hw_flow(rcd, fs->index); 808 clear_bit(fs->index, &rcd->flow_mask); 809 fs->index = RXE_NUM_TID_FLOWS; 810 fs->psn = 0; 811 fs->generation = KERN_GENERATION_RESERVED; 812 813 /* get head before dropping lock */ 814 fqp = first_qp(rcd, &rcd->flow_queue); 815 spin_unlock_irqrestore(&rcd->exp_lock, flags); 816 817 if (fqp == qp) { 818 __trigger_tid_waiter(fqp); 819 rvt_put_qp(fqp); 820 } else { 821 tid_rdma_schedule_tid_wakeup(fqp); 822 } 823 } 824 825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd) 826 { 827 int i; 828 829 for (i = 0; i < RXE_NUM_TID_FLOWS; i++) { 830 rcd->flows[i].generation = mask_generation(prandom_u32()); 831 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i); 832 } 833 } 834 835 /* TID allocation functions */ 836 static u8 trdma_pset_order(struct tid_rdma_pageset *s) 837 { 838 u8 count = s->count; 839 840 return ilog2(count) + 1; 841 } 842 843 /** 844 * tid_rdma_find_phys_blocks_4k - get groups base on mr info 845 * @npages - number of pages 846 * @pages - pointer to an array of page structs 847 * @list - page set array to return 848 * 849 * This routine returns the number of groups associated with 850 * the current sge information. This implementation is based 851 * on the expected receive find_phys_blocks() adjusted to 852 * use the MR information vs. the pfn. 853 * 854 * Return: 855 * the number of RcvArray entries 856 */ 857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow, 858 struct page **pages, 859 u32 npages, 860 struct tid_rdma_pageset *list) 861 { 862 u32 pagecount, pageidx, setcount = 0, i; 863 void *vaddr, *this_vaddr; 864 865 if (!npages) 866 return 0; 867 868 /* 869 * Look for sets of physically contiguous pages in the user buffer. 870 * This will allow us to optimize Expected RcvArray entry usage by 871 * using the bigger supported sizes. 872 */ 873 vaddr = page_address(pages[0]); 874 trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr); 875 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 876 this_vaddr = i < npages ? page_address(pages[i]) : NULL; 877 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0, 878 this_vaddr); 879 /* 880 * If the vaddr's are not sequential, pages are not physically 881 * contiguous. 882 */ 883 if (this_vaddr != (vaddr + PAGE_SIZE)) { 884 /* 885 * At this point we have to loop over the set of 886 * physically contiguous pages and break them down it 887 * sizes supported by the HW. 888 * There are two main constraints: 889 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 890 * If the total set size is bigger than that 891 * program only a MAX_EXPECTED_BUFFER chunk. 892 * 2. The buffer size has to be a power of two. If 893 * it is not, round down to the closes power of 894 * 2 and program that size. 895 */ 896 while (pagecount) { 897 int maxpages = pagecount; 898 u32 bufsize = pagecount * PAGE_SIZE; 899 900 if (bufsize > MAX_EXPECTED_BUFFER) 901 maxpages = 902 MAX_EXPECTED_BUFFER >> 903 PAGE_SHIFT; 904 else if (!is_power_of_2(bufsize)) 905 maxpages = 906 rounddown_pow_of_two(bufsize) >> 907 PAGE_SHIFT; 908 909 list[setcount].idx = pageidx; 910 list[setcount].count = maxpages; 911 trace_hfi1_tid_pageset(flow->req->qp, setcount, 912 list[setcount].idx, 913 list[setcount].count); 914 pagecount -= maxpages; 915 pageidx += maxpages; 916 setcount++; 917 } 918 pageidx = i; 919 pagecount = 1; 920 vaddr = this_vaddr; 921 } else { 922 vaddr += PAGE_SIZE; 923 pagecount++; 924 } 925 } 926 /* insure we always return an even number of sets */ 927 if (setcount & 1) 928 list[setcount++].count = 0; 929 return setcount; 930 } 931 932 /** 933 * tid_flush_pages - dump out pages into pagesets 934 * @list - list of pagesets 935 * @idx - pointer to current page index 936 * @pages - number of pages to dump 937 * @sets - current number of pagesset 938 * 939 * This routine flushes out accumuated pages. 940 * 941 * To insure an even number of sets the 942 * code may add a filler. 943 * 944 * This can happen with when pages is not 945 * a power of 2 or pages is a power of 2 946 * less than the maximum pages. 947 * 948 * Return: 949 * The new number of sets 950 */ 951 952 static u32 tid_flush_pages(struct tid_rdma_pageset *list, 953 u32 *idx, u32 pages, u32 sets) 954 { 955 while (pages) { 956 u32 maxpages = pages; 957 958 if (maxpages > MAX_EXPECTED_PAGES) 959 maxpages = MAX_EXPECTED_PAGES; 960 else if (!is_power_of_2(maxpages)) 961 maxpages = rounddown_pow_of_two(maxpages); 962 list[sets].idx = *idx; 963 list[sets++].count = maxpages; 964 *idx += maxpages; 965 pages -= maxpages; 966 } 967 /* might need a filler */ 968 if (sets & 1) 969 list[sets++].count = 0; 970 return sets; 971 } 972 973 /** 974 * tid_rdma_find_phys_blocks_8k - get groups base on mr info 975 * @pages - pointer to an array of page structs 976 * @npages - number of pages 977 * @list - page set array to return 978 * 979 * This routine parses an array of pages to compute pagesets 980 * in an 8k compatible way. 981 * 982 * pages are tested two at a time, i, i + 1 for contiguous 983 * pages and i - 1 and i contiguous pages. 984 * 985 * If any condition is false, any accumlated pages are flushed and 986 * v0,v1 are emitted as separate PAGE_SIZE pagesets 987 * 988 * Otherwise, the current 8k is totaled for a future flush. 989 * 990 * Return: 991 * The number of pagesets 992 * list set with the returned number of pagesets 993 * 994 */ 995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow, 996 struct page **pages, 997 u32 npages, 998 struct tid_rdma_pageset *list) 999 { 1000 u32 idx, sets = 0, i; 1001 u32 pagecnt = 0; 1002 void *v0, *v1, *vm1; 1003 1004 if (!npages) 1005 return 0; 1006 for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) { 1007 /* get a new v0 */ 1008 v0 = page_address(pages[i]); 1009 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0); 1010 v1 = i + 1 < npages ? 1011 page_address(pages[i + 1]) : NULL; 1012 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1); 1013 /* compare i, i + 1 vaddr */ 1014 if (v1 != (v0 + PAGE_SIZE)) { 1015 /* flush out pages */ 1016 sets = tid_flush_pages(list, &idx, pagecnt, sets); 1017 /* output v0,v1 as two pagesets */ 1018 list[sets].idx = idx++; 1019 list[sets++].count = 1; 1020 if (v1) { 1021 list[sets].count = 1; 1022 list[sets++].idx = idx++; 1023 } else { 1024 list[sets++].count = 0; 1025 } 1026 vm1 = NULL; 1027 pagecnt = 0; 1028 continue; 1029 } 1030 /* i,i+1 consecutive, look at i-1,i */ 1031 if (vm1 && v0 != (vm1 + PAGE_SIZE)) { 1032 /* flush out pages */ 1033 sets = tid_flush_pages(list, &idx, pagecnt, sets); 1034 pagecnt = 0; 1035 } 1036 /* pages will always be a multiple of 8k */ 1037 pagecnt += 2; 1038 /* save i-1 */ 1039 vm1 = v1; 1040 /* move to next pair */ 1041 } 1042 /* dump residual pages at end */ 1043 sets = tid_flush_pages(list, &idx, npages - idx, sets); 1044 /* by design cannot be odd sets */ 1045 WARN_ON(sets & 1); 1046 return sets; 1047 } 1048 1049 /** 1050 * Find pages for one segment of a sge array represented by @ss. The function 1051 * does not check the sge, the sge must have been checked for alignment with a 1052 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of 1053 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge 1054 * copy maintained in @ss->sge, the original sge is not modified. 1055 * 1056 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not 1057 * releasing the MR reference count at the same time. Otherwise, we'll "leak" 1058 * references to the MR. This difference requires that we keep track of progress 1059 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request 1060 * structure. 1061 */ 1062 static u32 kern_find_pages(struct tid_rdma_flow *flow, 1063 struct page **pages, 1064 struct rvt_sge_state *ss, bool *last) 1065 { 1066 struct tid_rdma_request *req = flow->req; 1067 struct rvt_sge *sge = &ss->sge; 1068 u32 length = flow->req->seg_len; 1069 u32 len = PAGE_SIZE; 1070 u32 i = 0; 1071 1072 while (length && req->isge < ss->num_sge) { 1073 pages[i++] = virt_to_page(sge->vaddr); 1074 1075 sge->vaddr += len; 1076 sge->length -= len; 1077 sge->sge_length -= len; 1078 if (!sge->sge_length) { 1079 if (++req->isge < ss->num_sge) 1080 *sge = ss->sg_list[req->isge - 1]; 1081 } else if (sge->length == 0 && sge->mr->lkey) { 1082 if (++sge->n >= RVT_SEGSZ) { 1083 ++sge->m; 1084 sge->n = 0; 1085 } 1086 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; 1087 sge->length = sge->mr->map[sge->m]->segs[sge->n].length; 1088 } 1089 length -= len; 1090 } 1091 1092 flow->length = flow->req->seg_len - length; 1093 *last = req->isge == ss->num_sge ? false : true; 1094 return i; 1095 } 1096 1097 static void dma_unmap_flow(struct tid_rdma_flow *flow) 1098 { 1099 struct hfi1_devdata *dd; 1100 int i; 1101 struct tid_rdma_pageset *pset; 1102 1103 dd = flow->req->rcd->dd; 1104 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets; 1105 i++, pset++) { 1106 if (pset->count && pset->addr) { 1107 dma_unmap_page(&dd->pcidev->dev, 1108 pset->addr, 1109 PAGE_SIZE * pset->count, 1110 DMA_FROM_DEVICE); 1111 pset->mapped = 0; 1112 } 1113 } 1114 } 1115 1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages) 1117 { 1118 int i; 1119 struct hfi1_devdata *dd = flow->req->rcd->dd; 1120 struct tid_rdma_pageset *pset; 1121 1122 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets; 1123 i++, pset++) { 1124 if (pset->count) { 1125 pset->addr = dma_map_page(&dd->pcidev->dev, 1126 pages[pset->idx], 1127 0, 1128 PAGE_SIZE * pset->count, 1129 DMA_FROM_DEVICE); 1130 1131 if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) { 1132 dma_unmap_flow(flow); 1133 return -ENOMEM; 1134 } 1135 pset->mapped = 1; 1136 } 1137 } 1138 return 0; 1139 } 1140 1141 static inline bool dma_mapped(struct tid_rdma_flow *flow) 1142 { 1143 return !!flow->pagesets[0].mapped; 1144 } 1145 1146 /* 1147 * Get pages pointers and identify contiguous physical memory chunks for a 1148 * segment. All segments are of length flow->req->seg_len. 1149 */ 1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow, 1151 struct page **pages, 1152 struct rvt_sge_state *ss, bool *last) 1153 { 1154 u8 npages; 1155 1156 /* Reuse previously computed pagesets, if any */ 1157 if (flow->npagesets) { 1158 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, 1159 flow); 1160 if (!dma_mapped(flow)) 1161 return dma_map_flow(flow, pages); 1162 return 0; 1163 } 1164 1165 npages = kern_find_pages(flow, pages, ss, last); 1166 1167 if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096)) 1168 flow->npagesets = 1169 tid_rdma_find_phys_blocks_4k(flow, pages, npages, 1170 flow->pagesets); 1171 else 1172 flow->npagesets = 1173 tid_rdma_find_phys_blocks_8k(flow, pages, npages, 1174 flow->pagesets); 1175 1176 return dma_map_flow(flow, pages); 1177 } 1178 1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow, 1180 struct hfi1_ctxtdata *rcd, char *s, 1181 struct tid_group *grp, u8 cnt) 1182 { 1183 struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++]; 1184 1185 WARN_ON_ONCE(flow->tnode_cnt >= 1186 (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT)); 1187 if (WARN_ON_ONCE(cnt & 1)) 1188 dd_dev_err(rcd->dd, 1189 "unexpected odd allocation cnt %u map 0x%x used %u", 1190 cnt, grp->map, grp->used); 1191 1192 node->grp = grp; 1193 node->map = grp->map; 1194 node->cnt = cnt; 1195 trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1, 1196 grp->base, grp->map, grp->used, cnt); 1197 } 1198 1199 /* 1200 * Try to allocate pageset_count TID's from TID groups for a context 1201 * 1202 * This function allocates TID's without moving groups between lists or 1203 * modifying grp->map. This is done as follows, being cogizant of the lists 1204 * between which the TID groups will move: 1205 * 1. First allocate complete groups of 8 TID's since this is more efficient, 1206 * these groups will move from group->full without affecting used 1207 * 2. If more TID's are needed allocate from used (will move from used->full or 1208 * stay in used) 1209 * 3. If we still don't have the required number of TID's go back and look again 1210 * at a complete group (will move from group->used) 1211 */ 1212 static int kern_alloc_tids(struct tid_rdma_flow *flow) 1213 { 1214 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1215 struct hfi1_devdata *dd = rcd->dd; 1216 u32 ngroups, pageidx = 0; 1217 struct tid_group *group = NULL, *used; 1218 u8 use; 1219 1220 flow->tnode_cnt = 0; 1221 ngroups = flow->npagesets / dd->rcv_entries.group_size; 1222 if (!ngroups) 1223 goto used_list; 1224 1225 /* First look at complete groups */ 1226 list_for_each_entry(group, &rcd->tid_group_list.list, list) { 1227 kern_add_tid_node(flow, rcd, "complete groups", group, 1228 group->size); 1229 1230 pageidx += group->size; 1231 if (!--ngroups) 1232 break; 1233 } 1234 1235 if (pageidx >= flow->npagesets) 1236 goto ok; 1237 1238 used_list: 1239 /* Now look at partially used groups */ 1240 list_for_each_entry(used, &rcd->tid_used_list.list, list) { 1241 use = min_t(u32, flow->npagesets - pageidx, 1242 used->size - used->used); 1243 kern_add_tid_node(flow, rcd, "used groups", used, use); 1244 1245 pageidx += use; 1246 if (pageidx >= flow->npagesets) 1247 goto ok; 1248 } 1249 1250 /* 1251 * Look again at a complete group, continuing from where we left. 1252 * However, if we are at the head, we have reached the end of the 1253 * complete groups list from the first loop above 1254 */ 1255 if (group && &group->list == &rcd->tid_group_list.list) 1256 goto bail_eagain; 1257 group = list_prepare_entry(group, &rcd->tid_group_list.list, 1258 list); 1259 if (list_is_last(&group->list, &rcd->tid_group_list.list)) 1260 goto bail_eagain; 1261 group = list_next_entry(group, list); 1262 use = min_t(u32, flow->npagesets - pageidx, group->size); 1263 kern_add_tid_node(flow, rcd, "complete continue", group, use); 1264 pageidx += use; 1265 if (pageidx >= flow->npagesets) 1266 goto ok; 1267 bail_eagain: 1268 trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ", 1269 (u64)flow->npagesets); 1270 return -EAGAIN; 1271 ok: 1272 return 0; 1273 } 1274 1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num, 1276 u32 *pset_idx) 1277 { 1278 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1279 struct hfi1_devdata *dd = rcd->dd; 1280 struct kern_tid_node *node = &flow->tnode[grp_num]; 1281 struct tid_group *grp = node->grp; 1282 struct tid_rdma_pageset *pset; 1283 u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT; 1284 u32 rcventry, npages = 0, pair = 0, tidctrl; 1285 u8 i, cnt = 0; 1286 1287 for (i = 0; i < grp->size; i++) { 1288 rcventry = grp->base + i; 1289 1290 if (node->map & BIT(i) || cnt >= node->cnt) { 1291 rcv_array_wc_fill(dd, rcventry); 1292 continue; 1293 } 1294 pset = &flow->pagesets[(*pset_idx)++]; 1295 if (pset->count) { 1296 hfi1_put_tid(dd, rcventry, PT_EXPECTED, 1297 pset->addr, trdma_pset_order(pset)); 1298 } else { 1299 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0); 1300 } 1301 npages += pset->count; 1302 1303 rcventry -= rcd->expected_base; 1304 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1; 1305 /* 1306 * A single TID entry will be used to use a rcvarr pair (with 1307 * tidctrl 0x3), if ALL these are true (a) the bit pos is even 1308 * (b) the group map shows current and the next bits as free 1309 * indicating two consecutive rcvarry entries are available (c) 1310 * we actually need 2 more entries 1311 */ 1312 pair = !(i & 0x1) && !((node->map >> i) & 0x3) && 1313 node->cnt >= cnt + 2; 1314 if (!pair) { 1315 if (!pset->count) 1316 tidctrl = 0x1; 1317 flow->tid_entry[flow->tidcnt++] = 1318 EXP_TID_SET(IDX, rcventry >> 1) | 1319 EXP_TID_SET(CTRL, tidctrl) | 1320 EXP_TID_SET(LEN, npages); 1321 trace_hfi1_tid_entry_alloc(/* entry */ 1322 flow->req->qp, flow->tidcnt - 1, 1323 flow->tid_entry[flow->tidcnt - 1]); 1324 1325 /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */ 1326 flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg); 1327 npages = 0; 1328 } 1329 1330 if (grp->used == grp->size - 1) 1331 tid_group_move(grp, &rcd->tid_used_list, 1332 &rcd->tid_full_list); 1333 else if (!grp->used) 1334 tid_group_move(grp, &rcd->tid_group_list, 1335 &rcd->tid_used_list); 1336 1337 grp->used++; 1338 grp->map |= BIT(i); 1339 cnt++; 1340 } 1341 } 1342 1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num) 1344 { 1345 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1346 struct hfi1_devdata *dd = rcd->dd; 1347 struct kern_tid_node *node = &flow->tnode[grp_num]; 1348 struct tid_group *grp = node->grp; 1349 u32 rcventry; 1350 u8 i, cnt = 0; 1351 1352 for (i = 0; i < grp->size; i++) { 1353 rcventry = grp->base + i; 1354 1355 if (node->map & BIT(i) || cnt >= node->cnt) { 1356 rcv_array_wc_fill(dd, rcventry); 1357 continue; 1358 } 1359 1360 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0); 1361 1362 grp->used--; 1363 grp->map &= ~BIT(i); 1364 cnt++; 1365 1366 if (grp->used == grp->size - 1) 1367 tid_group_move(grp, &rcd->tid_full_list, 1368 &rcd->tid_used_list); 1369 else if (!grp->used) 1370 tid_group_move(grp, &rcd->tid_used_list, 1371 &rcd->tid_group_list); 1372 } 1373 if (WARN_ON_ONCE(cnt & 1)) { 1374 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1375 struct hfi1_devdata *dd = rcd->dd; 1376 1377 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u", 1378 cnt, grp->map, grp->used); 1379 } 1380 } 1381 1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow) 1383 { 1384 u32 pset_idx = 0; 1385 int i; 1386 1387 flow->npkts = 0; 1388 flow->tidcnt = 0; 1389 for (i = 0; i < flow->tnode_cnt; i++) 1390 kern_program_rcv_group(flow, i, &pset_idx); 1391 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow); 1392 } 1393 1394 /** 1395 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a 1396 * TID RDMA request 1397 * 1398 * @req: TID RDMA request for which the segment/flow is being set up 1399 * @ss: sge state, maintains state across successive segments of a sge 1400 * @last: set to true after the last sge segment has been processed 1401 * 1402 * This function 1403 * (1) finds a free flow entry in the flow circular buffer 1404 * (2) finds pages and continuous physical chunks constituing one segment 1405 * of an sge 1406 * (3) allocates TID group entries for those chunks 1407 * (4) programs rcvarray entries in the hardware corresponding to those 1408 * TID's 1409 * (5) computes a tidarray with formatted TID entries which can be sent 1410 * to the sender 1411 * (6) Reserves and programs HW flows. 1412 * (7) It also manages queing the QP when TID/flow resources are not 1413 * available. 1414 * 1415 * @req points to struct tid_rdma_request of which the segments are a part. The 1416 * function uses qp, rcd and seg_len members of @req. In the absence of errors, 1417 * req->flow_idx is the index of the flow which has been prepared in this 1418 * invocation of function call. With flow = &req->flows[req->flow_idx], 1419 * flow->tid_entry contains the TID array which the sender can use for TID RDMA 1420 * sends and flow->npkts contains number of packets required to send the 1421 * segment. 1422 * 1423 * hfi1_check_sge_align should be called prior to calling this function and if 1424 * it signals error TID RDMA cannot be used for this sge and this function 1425 * should not be called. 1426 * 1427 * For the queuing, caller must hold the flow->req->qp s_lock from the send 1428 * engine and the function will procure the exp_lock. 1429 * 1430 * Return: 1431 * The function returns -EAGAIN if sufficient number of TID/flow resources to 1432 * map the segment could not be allocated. In this case the function should be 1433 * called again with previous arguments to retry the TID allocation. There are 1434 * no other error returns. The function returns 0 on success. 1435 */ 1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req, 1437 struct rvt_sge_state *ss, bool *last) 1438 __must_hold(&req->qp->s_lock) 1439 { 1440 struct tid_rdma_flow *flow = &req->flows[req->setup_head]; 1441 struct hfi1_ctxtdata *rcd = req->rcd; 1442 struct hfi1_qp_priv *qpriv = req->qp->priv; 1443 unsigned long flags; 1444 struct rvt_qp *fqp; 1445 u16 clear_tail = req->clear_tail; 1446 1447 lockdep_assert_held(&req->qp->s_lock); 1448 /* 1449 * We return error if either (a) we don't have space in the flow 1450 * circular buffer, or (b) we already have max entries in the buffer. 1451 * Max entries depend on the type of request we are processing and the 1452 * negotiated TID RDMA parameters. 1453 */ 1454 if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) || 1455 CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >= 1456 req->n_flows) 1457 return -EINVAL; 1458 1459 /* 1460 * Get pages, identify contiguous physical memory chunks for the segment 1461 * If we can not determine a DMA address mapping we will treat it just 1462 * like if we ran out of space above. 1463 */ 1464 if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) { 1465 hfi1_wait_kmem(flow->req->qp); 1466 return -ENOMEM; 1467 } 1468 1469 spin_lock_irqsave(&rcd->exp_lock, flags); 1470 if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp)) 1471 goto queue; 1472 1473 /* 1474 * At this point we know the number of pagesets and hence the number of 1475 * TID's to map the segment. Allocate the TID's from the TID groups. If 1476 * we cannot allocate the required number we exit and try again later 1477 */ 1478 if (kern_alloc_tids(flow)) 1479 goto queue; 1480 /* 1481 * Finally program the TID entries with the pagesets, compute the 1482 * tidarray and enable the HW flow 1483 */ 1484 kern_program_rcvarray(flow); 1485 1486 /* 1487 * Setup the flow state with relevant information. 1488 * This information is used for tracking the sequence of data packets 1489 * for the segment. 1490 * The flow is setup here as this is the most accurate time and place 1491 * to do so. Doing at a later time runs the risk of the flow data in 1492 * qpriv getting out of sync. 1493 */ 1494 memset(&flow->flow_state, 0x0, sizeof(flow->flow_state)); 1495 flow->idx = qpriv->flow_state.index; 1496 flow->flow_state.generation = qpriv->flow_state.generation; 1497 flow->flow_state.spsn = qpriv->flow_state.psn; 1498 flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1; 1499 flow->flow_state.r_next_psn = 1500 full_flow_psn(flow, flow->flow_state.spsn); 1501 qpriv->flow_state.psn += flow->npkts; 1502 1503 dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp); 1504 /* get head before dropping lock */ 1505 fqp = first_qp(rcd, &rcd->rarr_queue); 1506 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1507 tid_rdma_schedule_tid_wakeup(fqp); 1508 1509 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1); 1510 return 0; 1511 queue: 1512 queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp); 1513 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1514 return -EAGAIN; 1515 } 1516 1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow) 1518 { 1519 flow->npagesets = 0; 1520 } 1521 1522 /* 1523 * This function is called after one segment has been successfully sent to 1524 * release the flow and TID HW/SW resources for that segment. The segments for a 1525 * TID RDMA request are setup and cleared in FIFO order which is managed using a 1526 * circular buffer. 1527 */ 1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req) 1529 __must_hold(&req->qp->s_lock) 1530 { 1531 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 1532 struct hfi1_ctxtdata *rcd = req->rcd; 1533 unsigned long flags; 1534 int i; 1535 struct rvt_qp *fqp; 1536 1537 lockdep_assert_held(&req->qp->s_lock); 1538 /* Exit if we have nothing in the flow circular buffer */ 1539 if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) 1540 return -EINVAL; 1541 1542 spin_lock_irqsave(&rcd->exp_lock, flags); 1543 1544 for (i = 0; i < flow->tnode_cnt; i++) 1545 kern_unprogram_rcv_group(flow, i); 1546 /* To prevent double unprogramming */ 1547 flow->tnode_cnt = 0; 1548 /* get head before dropping lock */ 1549 fqp = first_qp(rcd, &rcd->rarr_queue); 1550 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1551 1552 dma_unmap_flow(flow); 1553 1554 hfi1_tid_rdma_reset_flow(flow); 1555 req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1); 1556 1557 if (fqp == req->qp) { 1558 __trigger_tid_waiter(fqp); 1559 rvt_put_qp(fqp); 1560 } else { 1561 tid_rdma_schedule_tid_wakeup(fqp); 1562 } 1563 1564 return 0; 1565 } 1566 1567 /* 1568 * This function is called to release all the tid entries for 1569 * a request. 1570 */ 1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req) 1572 __must_hold(&req->qp->s_lock) 1573 { 1574 /* Use memory barrier for proper ordering */ 1575 while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) { 1576 if (hfi1_kern_exp_rcv_clear(req)) 1577 break; 1578 } 1579 } 1580 1581 /** 1582 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information 1583 * @req - the tid rdma request to be cleaned 1584 */ 1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req) 1586 { 1587 kfree(req->flows); 1588 req->flows = NULL; 1589 } 1590 1591 /** 1592 * __trdma_clean_swqe - clean up for large sized QPs 1593 * @qp: the queue patch 1594 * @wqe: the send wqe 1595 */ 1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 1597 { 1598 struct hfi1_swqe_priv *p = wqe->priv; 1599 1600 hfi1_kern_exp_rcv_free_flows(&p->tid_req); 1601 } 1602 1603 /* 1604 * This can be called at QP create time or in the data path. 1605 */ 1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req, 1607 gfp_t gfp) 1608 { 1609 struct tid_rdma_flow *flows; 1610 int i; 1611 1612 if (likely(req->flows)) 1613 return 0; 1614 flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp, 1615 req->rcd->numa_id); 1616 if (!flows) 1617 return -ENOMEM; 1618 /* mini init */ 1619 for (i = 0; i < MAX_FLOWS; i++) { 1620 flows[i].req = req; 1621 flows[i].npagesets = 0; 1622 flows[i].pagesets[0].mapped = 0; 1623 flows[i].resync_npkts = 0; 1624 } 1625 req->flows = flows; 1626 return 0; 1627 } 1628 1629 static void hfi1_init_trdma_req(struct rvt_qp *qp, 1630 struct tid_rdma_request *req) 1631 { 1632 struct hfi1_qp_priv *qpriv = qp->priv; 1633 1634 /* 1635 * Initialize various TID RDMA request variables. 1636 * These variables are "static", which is why they 1637 * can be pre-initialized here before the WRs has 1638 * even been submitted. 1639 * However, non-NULL values for these variables do not 1640 * imply that this WQE has been enabled for TID RDMA. 1641 * Drivers should check the WQE's opcode to determine 1642 * if a request is a TID RDMA one or not. 1643 */ 1644 req->qp = qp; 1645 req->rcd = qpriv->rcd; 1646 } 1647 1648 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry, 1649 void *context, int vl, int mode, u64 data) 1650 { 1651 struct hfi1_devdata *dd = context; 1652 1653 return dd->verbs_dev.n_tidwait; 1654 } 1655 1656 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req, 1657 u32 psn, u16 *fidx) 1658 { 1659 u16 head, tail; 1660 struct tid_rdma_flow *flow; 1661 1662 head = req->setup_head; 1663 tail = req->clear_tail; 1664 for ( ; CIRC_CNT(head, tail, MAX_FLOWS); 1665 tail = CIRC_NEXT(tail, MAX_FLOWS)) { 1666 flow = &req->flows[tail]; 1667 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 && 1668 cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) { 1669 if (fidx) 1670 *fidx = tail; 1671 return flow; 1672 } 1673 } 1674 return NULL; 1675 } 1676 1677 /* TID RDMA READ functions */ 1678 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe, 1679 struct ib_other_headers *ohdr, u32 *bth1, 1680 u32 *bth2, u32 *len) 1681 { 1682 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 1683 struct tid_rdma_flow *flow = &req->flows[req->flow_idx]; 1684 struct rvt_qp *qp = req->qp; 1685 struct hfi1_qp_priv *qpriv = qp->priv; 1686 struct hfi1_swqe_priv *wpriv = wqe->priv; 1687 struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req; 1688 struct tid_rdma_params *remote; 1689 u32 req_len = 0; 1690 void *req_addr = NULL; 1691 1692 /* This is the IB psn used to send the request */ 1693 *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt); 1694 trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow); 1695 1696 /* TID Entries for TID RDMA READ payload */ 1697 req_addr = &flow->tid_entry[flow->tid_idx]; 1698 req_len = sizeof(*flow->tid_entry) * 1699 (flow->tidcnt - flow->tid_idx); 1700 1701 memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req)); 1702 wpriv->ss.sge.vaddr = req_addr; 1703 wpriv->ss.sge.sge_length = req_len; 1704 wpriv->ss.sge.length = wpriv->ss.sge.sge_length; 1705 /* 1706 * We can safely zero these out. Since the first SGE covers the 1707 * entire packet, nothing else should even look at the MR. 1708 */ 1709 wpriv->ss.sge.mr = NULL; 1710 wpriv->ss.sge.m = 0; 1711 wpriv->ss.sge.n = 0; 1712 1713 wpriv->ss.sg_list = NULL; 1714 wpriv->ss.total_len = wpriv->ss.sge.sge_length; 1715 wpriv->ss.num_sge = 1; 1716 1717 /* Construct the TID RDMA READ REQ packet header */ 1718 rcu_read_lock(); 1719 remote = rcu_dereference(qpriv->tid_rdma.remote); 1720 1721 KDETH_RESET(rreq->kdeth0, KVER, 0x1); 1722 KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey); 1723 rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr + 1724 req->cur_seg * req->seg_len + flow->sent); 1725 rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey); 1726 rreq->reth.length = cpu_to_be32(*len); 1727 rreq->tid_flow_psn = 1728 cpu_to_be32((flow->flow_state.generation << 1729 HFI1_KDETH_BTH_SEQ_SHIFT) | 1730 ((flow->flow_state.spsn + flow->pkt) & 1731 HFI1_KDETH_BTH_SEQ_MASK)); 1732 rreq->tid_flow_qp = 1733 cpu_to_be32(qpriv->tid_rdma.local.qp | 1734 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 1735 TID_RDMA_DESTQP_FLOW_SHIFT) | 1736 qpriv->rcd->ctxt); 1737 rreq->verbs_qp = cpu_to_be32(qp->remote_qpn); 1738 *bth1 &= ~RVT_QPN_MASK; 1739 *bth1 |= remote->qp; 1740 *bth2 |= IB_BTH_REQ_ACK; 1741 rcu_read_unlock(); 1742 1743 /* We are done with this segment */ 1744 flow->sent += *len; 1745 req->cur_seg++; 1746 qp->s_state = TID_OP(READ_REQ); 1747 req->ack_pending++; 1748 req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1); 1749 qpriv->pending_tid_r_segs++; 1750 qp->s_num_rd_atomic++; 1751 1752 /* Set the TID RDMA READ request payload size */ 1753 *len = req_len; 1754 1755 return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32); 1756 } 1757 1758 /* 1759 * @len: contains the data length to read upon entry and the read request 1760 * payload length upon exit. 1761 */ 1762 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 1763 struct ib_other_headers *ohdr, u32 *bth1, 1764 u32 *bth2, u32 *len) 1765 __must_hold(&qp->s_lock) 1766 { 1767 struct hfi1_qp_priv *qpriv = qp->priv; 1768 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 1769 struct tid_rdma_flow *flow = NULL; 1770 u32 hdwords = 0; 1771 bool last; 1772 bool retry = true; 1773 u32 npkts = rvt_div_round_up_mtu(qp, *len); 1774 1775 trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn, 1776 wqe->lpsn, req); 1777 /* 1778 * Check sync conditions. Make sure that there are no pending 1779 * segments before freeing the flow. 1780 */ 1781 sync_check: 1782 if (req->state == TID_REQUEST_SYNC) { 1783 if (qpriv->pending_tid_r_segs) 1784 goto done; 1785 1786 hfi1_kern_clear_hw_flow(req->rcd, qp); 1787 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 1788 req->state = TID_REQUEST_ACTIVE; 1789 } 1790 1791 /* 1792 * If the request for this segment is resent, the tid resources should 1793 * have been allocated before. In this case, req->flow_idx should 1794 * fall behind req->setup_head. 1795 */ 1796 if (req->flow_idx == req->setup_head) { 1797 retry = false; 1798 if (req->state == TID_REQUEST_RESEND) { 1799 /* 1800 * This is the first new segment for a request whose 1801 * earlier segments have been re-sent. We need to 1802 * set up the sge pointer correctly. 1803 */ 1804 restart_sge(&qp->s_sge, wqe, req->s_next_psn, 1805 qp->pmtu); 1806 req->isge = 0; 1807 req->state = TID_REQUEST_ACTIVE; 1808 } 1809 1810 /* 1811 * Check sync. The last PSN of each generation is reserved for 1812 * RESYNC. 1813 */ 1814 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) { 1815 req->state = TID_REQUEST_SYNC; 1816 goto sync_check; 1817 } 1818 1819 /* Allocate the flow if not yet */ 1820 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp)) 1821 goto done; 1822 1823 /* 1824 * The following call will advance req->setup_head after 1825 * allocating the tid entries. 1826 */ 1827 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) { 1828 req->state = TID_REQUEST_QUEUED; 1829 1830 /* 1831 * We don't have resources for this segment. The QP has 1832 * already been queued. 1833 */ 1834 goto done; 1835 } 1836 } 1837 1838 /* req->flow_idx should only be one slot behind req->setup_head */ 1839 flow = &req->flows[req->flow_idx]; 1840 flow->pkt = 0; 1841 flow->tid_idx = 0; 1842 flow->sent = 0; 1843 if (!retry) { 1844 /* Set the first and last IB PSN for the flow in use.*/ 1845 flow->flow_state.ib_spsn = req->s_next_psn; 1846 flow->flow_state.ib_lpsn = 1847 flow->flow_state.ib_spsn + flow->npkts - 1; 1848 } 1849 1850 /* Calculate the next segment start psn.*/ 1851 req->s_next_psn += flow->npkts; 1852 1853 /* Build the packet header */ 1854 hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len); 1855 done: 1856 return hdwords; 1857 } 1858 1859 /* 1860 * Validate and accept the TID RDMA READ request parameters. 1861 * Return 0 if the request is accepted successfully; 1862 * Return 1 otherwise. 1863 */ 1864 static int tid_rdma_rcv_read_request(struct rvt_qp *qp, 1865 struct rvt_ack_entry *e, 1866 struct hfi1_packet *packet, 1867 struct ib_other_headers *ohdr, 1868 u32 bth0, u32 psn, u64 vaddr, u32 len) 1869 { 1870 struct hfi1_qp_priv *qpriv = qp->priv; 1871 struct tid_rdma_request *req; 1872 struct tid_rdma_flow *flow; 1873 u32 flow_psn, i, tidlen = 0, pktlen, tlen; 1874 1875 req = ack_to_tid_req(e); 1876 1877 /* Validate the payload first */ 1878 flow = &req->flows[req->setup_head]; 1879 1880 /* payload length = packet length - (header length + ICRC length) */ 1881 pktlen = packet->tlen - (packet->hlen + 4); 1882 if (pktlen > sizeof(flow->tid_entry)) 1883 return 1; 1884 memcpy(flow->tid_entry, packet->ebuf, pktlen); 1885 flow->tidcnt = pktlen / sizeof(*flow->tid_entry); 1886 1887 /* 1888 * Walk the TID_ENTRY list to make sure we have enough space for a 1889 * complete segment. Also calculate the number of required packets. 1890 */ 1891 flow->npkts = rvt_div_round_up_mtu(qp, len); 1892 for (i = 0; i < flow->tidcnt; i++) { 1893 trace_hfi1_tid_entry_rcv_read_req(qp, i, 1894 flow->tid_entry[i]); 1895 tlen = EXP_TID_GET(flow->tid_entry[i], LEN); 1896 if (!tlen) 1897 return 1; 1898 1899 /* 1900 * For tid pair (tidctr == 3), the buffer size of the pair 1901 * should be the sum of the buffer size described by each 1902 * tid entry. However, only the first entry needs to be 1903 * specified in the request (see WFR HAS Section 8.5.7.1). 1904 */ 1905 tidlen += tlen; 1906 } 1907 if (tidlen * PAGE_SIZE < len) 1908 return 1; 1909 1910 /* Empty the flow array */ 1911 req->clear_tail = req->setup_head; 1912 flow->pkt = 0; 1913 flow->tid_idx = 0; 1914 flow->tid_offset = 0; 1915 flow->sent = 0; 1916 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp); 1917 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) & 1918 TID_RDMA_DESTQP_FLOW_MASK; 1919 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn)); 1920 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 1921 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK; 1922 flow->length = len; 1923 1924 flow->flow_state.lpsn = flow->flow_state.spsn + 1925 flow->npkts - 1; 1926 flow->flow_state.ib_spsn = psn; 1927 flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1; 1928 1929 trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow); 1930 /* Set the initial flow index to the current flow. */ 1931 req->flow_idx = req->setup_head; 1932 1933 /* advance circular buffer head */ 1934 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1); 1935 1936 /* 1937 * Compute last PSN for request. 1938 */ 1939 e->opcode = (bth0 >> 24) & 0xff; 1940 e->psn = psn; 1941 e->lpsn = psn + flow->npkts - 1; 1942 e->sent = 0; 1943 1944 req->n_flows = qpriv->tid_rdma.local.max_read; 1945 req->state = TID_REQUEST_ACTIVE; 1946 req->cur_seg = 0; 1947 req->comp_seg = 0; 1948 req->ack_seg = 0; 1949 req->isge = 0; 1950 req->seg_len = qpriv->tid_rdma.local.max_len; 1951 req->total_len = len; 1952 req->total_segs = 1; 1953 req->r_flow_psn = e->psn; 1954 1955 trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn, 1956 req); 1957 return 0; 1958 } 1959 1960 static int tid_rdma_rcv_error(struct hfi1_packet *packet, 1961 struct ib_other_headers *ohdr, 1962 struct rvt_qp *qp, u32 psn, int diff) 1963 { 1964 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 1965 struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd; 1966 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 1967 struct hfi1_qp_priv *qpriv = qp->priv; 1968 struct rvt_ack_entry *e; 1969 struct tid_rdma_request *req; 1970 unsigned long flags; 1971 u8 prev; 1972 bool old_req; 1973 1974 trace_hfi1_rsp_tid_rcv_error(qp, psn); 1975 trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff); 1976 if (diff > 0) { 1977 /* sequence error */ 1978 if (!qp->r_nak_state) { 1979 ibp->rvp.n_rc_seqnak++; 1980 qp->r_nak_state = IB_NAK_PSN_ERROR; 1981 qp->r_ack_psn = qp->r_psn; 1982 rc_defered_ack(rcd, qp); 1983 } 1984 goto done; 1985 } 1986 1987 ibp->rvp.n_rc_dupreq++; 1988 1989 spin_lock_irqsave(&qp->s_lock, flags); 1990 e = find_prev_entry(qp, psn, &prev, NULL, &old_req); 1991 if (!e || (e->opcode != TID_OP(READ_REQ) && 1992 e->opcode != TID_OP(WRITE_REQ))) 1993 goto unlock; 1994 1995 req = ack_to_tid_req(e); 1996 req->r_flow_psn = psn; 1997 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req); 1998 if (e->opcode == TID_OP(READ_REQ)) { 1999 struct ib_reth *reth; 2000 u32 len; 2001 u32 rkey; 2002 u64 vaddr; 2003 int ok; 2004 u32 bth0; 2005 2006 reth = &ohdr->u.tid_rdma.r_req.reth; 2007 /* 2008 * The requester always restarts from the start of the original 2009 * request. 2010 */ 2011 len = be32_to_cpu(reth->length); 2012 if (psn != e->psn || len != req->total_len) 2013 goto unlock; 2014 2015 release_rdma_sge_mr(e); 2016 2017 rkey = be32_to_cpu(reth->rkey); 2018 vaddr = get_ib_reth_vaddr(reth); 2019 2020 qp->r_len = len; 2021 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey, 2022 IB_ACCESS_REMOTE_READ); 2023 if (unlikely(!ok)) 2024 goto unlock; 2025 2026 /* 2027 * If all the response packets for the current request have 2028 * been sent out and this request is complete (old_request 2029 * == false) and the TID flow may be unusable (the 2030 * req->clear_tail is advanced). However, when an earlier 2031 * request is received, this request will not be complete any 2032 * more (qp->s_tail_ack_queue is moved back, see below). 2033 * Consequently, we need to update the TID flow info everytime 2034 * a duplicate request is received. 2035 */ 2036 bth0 = be32_to_cpu(ohdr->bth[0]); 2037 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, 2038 vaddr, len)) 2039 goto unlock; 2040 2041 /* 2042 * True if the request is already scheduled (between 2043 * qp->s_tail_ack_queue and qp->r_head_ack_queue); 2044 */ 2045 if (old_req) 2046 goto unlock; 2047 } else { 2048 struct flow_state *fstate; 2049 bool schedule = false; 2050 u8 i; 2051 2052 if (req->state == TID_REQUEST_RESEND) { 2053 req->state = TID_REQUEST_RESEND_ACTIVE; 2054 } else if (req->state == TID_REQUEST_INIT_RESEND) { 2055 req->state = TID_REQUEST_INIT; 2056 schedule = true; 2057 } 2058 2059 /* 2060 * True if the request is already scheduled (between 2061 * qp->s_tail_ack_queue and qp->r_head_ack_queue). 2062 * Also, don't change requests, which are at the SYNC 2063 * point and haven't generated any responses yet. 2064 * There is nothing to retransmit for them yet. 2065 */ 2066 if (old_req || req->state == TID_REQUEST_INIT || 2067 (req->state == TID_REQUEST_SYNC && !req->cur_seg)) { 2068 for (i = prev + 1; ; i++) { 2069 if (i > rvt_size_atomic(&dev->rdi)) 2070 i = 0; 2071 if (i == qp->r_head_ack_queue) 2072 break; 2073 e = &qp->s_ack_queue[i]; 2074 req = ack_to_tid_req(e); 2075 if (e->opcode == TID_OP(WRITE_REQ) && 2076 req->state == TID_REQUEST_INIT) 2077 req->state = TID_REQUEST_INIT_RESEND; 2078 } 2079 /* 2080 * If the state of the request has been changed, 2081 * the first leg needs to get scheduled in order to 2082 * pick up the change. Otherwise, normal response 2083 * processing should take care of it. 2084 */ 2085 if (!schedule) 2086 goto unlock; 2087 } 2088 2089 /* 2090 * If there is no more allocated segment, just schedule the qp 2091 * without changing any state. 2092 */ 2093 if (req->clear_tail == req->setup_head) 2094 goto schedule; 2095 /* 2096 * If this request has sent responses for segments, which have 2097 * not received data yet (flow_idx != clear_tail), the flow_idx 2098 * pointer needs to be adjusted so the same responses can be 2099 * re-sent. 2100 */ 2101 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) { 2102 fstate = &req->flows[req->clear_tail].flow_state; 2103 qpriv->pending_tid_w_segs -= 2104 CIRC_CNT(req->flow_idx, req->clear_tail, 2105 MAX_FLOWS); 2106 req->flow_idx = 2107 CIRC_ADD(req->clear_tail, 2108 delta_psn(psn, fstate->resp_ib_psn), 2109 MAX_FLOWS); 2110 qpriv->pending_tid_w_segs += 2111 delta_psn(psn, fstate->resp_ib_psn); 2112 /* 2113 * When flow_idx == setup_head, we've gotten a duplicate 2114 * request for a segment, which has not been allocated 2115 * yet. In that case, don't adjust this request. 2116 * However, we still want to go through the loop below 2117 * to adjust all subsequent requests. 2118 */ 2119 if (CIRC_CNT(req->setup_head, req->flow_idx, 2120 MAX_FLOWS)) { 2121 req->cur_seg = delta_psn(psn, e->psn); 2122 req->state = TID_REQUEST_RESEND_ACTIVE; 2123 } 2124 } 2125 2126 for (i = prev + 1; ; i++) { 2127 /* 2128 * Look at everything up to and including 2129 * s_tail_ack_queue 2130 */ 2131 if (i > rvt_size_atomic(&dev->rdi)) 2132 i = 0; 2133 if (i == qp->r_head_ack_queue) 2134 break; 2135 e = &qp->s_ack_queue[i]; 2136 req = ack_to_tid_req(e); 2137 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, 2138 e->lpsn, req); 2139 if (e->opcode != TID_OP(WRITE_REQ) || 2140 req->cur_seg == req->comp_seg || 2141 req->state == TID_REQUEST_INIT || 2142 req->state == TID_REQUEST_INIT_RESEND) { 2143 if (req->state == TID_REQUEST_INIT) 2144 req->state = TID_REQUEST_INIT_RESEND; 2145 continue; 2146 } 2147 qpriv->pending_tid_w_segs -= 2148 CIRC_CNT(req->flow_idx, 2149 req->clear_tail, 2150 MAX_FLOWS); 2151 req->flow_idx = req->clear_tail; 2152 req->state = TID_REQUEST_RESEND; 2153 req->cur_seg = req->comp_seg; 2154 } 2155 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK; 2156 } 2157 /* Re-process old requests.*/ 2158 if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) 2159 qp->s_acked_ack_queue = prev; 2160 qp->s_tail_ack_queue = prev; 2161 /* 2162 * Since the qp->s_tail_ack_queue is modified, the 2163 * qp->s_ack_state must be changed to re-initialize 2164 * qp->s_ack_rdma_sge; Otherwise, we will end up in 2165 * wrong memory region. 2166 */ 2167 qp->s_ack_state = OP(ACKNOWLEDGE); 2168 schedule: 2169 /* 2170 * It's possible to receive a retry psn that is earlier than an RNRNAK 2171 * psn. In this case, the rnrnak state should be cleared. 2172 */ 2173 if (qpriv->rnr_nak_state) { 2174 qp->s_nak_state = 0; 2175 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 2176 qp->r_psn = e->lpsn + 1; 2177 hfi1_tid_write_alloc_resources(qp, true); 2178 } 2179 2180 qp->r_state = e->opcode; 2181 qp->r_nak_state = 0; 2182 qp->s_flags |= RVT_S_RESP_PENDING; 2183 hfi1_schedule_send(qp); 2184 unlock: 2185 spin_unlock_irqrestore(&qp->s_lock, flags); 2186 done: 2187 return 1; 2188 } 2189 2190 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet) 2191 { 2192 /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/ 2193 2194 /* 2195 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ 2196 * (see hfi1_rc_rcv()) 2197 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue) 2198 * - Setup struct tid_rdma_req with request info 2199 * - Initialize struct tid_rdma_flow info; 2200 * - Copy TID entries; 2201 * 3. Set the qp->s_ack_state. 2202 * 4. Set RVT_S_RESP_PENDING in s_flags. 2203 * 5. Kick the send engine (hfi1_schedule_send()) 2204 */ 2205 struct hfi1_ctxtdata *rcd = packet->rcd; 2206 struct rvt_qp *qp = packet->qp; 2207 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 2208 struct ib_other_headers *ohdr = packet->ohdr; 2209 struct rvt_ack_entry *e; 2210 unsigned long flags; 2211 struct ib_reth *reth; 2212 struct hfi1_qp_priv *qpriv = qp->priv; 2213 u32 bth0, psn, len, rkey; 2214 bool fecn; 2215 u8 next; 2216 u64 vaddr; 2217 int diff; 2218 u8 nack_state = IB_NAK_INVALID_REQUEST; 2219 2220 bth0 = be32_to_cpu(ohdr->bth[0]); 2221 if (hfi1_ruc_check_hdr(ibp, packet)) 2222 return; 2223 2224 fecn = process_ecn(qp, packet); 2225 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2226 trace_hfi1_rsp_rcv_tid_read_req(qp, psn); 2227 2228 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) 2229 rvt_comm_est(qp); 2230 2231 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2232 goto nack_inv; 2233 2234 reth = &ohdr->u.tid_rdma.r_req.reth; 2235 vaddr = be64_to_cpu(reth->vaddr); 2236 len = be32_to_cpu(reth->length); 2237 /* The length needs to be in multiples of PAGE_SIZE */ 2238 if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len) 2239 goto nack_inv; 2240 2241 diff = delta_psn(psn, qp->r_psn); 2242 if (unlikely(diff)) { 2243 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn); 2244 return; 2245 } 2246 2247 /* We've verified the request, insert it into the ack queue. */ 2248 next = qp->r_head_ack_queue + 1; 2249 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 2250 next = 0; 2251 spin_lock_irqsave(&qp->s_lock, flags); 2252 if (unlikely(next == qp->s_tail_ack_queue)) { 2253 if (!qp->s_ack_queue[next].sent) { 2254 nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR; 2255 goto nack_inv_unlock; 2256 } 2257 update_ack_queue(qp, next); 2258 } 2259 e = &qp->s_ack_queue[qp->r_head_ack_queue]; 2260 release_rdma_sge_mr(e); 2261 2262 rkey = be32_to_cpu(reth->rkey); 2263 qp->r_len = len; 2264 2265 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr, 2266 rkey, IB_ACCESS_REMOTE_READ))) 2267 goto nack_acc; 2268 2269 /* Accept the request parameters */ 2270 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr, 2271 len)) 2272 goto nack_inv_unlock; 2273 2274 qp->r_state = e->opcode; 2275 qp->r_nak_state = 0; 2276 /* 2277 * We need to increment the MSN here instead of when we 2278 * finish sending the result since a duplicate request would 2279 * increment it more than once. 2280 */ 2281 qp->r_msn++; 2282 qp->r_psn += e->lpsn - e->psn + 1; 2283 2284 qp->r_head_ack_queue = next; 2285 2286 /* 2287 * For all requests other than TID WRITE which are added to the ack 2288 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to 2289 * do this because of interlocks between these and TID WRITE 2290 * requests. The same change has also been made in hfi1_rc_rcv(). 2291 */ 2292 qpriv->r_tid_alloc = qp->r_head_ack_queue; 2293 2294 /* Schedule the send tasklet. */ 2295 qp->s_flags |= RVT_S_RESP_PENDING; 2296 if (fecn) 2297 qp->s_flags |= RVT_S_ECN; 2298 hfi1_schedule_send(qp); 2299 2300 spin_unlock_irqrestore(&qp->s_lock, flags); 2301 return; 2302 2303 nack_inv_unlock: 2304 spin_unlock_irqrestore(&qp->s_lock, flags); 2305 nack_inv: 2306 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); 2307 qp->r_nak_state = nack_state; 2308 qp->r_ack_psn = qp->r_psn; 2309 /* Queue NAK for later */ 2310 rc_defered_ack(rcd, qp); 2311 return; 2312 nack_acc: 2313 spin_unlock_irqrestore(&qp->s_lock, flags); 2314 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); 2315 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; 2316 qp->r_ack_psn = qp->r_psn; 2317 } 2318 2319 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 2320 struct ib_other_headers *ohdr, u32 *bth0, 2321 u32 *bth1, u32 *bth2, u32 *len, bool *last) 2322 { 2323 struct hfi1_ack_priv *epriv = e->priv; 2324 struct tid_rdma_request *req = &epriv->tid_req; 2325 struct hfi1_qp_priv *qpriv = qp->priv; 2326 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 2327 u32 tidentry = flow->tid_entry[flow->tid_idx]; 2328 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT; 2329 struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp; 2330 u32 next_offset, om = KDETH_OM_LARGE; 2331 bool last_pkt; 2332 u32 hdwords = 0; 2333 struct tid_rdma_params *remote; 2334 2335 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset); 2336 flow->sent += *len; 2337 next_offset = flow->tid_offset + *len; 2338 last_pkt = (flow->sent >= flow->length); 2339 2340 trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry); 2341 trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow); 2342 2343 rcu_read_lock(); 2344 remote = rcu_dereference(qpriv->tid_rdma.remote); 2345 if (!remote) { 2346 rcu_read_unlock(); 2347 goto done; 2348 } 2349 KDETH_RESET(resp->kdeth0, KVER, 0x1); 2350 KDETH_SET(resp->kdeth0, SH, !last_pkt); 2351 KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg)); 2352 KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL)); 2353 KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX)); 2354 KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE); 2355 KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om); 2356 KDETH_RESET(resp->kdeth1, JKEY, remote->jkey); 2357 resp->verbs_qp = cpu_to_be32(qp->remote_qpn); 2358 rcu_read_unlock(); 2359 2360 resp->aeth = rvt_compute_aeth(qp); 2361 resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn + 2362 flow->pkt)); 2363 2364 *bth0 = TID_OP(READ_RESP) << 24; 2365 *bth1 = flow->tid_qpn; 2366 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) & 2367 HFI1_KDETH_BTH_SEQ_MASK) | 2368 (flow->flow_state.generation << 2369 HFI1_KDETH_BTH_SEQ_SHIFT)); 2370 *last = last_pkt; 2371 if (last_pkt) 2372 /* Advance to next flow */ 2373 req->clear_tail = (req->clear_tail + 1) & 2374 (MAX_FLOWS - 1); 2375 2376 if (next_offset >= tidlen) { 2377 flow->tid_offset = 0; 2378 flow->tid_idx++; 2379 } else { 2380 flow->tid_offset = next_offset; 2381 } 2382 2383 hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32); 2384 2385 done: 2386 return hdwords; 2387 } 2388 2389 static inline struct tid_rdma_request * 2390 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode) 2391 __must_hold(&qp->s_lock) 2392 { 2393 struct rvt_swqe *wqe; 2394 struct tid_rdma_request *req = NULL; 2395 u32 i, end; 2396 2397 end = qp->s_cur + 1; 2398 if (end == qp->s_size) 2399 end = 0; 2400 for (i = qp->s_acked; i != end;) { 2401 wqe = rvt_get_swqe_ptr(qp, i); 2402 if (cmp_psn(psn, wqe->psn) >= 0 && 2403 cmp_psn(psn, wqe->lpsn) <= 0) { 2404 if (wqe->wr.opcode == opcode) 2405 req = wqe_to_tid_req(wqe); 2406 break; 2407 } 2408 if (++i == qp->s_size) 2409 i = 0; 2410 } 2411 2412 return req; 2413 } 2414 2415 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet) 2416 { 2417 /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */ 2418 2419 /* 2420 * 1. Find matching SWQE 2421 * 2. Check that the entire segment has been read. 2422 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags. 2423 * 4. Free the TID flow resources. 2424 * 5. Kick the send engine (hfi1_schedule_send()) 2425 */ 2426 struct ib_other_headers *ohdr = packet->ohdr; 2427 struct rvt_qp *qp = packet->qp; 2428 struct hfi1_qp_priv *priv = qp->priv; 2429 struct hfi1_ctxtdata *rcd = packet->rcd; 2430 struct tid_rdma_request *req; 2431 struct tid_rdma_flow *flow; 2432 u32 opcode, aeth; 2433 bool fecn; 2434 unsigned long flags; 2435 u32 kpsn, ipsn; 2436 2437 trace_hfi1_sender_rcv_tid_read_resp(qp); 2438 fecn = process_ecn(qp, packet); 2439 kpsn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2440 aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth); 2441 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 2442 2443 spin_lock_irqsave(&qp->s_lock, flags); 2444 ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn)); 2445 req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ); 2446 if (unlikely(!req)) 2447 goto ack_op_err; 2448 2449 flow = &req->flows[req->clear_tail]; 2450 /* When header suppression is disabled */ 2451 if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) { 2452 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn); 2453 2454 if (cmp_psn(kpsn, flow->flow_state.r_next_psn)) 2455 goto ack_done; 2456 flow->flow_state.r_next_psn = mask_psn(kpsn + 1); 2457 /* 2458 * Copy the payload to destination buffer if this packet is 2459 * delivered as an eager packet due to RSM rule and FECN. 2460 * The RSM rule selects FECN bit in BTH and SH bit in 2461 * KDETH header and therefore will not match the last 2462 * packet of each segment that has SH bit cleared. 2463 */ 2464 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) { 2465 struct rvt_sge_state ss; 2466 u32 len; 2467 u32 tlen = packet->tlen; 2468 u16 hdrsize = packet->hlen; 2469 u8 pad = packet->pad; 2470 u8 extra_bytes = pad + packet->extra_byte + 2471 (SIZE_OF_CRC << 2); 2472 u32 pmtu = qp->pmtu; 2473 2474 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) 2475 goto ack_op_err; 2476 len = restart_sge(&ss, req->e.swqe, ipsn, pmtu); 2477 if (unlikely(len < pmtu)) 2478 goto ack_op_err; 2479 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false, 2480 false); 2481 /* Raise the sw sequence check flag for next packet */ 2482 priv->s_flags |= HFI1_R_TID_SW_PSN; 2483 } 2484 2485 goto ack_done; 2486 } 2487 flow->flow_state.r_next_psn = mask_psn(kpsn + 1); 2488 req->ack_pending--; 2489 priv->pending_tid_r_segs--; 2490 qp->s_num_rd_atomic--; 2491 if ((qp->s_flags & RVT_S_WAIT_FENCE) && 2492 !qp->s_num_rd_atomic) { 2493 qp->s_flags &= ~(RVT_S_WAIT_FENCE | 2494 RVT_S_WAIT_ACK); 2495 hfi1_schedule_send(qp); 2496 } 2497 if (qp->s_flags & RVT_S_WAIT_RDMAR) { 2498 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK); 2499 hfi1_schedule_send(qp); 2500 } 2501 2502 trace_hfi1_ack(qp, ipsn); 2503 trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode, 2504 req->e.swqe->psn, req->e.swqe->lpsn, 2505 req); 2506 trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow); 2507 2508 /* Release the tid resources */ 2509 hfi1_kern_exp_rcv_clear(req); 2510 2511 if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd)) 2512 goto ack_done; 2513 2514 /* If not done yet, build next read request */ 2515 if (++req->comp_seg >= req->total_segs) { 2516 priv->tid_r_comp++; 2517 req->state = TID_REQUEST_COMPLETE; 2518 } 2519 2520 /* 2521 * Clear the hw flow under two conditions: 2522 * 1. This request is a sync point and it is complete; 2523 * 2. Current request is completed and there are no more requests. 2524 */ 2525 if ((req->state == TID_REQUEST_SYNC && 2526 req->comp_seg == req->cur_seg) || 2527 priv->tid_r_comp == priv->tid_r_reqs) { 2528 hfi1_kern_clear_hw_flow(priv->rcd, qp); 2529 priv->s_flags &= ~HFI1_R_TID_SW_PSN; 2530 if (req->state == TID_REQUEST_SYNC) 2531 req->state = TID_REQUEST_ACTIVE; 2532 } 2533 2534 hfi1_schedule_send(qp); 2535 goto ack_done; 2536 2537 ack_op_err: 2538 /* 2539 * The test indicates that the send engine has finished its cleanup 2540 * after sending the request and it's now safe to put the QP into error 2541 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail 2542 * == qp->s_head), it would be unsafe to complete the wqe pointed by 2543 * qp->s_acked here. Putting the qp into error state will safely flush 2544 * all remaining requests. 2545 */ 2546 if (qp->s_last == qp->s_acked) 2547 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 2548 2549 ack_done: 2550 spin_unlock_irqrestore(&qp->s_lock, flags); 2551 } 2552 2553 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp) 2554 __must_hold(&qp->s_lock) 2555 { 2556 u32 n = qp->s_acked; 2557 struct rvt_swqe *wqe; 2558 struct tid_rdma_request *req; 2559 struct hfi1_qp_priv *priv = qp->priv; 2560 2561 lockdep_assert_held(&qp->s_lock); 2562 /* Free any TID entries */ 2563 while (n != qp->s_tail) { 2564 wqe = rvt_get_swqe_ptr(qp, n); 2565 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 2566 req = wqe_to_tid_req(wqe); 2567 hfi1_kern_exp_rcv_clear_all(req); 2568 } 2569 2570 if (++n == qp->s_size) 2571 n = 0; 2572 } 2573 /* Free flow */ 2574 hfi1_kern_clear_hw_flow(priv->rcd, qp); 2575 } 2576 2577 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type) 2578 { 2579 struct rvt_qp *qp = packet->qp; 2580 2581 if (rcv_type >= RHF_RCV_TYPE_IB) 2582 goto done; 2583 2584 spin_lock(&qp->s_lock); 2585 2586 /* 2587 * We've ran out of space in the eager buffer. 2588 * Eagerly received KDETH packets which require space in the 2589 * Eager buffer (packet that have payload) are TID RDMA WRITE 2590 * response packets. In this case, we have to re-transmit the 2591 * TID RDMA WRITE request. 2592 */ 2593 if (rcv_type == RHF_RCV_TYPE_EAGER) { 2594 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1); 2595 hfi1_schedule_send(qp); 2596 } 2597 2598 /* Since no payload is delivered, just drop the packet */ 2599 spin_unlock(&qp->s_lock); 2600 done: 2601 return true; 2602 } 2603 2604 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd, 2605 struct rvt_qp *qp, struct rvt_swqe *wqe) 2606 { 2607 struct tid_rdma_request *req; 2608 struct tid_rdma_flow *flow; 2609 2610 /* Start from the right segment */ 2611 qp->r_flags |= RVT_R_RDMAR_SEQ; 2612 req = wqe_to_tid_req(wqe); 2613 flow = &req->flows[req->clear_tail]; 2614 hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0); 2615 if (list_empty(&qp->rspwait)) { 2616 qp->r_flags |= RVT_R_RSP_SEND; 2617 rvt_get_qp(qp); 2618 list_add_tail(&qp->rspwait, &rcd->qp_wait_list); 2619 } 2620 } 2621 2622 /* 2623 * Handle the KDETH eflags for TID RDMA READ response. 2624 * 2625 * Return true if the last packet for a segment has been received and it is 2626 * time to process the response normally; otherwise, return true. 2627 * 2628 * The caller must hold the packet->qp->r_lock and the rcu_read_lock. 2629 */ 2630 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd, 2631 struct hfi1_packet *packet, u8 rcv_type, 2632 u8 rte, u32 psn, u32 ibpsn) 2633 __must_hold(&packet->qp->r_lock) __must_hold(RCU) 2634 { 2635 struct hfi1_pportdata *ppd = rcd->ppd; 2636 struct hfi1_devdata *dd = ppd->dd; 2637 struct hfi1_ibport *ibp; 2638 struct rvt_swqe *wqe; 2639 struct tid_rdma_request *req; 2640 struct tid_rdma_flow *flow; 2641 u32 ack_psn; 2642 struct rvt_qp *qp = packet->qp; 2643 struct hfi1_qp_priv *priv = qp->priv; 2644 bool ret = true; 2645 int diff = 0; 2646 u32 fpsn; 2647 2648 lockdep_assert_held(&qp->r_lock); 2649 trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn); 2650 trace_hfi1_sender_read_kdeth_eflags(qp); 2651 trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0); 2652 spin_lock(&qp->s_lock); 2653 /* If the psn is out of valid range, drop the packet */ 2654 if (cmp_psn(ibpsn, qp->s_last_psn) < 0 || 2655 cmp_psn(ibpsn, qp->s_psn) > 0) 2656 goto s_unlock; 2657 2658 /* 2659 * Note that NAKs implicitly ACK outstanding SEND and RDMA write 2660 * requests and implicitly NAK RDMA read and atomic requests issued 2661 * before the NAK'ed request. 2662 */ 2663 ack_psn = ibpsn - 1; 2664 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 2665 ibp = to_iport(qp->ibqp.device, qp->port_num); 2666 2667 /* Complete WQEs that the PSN finishes. */ 2668 while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) { 2669 /* 2670 * If this request is a RDMA read or atomic, and the NACK is 2671 * for a later operation, this NACK NAKs the RDMA read or 2672 * atomic. 2673 */ 2674 if (wqe->wr.opcode == IB_WR_RDMA_READ || 2675 wqe->wr.opcode == IB_WR_TID_RDMA_READ || 2676 wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || 2677 wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { 2678 /* Retry this request. */ 2679 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) { 2680 qp->r_flags |= RVT_R_RDMAR_SEQ; 2681 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 2682 restart_tid_rdma_read_req(rcd, qp, 2683 wqe); 2684 } else { 2685 hfi1_restart_rc(qp, qp->s_last_psn + 1, 2686 0); 2687 if (list_empty(&qp->rspwait)) { 2688 qp->r_flags |= RVT_R_RSP_SEND; 2689 rvt_get_qp(qp); 2690 list_add_tail(/* wait */ 2691 &qp->rspwait, 2692 &rcd->qp_wait_list); 2693 } 2694 } 2695 } 2696 /* 2697 * No need to process the NAK since we are 2698 * restarting an earlier request. 2699 */ 2700 break; 2701 } 2702 2703 wqe = do_rc_completion(qp, wqe, ibp); 2704 if (qp->s_acked == qp->s_tail) 2705 goto s_unlock; 2706 } 2707 2708 if (qp->s_acked == qp->s_tail) 2709 goto s_unlock; 2710 2711 /* Handle the eflags for the request */ 2712 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) 2713 goto s_unlock; 2714 2715 req = wqe_to_tid_req(wqe); 2716 trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn, 2717 wqe->lpsn, req); 2718 switch (rcv_type) { 2719 case RHF_RCV_TYPE_EXPECTED: 2720 switch (rte) { 2721 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR: 2722 /* 2723 * On the first occurrence of a Flow Sequence error, 2724 * the flag TID_FLOW_SW_PSN is set. 2725 * 2726 * After that, the flow is *not* reprogrammed and the 2727 * protocol falls back to SW PSN checking. This is done 2728 * to prevent continuous Flow Sequence errors for any 2729 * packets that could be still in the fabric. 2730 */ 2731 flow = &req->flows[req->clear_tail]; 2732 trace_hfi1_tid_flow_read_kdeth_eflags(qp, 2733 req->clear_tail, 2734 flow); 2735 if (priv->s_flags & HFI1_R_TID_SW_PSN) { 2736 diff = cmp_psn(psn, 2737 flow->flow_state.r_next_psn); 2738 if (diff > 0) { 2739 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) 2740 restart_tid_rdma_read_req(rcd, 2741 qp, 2742 wqe); 2743 2744 /* Drop the packet.*/ 2745 goto s_unlock; 2746 } else if (diff < 0) { 2747 /* 2748 * If a response packet for a restarted 2749 * request has come back, reset the 2750 * restart flag. 2751 */ 2752 if (qp->r_flags & RVT_R_RDMAR_SEQ) 2753 qp->r_flags &= 2754 ~RVT_R_RDMAR_SEQ; 2755 2756 /* Drop the packet.*/ 2757 goto s_unlock; 2758 } 2759 2760 /* 2761 * If SW PSN verification is successful and 2762 * this is the last packet in the segment, tell 2763 * the caller to process it as a normal packet. 2764 */ 2765 fpsn = full_flow_psn(flow, 2766 flow->flow_state.lpsn); 2767 if (cmp_psn(fpsn, psn) == 0) { 2768 ret = false; 2769 if (qp->r_flags & RVT_R_RDMAR_SEQ) 2770 qp->r_flags &= 2771 ~RVT_R_RDMAR_SEQ; 2772 } 2773 flow->flow_state.r_next_psn = 2774 mask_psn(psn + 1); 2775 } else { 2776 u32 last_psn; 2777 2778 last_psn = read_r_next_psn(dd, rcd->ctxt, 2779 flow->idx); 2780 flow->flow_state.r_next_psn = last_psn; 2781 priv->s_flags |= HFI1_R_TID_SW_PSN; 2782 /* 2783 * If no request has been restarted yet, 2784 * restart the current one. 2785 */ 2786 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) 2787 restart_tid_rdma_read_req(rcd, qp, 2788 wqe); 2789 } 2790 2791 break; 2792 2793 case RHF_RTE_EXPECTED_FLOW_GEN_ERR: 2794 /* 2795 * Since the TID flow is able to ride through 2796 * generation mismatch, drop this stale packet. 2797 */ 2798 break; 2799 2800 default: 2801 break; 2802 } 2803 break; 2804 2805 case RHF_RCV_TYPE_ERROR: 2806 switch (rte) { 2807 case RHF_RTE_ERROR_OP_CODE_ERR: 2808 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR: 2809 case RHF_RTE_ERROR_KHDR_HCRC_ERR: 2810 case RHF_RTE_ERROR_KHDR_KVER_ERR: 2811 case RHF_RTE_ERROR_CONTEXT_ERR: 2812 case RHF_RTE_ERROR_KHDR_TID_ERR: 2813 default: 2814 break; 2815 } 2816 default: 2817 break; 2818 } 2819 s_unlock: 2820 spin_unlock(&qp->s_lock); 2821 return ret; 2822 } 2823 2824 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd, 2825 struct hfi1_pportdata *ppd, 2826 struct hfi1_packet *packet) 2827 { 2828 struct hfi1_ibport *ibp = &ppd->ibport_data; 2829 struct hfi1_devdata *dd = ppd->dd; 2830 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 2831 u8 rcv_type = rhf_rcv_type(packet->rhf); 2832 u8 rte = rhf_rcv_type_err(packet->rhf); 2833 struct ib_header *hdr = packet->hdr; 2834 struct ib_other_headers *ohdr = NULL; 2835 int lnh = be16_to_cpu(hdr->lrh[0]) & 3; 2836 u16 lid = be16_to_cpu(hdr->lrh[1]); 2837 u8 opcode; 2838 u32 qp_num, psn, ibpsn; 2839 struct rvt_qp *qp; 2840 struct hfi1_qp_priv *qpriv; 2841 unsigned long flags; 2842 bool ret = true; 2843 struct rvt_ack_entry *e; 2844 struct tid_rdma_request *req; 2845 struct tid_rdma_flow *flow; 2846 int diff = 0; 2847 2848 trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ", 2849 packet->rhf); 2850 if (packet->rhf & RHF_ICRC_ERR) 2851 return ret; 2852 2853 packet->ohdr = &hdr->u.oth; 2854 ohdr = packet->ohdr; 2855 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 2856 2857 /* Get the destination QP number. */ 2858 qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) & 2859 RVT_QPN_MASK; 2860 if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) 2861 goto drop; 2862 2863 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2864 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 2865 2866 rcu_read_lock(); 2867 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 2868 if (!qp) 2869 goto rcu_unlock; 2870 2871 packet->qp = qp; 2872 2873 /* Check for valid receive state. */ 2874 spin_lock_irqsave(&qp->r_lock, flags); 2875 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2876 ibp->rvp.n_pkt_drops++; 2877 goto r_unlock; 2878 } 2879 2880 if (packet->rhf & RHF_TID_ERR) { 2881 /* For TIDERR and RC QPs preemptively schedule a NAK */ 2882 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 2883 2884 /* Sanity check packet */ 2885 if (tlen < 24) 2886 goto r_unlock; 2887 2888 /* 2889 * Check for GRH. We should never get packets with GRH in this 2890 * path. 2891 */ 2892 if (lnh == HFI1_LRH_GRH) 2893 goto r_unlock; 2894 2895 if (tid_rdma_tid_err(packet, rcv_type)) 2896 goto r_unlock; 2897 } 2898 2899 /* handle TID RDMA READ */ 2900 if (opcode == TID_OP(READ_RESP)) { 2901 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn); 2902 ibpsn = mask_psn(ibpsn); 2903 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn, 2904 ibpsn); 2905 goto r_unlock; 2906 } 2907 2908 /* 2909 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being 2910 * processed. These a completed sequentially so we can be sure that 2911 * the pointer will not change until the entire request has completed. 2912 */ 2913 spin_lock(&qp->s_lock); 2914 qpriv = qp->priv; 2915 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID || 2916 qpriv->r_tid_tail == qpriv->r_tid_head) 2917 goto unlock; 2918 e = &qp->s_ack_queue[qpriv->r_tid_tail]; 2919 if (e->opcode != TID_OP(WRITE_REQ)) 2920 goto unlock; 2921 req = ack_to_tid_req(e); 2922 if (req->comp_seg == req->cur_seg) 2923 goto unlock; 2924 flow = &req->flows[req->clear_tail]; 2925 trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn); 2926 trace_hfi1_rsp_handle_kdeth_eflags(qp, psn); 2927 trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp); 2928 trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn, 2929 e->lpsn, req); 2930 trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow); 2931 2932 switch (rcv_type) { 2933 case RHF_RCV_TYPE_EXPECTED: 2934 switch (rte) { 2935 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR: 2936 if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) { 2937 qpriv->s_flags |= HFI1_R_TID_SW_PSN; 2938 flow->flow_state.r_next_psn = 2939 read_r_next_psn(dd, rcd->ctxt, 2940 flow->idx); 2941 qpriv->r_next_psn_kdeth = 2942 flow->flow_state.r_next_psn; 2943 goto nak_psn; 2944 } else { 2945 /* 2946 * If the received PSN does not match the next 2947 * expected PSN, NAK the packet. 2948 * However, only do that if we know that the a 2949 * NAK has already been sent. Otherwise, this 2950 * mismatch could be due to packets that were 2951 * already in flight. 2952 */ 2953 diff = cmp_psn(psn, 2954 flow->flow_state.r_next_psn); 2955 if (diff > 0) 2956 goto nak_psn; 2957 else if (diff < 0) 2958 break; 2959 2960 qpriv->s_nak_state = 0; 2961 /* 2962 * If SW PSN verification is successful and this 2963 * is the last packet in the segment, tell the 2964 * caller to process it as a normal packet. 2965 */ 2966 if (psn == full_flow_psn(flow, 2967 flow->flow_state.lpsn)) 2968 ret = false; 2969 flow->flow_state.r_next_psn = 2970 mask_psn(psn + 1); 2971 qpriv->r_next_psn_kdeth = 2972 flow->flow_state.r_next_psn; 2973 } 2974 break; 2975 2976 case RHF_RTE_EXPECTED_FLOW_GEN_ERR: 2977 goto nak_psn; 2978 2979 default: 2980 break; 2981 } 2982 break; 2983 2984 case RHF_RCV_TYPE_ERROR: 2985 switch (rte) { 2986 case RHF_RTE_ERROR_OP_CODE_ERR: 2987 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR: 2988 case RHF_RTE_ERROR_KHDR_HCRC_ERR: 2989 case RHF_RTE_ERROR_KHDR_KVER_ERR: 2990 case RHF_RTE_ERROR_CONTEXT_ERR: 2991 case RHF_RTE_ERROR_KHDR_TID_ERR: 2992 default: 2993 break; 2994 } 2995 default: 2996 break; 2997 } 2998 2999 unlock: 3000 spin_unlock(&qp->s_lock); 3001 r_unlock: 3002 spin_unlock_irqrestore(&qp->r_lock, flags); 3003 rcu_unlock: 3004 rcu_read_unlock(); 3005 drop: 3006 return ret; 3007 nak_psn: 3008 ibp->rvp.n_rc_seqnak++; 3009 if (!qpriv->s_nak_state) { 3010 qpriv->s_nak_state = IB_NAK_PSN_ERROR; 3011 /* We are NAK'ing the next expected PSN */ 3012 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn); 3013 qpriv->s_flags |= RVT_S_ACK_PENDING; 3014 if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID) 3015 qpriv->r_tid_ack = qpriv->r_tid_tail; 3016 hfi1_schedule_tid_send(qp); 3017 } 3018 goto unlock; 3019 } 3020 3021 /* 3022 * "Rewind" the TID request information. 3023 * This means that we reset the state back to ACTIVE, 3024 * find the proper flow, set the flow index to that flow, 3025 * and reset the flow information. 3026 */ 3027 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 3028 u32 *bth2) 3029 { 3030 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 3031 struct tid_rdma_flow *flow; 3032 struct hfi1_qp_priv *qpriv = qp->priv; 3033 int diff, delta_pkts; 3034 u32 tididx = 0, i; 3035 u16 fidx; 3036 3037 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 3038 *bth2 = mask_psn(qp->s_psn); 3039 flow = find_flow_ib(req, *bth2, &fidx); 3040 if (!flow) { 3041 trace_hfi1_msg_tid_restart_req(/* msg */ 3042 qp, "!!!!!! Could not find flow to restart: bth2 ", 3043 (u64)*bth2); 3044 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, 3045 wqe->psn, wqe->lpsn, 3046 req); 3047 return; 3048 } 3049 } else { 3050 fidx = req->acked_tail; 3051 flow = &req->flows[fidx]; 3052 *bth2 = mask_psn(req->r_ack_psn); 3053 } 3054 3055 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) 3056 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn); 3057 else 3058 delta_pkts = delta_psn(*bth2, 3059 full_flow_psn(flow, 3060 flow->flow_state.spsn)); 3061 3062 trace_hfi1_tid_flow_restart_req(qp, fidx, flow); 3063 diff = delta_pkts + flow->resync_npkts; 3064 3065 flow->sent = 0; 3066 flow->pkt = 0; 3067 flow->tid_idx = 0; 3068 flow->tid_offset = 0; 3069 if (diff) { 3070 for (tididx = 0; tididx < flow->tidcnt; tididx++) { 3071 u32 tidentry = flow->tid_entry[tididx], tidlen, 3072 tidnpkts, npkts; 3073 3074 flow->tid_offset = 0; 3075 tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE; 3076 tidnpkts = rvt_div_round_up_mtu(qp, tidlen); 3077 npkts = min_t(u32, diff, tidnpkts); 3078 flow->pkt += npkts; 3079 flow->sent += (npkts == tidnpkts ? tidlen : 3080 npkts * qp->pmtu); 3081 flow->tid_offset += npkts * qp->pmtu; 3082 diff -= npkts; 3083 if (!diff) 3084 break; 3085 } 3086 } 3087 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { 3088 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) + 3089 flow->sent, 0); 3090 /* 3091 * Packet PSN is based on flow_state.spsn + flow->pkt. However, 3092 * during a RESYNC, the generation is incremented and the 3093 * sequence is reset to 0. Since we've adjusted the npkts in the 3094 * flow and the SGE has been sufficiently advanced, we have to 3095 * adjust flow->pkt in order to calculate the correct PSN. 3096 */ 3097 flow->pkt -= flow->resync_npkts; 3098 } 3099 3100 if (flow->tid_offset == 3101 EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) { 3102 tididx++; 3103 flow->tid_offset = 0; 3104 } 3105 flow->tid_idx = tididx; 3106 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) 3107 /* Move flow_idx to correct index */ 3108 req->flow_idx = fidx; 3109 else 3110 req->clear_tail = fidx; 3111 3112 trace_hfi1_tid_flow_restart_req(qp, fidx, flow); 3113 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn, 3114 wqe->lpsn, req); 3115 req->state = TID_REQUEST_ACTIVE; 3116 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { 3117 /* Reset all the flows that we are going to resend */ 3118 fidx = CIRC_NEXT(fidx, MAX_FLOWS); 3119 i = qpriv->s_tid_tail; 3120 do { 3121 for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS); 3122 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) { 3123 req->flows[fidx].sent = 0; 3124 req->flows[fidx].pkt = 0; 3125 req->flows[fidx].tid_idx = 0; 3126 req->flows[fidx].tid_offset = 0; 3127 req->flows[fidx].resync_npkts = 0; 3128 } 3129 if (i == qpriv->s_tid_cur) 3130 break; 3131 do { 3132 i = (++i == qp->s_size ? 0 : i); 3133 wqe = rvt_get_swqe_ptr(qp, i); 3134 } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE); 3135 req = wqe_to_tid_req(wqe); 3136 req->cur_seg = req->ack_seg; 3137 fidx = req->acked_tail; 3138 /* Pull req->clear_tail back */ 3139 req->clear_tail = fidx; 3140 } while (1); 3141 } 3142 } 3143 3144 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp) 3145 { 3146 int i, ret; 3147 struct hfi1_qp_priv *qpriv = qp->priv; 3148 struct tid_flow_state *fs; 3149 3150 if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA)) 3151 return; 3152 3153 /* 3154 * First, clear the flow to help prevent any delayed packets from 3155 * being delivered. 3156 */ 3157 fs = &qpriv->flow_state; 3158 if (fs->index != RXE_NUM_TID_FLOWS) 3159 hfi1_kern_clear_hw_flow(qpriv->rcd, qp); 3160 3161 for (i = qp->s_acked; i != qp->s_head;) { 3162 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i); 3163 3164 if (++i == qp->s_size) 3165 i = 0; 3166 /* Free only locally allocated TID entries */ 3167 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) 3168 continue; 3169 do { 3170 struct hfi1_swqe_priv *priv = wqe->priv; 3171 3172 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req); 3173 } while (!ret); 3174 } 3175 for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) { 3176 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 3177 3178 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device))) 3179 i = 0; 3180 /* Free only locally allocated TID entries */ 3181 if (e->opcode != TID_OP(WRITE_REQ)) 3182 continue; 3183 do { 3184 struct hfi1_ack_priv *priv = e->priv; 3185 3186 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req); 3187 } while (!ret); 3188 } 3189 } 3190 3191 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe) 3192 { 3193 struct rvt_swqe *prev; 3194 struct hfi1_qp_priv *priv = qp->priv; 3195 u32 s_prev; 3196 struct tid_rdma_request *req; 3197 3198 s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1; 3199 prev = rvt_get_swqe_ptr(qp, s_prev); 3200 3201 switch (wqe->wr.opcode) { 3202 case IB_WR_SEND: 3203 case IB_WR_SEND_WITH_IMM: 3204 case IB_WR_SEND_WITH_INV: 3205 case IB_WR_ATOMIC_CMP_AND_SWP: 3206 case IB_WR_ATOMIC_FETCH_AND_ADD: 3207 case IB_WR_RDMA_WRITE: 3208 switch (prev->wr.opcode) { 3209 case IB_WR_TID_RDMA_WRITE: 3210 req = wqe_to_tid_req(prev); 3211 if (req->ack_seg != req->total_segs) 3212 goto interlock; 3213 default: 3214 break; 3215 } 3216 break; 3217 case IB_WR_RDMA_READ: 3218 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE) 3219 break; 3220 /* fall through */ 3221 case IB_WR_TID_RDMA_READ: 3222 switch (prev->wr.opcode) { 3223 case IB_WR_RDMA_READ: 3224 if (qp->s_acked != qp->s_cur) 3225 goto interlock; 3226 break; 3227 case IB_WR_TID_RDMA_WRITE: 3228 req = wqe_to_tid_req(prev); 3229 if (req->ack_seg != req->total_segs) 3230 goto interlock; 3231 default: 3232 break; 3233 } 3234 default: 3235 break; 3236 } 3237 return false; 3238 3239 interlock: 3240 priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK; 3241 return true; 3242 } 3243 3244 /* Does @sge meet the alignment requirements for tid rdma? */ 3245 static inline bool hfi1_check_sge_align(struct rvt_qp *qp, 3246 struct rvt_sge *sge, int num_sge) 3247 { 3248 int i; 3249 3250 for (i = 0; i < num_sge; i++, sge++) { 3251 trace_hfi1_sge_check_align(qp, i, sge); 3252 if ((u64)sge->vaddr & ~PAGE_MASK || 3253 sge->sge_length & ~PAGE_MASK) 3254 return false; 3255 } 3256 return true; 3257 } 3258 3259 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 3260 { 3261 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 3262 struct hfi1_swqe_priv *priv = wqe->priv; 3263 struct tid_rdma_params *remote; 3264 enum ib_wr_opcode new_opcode; 3265 bool do_tid_rdma = false; 3266 struct hfi1_pportdata *ppd = qpriv->rcd->ppd; 3267 3268 if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) == 3269 ppd->lid) 3270 return; 3271 if (qpriv->hdr_type != HFI1_PKT_TYPE_9B) 3272 return; 3273 3274 rcu_read_lock(); 3275 remote = rcu_dereference(qpriv->tid_rdma.remote); 3276 /* 3277 * If TID RDMA is disabled by the negotiation, don't 3278 * use it. 3279 */ 3280 if (!remote) 3281 goto exit; 3282 3283 if (wqe->wr.opcode == IB_WR_RDMA_READ) { 3284 if (hfi1_check_sge_align(qp, &wqe->sg_list[0], 3285 wqe->wr.num_sge)) { 3286 new_opcode = IB_WR_TID_RDMA_READ; 3287 do_tid_rdma = true; 3288 } 3289 } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { 3290 /* 3291 * TID RDMA is enabled for this RDMA WRITE request iff: 3292 * 1. The remote address is page-aligned, 3293 * 2. The length is larger than the minimum segment size, 3294 * 3. The length is page-multiple. 3295 */ 3296 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) && 3297 !(wqe->length & ~PAGE_MASK)) { 3298 new_opcode = IB_WR_TID_RDMA_WRITE; 3299 do_tid_rdma = true; 3300 } 3301 } 3302 3303 if (do_tid_rdma) { 3304 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC)) 3305 goto exit; 3306 wqe->wr.opcode = new_opcode; 3307 priv->tid_req.seg_len = 3308 min_t(u32, remote->max_len, wqe->length); 3309 priv->tid_req.total_segs = 3310 DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len); 3311 /* Compute the last PSN of the request */ 3312 wqe->lpsn = wqe->psn; 3313 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 3314 priv->tid_req.n_flows = remote->max_read; 3315 qpriv->tid_r_reqs++; 3316 wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1; 3317 } else { 3318 wqe->lpsn += priv->tid_req.total_segs - 1; 3319 atomic_inc(&qpriv->n_requests); 3320 } 3321 3322 priv->tid_req.cur_seg = 0; 3323 priv->tid_req.comp_seg = 0; 3324 priv->tid_req.ack_seg = 0; 3325 priv->tid_req.state = TID_REQUEST_INACTIVE; 3326 /* 3327 * Reset acked_tail. 3328 * TID RDMA READ does not have ACKs so it does not 3329 * update the pointer. We have to reset it so TID RDMA 3330 * WRITE does not get confused. 3331 */ 3332 priv->tid_req.acked_tail = priv->tid_req.setup_head; 3333 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode, 3334 wqe->psn, wqe->lpsn, 3335 &priv->tid_req); 3336 } 3337 exit: 3338 rcu_read_unlock(); 3339 } 3340 3341 /* TID RDMA WRITE functions */ 3342 3343 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 3344 struct ib_other_headers *ohdr, 3345 u32 *bth1, u32 *bth2, u32 *len) 3346 { 3347 struct hfi1_qp_priv *qpriv = qp->priv; 3348 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 3349 struct tid_rdma_params *remote; 3350 3351 rcu_read_lock(); 3352 remote = rcu_dereference(qpriv->tid_rdma.remote); 3353 /* 3354 * Set the number of flow to be used based on negotiated 3355 * parameters. 3356 */ 3357 req->n_flows = remote->max_write; 3358 req->state = TID_REQUEST_ACTIVE; 3359 3360 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1); 3361 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey); 3362 ohdr->u.tid_rdma.w_req.reth.vaddr = 3363 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len)); 3364 ohdr->u.tid_rdma.w_req.reth.rkey = 3365 cpu_to_be32(wqe->rdma_wr.rkey); 3366 ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len); 3367 ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn); 3368 *bth1 &= ~RVT_QPN_MASK; 3369 *bth1 |= remote->qp; 3370 qp->s_state = TID_OP(WRITE_REQ); 3371 qp->s_flags |= HFI1_S_WAIT_TID_RESP; 3372 *bth2 |= IB_BTH_REQ_ACK; 3373 *len = 0; 3374 3375 rcu_read_unlock(); 3376 return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32); 3377 } 3378 3379 void hfi1_compute_tid_rdma_flow_wt(void) 3380 { 3381 /* 3382 * Heuristic for computing the RNR timeout when waiting on the flow 3383 * queue. Rather than a computationaly expensive exact estimate of when 3384 * a flow will be available, we assume that if a QP is at position N in 3385 * the flow queue it has to wait approximately (N + 1) * (number of 3386 * segments between two sync points), assuming PMTU of 4K. The rationale 3387 * for this is that flows are released and recycled at each sync point. 3388 */ 3389 tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) / 3390 TID_RDMA_MAX_SEGMENT_SIZE; 3391 } 3392 3393 static u32 position_in_queue(struct hfi1_qp_priv *qpriv, 3394 struct tid_queue *queue) 3395 { 3396 return qpriv->tid_enqueue - queue->dequeue; 3397 } 3398 3399 /* 3400 * @qp: points to rvt_qp context. 3401 * @to_seg: desired RNR timeout in segments. 3402 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[] 3403 */ 3404 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg) 3405 { 3406 struct hfi1_qp_priv *qpriv = qp->priv; 3407 u64 timeout; 3408 u32 bytes_per_us; 3409 u8 i; 3410 3411 bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8; 3412 timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us; 3413 /* 3414 * Find the next highest value in the RNR table to the required 3415 * timeout. This gives the responder some padding. 3416 */ 3417 for (i = 1; i <= IB_AETH_CREDIT_MASK; i++) 3418 if (rvt_rnr_tbl_to_usec(i) >= timeout) 3419 return i; 3420 return 0; 3421 } 3422 3423 /** 3424 * Central place for resource allocation at TID write responder, 3425 * is called from write_req and write_data interrupt handlers as 3426 * well as the send thread when a queued QP is scheduled for 3427 * resource allocation. 3428 * 3429 * Iterates over (a) segments of a request and then (b) queued requests 3430 * themselves to allocate resources for up to local->max_write 3431 * segments across multiple requests. Stop allocating when we 3432 * hit a sync point, resume allocating after data packets at 3433 * sync point have been received. 3434 * 3435 * Resource allocation and sending of responses is decoupled. The 3436 * request/segment which are being allocated and sent are as follows. 3437 * Resources are allocated for: 3438 * [request: qpriv->r_tid_alloc, segment: req->alloc_seg] 3439 * The send thread sends: 3440 * [request: qp->s_tail_ack_queue, segment:req->cur_seg] 3441 */ 3442 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx) 3443 { 3444 struct tid_rdma_request *req; 3445 struct hfi1_qp_priv *qpriv = qp->priv; 3446 struct hfi1_ctxtdata *rcd = qpriv->rcd; 3447 struct tid_rdma_params *local = &qpriv->tid_rdma.local; 3448 struct rvt_ack_entry *e; 3449 u32 npkts, to_seg; 3450 bool last; 3451 int ret = 0; 3452 3453 lockdep_assert_held(&qp->s_lock); 3454 3455 while (1) { 3456 trace_hfi1_rsp_tid_write_alloc_res(qp, 0); 3457 trace_hfi1_tid_write_rsp_alloc_res(qp); 3458 /* 3459 * Don't allocate more segments if a RNR NAK has already been 3460 * scheduled to avoid messing up qp->r_psn: the RNR NAK will 3461 * be sent only when all allocated segments have been sent. 3462 * However, if more segments are allocated before that, TID RDMA 3463 * WRITE RESP packets will be sent out for these new segments 3464 * before the RNR NAK packet. When the requester receives the 3465 * RNR NAK packet, it will restart with qp->s_last_psn + 1, 3466 * which does not match qp->r_psn and will be dropped. 3467 * Consequently, the requester will exhaust its retries and 3468 * put the qp into error state. 3469 */ 3470 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND) 3471 break; 3472 3473 /* No requests left to process */ 3474 if (qpriv->r_tid_alloc == qpriv->r_tid_head) { 3475 /* If all data has been received, clear the flow */ 3476 if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS && 3477 !qpriv->alloc_w_segs) { 3478 hfi1_kern_clear_hw_flow(rcd, qp); 3479 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 3480 } 3481 break; 3482 } 3483 3484 e = &qp->s_ack_queue[qpriv->r_tid_alloc]; 3485 if (e->opcode != TID_OP(WRITE_REQ)) 3486 goto next_req; 3487 req = ack_to_tid_req(e); 3488 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn, 3489 e->lpsn, req); 3490 /* Finished allocating for all segments of this request */ 3491 if (req->alloc_seg >= req->total_segs) 3492 goto next_req; 3493 3494 /* Can allocate only a maximum of local->max_write for a QP */ 3495 if (qpriv->alloc_w_segs >= local->max_write) 3496 break; 3497 3498 /* Don't allocate at a sync point with data packets pending */ 3499 if (qpriv->sync_pt && qpriv->alloc_w_segs) 3500 break; 3501 3502 /* All data received at the sync point, continue */ 3503 if (qpriv->sync_pt && !qpriv->alloc_w_segs) { 3504 hfi1_kern_clear_hw_flow(rcd, qp); 3505 qpriv->sync_pt = false; 3506 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 3507 } 3508 3509 /* Allocate flow if we don't have one */ 3510 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) { 3511 ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp); 3512 if (ret) { 3513 to_seg = tid_rdma_flow_wt * 3514 position_in_queue(qpriv, 3515 &rcd->flow_queue); 3516 break; 3517 } 3518 } 3519 3520 npkts = rvt_div_round_up_mtu(qp, req->seg_len); 3521 3522 /* 3523 * We are at a sync point if we run out of KDETH PSN space. 3524 * Last PSN of every generation is reserved for RESYNC. 3525 */ 3526 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) { 3527 qpriv->sync_pt = true; 3528 break; 3529 } 3530 3531 /* 3532 * If overtaking req->acked_tail, send an RNR NAK. Because the 3533 * QP is not queued in this case, and the issue can only be 3534 * caused due a delay in scheduling the second leg which we 3535 * cannot estimate, we use a rather arbitrary RNR timeout of 3536 * (MAX_FLOWS / 2) segments 3537 */ 3538 if (!CIRC_SPACE(req->setup_head, req->acked_tail, 3539 MAX_FLOWS)) { 3540 ret = -EAGAIN; 3541 to_seg = MAX_FLOWS >> 1; 3542 qpriv->s_flags |= RVT_S_ACK_PENDING; 3543 hfi1_schedule_tid_send(qp); 3544 break; 3545 } 3546 3547 /* Try to allocate rcv array / TID entries */ 3548 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last); 3549 if (ret == -EAGAIN) 3550 to_seg = position_in_queue(qpriv, &rcd->rarr_queue); 3551 if (ret) 3552 break; 3553 3554 qpriv->alloc_w_segs++; 3555 req->alloc_seg++; 3556 continue; 3557 next_req: 3558 /* Begin processing the next request */ 3559 if (++qpriv->r_tid_alloc > 3560 rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3561 qpriv->r_tid_alloc = 0; 3562 } 3563 3564 /* 3565 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation 3566 * has failed (b) we are called from the rcv handler interrupt context 3567 * (c) an RNR NAK has not already been scheduled 3568 */ 3569 if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state) 3570 goto send_rnr_nak; 3571 3572 return; 3573 3574 send_rnr_nak: 3575 lockdep_assert_held(&qp->r_lock); 3576 3577 /* Set r_nak_state to prevent unrelated events from generating NAK's */ 3578 qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK; 3579 3580 /* Pull back r_psn to the segment being RNR NAK'd */ 3581 qp->r_psn = e->psn + req->alloc_seg; 3582 qp->r_ack_psn = qp->r_psn; 3583 /* 3584 * Pull back r_head_ack_queue to the ack entry following the request 3585 * being RNR NAK'd. This allows resources to be allocated to the request 3586 * if the queued QP is scheduled. 3587 */ 3588 qp->r_head_ack_queue = qpriv->r_tid_alloc + 1; 3589 if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3590 qp->r_head_ack_queue = 0; 3591 qpriv->r_tid_head = qp->r_head_ack_queue; 3592 /* 3593 * These send side fields are used in make_rc_ack(). They are set in 3594 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock 3595 * for consistency 3596 */ 3597 qp->s_nak_state = qp->r_nak_state; 3598 qp->s_ack_psn = qp->r_ack_psn; 3599 /* 3600 * Clear the ACK PENDING flag to prevent unwanted ACK because we 3601 * have modified qp->s_ack_psn here. 3602 */ 3603 qp->s_flags &= ~(RVT_S_ACK_PENDING); 3604 3605 trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn); 3606 /* 3607 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK 3608 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be 3609 * used for this because qp->s_lock is dropped before calling 3610 * hfi1_send_rc_ack() leading to inconsistency between the receive 3611 * interrupt handlers and the send thread in make_rc_ack() 3612 */ 3613 qpriv->rnr_nak_state = TID_RNR_NAK_SEND; 3614 3615 /* 3616 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive 3617 * interrupt handlers but will be sent from the send engine behind any 3618 * previous responses that may have been scheduled 3619 */ 3620 rc_defered_ack(rcd, qp); 3621 } 3622 3623 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet) 3624 { 3625 /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/ 3626 3627 /* 3628 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST 3629 * (see hfi1_rc_rcv()) 3630 * - Don't allow 0-length requests. 3631 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue) 3632 * - Setup struct tid_rdma_req with request info 3633 * - Prepare struct tid_rdma_flow array? 3634 * 3. Set the qp->s_ack_state as state diagram in design doc. 3635 * 4. Set RVT_S_RESP_PENDING in s_flags. 3636 * 5. Kick the send engine (hfi1_schedule_send()) 3637 */ 3638 struct hfi1_ctxtdata *rcd = packet->rcd; 3639 struct rvt_qp *qp = packet->qp; 3640 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 3641 struct ib_other_headers *ohdr = packet->ohdr; 3642 struct rvt_ack_entry *e; 3643 unsigned long flags; 3644 struct ib_reth *reth; 3645 struct hfi1_qp_priv *qpriv = qp->priv; 3646 struct tid_rdma_request *req; 3647 u32 bth0, psn, len, rkey, num_segs; 3648 bool fecn; 3649 u8 next; 3650 u64 vaddr; 3651 int diff; 3652 3653 bth0 = be32_to_cpu(ohdr->bth[0]); 3654 if (hfi1_ruc_check_hdr(ibp, packet)) 3655 return; 3656 3657 fecn = process_ecn(qp, packet); 3658 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 3659 trace_hfi1_rsp_rcv_tid_write_req(qp, psn); 3660 3661 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) 3662 rvt_comm_est(qp); 3663 3664 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3665 goto nack_inv; 3666 3667 reth = &ohdr->u.tid_rdma.w_req.reth; 3668 vaddr = be64_to_cpu(reth->vaddr); 3669 len = be32_to_cpu(reth->length); 3670 3671 num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len); 3672 diff = delta_psn(psn, qp->r_psn); 3673 if (unlikely(diff)) { 3674 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn); 3675 return; 3676 } 3677 3678 /* 3679 * The resent request which was previously RNR NAK'd is inserted at the 3680 * location of the original request, which is one entry behind 3681 * r_head_ack_queue 3682 */ 3683 if (qpriv->rnr_nak_state) 3684 qp->r_head_ack_queue = qp->r_head_ack_queue ? 3685 qp->r_head_ack_queue - 1 : 3686 rvt_size_atomic(ib_to_rvt(qp->ibqp.device)); 3687 3688 /* We've verified the request, insert it into the ack queue. */ 3689 next = qp->r_head_ack_queue + 1; 3690 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3691 next = 0; 3692 spin_lock_irqsave(&qp->s_lock, flags); 3693 if (unlikely(next == qp->s_acked_ack_queue)) { 3694 if (!qp->s_ack_queue[next].sent) 3695 goto nack_inv_unlock; 3696 update_ack_queue(qp, next); 3697 } 3698 e = &qp->s_ack_queue[qp->r_head_ack_queue]; 3699 req = ack_to_tid_req(e); 3700 3701 /* Bring previously RNR NAK'd request back to life */ 3702 if (qpriv->rnr_nak_state) { 3703 qp->r_nak_state = 0; 3704 qp->s_nak_state = 0; 3705 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 3706 qp->r_psn = e->lpsn + 1; 3707 req->state = TID_REQUEST_INIT; 3708 goto update_head; 3709 } 3710 3711 release_rdma_sge_mr(e); 3712 3713 /* The length needs to be in multiples of PAGE_SIZE */ 3714 if (!len || len & ~PAGE_MASK) 3715 goto nack_inv_unlock; 3716 3717 rkey = be32_to_cpu(reth->rkey); 3718 qp->r_len = len; 3719 3720 if (e->opcode == TID_OP(WRITE_REQ) && 3721 (req->setup_head != req->clear_tail || 3722 req->clear_tail != req->acked_tail)) 3723 goto nack_inv_unlock; 3724 3725 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr, 3726 rkey, IB_ACCESS_REMOTE_WRITE))) 3727 goto nack_acc; 3728 3729 qp->r_psn += num_segs - 1; 3730 3731 e->opcode = (bth0 >> 24) & 0xff; 3732 e->psn = psn; 3733 e->lpsn = qp->r_psn; 3734 e->sent = 0; 3735 3736 req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write); 3737 req->state = TID_REQUEST_INIT; 3738 req->cur_seg = 0; 3739 req->comp_seg = 0; 3740 req->ack_seg = 0; 3741 req->alloc_seg = 0; 3742 req->isge = 0; 3743 req->seg_len = qpriv->tid_rdma.local.max_len; 3744 req->total_len = len; 3745 req->total_segs = num_segs; 3746 req->r_flow_psn = e->psn; 3747 req->ss.sge = e->rdma_sge; 3748 req->ss.num_sge = 1; 3749 3750 req->flow_idx = req->setup_head; 3751 req->clear_tail = req->setup_head; 3752 req->acked_tail = req->setup_head; 3753 3754 qp->r_state = e->opcode; 3755 qp->r_nak_state = 0; 3756 /* 3757 * We need to increment the MSN here instead of when we 3758 * finish sending the result since a duplicate request would 3759 * increment it more than once. 3760 */ 3761 qp->r_msn++; 3762 qp->r_psn++; 3763 3764 trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn, 3765 req); 3766 3767 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) { 3768 qpriv->r_tid_tail = qp->r_head_ack_queue; 3769 } else if (qpriv->r_tid_tail == qpriv->r_tid_head) { 3770 struct tid_rdma_request *ptr; 3771 3772 e = &qp->s_ack_queue[qpriv->r_tid_tail]; 3773 ptr = ack_to_tid_req(e); 3774 3775 if (e->opcode != TID_OP(WRITE_REQ) || 3776 ptr->comp_seg == ptr->total_segs) { 3777 if (qpriv->r_tid_tail == qpriv->r_tid_ack) 3778 qpriv->r_tid_ack = qp->r_head_ack_queue; 3779 qpriv->r_tid_tail = qp->r_head_ack_queue; 3780 } 3781 } 3782 update_head: 3783 qp->r_head_ack_queue = next; 3784 qpriv->r_tid_head = qp->r_head_ack_queue; 3785 3786 hfi1_tid_write_alloc_resources(qp, true); 3787 trace_hfi1_tid_write_rsp_rcv_req(qp); 3788 3789 /* Schedule the send tasklet. */ 3790 qp->s_flags |= RVT_S_RESP_PENDING; 3791 if (fecn) 3792 qp->s_flags |= RVT_S_ECN; 3793 hfi1_schedule_send(qp); 3794 3795 spin_unlock_irqrestore(&qp->s_lock, flags); 3796 return; 3797 3798 nack_inv_unlock: 3799 spin_unlock_irqrestore(&qp->s_lock, flags); 3800 nack_inv: 3801 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); 3802 qp->r_nak_state = IB_NAK_INVALID_REQUEST; 3803 qp->r_ack_psn = qp->r_psn; 3804 /* Queue NAK for later */ 3805 rc_defered_ack(rcd, qp); 3806 return; 3807 nack_acc: 3808 spin_unlock_irqrestore(&qp->s_lock, flags); 3809 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); 3810 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; 3811 qp->r_ack_psn = qp->r_psn; 3812 } 3813 3814 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 3815 struct ib_other_headers *ohdr, u32 *bth1, 3816 u32 bth2, u32 *len, 3817 struct rvt_sge_state **ss) 3818 { 3819 struct hfi1_ack_priv *epriv = e->priv; 3820 struct tid_rdma_request *req = &epriv->tid_req; 3821 struct hfi1_qp_priv *qpriv = qp->priv; 3822 struct tid_rdma_flow *flow = NULL; 3823 u32 resp_len = 0, hdwords = 0; 3824 void *resp_addr = NULL; 3825 struct tid_rdma_params *remote; 3826 3827 trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn, 3828 req); 3829 trace_hfi1_tid_write_rsp_build_resp(qp); 3830 trace_hfi1_rsp_build_tid_write_resp(qp, bth2); 3831 flow = &req->flows[req->flow_idx]; 3832 switch (req->state) { 3833 default: 3834 /* 3835 * Try to allocate resources here in case QP was queued and was 3836 * later scheduled when resources became available 3837 */ 3838 hfi1_tid_write_alloc_resources(qp, false); 3839 3840 /* We've already sent everything which is ready */ 3841 if (req->cur_seg >= req->alloc_seg) 3842 goto done; 3843 3844 /* 3845 * Resources can be assigned but responses cannot be sent in 3846 * rnr_nak state, till the resent request is received 3847 */ 3848 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT) 3849 goto done; 3850 3851 req->state = TID_REQUEST_ACTIVE; 3852 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow); 3853 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS); 3854 hfi1_add_tid_reap_timer(qp); 3855 break; 3856 3857 case TID_REQUEST_RESEND_ACTIVE: 3858 case TID_REQUEST_RESEND: 3859 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow); 3860 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS); 3861 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS)) 3862 req->state = TID_REQUEST_ACTIVE; 3863 3864 hfi1_mod_tid_reap_timer(qp); 3865 break; 3866 } 3867 flow->flow_state.resp_ib_psn = bth2; 3868 resp_addr = (void *)flow->tid_entry; 3869 resp_len = sizeof(*flow->tid_entry) * flow->tidcnt; 3870 req->cur_seg++; 3871 3872 memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp)); 3873 epriv->ss.sge.vaddr = resp_addr; 3874 epriv->ss.sge.sge_length = resp_len; 3875 epriv->ss.sge.length = epriv->ss.sge.sge_length; 3876 /* 3877 * We can safely zero these out. Since the first SGE covers the 3878 * entire packet, nothing else should even look at the MR. 3879 */ 3880 epriv->ss.sge.mr = NULL; 3881 epriv->ss.sge.m = 0; 3882 epriv->ss.sge.n = 0; 3883 3884 epriv->ss.sg_list = NULL; 3885 epriv->ss.total_len = epriv->ss.sge.sge_length; 3886 epriv->ss.num_sge = 1; 3887 3888 *ss = &epriv->ss; 3889 *len = epriv->ss.total_len; 3890 3891 /* Construct the TID RDMA WRITE RESP packet header */ 3892 rcu_read_lock(); 3893 remote = rcu_dereference(qpriv->tid_rdma.remote); 3894 3895 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1); 3896 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey); 3897 ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp); 3898 ohdr->u.tid_rdma.w_rsp.tid_flow_psn = 3899 cpu_to_be32((flow->flow_state.generation << 3900 HFI1_KDETH_BTH_SEQ_SHIFT) | 3901 (flow->flow_state.spsn & 3902 HFI1_KDETH_BTH_SEQ_MASK)); 3903 ohdr->u.tid_rdma.w_rsp.tid_flow_qp = 3904 cpu_to_be32(qpriv->tid_rdma.local.qp | 3905 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 3906 TID_RDMA_DESTQP_FLOW_SHIFT) | 3907 qpriv->rcd->ctxt); 3908 ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn); 3909 *bth1 = remote->qp; 3910 rcu_read_unlock(); 3911 hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32); 3912 qpriv->pending_tid_w_segs++; 3913 done: 3914 return hdwords; 3915 } 3916 3917 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp) 3918 { 3919 struct hfi1_qp_priv *qpriv = qp->priv; 3920 3921 lockdep_assert_held(&qp->s_lock); 3922 if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) { 3923 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER; 3924 qpriv->s_tid_timer.expires = jiffies + 3925 qpriv->tid_timer_timeout_jiffies; 3926 add_timer(&qpriv->s_tid_timer); 3927 } 3928 } 3929 3930 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp) 3931 { 3932 struct hfi1_qp_priv *qpriv = qp->priv; 3933 3934 lockdep_assert_held(&qp->s_lock); 3935 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER; 3936 mod_timer(&qpriv->s_tid_timer, jiffies + 3937 qpriv->tid_timer_timeout_jiffies); 3938 } 3939 3940 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp) 3941 { 3942 struct hfi1_qp_priv *qpriv = qp->priv; 3943 int rval = 0; 3944 3945 lockdep_assert_held(&qp->s_lock); 3946 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) { 3947 rval = del_timer(&qpriv->s_tid_timer); 3948 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER; 3949 } 3950 return rval; 3951 } 3952 3953 void hfi1_del_tid_reap_timer(struct rvt_qp *qp) 3954 { 3955 struct hfi1_qp_priv *qpriv = qp->priv; 3956 3957 del_timer_sync(&qpriv->s_tid_timer); 3958 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER; 3959 } 3960 3961 static void hfi1_tid_timeout(struct timer_list *t) 3962 { 3963 struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer); 3964 struct rvt_qp *qp = qpriv->owner; 3965 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 3966 unsigned long flags; 3967 u32 i; 3968 3969 spin_lock_irqsave(&qp->r_lock, flags); 3970 spin_lock(&qp->s_lock); 3971 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) { 3972 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n", 3973 qp->ibqp.qp_num, __func__, __LINE__); 3974 trace_hfi1_msg_tid_timeout(/* msg */ 3975 qp, "resource timeout = ", 3976 (u64)qpriv->tid_timer_timeout_jiffies); 3977 hfi1_stop_tid_reap_timer(qp); 3978 /* 3979 * Go though the entire ack queue and clear any outstanding 3980 * HW flow and RcvArray resources. 3981 */ 3982 hfi1_kern_clear_hw_flow(qpriv->rcd, qp); 3983 for (i = 0; i < rvt_max_atomic(rdi); i++) { 3984 struct tid_rdma_request *req = 3985 ack_to_tid_req(&qp->s_ack_queue[i]); 3986 3987 hfi1_kern_exp_rcv_clear_all(req); 3988 } 3989 spin_unlock(&qp->s_lock); 3990 if (qp->ibqp.event_handler) { 3991 struct ib_event ev; 3992 3993 ev.device = qp->ibqp.device; 3994 ev.element.qp = &qp->ibqp; 3995 ev.event = IB_EVENT_QP_FATAL; 3996 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 3997 } 3998 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR); 3999 goto unlock_r_lock; 4000 } 4001 spin_unlock(&qp->s_lock); 4002 unlock_r_lock: 4003 spin_unlock_irqrestore(&qp->r_lock, flags); 4004 } 4005 4006 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet) 4007 { 4008 /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */ 4009 4010 /* 4011 * 1. Find matching SWQE 4012 * 2. Check that TIDENTRY array has enough space for a complete 4013 * segment. If not, put QP in error state. 4014 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow 4015 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags. 4016 * 5. Set qp->s_state 4017 * 6. Kick the send engine (hfi1_schedule_send()) 4018 */ 4019 struct ib_other_headers *ohdr = packet->ohdr; 4020 struct rvt_qp *qp = packet->qp; 4021 struct hfi1_qp_priv *qpriv = qp->priv; 4022 struct hfi1_ctxtdata *rcd = packet->rcd; 4023 struct rvt_swqe *wqe; 4024 struct tid_rdma_request *req; 4025 struct tid_rdma_flow *flow; 4026 enum ib_wc_status status; 4027 u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen; 4028 bool fecn; 4029 unsigned long flags; 4030 4031 fecn = process_ecn(qp, packet); 4032 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4033 aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth); 4034 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 4035 4036 spin_lock_irqsave(&qp->s_lock, flags); 4037 4038 /* Ignore invalid responses */ 4039 if (cmp_psn(psn, qp->s_next_psn) >= 0) 4040 goto ack_done; 4041 4042 /* Ignore duplicate responses. */ 4043 if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0)) 4044 goto ack_done; 4045 4046 if (unlikely(qp->s_acked == qp->s_tail)) 4047 goto ack_done; 4048 4049 /* 4050 * If we are waiting for a particular packet sequence number 4051 * due to a request being resent, check for it. Otherwise, 4052 * ensure that we haven't missed anything. 4053 */ 4054 if (qp->r_flags & RVT_R_RDMAR_SEQ) { 4055 if (cmp_psn(psn, qp->s_last_psn + 1) != 0) 4056 goto ack_done; 4057 qp->r_flags &= ~RVT_R_RDMAR_SEQ; 4058 } 4059 4060 wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur); 4061 if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)) 4062 goto ack_op_err; 4063 4064 req = wqe_to_tid_req(wqe); 4065 /* 4066 * If we've lost ACKs and our acked_tail pointer is too far 4067 * behind, don't overwrite segments. Just drop the packet and 4068 * let the reliability protocol take care of it. 4069 */ 4070 if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS)) 4071 goto ack_done; 4072 4073 /* 4074 * The call to do_rc_ack() should be last in the chain of 4075 * packet checks because it will end up updating the QP state. 4076 * Therefore, anything that would prevent the packet from 4077 * being accepted as a successful response should be prior 4078 * to it. 4079 */ 4080 if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd)) 4081 goto ack_done; 4082 4083 trace_hfi1_ack(qp, psn); 4084 4085 flow = &req->flows[req->setup_head]; 4086 flow->pkt = 0; 4087 flow->tid_idx = 0; 4088 flow->tid_offset = 0; 4089 flow->sent = 0; 4090 flow->resync_npkts = 0; 4091 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp); 4092 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) & 4093 TID_RDMA_DESTQP_FLOW_MASK; 4094 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn)); 4095 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 4096 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK; 4097 flow->flow_state.resp_ib_psn = psn; 4098 flow->length = min_t(u32, req->seg_len, 4099 (wqe->length - (req->comp_seg * req->seg_len))); 4100 4101 flow->npkts = rvt_div_round_up_mtu(qp, flow->length); 4102 flow->flow_state.lpsn = flow->flow_state.spsn + 4103 flow->npkts - 1; 4104 /* payload length = packet length - (header length + ICRC length) */ 4105 pktlen = packet->tlen - (packet->hlen + 4); 4106 if (pktlen > sizeof(flow->tid_entry)) { 4107 status = IB_WC_LOC_LEN_ERR; 4108 goto ack_err; 4109 } 4110 memcpy(flow->tid_entry, packet->ebuf, pktlen); 4111 flow->tidcnt = pktlen / sizeof(*flow->tid_entry); 4112 trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow); 4113 4114 req->comp_seg++; 4115 trace_hfi1_tid_write_sender_rcv_resp(qp, 0); 4116 /* 4117 * Walk the TID_ENTRY list to make sure we have enough space for a 4118 * complete segment. 4119 */ 4120 for (i = 0; i < flow->tidcnt; i++) { 4121 trace_hfi1_tid_entry_rcv_write_resp(/* entry */ 4122 qp, i, flow->tid_entry[i]); 4123 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) { 4124 status = IB_WC_LOC_LEN_ERR; 4125 goto ack_err; 4126 } 4127 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN); 4128 } 4129 if (tidlen * PAGE_SIZE < flow->length) { 4130 status = IB_WC_LOC_LEN_ERR; 4131 goto ack_err; 4132 } 4133 4134 trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn, 4135 wqe->lpsn, req); 4136 /* 4137 * If this is the first response for this request, set the initial 4138 * flow index to the current flow. 4139 */ 4140 if (!cmp_psn(psn, wqe->psn)) { 4141 req->r_last_acked = mask_psn(wqe->psn - 1); 4142 /* Set acked flow index to head index */ 4143 req->acked_tail = req->setup_head; 4144 } 4145 4146 /* advance circular buffer head */ 4147 req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS); 4148 req->state = TID_REQUEST_ACTIVE; 4149 4150 /* 4151 * If all responses for this TID RDMA WRITE request have been received 4152 * advance the pointer to the next one. 4153 * Since TID RDMA requests could be mixed in with regular IB requests, 4154 * they might not appear sequentially in the queue. Therefore, the 4155 * next request needs to be "found". 4156 */ 4157 if (qpriv->s_tid_cur != qpriv->s_tid_head && 4158 req->comp_seg == req->total_segs) { 4159 for (i = qpriv->s_tid_cur + 1; ; i++) { 4160 if (i == qp->s_size) 4161 i = 0; 4162 wqe = rvt_get_swqe_ptr(qp, i); 4163 if (i == qpriv->s_tid_head) 4164 break; 4165 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) 4166 break; 4167 } 4168 qpriv->s_tid_cur = i; 4169 } 4170 qp->s_flags &= ~HFI1_S_WAIT_TID_RESP; 4171 hfi1_schedule_tid_send(qp); 4172 goto ack_done; 4173 4174 ack_op_err: 4175 status = IB_WC_LOC_QP_OP_ERR; 4176 ack_err: 4177 rvt_error_qp(qp, status); 4178 ack_done: 4179 if (fecn) 4180 qp->s_flags |= RVT_S_ECN; 4181 spin_unlock_irqrestore(&qp->s_lock, flags); 4182 } 4183 4184 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe, 4185 struct ib_other_headers *ohdr, 4186 u32 *bth1, u32 *bth2, u32 *len) 4187 { 4188 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 4189 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 4190 struct tid_rdma_params *remote; 4191 struct rvt_qp *qp = req->qp; 4192 struct hfi1_qp_priv *qpriv = qp->priv; 4193 u32 tidentry = flow->tid_entry[flow->tid_idx]; 4194 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT; 4195 struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data; 4196 u32 next_offset, om = KDETH_OM_LARGE; 4197 bool last_pkt; 4198 4199 if (!tidlen) { 4200 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR); 4201 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR); 4202 } 4203 4204 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset); 4205 flow->sent += *len; 4206 next_offset = flow->tid_offset + *len; 4207 last_pkt = (flow->tid_idx == (flow->tidcnt - 1) && 4208 next_offset >= tidlen) || (flow->sent >= flow->length); 4209 trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry); 4210 trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow); 4211 4212 rcu_read_lock(); 4213 remote = rcu_dereference(qpriv->tid_rdma.remote); 4214 KDETH_RESET(wd->kdeth0, KVER, 0x1); 4215 KDETH_SET(wd->kdeth0, SH, !last_pkt); 4216 KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg)); 4217 KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL)); 4218 KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX)); 4219 KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE); 4220 KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om); 4221 KDETH_RESET(wd->kdeth1, JKEY, remote->jkey); 4222 wd->verbs_qp = cpu_to_be32(qp->remote_qpn); 4223 rcu_read_unlock(); 4224 4225 *bth1 = flow->tid_qpn; 4226 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) & 4227 HFI1_KDETH_BTH_SEQ_MASK) | 4228 (flow->flow_state.generation << 4229 HFI1_KDETH_BTH_SEQ_SHIFT)); 4230 if (last_pkt) { 4231 /* PSNs are zero-based, so +1 to count number of packets */ 4232 if (flow->flow_state.lpsn + 1 + 4233 rvt_div_round_up_mtu(qp, req->seg_len) > 4234 MAX_TID_FLOW_PSN) 4235 req->state = TID_REQUEST_SYNC; 4236 *bth2 |= IB_BTH_REQ_ACK; 4237 } 4238 4239 if (next_offset >= tidlen) { 4240 flow->tid_offset = 0; 4241 flow->tid_idx++; 4242 } else { 4243 flow->tid_offset = next_offset; 4244 } 4245 return last_pkt; 4246 } 4247 4248 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet) 4249 { 4250 struct rvt_qp *qp = packet->qp; 4251 struct hfi1_qp_priv *priv = qp->priv; 4252 struct hfi1_ctxtdata *rcd = priv->rcd; 4253 struct ib_other_headers *ohdr = packet->ohdr; 4254 struct rvt_ack_entry *e; 4255 struct tid_rdma_request *req; 4256 struct tid_rdma_flow *flow; 4257 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 4258 unsigned long flags; 4259 u32 psn, next; 4260 u8 opcode; 4261 bool fecn; 4262 4263 fecn = process_ecn(qp, packet); 4264 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4265 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 4266 4267 /* 4268 * All error handling should be done by now. If we are here, the packet 4269 * is either good or been accepted by the error handler. 4270 */ 4271 spin_lock_irqsave(&qp->s_lock, flags); 4272 e = &qp->s_ack_queue[priv->r_tid_tail]; 4273 req = ack_to_tid_req(e); 4274 flow = &req->flows[req->clear_tail]; 4275 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) { 4276 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn); 4277 4278 if (cmp_psn(psn, flow->flow_state.r_next_psn)) 4279 goto send_nak; 4280 4281 flow->flow_state.r_next_psn = mask_psn(psn + 1); 4282 /* 4283 * Copy the payload to destination buffer if this packet is 4284 * delivered as an eager packet due to RSM rule and FECN. 4285 * The RSM rule selects FECN bit in BTH and SH bit in 4286 * KDETH header and therefore will not match the last 4287 * packet of each segment that has SH bit cleared. 4288 */ 4289 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) { 4290 struct rvt_sge_state ss; 4291 u32 len; 4292 u32 tlen = packet->tlen; 4293 u16 hdrsize = packet->hlen; 4294 u8 pad = packet->pad; 4295 u8 extra_bytes = pad + packet->extra_byte + 4296 (SIZE_OF_CRC << 2); 4297 u32 pmtu = qp->pmtu; 4298 4299 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) 4300 goto send_nak; 4301 len = req->comp_seg * req->seg_len; 4302 len += delta_psn(psn, 4303 full_flow_psn(flow, flow->flow_state.spsn)) * 4304 pmtu; 4305 if (unlikely(req->total_len - len < pmtu)) 4306 goto send_nak; 4307 4308 /* 4309 * The e->rdma_sge field is set when TID RDMA WRITE REQ 4310 * is first received and is never modified thereafter. 4311 */ 4312 ss.sge = e->rdma_sge; 4313 ss.sg_list = NULL; 4314 ss.num_sge = 1; 4315 ss.total_len = req->total_len; 4316 rvt_skip_sge(&ss, len, false); 4317 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false, 4318 false); 4319 /* Raise the sw sequence check flag for next packet */ 4320 priv->r_next_psn_kdeth = mask_psn(psn + 1); 4321 priv->s_flags |= HFI1_R_TID_SW_PSN; 4322 } 4323 goto exit; 4324 } 4325 flow->flow_state.r_next_psn = mask_psn(psn + 1); 4326 hfi1_kern_exp_rcv_clear(req); 4327 priv->alloc_w_segs--; 4328 rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK; 4329 req->comp_seg++; 4330 priv->s_nak_state = 0; 4331 4332 /* 4333 * Release the flow if one of the following conditions has been met: 4334 * - The request has reached a sync point AND all outstanding 4335 * segments have been completed, or 4336 * - The entire request is complete and there are no more requests 4337 * (of any kind) in the queue. 4338 */ 4339 trace_hfi1_rsp_rcv_tid_write_data(qp, psn); 4340 trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn, 4341 req); 4342 trace_hfi1_tid_write_rsp_rcv_data(qp); 4343 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID) 4344 priv->r_tid_ack = priv->r_tid_tail; 4345 4346 if (opcode == TID_OP(WRITE_DATA_LAST)) { 4347 release_rdma_sge_mr(e); 4348 for (next = priv->r_tid_tail + 1; ; next++) { 4349 if (next > rvt_size_atomic(&dev->rdi)) 4350 next = 0; 4351 if (next == priv->r_tid_head) 4352 break; 4353 e = &qp->s_ack_queue[next]; 4354 if (e->opcode == TID_OP(WRITE_REQ)) 4355 break; 4356 } 4357 priv->r_tid_tail = next; 4358 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi)) 4359 qp->s_acked_ack_queue = 0; 4360 } 4361 4362 hfi1_tid_write_alloc_resources(qp, true); 4363 4364 /* 4365 * If we need to generate more responses, schedule the 4366 * send engine. 4367 */ 4368 if (req->cur_seg < req->total_segs || 4369 qp->s_tail_ack_queue != qp->r_head_ack_queue) { 4370 qp->s_flags |= RVT_S_RESP_PENDING; 4371 hfi1_schedule_send(qp); 4372 } 4373 4374 priv->pending_tid_w_segs--; 4375 if (priv->s_flags & HFI1_R_TID_RSC_TIMER) { 4376 if (priv->pending_tid_w_segs) 4377 hfi1_mod_tid_reap_timer(req->qp); 4378 else 4379 hfi1_stop_tid_reap_timer(req->qp); 4380 } 4381 4382 done: 4383 priv->s_flags |= RVT_S_ACK_PENDING; 4384 hfi1_schedule_tid_send(qp); 4385 exit: 4386 priv->r_next_psn_kdeth = flow->flow_state.r_next_psn; 4387 if (fecn) 4388 qp->s_flags |= RVT_S_ECN; 4389 spin_unlock_irqrestore(&qp->s_lock, flags); 4390 return; 4391 4392 send_nak: 4393 if (!priv->s_nak_state) { 4394 priv->s_nak_state = IB_NAK_PSN_ERROR; 4395 priv->s_nak_psn = flow->flow_state.r_next_psn; 4396 priv->s_flags |= RVT_S_ACK_PENDING; 4397 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID) 4398 priv->r_tid_ack = priv->r_tid_tail; 4399 hfi1_schedule_tid_send(qp); 4400 } 4401 goto done; 4402 } 4403 4404 static bool hfi1_tid_rdma_is_resync_psn(u32 psn) 4405 { 4406 return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) == 4407 HFI1_KDETH_BTH_SEQ_MASK); 4408 } 4409 4410 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e, 4411 struct ib_other_headers *ohdr, u16 iflow, 4412 u32 *bth1, u32 *bth2) 4413 { 4414 struct hfi1_qp_priv *qpriv = qp->priv; 4415 struct tid_flow_state *fs = &qpriv->flow_state; 4416 struct tid_rdma_request *req = ack_to_tid_req(e); 4417 struct tid_rdma_flow *flow = &req->flows[iflow]; 4418 struct tid_rdma_params *remote; 4419 4420 rcu_read_lock(); 4421 remote = rcu_dereference(qpriv->tid_rdma.remote); 4422 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey); 4423 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn); 4424 *bth1 = remote->qp; 4425 rcu_read_unlock(); 4426 4427 if (qpriv->resync) { 4428 *bth2 = mask_psn((fs->generation << 4429 HFI1_KDETH_BTH_SEQ_SHIFT) - 1); 4430 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp); 4431 } else if (qpriv->s_nak_state) { 4432 *bth2 = mask_psn(qpriv->s_nak_psn); 4433 ohdr->u.tid_rdma.ack.aeth = 4434 cpu_to_be32((qp->r_msn & IB_MSN_MASK) | 4435 (qpriv->s_nak_state << 4436 IB_AETH_CREDIT_SHIFT)); 4437 } else { 4438 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn); 4439 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp); 4440 } 4441 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1); 4442 ohdr->u.tid_rdma.ack.tid_flow_qp = 4443 cpu_to_be32(qpriv->tid_rdma.local.qp | 4444 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 4445 TID_RDMA_DESTQP_FLOW_SHIFT) | 4446 qpriv->rcd->ctxt); 4447 4448 ohdr->u.tid_rdma.ack.tid_flow_psn = 0; 4449 ohdr->u.tid_rdma.ack.verbs_psn = 4450 cpu_to_be32(flow->flow_state.resp_ib_psn); 4451 4452 if (qpriv->resync) { 4453 /* 4454 * If the PSN before the current expect KDETH PSN is the 4455 * RESYNC PSN, then we never received a good TID RDMA WRITE 4456 * DATA packet after a previous RESYNC. 4457 * In this case, the next expected KDETH PSN stays the same. 4458 */ 4459 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) { 4460 ohdr->u.tid_rdma.ack.tid_flow_psn = 4461 cpu_to_be32(qpriv->r_next_psn_kdeth_save); 4462 } else { 4463 /* 4464 * Because the KDETH PSNs jump during a RESYNC, it's 4465 * not possible to infer (or compute) the previous value 4466 * of r_next_psn_kdeth in the case of back-to-back 4467 * RESYNC packets. Therefore, we save it. 4468 */ 4469 qpriv->r_next_psn_kdeth_save = 4470 qpriv->r_next_psn_kdeth - 1; 4471 ohdr->u.tid_rdma.ack.tid_flow_psn = 4472 cpu_to_be32(qpriv->r_next_psn_kdeth_save); 4473 qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1); 4474 } 4475 qpriv->resync = false; 4476 } 4477 4478 return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32); 4479 } 4480 4481 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet) 4482 { 4483 struct ib_other_headers *ohdr = packet->ohdr; 4484 struct rvt_qp *qp = packet->qp; 4485 struct hfi1_qp_priv *qpriv = qp->priv; 4486 struct rvt_swqe *wqe; 4487 struct tid_rdma_request *req; 4488 struct tid_rdma_flow *flow; 4489 u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn; 4490 unsigned long flags; 4491 u16 fidx; 4492 4493 trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0); 4494 process_ecn(qp, packet); 4495 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4496 aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth); 4497 req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn)); 4498 resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn)); 4499 4500 spin_lock_irqsave(&qp->s_lock, flags); 4501 trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn); 4502 4503 /* If we are waiting for an ACK to RESYNC, drop any other packets */ 4504 if ((qp->s_flags & HFI1_S_WAIT_HALT) && 4505 cmp_psn(psn, qpriv->s_resync_psn)) 4506 goto ack_op_err; 4507 4508 ack_psn = req_psn; 4509 if (hfi1_tid_rdma_is_resync_psn(psn)) 4510 ack_kpsn = resync_psn; 4511 else 4512 ack_kpsn = psn; 4513 if (aeth >> 29) { 4514 ack_psn--; 4515 ack_kpsn--; 4516 } 4517 4518 if (unlikely(qp->s_acked == qp->s_tail)) 4519 goto ack_op_err; 4520 4521 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4522 4523 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) 4524 goto ack_op_err; 4525 4526 req = wqe_to_tid_req(wqe); 4527 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4528 wqe->lpsn, req); 4529 flow = &req->flows[req->acked_tail]; 4530 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow); 4531 4532 /* Drop stale ACK/NAK */ 4533 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 || 4534 cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0) 4535 goto ack_op_err; 4536 4537 while (cmp_psn(ack_kpsn, 4538 full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 && 4539 req->ack_seg < req->cur_seg) { 4540 req->ack_seg++; 4541 /* advance acked segment pointer */ 4542 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS); 4543 req->r_last_acked = flow->flow_state.resp_ib_psn; 4544 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4545 wqe->lpsn, req); 4546 if (req->ack_seg == req->total_segs) { 4547 req->state = TID_REQUEST_COMPLETE; 4548 wqe = do_rc_completion(qp, wqe, 4549 to_iport(qp->ibqp.device, 4550 qp->port_num)); 4551 trace_hfi1_sender_rcv_tid_ack(qp); 4552 atomic_dec(&qpriv->n_tid_requests); 4553 if (qp->s_acked == qp->s_tail) 4554 break; 4555 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) 4556 break; 4557 req = wqe_to_tid_req(wqe); 4558 } 4559 flow = &req->flows[req->acked_tail]; 4560 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow); 4561 } 4562 4563 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4564 wqe->lpsn, req); 4565 switch (aeth >> 29) { 4566 case 0: /* ACK */ 4567 if (qpriv->s_flags & RVT_S_WAIT_ACK) 4568 qpriv->s_flags &= ~RVT_S_WAIT_ACK; 4569 if (!hfi1_tid_rdma_is_resync_psn(psn)) { 4570 /* Check if there is any pending TID ACK */ 4571 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && 4572 req->ack_seg < req->cur_seg) 4573 hfi1_mod_tid_retry_timer(qp); 4574 else 4575 hfi1_stop_tid_retry_timer(qp); 4576 hfi1_schedule_send(qp); 4577 } else { 4578 u32 spsn, fpsn, last_acked, generation; 4579 struct tid_rdma_request *rptr; 4580 4581 /* ACK(RESYNC) */ 4582 hfi1_stop_tid_retry_timer(qp); 4583 /* Allow new requests (see hfi1_make_tid_rdma_pkt) */ 4584 qp->s_flags &= ~HFI1_S_WAIT_HALT; 4585 /* 4586 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA 4587 * ACK is received after the TID retry timer is fired 4588 * again. In this case, do not send any more TID 4589 * RESYNC request or wait for any more TID ACK packet. 4590 */ 4591 qpriv->s_flags &= ~RVT_S_SEND_ONE; 4592 hfi1_schedule_send(qp); 4593 4594 if ((qp->s_acked == qpriv->s_tid_tail && 4595 req->ack_seg == req->total_segs) || 4596 qp->s_acked == qp->s_tail) { 4597 qpriv->s_state = TID_OP(WRITE_DATA_LAST); 4598 goto done; 4599 } 4600 4601 if (req->ack_seg == req->comp_seg) { 4602 qpriv->s_state = TID_OP(WRITE_DATA); 4603 goto done; 4604 } 4605 4606 /* 4607 * The PSN to start with is the next PSN after the 4608 * RESYNC PSN. 4609 */ 4610 psn = mask_psn(psn + 1); 4611 generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 4612 spsn = 0; 4613 4614 /* 4615 * Update to the correct WQE when we get an ACK(RESYNC) 4616 * in the middle of a request. 4617 */ 4618 if (delta_psn(ack_psn, wqe->lpsn)) 4619 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4620 req = wqe_to_tid_req(wqe); 4621 flow = &req->flows[req->acked_tail]; 4622 /* 4623 * RESYNC re-numbers the PSN ranges of all remaining 4624 * segments. Also, PSN's start from 0 in the middle of a 4625 * segment and the first segment size is less than the 4626 * default number of packets. flow->resync_npkts is used 4627 * to track the number of packets from the start of the 4628 * real segment to the point of 0 PSN after the RESYNC 4629 * in order to later correctly rewind the SGE. 4630 */ 4631 fpsn = full_flow_psn(flow, flow->flow_state.spsn); 4632 req->r_ack_psn = psn; 4633 flow->resync_npkts += 4634 delta_psn(mask_psn(resync_psn + 1), fpsn); 4635 /* 4636 * Renumber all packet sequence number ranges 4637 * based on the new generation. 4638 */ 4639 last_acked = qp->s_acked; 4640 rptr = req; 4641 while (1) { 4642 /* start from last acked segment */ 4643 for (fidx = rptr->acked_tail; 4644 CIRC_CNT(rptr->setup_head, fidx, 4645 MAX_FLOWS); 4646 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) { 4647 u32 lpsn; 4648 u32 gen; 4649 4650 flow = &rptr->flows[fidx]; 4651 gen = flow->flow_state.generation; 4652 if (WARN_ON(gen == generation && 4653 flow->flow_state.spsn != 4654 spsn)) 4655 continue; 4656 lpsn = flow->flow_state.lpsn; 4657 lpsn = full_flow_psn(flow, lpsn); 4658 flow->npkts = 4659 delta_psn(lpsn, 4660 mask_psn(resync_psn) 4661 ); 4662 flow->flow_state.generation = 4663 generation; 4664 flow->flow_state.spsn = spsn; 4665 flow->flow_state.lpsn = 4666 flow->flow_state.spsn + 4667 flow->npkts - 1; 4668 flow->pkt = 0; 4669 spsn += flow->npkts; 4670 resync_psn += flow->npkts; 4671 trace_hfi1_tid_flow_rcv_tid_ack(qp, 4672 fidx, 4673 flow); 4674 } 4675 if (++last_acked == qpriv->s_tid_cur + 1) 4676 break; 4677 if (last_acked == qp->s_size) 4678 last_acked = 0; 4679 wqe = rvt_get_swqe_ptr(qp, last_acked); 4680 rptr = wqe_to_tid_req(wqe); 4681 } 4682 req->cur_seg = req->ack_seg; 4683 qpriv->s_tid_tail = qp->s_acked; 4684 qpriv->s_state = TID_OP(WRITE_REQ); 4685 hfi1_schedule_tid_send(qp); 4686 } 4687 done: 4688 qpriv->s_retry = qp->s_retry_cnt; 4689 break; 4690 4691 case 3: /* NAK */ 4692 hfi1_stop_tid_retry_timer(qp); 4693 switch ((aeth >> IB_AETH_CREDIT_SHIFT) & 4694 IB_AETH_CREDIT_MASK) { 4695 case 0: /* PSN sequence error */ 4696 if (!req->flows) 4697 break; 4698 flow = &req->flows[req->acked_tail]; 4699 flpsn = full_flow_psn(flow, flow->flow_state.lpsn); 4700 if (cmp_psn(psn, flpsn) > 0) 4701 break; 4702 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, 4703 flow); 4704 req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4705 req->cur_seg = req->ack_seg; 4706 qpriv->s_tid_tail = qp->s_acked; 4707 qpriv->s_state = TID_OP(WRITE_REQ); 4708 qpriv->s_retry = qp->s_retry_cnt; 4709 hfi1_schedule_tid_send(qp); 4710 break; 4711 4712 default: 4713 break; 4714 } 4715 break; 4716 4717 default: 4718 break; 4719 } 4720 4721 ack_op_err: 4722 spin_unlock_irqrestore(&qp->s_lock, flags); 4723 } 4724 4725 void hfi1_add_tid_retry_timer(struct rvt_qp *qp) 4726 { 4727 struct hfi1_qp_priv *priv = qp->priv; 4728 struct ib_qp *ibqp = &qp->ibqp; 4729 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 4730 4731 lockdep_assert_held(&qp->s_lock); 4732 if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) { 4733 priv->s_flags |= HFI1_S_TID_RETRY_TIMER; 4734 priv->s_tid_retry_timer.expires = jiffies + 4735 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies; 4736 add_timer(&priv->s_tid_retry_timer); 4737 } 4738 } 4739 4740 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp) 4741 { 4742 struct hfi1_qp_priv *priv = qp->priv; 4743 struct ib_qp *ibqp = &qp->ibqp; 4744 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 4745 4746 lockdep_assert_held(&qp->s_lock); 4747 priv->s_flags |= HFI1_S_TID_RETRY_TIMER; 4748 mod_timer(&priv->s_tid_retry_timer, jiffies + 4749 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies); 4750 } 4751 4752 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp) 4753 { 4754 struct hfi1_qp_priv *priv = qp->priv; 4755 int rval = 0; 4756 4757 lockdep_assert_held(&qp->s_lock); 4758 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) { 4759 rval = del_timer(&priv->s_tid_retry_timer); 4760 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER; 4761 } 4762 return rval; 4763 } 4764 4765 void hfi1_del_tid_retry_timer(struct rvt_qp *qp) 4766 { 4767 struct hfi1_qp_priv *priv = qp->priv; 4768 4769 del_timer_sync(&priv->s_tid_retry_timer); 4770 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER; 4771 } 4772 4773 static void hfi1_tid_retry_timeout(struct timer_list *t) 4774 { 4775 struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer); 4776 struct rvt_qp *qp = priv->owner; 4777 struct rvt_swqe *wqe; 4778 unsigned long flags; 4779 struct tid_rdma_request *req; 4780 4781 spin_lock_irqsave(&qp->r_lock, flags); 4782 spin_lock(&qp->s_lock); 4783 trace_hfi1_tid_write_sender_retry_timeout(qp, 0); 4784 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) { 4785 hfi1_stop_tid_retry_timer(qp); 4786 if (!priv->s_retry) { 4787 trace_hfi1_msg_tid_retry_timeout(/* msg */ 4788 qp, 4789 "Exhausted retries. Tid retry timeout = ", 4790 (u64)priv->tid_retry_timeout_jiffies); 4791 4792 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4793 hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR); 4794 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 4795 } else { 4796 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4797 req = wqe_to_tid_req(wqe); 4798 trace_hfi1_tid_req_tid_retry_timeout(/* req */ 4799 qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); 4800 4801 priv->s_flags &= ~RVT_S_WAIT_ACK; 4802 /* Only send one packet (the RESYNC) */ 4803 priv->s_flags |= RVT_S_SEND_ONE; 4804 /* 4805 * No additional request shall be made by this QP until 4806 * the RESYNC has been complete. 4807 */ 4808 qp->s_flags |= HFI1_S_WAIT_HALT; 4809 priv->s_state = TID_OP(RESYNC); 4810 priv->s_retry--; 4811 hfi1_schedule_tid_send(qp); 4812 } 4813 } 4814 spin_unlock(&qp->s_lock); 4815 spin_unlock_irqrestore(&qp->r_lock, flags); 4816 } 4817 4818 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe, 4819 struct ib_other_headers *ohdr, u32 *bth1, 4820 u32 *bth2, u16 fidx) 4821 { 4822 struct hfi1_qp_priv *qpriv = qp->priv; 4823 struct tid_rdma_params *remote; 4824 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 4825 struct tid_rdma_flow *flow = &req->flows[fidx]; 4826 u32 generation; 4827 4828 rcu_read_lock(); 4829 remote = rcu_dereference(qpriv->tid_rdma.remote); 4830 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey); 4831 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn); 4832 *bth1 = remote->qp; 4833 rcu_read_unlock(); 4834 4835 generation = kern_flow_generation_next(flow->flow_state.generation); 4836 *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1); 4837 qpriv->s_resync_psn = *bth2; 4838 *bth2 |= IB_BTH_REQ_ACK; 4839 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1); 4840 4841 return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32); 4842 } 4843 4844 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet) 4845 { 4846 struct ib_other_headers *ohdr = packet->ohdr; 4847 struct rvt_qp *qp = packet->qp; 4848 struct hfi1_qp_priv *qpriv = qp->priv; 4849 struct hfi1_ctxtdata *rcd = qpriv->rcd; 4850 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 4851 struct rvt_ack_entry *e; 4852 struct tid_rdma_request *req; 4853 struct tid_rdma_flow *flow; 4854 struct tid_flow_state *fs = &qpriv->flow_state; 4855 u32 psn, generation, idx, gen_next; 4856 bool fecn; 4857 unsigned long flags; 4858 4859 fecn = process_ecn(qp, packet); 4860 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4861 4862 generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT; 4863 spin_lock_irqsave(&qp->s_lock, flags); 4864 4865 gen_next = (fs->generation == KERN_GENERATION_RESERVED) ? 4866 generation : kern_flow_generation_next(fs->generation); 4867 /* 4868 * RESYNC packet contains the "next" generation and can only be 4869 * from the current or previous generations 4870 */ 4871 if (generation != mask_generation(gen_next - 1) && 4872 generation != gen_next) 4873 goto bail; 4874 /* Already processing a resync */ 4875 if (qpriv->resync) 4876 goto bail; 4877 4878 spin_lock(&rcd->exp_lock); 4879 if (fs->index >= RXE_NUM_TID_FLOWS) { 4880 /* 4881 * If we don't have a flow, save the generation so it can be 4882 * applied when a new flow is allocated 4883 */ 4884 fs->generation = generation; 4885 } else { 4886 /* Reprogram the QP flow with new generation */ 4887 rcd->flows[fs->index].generation = generation; 4888 fs->generation = kern_setup_hw_flow(rcd, fs->index); 4889 } 4890 fs->psn = 0; 4891 /* 4892 * Disable SW PSN checking since a RESYNC is equivalent to a 4893 * sync point and the flow has/will be reprogrammed 4894 */ 4895 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 4896 trace_hfi1_tid_write_rsp_rcv_resync(qp); 4897 4898 /* 4899 * Reset all TID flow information with the new generation. 4900 * This is done for all requests and segments after the 4901 * last received segment 4902 */ 4903 for (idx = qpriv->r_tid_tail; ; idx++) { 4904 u16 flow_idx; 4905 4906 if (idx > rvt_size_atomic(&dev->rdi)) 4907 idx = 0; 4908 e = &qp->s_ack_queue[idx]; 4909 if (e->opcode == TID_OP(WRITE_REQ)) { 4910 req = ack_to_tid_req(e); 4911 trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn, 4912 e->lpsn, req); 4913 4914 /* start from last unacked segment */ 4915 for (flow_idx = req->clear_tail; 4916 CIRC_CNT(req->setup_head, flow_idx, 4917 MAX_FLOWS); 4918 flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) { 4919 u32 lpsn; 4920 u32 next; 4921 4922 flow = &req->flows[flow_idx]; 4923 lpsn = full_flow_psn(flow, 4924 flow->flow_state.lpsn); 4925 next = flow->flow_state.r_next_psn; 4926 flow->npkts = delta_psn(lpsn, next - 1); 4927 flow->flow_state.generation = fs->generation; 4928 flow->flow_state.spsn = fs->psn; 4929 flow->flow_state.lpsn = 4930 flow->flow_state.spsn + flow->npkts - 1; 4931 flow->flow_state.r_next_psn = 4932 full_flow_psn(flow, 4933 flow->flow_state.spsn); 4934 fs->psn += flow->npkts; 4935 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx, 4936 flow); 4937 } 4938 } 4939 if (idx == qp->s_tail_ack_queue) 4940 break; 4941 } 4942 4943 spin_unlock(&rcd->exp_lock); 4944 qpriv->resync = true; 4945 /* RESYNC request always gets a TID RDMA ACK. */ 4946 qpriv->s_nak_state = 0; 4947 qpriv->s_flags |= RVT_S_ACK_PENDING; 4948 hfi1_schedule_tid_send(qp); 4949 bail: 4950 if (fecn) 4951 qp->s_flags |= RVT_S_ECN; 4952 spin_unlock_irqrestore(&qp->s_lock, flags); 4953 } 4954 4955 /* 4956 * Call this function when the last TID RDMA WRITE DATA packet for a request 4957 * is built. 4958 */ 4959 static void update_tid_tail(struct rvt_qp *qp) 4960 __must_hold(&qp->s_lock) 4961 { 4962 struct hfi1_qp_priv *priv = qp->priv; 4963 u32 i; 4964 struct rvt_swqe *wqe; 4965 4966 lockdep_assert_held(&qp->s_lock); 4967 /* Can't move beyond s_tid_cur */ 4968 if (priv->s_tid_tail == priv->s_tid_cur) 4969 return; 4970 for (i = priv->s_tid_tail + 1; ; i++) { 4971 if (i == qp->s_size) 4972 i = 0; 4973 4974 if (i == priv->s_tid_cur) 4975 break; 4976 wqe = rvt_get_swqe_ptr(qp, i); 4977 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) 4978 break; 4979 } 4980 priv->s_tid_tail = i; 4981 priv->s_state = TID_OP(WRITE_RESP); 4982 } 4983 4984 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 4985 __must_hold(&qp->s_lock) 4986 { 4987 struct hfi1_qp_priv *priv = qp->priv; 4988 struct rvt_swqe *wqe; 4989 u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0; 4990 struct ib_other_headers *ohdr; 4991 struct rvt_sge_state *ss = &qp->s_sge; 4992 struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue]; 4993 struct tid_rdma_request *req = ack_to_tid_req(e); 4994 bool last = false; 4995 u8 opcode = TID_OP(WRITE_DATA); 4996 4997 lockdep_assert_held(&qp->s_lock); 4998 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0); 4999 /* 5000 * Prioritize the sending of the requests and responses over the 5001 * sending of the TID RDMA data packets. 5002 */ 5003 if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) && 5004 atomic_read(&priv->n_requests) && 5005 !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK | 5006 HFI1_S_ANY_WAIT_IO))) || 5007 (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg && 5008 !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) { 5009 struct iowait_work *iowork; 5010 5011 iowork = iowait_get_ib_work(&priv->s_iowait); 5012 ps->s_txreq = get_waiting_verbs_txreq(iowork); 5013 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) { 5014 priv->s_flags |= HFI1_S_TID_BUSY_SET; 5015 return 1; 5016 } 5017 } 5018 5019 ps->s_txreq = get_txreq(ps->dev, qp); 5020 if (!ps->s_txreq) 5021 goto bail_no_tx; 5022 5023 ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth; 5024 5025 if ((priv->s_flags & RVT_S_ACK_PENDING) && 5026 make_tid_rdma_ack(qp, ohdr, ps)) 5027 return 1; 5028 5029 /* 5030 * Bail out if we can't send data. 5031 * Be reminded that this check must been done after the call to 5032 * make_tid_rdma_ack() because the responding QP could be in 5033 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA. 5034 */ 5035 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) 5036 goto bail; 5037 5038 if (priv->s_flags & RVT_S_WAIT_ACK) 5039 goto bail; 5040 5041 /* Check whether there is anything to do. */ 5042 if (priv->s_tid_tail == HFI1_QP_WQE_INVALID) 5043 goto bail; 5044 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail); 5045 req = wqe_to_tid_req(wqe); 5046 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn, 5047 wqe->lpsn, req); 5048 switch (priv->s_state) { 5049 case TID_OP(WRITE_REQ): 5050 case TID_OP(WRITE_RESP): 5051 priv->tid_ss.sge = wqe->sg_list[0]; 5052 priv->tid_ss.sg_list = wqe->sg_list + 1; 5053 priv->tid_ss.num_sge = wqe->wr.num_sge; 5054 priv->tid_ss.total_len = wqe->length; 5055 5056 if (priv->s_state == TID_OP(WRITE_REQ)) 5057 hfi1_tid_rdma_restart_req(qp, wqe, &bth2); 5058 priv->s_state = TID_OP(WRITE_DATA); 5059 /* fall through */ 5060 5061 case TID_OP(WRITE_DATA): 5062 /* 5063 * 1. Check whether TID RDMA WRITE RESP available. 5064 * 2. If no: 5065 * 2.1 If have more segments and no TID RDMA WRITE RESP, 5066 * set HFI1_S_WAIT_TID_RESP 5067 * 2.2 Return indicating no progress made. 5068 * 3. If yes: 5069 * 3.1 Build TID RDMA WRITE DATA packet. 5070 * 3.2 If last packet in segment: 5071 * 3.2.1 Change KDETH header bits 5072 * 3.2.2 Advance RESP pointers. 5073 * 3.3 Return indicating progress made. 5074 */ 5075 trace_hfi1_sender_make_tid_pkt(qp); 5076 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0); 5077 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail); 5078 req = wqe_to_tid_req(wqe); 5079 len = wqe->length; 5080 5081 if (!req->comp_seg || req->cur_seg == req->comp_seg) 5082 goto bail; 5083 5084 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, 5085 wqe->psn, wqe->lpsn, req); 5086 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2, 5087 &len); 5088 5089 if (last) { 5090 /* move pointer to next flow */ 5091 req->clear_tail = CIRC_NEXT(req->clear_tail, 5092 MAX_FLOWS); 5093 if (++req->cur_seg < req->total_segs) { 5094 if (!CIRC_CNT(req->setup_head, req->clear_tail, 5095 MAX_FLOWS)) 5096 qp->s_flags |= HFI1_S_WAIT_TID_RESP; 5097 } else { 5098 priv->s_state = TID_OP(WRITE_DATA_LAST); 5099 opcode = TID_OP(WRITE_DATA_LAST); 5100 5101 /* Advance the s_tid_tail now */ 5102 update_tid_tail(qp); 5103 } 5104 } 5105 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32); 5106 ss = &priv->tid_ss; 5107 break; 5108 5109 case TID_OP(RESYNC): 5110 trace_hfi1_sender_make_tid_pkt(qp); 5111 /* Use generation from the most recently received response */ 5112 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur); 5113 req = wqe_to_tid_req(wqe); 5114 /* If no responses for this WQE look at the previous one */ 5115 if (!req->comp_seg) { 5116 wqe = rvt_get_swqe_ptr(qp, 5117 (!priv->s_tid_cur ? qp->s_size : 5118 priv->s_tid_cur) - 1); 5119 req = wqe_to_tid_req(wqe); 5120 } 5121 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1, 5122 &bth2, 5123 CIRC_PREV(req->setup_head, 5124 MAX_FLOWS)); 5125 ss = NULL; 5126 len = 0; 5127 opcode = TID_OP(RESYNC); 5128 break; 5129 5130 default: 5131 goto bail; 5132 } 5133 if (priv->s_flags & RVT_S_SEND_ONE) { 5134 priv->s_flags &= ~RVT_S_SEND_ONE; 5135 priv->s_flags |= RVT_S_WAIT_ACK; 5136 bth2 |= IB_BTH_REQ_ACK; 5137 } 5138 qp->s_len -= len; 5139 ps->s_txreq->hdr_dwords = hwords; 5140 ps->s_txreq->sde = priv->s_sde; 5141 ps->s_txreq->ss = ss; 5142 ps->s_txreq->s_cur_size = len; 5143 hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2, 5144 middle, ps); 5145 return 1; 5146 bail: 5147 hfi1_put_txreq(ps->s_txreq); 5148 bail_no_tx: 5149 ps->s_txreq = NULL; 5150 priv->s_flags &= ~RVT_S_BUSY; 5151 /* 5152 * If we didn't get a txreq, the QP will be woken up later to try 5153 * again, set the flags to the the wake up which work item to wake 5154 * up. 5155 * (A better algorithm should be found to do this and generalize the 5156 * sleep/wakeup flags.) 5157 */ 5158 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID); 5159 return 0; 5160 } 5161 5162 static int make_tid_rdma_ack(struct rvt_qp *qp, 5163 struct ib_other_headers *ohdr, 5164 struct hfi1_pkt_state *ps) 5165 { 5166 struct rvt_ack_entry *e; 5167 struct hfi1_qp_priv *qpriv = qp->priv; 5168 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 5169 u32 hwords, next; 5170 u32 len = 0; 5171 u32 bth1 = 0, bth2 = 0; 5172 int middle = 0; 5173 u16 flow; 5174 struct tid_rdma_request *req, *nreq; 5175 5176 trace_hfi1_tid_write_rsp_make_tid_ack(qp); 5177 /* Don't send an ACK if we aren't supposed to. */ 5178 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) 5179 goto bail; 5180 5181 /* header size in 32-bit words LRH+BTH = (8+12)/4. */ 5182 hwords = 5; 5183 5184 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5185 req = ack_to_tid_req(e); 5186 /* 5187 * In the RESYNC case, we are exactly one segment past the 5188 * previously sent ack or at the previously sent NAK. So to send 5189 * the resync ack, we go back one segment (which might be part of 5190 * the previous request) and let the do-while loop execute again. 5191 * The advantage of executing the do-while loop is that any data 5192 * received after the previous ack is automatically acked in the 5193 * RESYNC ack. It turns out that for the do-while loop we only need 5194 * to pull back qpriv->r_tid_ack, not the segment 5195 * indices/counters. The scheme works even if the previous request 5196 * was not a TID WRITE request. 5197 */ 5198 if (qpriv->resync) { 5199 if (!req->ack_seg || req->ack_seg == req->total_segs) 5200 qpriv->r_tid_ack = !qpriv->r_tid_ack ? 5201 rvt_size_atomic(&dev->rdi) : 5202 qpriv->r_tid_ack - 1; 5203 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5204 req = ack_to_tid_req(e); 5205 } 5206 5207 trace_hfi1_rsp_make_tid_ack(qp, e->psn); 5208 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn, 5209 req); 5210 /* 5211 * If we've sent all the ACKs that we can, we are done 5212 * until we get more segments... 5213 */ 5214 if (!qpriv->s_nak_state && !qpriv->resync && 5215 req->ack_seg == req->comp_seg) 5216 goto bail; 5217 5218 do { 5219 /* 5220 * To deal with coalesced ACKs, the acked_tail pointer 5221 * into the flow array is used. The distance between it 5222 * and the clear_tail is the number of flows that are 5223 * being ACK'ed. 5224 */ 5225 req->ack_seg += 5226 /* Get up-to-date value */ 5227 CIRC_CNT(req->clear_tail, req->acked_tail, 5228 MAX_FLOWS); 5229 /* Advance acked index */ 5230 req->acked_tail = req->clear_tail; 5231 5232 /* 5233 * req->clear_tail points to the segment currently being 5234 * received. So, when sending an ACK, the previous 5235 * segment is being ACK'ed. 5236 */ 5237 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS); 5238 if (req->ack_seg != req->total_segs) 5239 break; 5240 req->state = TID_REQUEST_COMPLETE; 5241 5242 next = qpriv->r_tid_ack + 1; 5243 if (next > rvt_size_atomic(&dev->rdi)) 5244 next = 0; 5245 qpriv->r_tid_ack = next; 5246 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ)) 5247 break; 5248 nreq = ack_to_tid_req(&qp->s_ack_queue[next]); 5249 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg) 5250 break; 5251 5252 /* Move to the next ack entry now */ 5253 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5254 req = ack_to_tid_req(e); 5255 } while (1); 5256 5257 /* 5258 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and 5259 * req could be pointing at the previous ack queue entry 5260 */ 5261 if (qpriv->s_nak_state || 5262 (qpriv->resync && 5263 !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) && 5264 (cmp_psn(qpriv->r_next_psn_kdeth - 1, 5265 full_flow_psn(&req->flows[flow], 5266 req->flows[flow].flow_state.lpsn)) > 0))) { 5267 /* 5268 * A NAK will implicitly acknowledge all previous TID RDMA 5269 * requests. Therefore, we NAK with the req->acked_tail 5270 * segment for the request at qpriv->r_tid_ack (same at 5271 * this point as the req->clear_tail segment for the 5272 * qpriv->r_tid_tail request) 5273 */ 5274 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5275 req = ack_to_tid_req(e); 5276 flow = req->acked_tail; 5277 } else if (req->ack_seg == req->total_segs && 5278 qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK) 5279 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK; 5280 5281 trace_hfi1_tid_write_rsp_make_tid_ack(qp); 5282 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn, 5283 req); 5284 hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1, 5285 &bth2); 5286 len = 0; 5287 qpriv->s_flags &= ~RVT_S_ACK_PENDING; 5288 ps->s_txreq->hdr_dwords = hwords; 5289 ps->s_txreq->sde = qpriv->s_sde; 5290 ps->s_txreq->s_cur_size = len; 5291 ps->s_txreq->ss = NULL; 5292 hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle, 5293 ps); 5294 ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP; 5295 return 1; 5296 bail: 5297 /* 5298 * Ensure s_rdma_ack_cnt changes are committed prior to resetting 5299 * RVT_S_RESP_PENDING 5300 */ 5301 smp_wmb(); 5302 qpriv->s_flags &= ~RVT_S_ACK_PENDING; 5303 return 0; 5304 } 5305 5306 static int hfi1_send_tid_ok(struct rvt_qp *qp) 5307 { 5308 struct hfi1_qp_priv *priv = qp->priv; 5309 5310 return !(priv->s_flags & RVT_S_BUSY || 5311 qp->s_flags & HFI1_S_ANY_WAIT_IO) && 5312 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) || 5313 (priv->s_flags & RVT_S_RESP_PENDING) || 5314 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND)); 5315 } 5316 5317 void _hfi1_do_tid_send(struct work_struct *work) 5318 { 5319 struct iowait_work *w = container_of(work, struct iowait_work, iowork); 5320 struct rvt_qp *qp = iowait_to_qp(w->iow); 5321 5322 hfi1_do_tid_send(qp); 5323 } 5324 5325 static void hfi1_do_tid_send(struct rvt_qp *qp) 5326 { 5327 struct hfi1_pkt_state ps; 5328 struct hfi1_qp_priv *priv = qp->priv; 5329 5330 ps.dev = to_idev(qp->ibqp.device); 5331 ps.ibp = to_iport(qp->ibqp.device, qp->port_num); 5332 ps.ppd = ppd_from_ibp(ps.ibp); 5333 ps.wait = iowait_get_tid_work(&priv->s_iowait); 5334 ps.in_thread = false; 5335 ps.timeout_int = qp->timeout_jiffies / 8; 5336 5337 trace_hfi1_rc_do_tid_send(qp, false); 5338 spin_lock_irqsave(&qp->s_lock, ps.flags); 5339 5340 /* Return if we are already busy processing a work request. */ 5341 if (!hfi1_send_tid_ok(qp)) { 5342 if (qp->s_flags & HFI1_S_ANY_WAIT_IO) 5343 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID); 5344 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5345 return; 5346 } 5347 5348 priv->s_flags |= RVT_S_BUSY; 5349 5350 ps.timeout = jiffies + ps.timeout_int; 5351 ps.cpu = priv->s_sde ? priv->s_sde->cpu : 5352 cpumask_first(cpumask_of_node(ps.ppd->dd->node)); 5353 ps.pkts_sent = false; 5354 5355 /* insure a pre-built packet is handled */ 5356 ps.s_txreq = get_waiting_verbs_txreq(ps.wait); 5357 do { 5358 /* Check for a constructed packet to be sent. */ 5359 if (ps.s_txreq) { 5360 if (priv->s_flags & HFI1_S_TID_BUSY_SET) { 5361 qp->s_flags |= RVT_S_BUSY; 5362 ps.wait = iowait_get_ib_work(&priv->s_iowait); 5363 } 5364 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5365 5366 /* 5367 * If the packet cannot be sent now, return and 5368 * the send tasklet will be woken up later. 5369 */ 5370 if (hfi1_verbs_send(qp, &ps)) 5371 return; 5372 5373 /* allow other tasks to run */ 5374 if (hfi1_schedule_send_yield(qp, &ps, true)) 5375 return; 5376 5377 spin_lock_irqsave(&qp->s_lock, ps.flags); 5378 if (priv->s_flags & HFI1_S_TID_BUSY_SET) { 5379 qp->s_flags &= ~RVT_S_BUSY; 5380 priv->s_flags &= ~HFI1_S_TID_BUSY_SET; 5381 ps.wait = iowait_get_tid_work(&priv->s_iowait); 5382 if (iowait_flag_set(&priv->s_iowait, 5383 IOWAIT_PENDING_IB)) 5384 hfi1_schedule_send(qp); 5385 } 5386 } 5387 } while (hfi1_make_tid_rdma_pkt(qp, &ps)); 5388 iowait_starve_clear(ps.pkts_sent, &priv->s_iowait); 5389 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5390 } 5391 5392 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp) 5393 { 5394 struct hfi1_qp_priv *priv = qp->priv; 5395 struct hfi1_ibport *ibp = 5396 to_iport(qp->ibqp.device, qp->port_num); 5397 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 5398 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 5399 5400 return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq, 5401 priv->s_sde ? 5402 priv->s_sde->cpu : 5403 cpumask_first(cpumask_of_node(dd->node))); 5404 } 5405 5406 /** 5407 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine 5408 * @qp: the QP 5409 * 5410 * This schedules qp progress on the TID RDMA state machine. Caller 5411 * should hold the s_lock. 5412 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because 5413 * the two state machines can step on each other with respect to the 5414 * RVT_S_BUSY flag. 5415 * Therefore, a modified test is used. 5416 * @return true if the second leg is scheduled; 5417 * false if the second leg is not scheduled. 5418 */ 5419 bool hfi1_schedule_tid_send(struct rvt_qp *qp) 5420 { 5421 lockdep_assert_held(&qp->s_lock); 5422 if (hfi1_send_tid_ok(qp)) { 5423 /* 5424 * The following call returns true if the qp is not on the 5425 * queue and false if the qp is already on the queue before 5426 * this call. Either way, the qp will be on the queue when the 5427 * call returns. 5428 */ 5429 _hfi1_schedule_tid_send(qp); 5430 return true; 5431 } 5432 if (qp->s_flags & HFI1_S_ANY_WAIT_IO) 5433 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait, 5434 IOWAIT_PENDING_TID); 5435 return false; 5436 } 5437 5438 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e) 5439 { 5440 struct rvt_ack_entry *prev; 5441 struct tid_rdma_request *req; 5442 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 5443 struct hfi1_qp_priv *priv = qp->priv; 5444 u32 s_prev; 5445 5446 s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) : 5447 (qp->s_tail_ack_queue - 1); 5448 prev = &qp->s_ack_queue[s_prev]; 5449 5450 if ((e->opcode == TID_OP(READ_REQ) || 5451 e->opcode == OP(RDMA_READ_REQUEST)) && 5452 prev->opcode == TID_OP(WRITE_REQ)) { 5453 req = ack_to_tid_req(prev); 5454 if (req->ack_seg != req->total_segs) { 5455 priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK; 5456 return true; 5457 } 5458 } 5459 return false; 5460 } 5461 5462 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx) 5463 { 5464 u64 reg; 5465 5466 /* 5467 * The only sane way to get the amount of 5468 * progress is to read the HW flow state. 5469 */ 5470 reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx)); 5471 return mask_psn(reg); 5472 } 5473 5474 static void tid_rdma_rcv_err(struct hfi1_packet *packet, 5475 struct ib_other_headers *ohdr, 5476 struct rvt_qp *qp, u32 psn, int diff, bool fecn) 5477 { 5478 unsigned long flags; 5479 5480 tid_rdma_rcv_error(packet, ohdr, qp, psn, diff); 5481 if (fecn) { 5482 spin_lock_irqsave(&qp->s_lock, flags); 5483 qp->s_flags |= RVT_S_ECN; 5484 spin_unlock_irqrestore(&qp->s_lock, flags); 5485 } 5486 } 5487 5488 static void update_r_next_psn_fecn(struct hfi1_packet *packet, 5489 struct hfi1_qp_priv *priv, 5490 struct hfi1_ctxtdata *rcd, 5491 struct tid_rdma_flow *flow, 5492 bool fecn) 5493 { 5494 /* 5495 * If a start/middle packet is delivered here due to 5496 * RSM rule and FECN, we need to update the r_next_psn. 5497 */ 5498 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER && 5499 !(priv->s_flags & HFI1_R_TID_SW_PSN)) { 5500 struct hfi1_devdata *dd = rcd->dd; 5501 5502 flow->flow_state.r_next_psn = 5503 read_r_next_psn(dd, rcd->ctxt, flow->idx); 5504 } 5505 } 5506